JP2017036234A - Use of compound exhibiting lower limit critical solution temperature type phase behavior - Google Patents

Use of compound exhibiting lower limit critical solution temperature type phase behavior Download PDF

Info

Publication number
JP2017036234A
JP2017036234A JP2015157938A JP2015157938A JP2017036234A JP 2017036234 A JP2017036234 A JP 2017036234A JP 2015157938 A JP2015157938 A JP 2015157938A JP 2015157938 A JP2015157938 A JP 2015157938A JP 2017036234 A JP2017036234 A JP 2017036234A
Authority
JP
Japan
Prior art keywords
carbon atoms
alkyl group
water
separation
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015157938A
Other languages
Japanese (ja)
Other versions
JP6582705B2 (en
Inventor
増田 現
Gen Masuda
現 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshinbo Holdings Inc
Original Assignee
Nisshinbo Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshinbo Holdings Inc filed Critical Nisshinbo Holdings Inc
Priority to JP2015157938A priority Critical patent/JP6582705B2/en
Publication of JP2017036234A publication Critical patent/JP2017036234A/en
Application granted granted Critical
Publication of JP6582705B2 publication Critical patent/JP6582705B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a use as a temperature sensor or extraction medium of an ion liquid exhibiting LCST behavior and good in thermal stability.SOLUTION: Phosphonium salt represented by the formula (1) can be used as a temperature sensor with a lower limit critical solution temperature as an index in a mixture system with water as it exhibits phase separation behavior having the lower limit critical solution temperature with water and an extraction target can also used as a separation extraction medium by mixing with a water phase containing a separation extraction target and mutually dissolving/phase separating reversibly with temperature control. (1), where Rrepresents an alkyl group having 1 to 30 carbon atoms, Rrepresents an alkyl group or an alkoxy group having 1 to 30 carbon atoms, Rrepresents an alkyl group having 1 to 8 carbon atoms and n represents an integer of 1 to 4.SELECTED DRAWING: None

Description

本発明は、下限臨界共溶温度(LCST)型の相挙動(以下、LCST挙動ということもある)を示す化合物の利用に関し、さらに詳述すると、水との下限臨界共溶温度を有する相分離挙動を示すホスホニウム塩型イオン液体の温度センサや抽出媒体としての利用に関する。   The present invention relates to the use of a compound exhibiting a lower critical solution temperature (LCST) type phase behavior (hereinafter sometimes referred to as LCST behavior), and more specifically, phase separation having a lower critical solution temperature with water. The present invention relates to use of a phosphonium salt ionic liquid exhibiting behavior as a temperature sensor or an extraction medium.

イオン液体は、イオンのみからなる液体であり、構成するカチオンとアニオンとの間に働く強い静電的な相互作用力により、蒸気圧がほとんど無い、幅広い温度域で不燃性である、幅広い温度域で液状を保つ、密度を大きく変えることができる、極性の制御が可能である、などの水や有機溶媒等の分子性液体とは異なった特異な性質を有している。   An ionic liquid is a liquid consisting only of ions, and due to the strong electrostatic interaction force acting between the constituent cations and anions, there is almost no vapor pressure and it is nonflammable in a wide temperature range. It has unique properties that are different from molecular liquids such as water and organic solvents, such as maintaining liquid state, greatly changing density, and controlling polarity.

近年、僅かな温度変化で相溶状態と相分離状態とを可逆的に制御できるイオン液体/水混合系を構築できるイオン液体が報告されている(例えば、特許文献1参照)。
このイオン液体は、水と混合した場合に、冷却により相溶する下限臨界共溶温度型の相挙動を示すもので、具体的には、水との混合系において、LCSTを超えると相分離するがそれ以下では相溶し、また、再びLCSTを超えると相分離するというように、温度によって可逆的に相溶/相分離状態を制御可能な物質である。
In recent years, there has been reported an ionic liquid capable of constructing an ionic liquid / water mixed system capable of reversibly controlling a compatible state and a phase separation state with a slight temperature change (see, for example, Patent Document 1).
This ionic liquid exhibits a lower critical eutectic temperature type phase behavior that is compatible with cooling when mixed with water. Specifically, in a mixed system with water, phase separation occurs when LCST is exceeded. However, it is a substance capable of reversibly controlling the compatibility / phase separation state depending on the temperature.

しかし、特許文献1に開示されたLCST挙動を示すイオン液体は、カルボン酸塩であるため、熱によって脱炭酸して分解を起こし易いという問題があった。   However, since the ionic liquid showing the LCST behavior disclosed in Patent Document 1 is a carboxylate, there is a problem that it is likely to be decomposed by decarboxylation by heat.

特開2008−44849号公報JP 2008-44849 A 特開2013−014536号公報JP 2013-014536 A

本発明は、このような事情に鑑みてなされたものであり、LCST挙動を示し、熱安定性の良好なイオン液体の温度センサや抽出媒体としての利用を提供することを目的とする。   This invention is made | formed in view of such a situation, and it aims at providing the utilization as a temperature sensor and extraction medium of an ionic liquid which shows LCST behavior and favorable thermal stability.

本発明者は、所定のアルキルホスホニウムカチオンと、トリアルキルシリル基含有アルキルスルホン酸アニオンとから構成されるホスホニウム塩がイオン液体となること、およびこのイオン液体が、ハロゲンフリーであるにも関わらず熱安定性が良好であるとともに、疎水性を示すことをすでに報告している(特許文献2)。
この知見を踏まえ、本発明者はさらに鋭意検討を重ねた結果、特許文献2中の疎水性ホスホニウム塩型イオン液体やそれに類似する構造を有するホスホニウム塩型イオン液体の中に、水と混合した場合にLCST挙動を示すものが存在することを突き止めるとともに、当該イオン液体と水との混合液がLCSTを指標とした温度センサとして利用可能であるとともに、当該イオン液体が分離抽出対象物を水相から分離抽出するための媒体として利用可能であることを見出し、本発明を完成した。
The present inventor has found that a phosphonium salt composed of a predetermined alkylphosphonium cation and a trialkylsilyl group-containing alkylsulfonate anion becomes an ionic liquid, and that the ionic liquid is heat-free even though it is halogen-free. It has already been reported that stability is good and hydrophobicity is shown (Patent Document 2).
Based on this knowledge, as a result of further intensive studies, the present inventor has mixed water with the hydrophobic phosphonium salt ionic liquid and the phosphonium salt ionic liquid having a similar structure in Patent Document 2. In addition, the liquid mixture of the ionic liquid and water can be used as a temperature sensor using LCST as an index, and the ionic liquid can separate the separation and extraction target from the aqueous phase. The present invention has been completed by finding that it can be used as a medium for separation and extraction.

すなわち、本発明は、
1. 水との下限臨界共溶温度を有する相分離挙動を示す式(1)で示されるホスホニウム塩と、水とを含み、前記下限臨界共溶温度以下の温度で前記水と前記ホスホニウム塩とが相溶していることを特徴とする組成物、

Figure 2017036234
(式中、R1は、炭素数1〜30のアルキル基を表し、R2は、炭素数1〜30のアルキル基またはアルコキシ基を表し、R3は、炭素数1〜8のアルキル基を表し、nは、1〜4の整数を表す。)
2. 前記R1が、炭素数2〜5の直鎖アルキル基を表し、前記R2が、炭素数10〜20の直鎖アルキル基を表し、前記R3が、1〜4のアルキル基を表し、前記nが、2または3である1の組成物、
3. 前記式(1)で示されるホスホニウム塩が、式(2)〜(5)のいずれかで示される1または2の組成物、
Figure 2017036234
4. 前記下限臨界共溶温度を指標とした温度センサとして用いられる1〜3のいずれかの組成物、
5. 水との下限臨界共溶温度を有する相分離挙動を示す式(1)で示されるホスホニウム塩と、水とを含むことを特徴とする温度センサ、
Figure 2017036234
(式中、R1は、炭素数1〜30のアルキル基を表し、R2は、炭素数1〜30のアルキル基またはアルコキシ基を表し、R3は、炭素数1〜8のアルキル基を表し、nは、1〜4の整数を表す。)
6. 分離抽出対象物を含む水相と混合し、温度制御で可逆的に前記水相と相溶/相分離することで前記抽出対象物を分離抽出するための分離抽出媒体であって、水との下限臨界共溶温度を有する相分離挙動を示す式(1)で示されるホスホニウム塩からなることを特徴とする分離抽出媒体、
Figure 2017036234
(式中、R1は、炭素数1〜30のアルキル基を表し、R2は、炭素数1〜30のアルキル基またはアルコキシ基を表し、R3は、炭素数1〜8のアルキル基を表し、nは、1〜4の整数を表す。)
7. 分離抽出対象物を含む水相と、6の分離抽出媒体とを混合し、前記下限臨界共溶温度以下で相溶させた後、前記下限臨界共溶温度超まで加温して、前記水相と前記ホスホニウム塩とを相分離させることで、前記分離抽出対象物を前記水相から前記分離抽出媒体中に移行させることを特徴とする分離抽出方法
を提供する。 That is, the present invention
1. A phosphonium salt represented by the formula (1) showing a phase separation behavior having a lower critical eutectic temperature with water and water, and the water and the phosphonium salt are in a phase at a temperature equal to or lower than the lower critical eutectic temperature. A composition characterized by being dissolved,
Figure 2017036234
(In the formula, R 1 represents an alkyl group having 1 to 30 carbon atoms, R 2 represents an alkyl group having 1 to 30 carbon atoms or an alkoxy group, and R 3 represents an alkyl group having 1 to 8 carbon atoms. And n represents an integer of 1 to 4.)
2. R 1 represents a linear alkyl group having 2 to 5 carbon atoms, R 2 represents a linear alkyl group having 10 to 20 carbon atoms, R 3 represents an alkyl group having 1 to 4 carbon atoms, 1 composition wherein n is 2 or 3;
3. The phosphonium salt represented by the formula (1) is a composition of 1 or 2 represented by any one of the formulas (2) to (5):
Figure 2017036234
4). Any one of compositions 1 to 3 used as a temperature sensor with the lower critical eutectic temperature as an index;
5). A temperature sensor comprising: a phosphonium salt represented by formula (1) showing a phase separation behavior having a lower critical eutectic temperature with water; and water.
Figure 2017036234
(In the formula, R 1 represents an alkyl group having 1 to 30 carbon atoms, R 2 represents an alkyl group having 1 to 30 carbon atoms or an alkoxy group, and R 3 represents an alkyl group having 1 to 8 carbon atoms. And n represents an integer of 1 to 4.)
6). A separation / extraction medium for separating and extracting the extraction object by mixing with the aqueous phase containing the separation / extraction object and reversibly dissolving / phase-separating with the aqueous phase under temperature control, A separation and extraction medium comprising a phosphonium salt represented by the formula (1) showing a phase separation behavior having a lower critical eutectic temperature;
Figure 2017036234
(In the formula, R 1 represents an alkyl group having 1 to 30 carbon atoms, R 2 represents an alkyl group having 1 to 30 carbon atoms or an alkoxy group, and R 3 represents an alkyl group having 1 to 8 carbon atoms. And n represents an integer of 1 to 4.)
7). The aqueous phase containing the separation / extraction object and the separation / extraction medium of 6 are mixed and dissolved at the lower critical eutectic temperature or lower, and then heated to above the lower critical eutectic temperature, The separation and extraction method is characterized in that the separation and extraction object is transferred from the aqueous phase into the separation and extraction medium by phase-separating the phosphonium salt and the phosphonium salt.

本発明で用いるホスホニウム塩は、水との混合系においてLCST挙動を示すとともに熱安定性に優れているため、水との混合液とした上で、そのLCSTを指標とすることで、高感度の温度センサとして利用することができる。
また、本発明で用いるホスホニウム塩が有する、水と相溶・相分離する性質を利用することで、当該塩を、水に溶解した物質を分離抽出するための分離抽出媒体として利用することもできる。
Since the phosphonium salt used in the present invention exhibits LCST behavior in a mixed system with water and is excellent in thermal stability, a high-sensitivity can be obtained by using the LCST as an index after preparing a mixed solution with water. It can be used as a temperature sensor.
In addition, by utilizing the property of the phosphonium salt used in the present invention that is compatible / separated with water, the salt can also be used as a separation / extraction medium for separating and extracting substances dissolved in water. .

合成例2で合成したイオン液体2の1H−NMRスペクトルである。3 is a 1 H-NMR spectrum of ionic liquid 2 synthesized in Synthesis Example 2. FIG. 合成例4で合成したイオン液体4の1H−NMRスペクトルである。4 is a 1 H-NMR spectrum of ionic liquid 4 synthesized in Synthesis Example 4. FIG. 合成例1〜4で得られたイオン液体1〜4と水との混合液の水含有量20〜80質量%におけるLCSTをプロットしたグラフである。It is the graph which plotted LCST in water content 20-80 mass% of the liquid mixture of the ionic liquids 1-4 obtained by the synthesis examples 1-4 and water.

以下、本発明についてさらに詳しく説明する。
本発明に係る組成物は、水との下限臨界共溶温度を有する相分離挙動を示す式(1)で示されるホスホニウム塩と、水とを含み、下限臨界共溶温度以下の温度で水とホスホニウム塩とが相溶し、均一系を形成しているものである。
Hereinafter, the present invention will be described in more detail.
The composition according to the present invention comprises a phosphonium salt represented by the formula (1) showing a phase separation behavior having a lower critical solution temperature with water and water, and water at a temperature not higher than the lower critical solution temperature. It is compatible with the phosphonium salt to form a homogeneous system.

Figure 2017036234
Figure 2017036234

ここでR1は、炭素数1〜30のアルキル基を表し、R2は、炭素数1〜30のアルキル基またはアルコキシ基を表し、R3は、炭素数1〜8のアルキル基を表し、nは、1〜4の整数を表す。
炭素数1〜30のアルキル基としては、直鎖、分岐、環状のいずれでもよく、例えば、メチル、エチル、n−プロピル、i−プロピル、c−プロピル、n−ブチル、i−ブチル、s−ブチル、t−ブチル、c−ブチル、n−ペンチル、c−ペンチル、n−ヘキシル、c−ヘキシル、n−ヘプチル、n−オクチル、2−エチルヘキシル、n−ノニル、n−デシル、n−ウンデシル、n−ドデシル、n−トリデシル、n−テトラデシル、n−ペンタデシル、n−ヘキサデシル、n−ヘプタデシル、n−オクタデシル、n−ノナデシル、n−エイコシル基等が挙げられる。
炭素数1〜8のアルキル基としては、直鎖、分岐、環状のいずれでもよく、上記炭素数1〜30のアルキル基で例示した基のうち、炭素数1〜8のものと同様の基が挙げられる。
Here, R 1 represents an alkyl group having 1 to 30 carbon atoms, R 2 represents an alkyl group having 1 to 30 carbon atoms or an alkoxy group, R 3 represents an alkyl group having 1 to 8 carbon atoms, n represents an integer of 1 to 4.
The alkyl group having 1 to 30 carbon atoms may be linear, branched or cyclic. For example, methyl, ethyl, n-propyl, i-propyl, c-propyl, n-butyl, i-butyl, s- Butyl, t-butyl, c-butyl, n-pentyl, c-pentyl, n-hexyl, c-hexyl, n-heptyl, n-octyl, 2-ethylhexyl, n-nonyl, n-decyl, n-undecyl, Examples include n-dodecyl, n-tridecyl, n-tetradecyl, n-pentadecyl, n-hexadecyl, n-heptadecyl, n-octadecyl, n-nonadecyl, n-eicosyl group and the like.
The alkyl group having 1 to 8 carbon atoms may be linear, branched or cyclic, and among the groups exemplified for the alkyl group having 1 to 30 carbon atoms, the same groups as those having 1 to 8 carbon atoms are used. Can be mentioned.

炭素数1〜30のアルコキシ基としては、その中のアルキル基が直鎖、分岐、環状のいずれのものでもよく、例えば、メトキシ、エトキシ、n−プロポキシ、i−プロポキシ、c−プロポキシ、n−ブトキシ、i−ブトキシ、s−ブトキシ、t−ブトキシ、c−ブトキシ、n−ペンチルオキシ、c−ペンチルオキシ、n−ヘキシルオキシ、c−ヘキシルオキシ、n−ヘプチルオキシ、n−オクチルオキシ、2−エチルヘキシルオキシ、n−ノニルオキシ、n−デシルオキシ、n−ウンデシルオキシ、n−ドデシルオキシ、n−トリデシルオキシ、n−テトラデシルオキシ、n−ペンタデシルオキシ、n−ヘキサデシルオキシ、n−ヘプタデシルオキシ、n−オクタデシルオキシ、n−ノナデシルオキシ、n−エイコシルオキシ基等が挙げられる。   As the alkoxy group having 1 to 30 carbon atoms, the alkyl group therein may be linear, branched or cyclic. For example, methoxy, ethoxy, n-propoxy, i-propoxy, c-propoxy, n- Butoxy, i-butoxy, s-butoxy, t-butoxy, c-butoxy, n-pentyloxy, c-pentyloxy, n-hexyloxy, c-hexyloxy, n-heptyloxy, n-octyloxy, 2- Ethylhexyloxy, n-nonyloxy, n-decyloxy, n-undecyloxy, n-dodecyloxy, n-tridecyloxy, n-tetradecyloxy, n-pentadecyloxy, n-hexadecyloxy, n-heptadecyl And oxy, n-octadecyloxy, n-nonadecyloxy, n-eicosyloxy groups, etc. .

特に本発明において、R1としては、炭素数2〜8の直鎖アルキル基が好ましく、炭素数2〜5の直鎖アルキル基がより好ましく、炭素数2〜4の直鎖アルキル基がより一層好ましく、本発明で用いられるイオン液体の特性(LCST挙動、耐熱性)および製造コストなどを考慮すると、n−ブチル基が最適である。
2としては、本発明で用いられるイオン液体の特性を考慮すると、炭素数10〜20の直鎖アルキル基が好ましく、炭素数12〜20の直鎖アルキル基がより好ましい。
3としては、炭素数1〜4のアルキル基が好ましく、炭素数1〜3のアルキル基がより好ましく、メチル基が最適である。
nとしては、1〜8が好ましく、2〜6がより好ましく、2または3がより一層好ましい。
Particularly in the present invention, R 1 is preferably a linear alkyl group having 2 to 8 carbon atoms, more preferably a linear alkyl group having 2 to 5 carbon atoms, and even more preferably a linear alkyl group having 2 to 4 carbon atoms. Preferably, the n-butyl group is optimal in consideration of the characteristics (LCST behavior, heat resistance) and production cost of the ionic liquid used in the present invention.
R 2 is preferably a linear alkyl group having 10 to 20 carbon atoms, more preferably a linear alkyl group having 12 to 20 carbon atoms, in consideration of the characteristics of the ionic liquid used in the present invention.
R 3 is preferably an alkyl group having 1 to 4 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms, and most preferably a methyl group.
As n, 1-8 are preferable, 2-6 are more preferable, and 2 or 3 is still more preferable.

上記ホスホニウム塩(イオン液体)は、後の実施例で示すように、水との特定比率において、特定のLCSTを示すため、LCSTにおける白濁点を指標とすることで、高感度の温度センサとして利用することができる。
この場合、ホスホニウム塩と水との混合割合は、LCST挙動を示す範囲において、測定目的とする温度に応じて適宜設定されるものであるが、本発明では、質量比で水:ホスホニウム塩=1:9〜9:1程度とすることができ、2:8〜8:2程度の混合系で温度センサとして利用することが好ましい。
なお、温度センサとして利用する場合、水の蒸発によるLCSTの変動を防止するため、ホスホニウム塩と水との混合液は密閉して利用することが好ましい。
Since the phosphonium salt (ionic liquid) shows a specific LCST in a specific ratio with water, as shown in the following examples, it is used as a highly sensitive temperature sensor by using the cloudiness point in the LCST as an index. can do.
In this case, the mixing ratio of the phosphonium salt and water is appropriately set according to the temperature to be measured within the range showing the LCST behavior, but in the present invention, water: phosphonium salt = 1 by mass ratio. : About 9 to 9: 1, and preferably used as a temperature sensor in a mixed system of about 2: 8 to 8: 2.
In addition, when using as a temperature sensor, in order to prevent the fluctuation | variation of LCST by evaporation of water, it is preferable to seal and use the liquid mixture of phosphonium salt and water.

本発明で用いられるホスホニウム塩は、特許文献2に記載されているように、トリアルキルシリル基含有アルキルスルホン酸塩と、R1 32PX(Xはハロゲン原子)で示されるテトラアルキルホスホニウムハライドとを、溶媒中で反応させて製造する方法や、トリアルキルシリル基含有アルキルスルホン酸塩と、R1 32PX(Xはハロゲン原子)で示されるテトラアルキルホスホニウム塩を、各々陽イオン交換樹脂、陰イオン交換樹脂を用いて、トリアルキルシリル基含有アルキルスルホン酸およびテトラアルキルホスホニウム水酸化物に変換した後、両者を混合する中和法によって得ることができる。
この場合、スルホン酸塩としては、ナトリウム塩、カリウム塩、銀塩等を用いることができる。
また、ハロゲン原子としては、フッ素、塩素、臭素、ヨウ素原子が挙げられるが、塩素原子、臭素原子が好ましい。
溶媒としては、水、有機溶媒どちらでも構わないが、生成したイオン液体がLCST挙動を示し、LCSTを超える温度では水と2層に分離することから、水を用いた場合、生成物の分離、精製等の操作が容易になる。
As described in Patent Document 2, the phosphonium salt used in the present invention includes a trialkylsilyl group-containing alkyl sulfonate and a tetraalkylphosphonium halide represented by R 1 3 R 2 PX (X is a halogen atom). And cation exchange between a trialkylsilyl group-containing alkyl sulfonate and a tetraalkylphosphonium salt represented by R 1 3 R 2 PX (where X is a halogen atom). After conversion into a trialkylsilyl group-containing alkylsulfonic acid and a tetraalkylphosphonium hydroxide using a resin and an anion exchange resin, it can be obtained by a neutralization method in which both are mixed.
In this case, sodium salt, potassium salt, silver salt and the like can be used as the sulfonate.
In addition, examples of the halogen atom include fluorine, chlorine, bromine and iodine atoms, with a chlorine atom and bromine atom being preferred.
The solvent may be either water or an organic solvent, but the produced ionic liquid exhibits LCST behavior and is separated into water and two layers at a temperature exceeding the LCST. Operations such as purification become easy.

上記反応における、R1 32PX(Xはハロゲン原子)とトリアルキルシリル基含有アルキルスルホン酸塩との使用比率は、モル比で5:1〜1:5程度とすることができる。通常は1:1に近い比率で行うことが好ましい。
反応終了後は、通常の後処理を行って目的物を得ることができる。
The use ratio of R 1 3 R 2 PX (X is a halogen atom) and the trialkylsilyl group-containing alkyl sulfonate in the above reaction can be about 5: 1 to 1: 5 in molar ratio. Usually, it is preferable to carry out at a ratio close to 1: 1.
After completion of the reaction, the desired product can be obtained by carrying out usual post-treatment.

また、本発明で用いるホスホニウム塩は、水と混合した場合のLCST挙動を利用することで、水相に溶解した物質の分離抽出媒体としても利用できる。分離抽出方法としては、分離抽出対象物を含む水相と、上記式(1)で示されるホスホニウム塩とを混合し、LCST以下(ホスホニウム塩の凝固点超)に冷却してそれらを相溶させた後、LCST超まで加温して、水相とホスホニウム塩とを相分離させることで、分離抽出対象物を水相からホスホニウム塩中に移行させるものである。   The phosphonium salt used in the present invention can also be used as a medium for separating and extracting substances dissolved in the aqueous phase by utilizing the LCST behavior when mixed with water. As a separation / extraction method, an aqueous phase containing a separation / extraction object and a phosphonium salt represented by the above formula (1) were mixed and cooled to LCST or lower (above the freezing point of the phosphonium salt) to make them compatible. Thereafter, the mixture is heated up to LCST and the aqueous phase and the phosphonium salt are phase-separated to transfer the separation / extraction object from the aqueous phase into the phosphonium salt.

混合手法には特に制限はなく、水相をホスホニウム塩に添加しても、ホスホニウム塩を水相に添加してもよく、その際、従来公知の撹拌法等を用いて両者を十分に撹拌混合してもよい。また、混合時の温度をLCST以下としてもよい。
この場合、分離抽出対象物を含む水と、ホスホニウム塩との混合割合は、LCST挙動を示す範囲であれば特に限定されるものではないが、分離抽出効率や作業性等の観点から、質量比で水:ホスホニウム塩=1:9〜9:1程度とすることができるが、2:8〜8:2が好ましく、2:8〜4:6がより好ましい。
There is no particular limitation on the mixing method, and either the aqueous phase may be added to the phosphonium salt or the phosphonium salt may be added to the aqueous phase. May be. Further, the temperature during mixing may be set to LCST or lower.
In this case, the mixing ratio of the water containing the separation and extraction object and the phosphonium salt is not particularly limited as long as it is in a range showing LCST behavior, but from the viewpoint of separation and extraction efficiency and workability, the mass ratio And water: phosphonium salt = 1: 9 to 9: 1, preferably 2: 8 to 8: 2, and more preferably 2: 8 to 4: 6.

分離抽出対象物は上述した比率の水/ホスホニウム塩混合液中で水相からホスホニウム塩に移行する性質を有していれば特に限定されるものではないが、たんぱく質、酵素等が挙げられる。
また、金属種と錯形成する成分を錯体形成剤としてあらかじめホスホニウム塩に溶解しておき、本法を行うことで水に溶解している金属種を水系から分離することも可能である。この場合、通常錯形成する成分は有機物であり有機系のイオン液体であるホスホニウム塩には溶解し易いが水への溶解性は乏しい。このため、通常の有機溶媒中に存在させて抽出を行ったときよりも、一旦均一系にさせる本法の方が、効率良く目的の金属種を抽出できる。
この方法を用いることで、例えばレアメタルの選択的抽出が可能であり、廃液等の他の金属種と混合している水溶液系において、所望のレアメタルと優先的に錯形成する配位子をあらかじめホスホニウム塩系に溶解させておけば、配位子の量を調整することにより所望のレアメタルを水層から完全に抽出できる。
The separation / extraction object is not particularly limited as long as it has a property of transferring from a water phase to a phosphonium salt in the water / phosphonium salt mixed liquid having the above-mentioned ratio, and examples thereof include proteins and enzymes.
It is also possible to separate the metal species dissolved in water from the aqueous system by previously dissolving the component that forms a complex with the metal species in the phosphonium salt as a complex-forming agent and carrying out this method. In this case, the component that normally forms a complex is an organic substance and is easily dissolved in a phosphonium salt that is an organic ionic liquid, but its solubility in water is poor. For this reason, the target metal species can be extracted more efficiently by the present method in which the system is once made homogeneous than when it is extracted in the presence of a normal organic solvent.
By using this method, for example, a rare metal can be selectively extracted. In an aqueous solution system mixed with other metal species such as a waste liquid, a ligand that preferentially forms a complex with a desired rare metal is previously converted to phosphonium. If dissolved in a salt system, the desired rare metal can be completely extracted from the aqueous layer by adjusting the amount of the ligand.

錯体形成剤としては公知のものを用いることができ、例えば、TBP(トリ−n−ブチルホスフェート)、DBBP(ジ−n−ブチル−n−ブチルホスフェート)、TOP(トリ−n−オクチルホスフェート)、P−350(ジメチルヘプチルメチルホスフェート)、CMPO(n−オクチル(フェニル)−N,N−ジイソブチルカルバモイルメチル)ホスフィンオキシド、TOPO(トリオクチルホスフィンオキサイド)、TOA(トリ−n−オクチルアミン)等が挙げられるが、中でも、希土類元素を効率よく抽出でき、本発明のイオン液体との相溶性も良い点から、TBPを用いることが好適である。   Known complex forming agents can be used, such as TBP (tri-n-butyl phosphate), DBBP (di-n-butyl-n-butyl phosphate), TOP (tri-n-octyl phosphate), P-350 (dimethylheptylmethyl phosphate), CMPO (n-octyl (phenyl) -N, N-diisobutylcarbamoylmethyl) phosphine oxide, TOPO (trioctylphosphine oxide), TOA (tri-n-octylamine) and the like can be mentioned. However, among them, it is preferable to use TBP because rare earth elements can be extracted efficiently and compatibility with the ionic liquid of the present invention is good.

以下、実施例を挙げて、本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。
なお、実施例で使用した分析装置および条件は下記のとおりである。
[1]1H−NMRスペクトル
装置:日本電子(株)製 AL−400
溶媒:重クロロホルム
[2]融点
装置:セイコーインスツル(株)製 DSC 6200
測定条件:20℃〜60℃まで毎分10℃昇温、60℃〜−90℃まで毎分1℃降温、−90℃で1分間保持後、−90℃〜60℃まで毎分1℃昇温の条件で測定した。
[3]分解点
装置:セイコーインスツル(株)製 TG−DTA 6200
測定条件:空気雰囲気下、30℃〜500℃まで毎分10℃昇温の条件で測定し、10%質量減少した温度を分解点とした。
[4]LCST温度の測定
装置:HFT−40 (安立計器(株))
[5]金属イオン濃度
装置:東亜ディーケーケー(株)製 ICA−2000
測定条件:分離カラム PCI−321、ガードカラム PCI−321G、溶離液 メタンスルホン酸2mM 水−アセトニトリル(1:1)混合溶媒、流速 0.8mL/min
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated more concretely, this invention is not limited to the following Example.
The analyzers and conditions used in the examples are as follows.
[1] 1 H-NMR spectrum apparatus: AL-400 manufactured by JEOL Ltd.
Solvent: deuterated chloroform [2] melting point apparatus: DSC 6200 manufactured by Seiko Instruments Inc.
Measurement conditions: 10 ° C./min from 20 ° C. to 60 ° C., 1 ° C./min from 60 ° C. to −90 ° C., 1 min per minute from −90 ° C. to 60 ° C. after holding at −90 ° C. for 1 min. Measured under temperature conditions.
[3] Disassembly point device: TG-DTA 6200 manufactured by Seiko Instruments Inc.
Measurement conditions: Measurement was performed at 30 ° C. to 500 ° C. under a temperature increase of 10 ° C. per minute in an air atmosphere, and the temperature at which the mass decreased by 10% was taken as the decomposition point.
[4] LCST temperature measuring device: HFT-40 (Anri Keiki Co., Ltd.)
[5] Metal ion concentration apparatus: ICA-2000 manufactured by Toa DKK Corporation
Measurement conditions: separation column PCI-321, guard column PCI-321G, eluent methanesulfonic acid 2 mM water-acetonitrile (1: 1) mixed solvent, flow rate 0.8 mL / min

[1]イオン液体の合成
[合成例1]イオン液体1の合成

Figure 2017036234
[1] Synthesis of ionic liquid [Synthesis Example 1] Synthesis of ionic liquid 1
Figure 2017036234

3−(トリメチルシリル)−1−プロパンスルホン酸ナトリウム(シグマアルドリッチ社製)1.00gをイオン交換水120mLに溶解した。この溶液に、予めトリブチルヘキサデシルホスホニウムブロマイド(東京化成工業(株)製)2.28gをイオン交換水80mLに溶解した溶液を加え、室温で一晩撹拌した。このとき、反応液は最初白濁し、一晩反応後静置すると二層に分離した。この反応液に酢酸エチル(和光純薬工業(株)製)50mLを加え、有機層の抽出を行った。この操作を更に2回繰り返し、有機層を合わせたものをイオン交換水50mLで2回洗浄した。有機層に炭酸カリウム(和光純薬工業(株)製)を20g程度投入して乾燥し、固体分をろ別後、溶媒を留去し、目的物であるイオン液体1(BHDP・DSS)を無色透明液体として2.12g得た(収率77%)。このイオン液体1を等容量の水と混合したところ、完全に2層に分離し、疎水性であることが確認された。
また、イオン液体1の融点は−5℃であり、分解点は299℃(10%)であった。
1.00 g of sodium 3- (trimethylsilyl) -1-propanesulfonate (manufactured by Sigma-Aldrich) was dissolved in 120 mL of ion-exchanged water. A solution prepared by previously dissolving 2.28 g of tributylhexadecylphosphonium bromide (manufactured by Tokyo Chemical Industry Co., Ltd.) in 80 mL of ion-exchanged water was added to this solution and stirred overnight at room temperature. At this time, the reaction solution became cloudy at first and separated into two layers when allowed to stand after reaction overnight. 50 mL of ethyl acetate (manufactured by Wako Pure Chemical Industries, Ltd.) was added to this reaction solution, and the organic layer was extracted. This operation was further repeated twice, and the combined organic layer was washed twice with 50 mL of ion exchange water. About 20 g of potassium carbonate (manufactured by Wako Pure Chemical Industries, Ltd.) is added to the organic layer and dried. After solids are filtered off, the solvent is distilled off to obtain the target ionic liquid 1 (BHDP · DSS). 2.12 g was obtained as a colorless transparent liquid (yield 77%). When this ionic liquid 1 was mixed with an equal volume of water, it was completely separated into two layers and confirmed to be hydrophobic.
Further, the melting point of the ionic liquid 1 was −5 ° C., and the decomposition point was 299 ° C. (10%).

[合成例2]イオン液体2の合成

Figure 2017036234
[Synthesis Example 2] Synthesis of ionic liquid 2
Figure 2017036234

3−(トリメチルシリル)−1−プロパンスルホン酸ナトリウムのかわりに2−(トリメチルシリル)−1−エタンスルホン酸ナトリウムを用いた以外は、合成例1と同じ方法でイオン液体2(BHDP・TMSES)を無色透明液体として得た(収率68%)。なお、2−(トリメチルシリル)−1−エタンスルホン酸ナトリウムは、米国特許第3141898号明細書記載の方法に従って合成した。イオン液体2の1H−NMRスペクトルを図1に示す。このイオン液体2を等容量の水と混合したところ、完全に2層に分離し、疎水性であることが確認された。
また、イオン液体2の融点は5℃であり、分解点は316℃(10%)であった。
The ionic liquid 2 (BHDP · TMSES) was colorless in the same manner as in Synthesis Example 1 except that sodium 2- (trimethylsilyl) -1-ethanesulfonate was used instead of sodium 3- (trimethylsilyl) -1-propanesulfonate. Obtained as a clear liquid (68% yield). Incidentally, sodium 2- (trimethylsilyl) -1-ethanesulfonate was synthesized according to the method described in US Pat. No. 3,141,898. A 1 H-NMR spectrum of the ionic liquid 2 is shown in FIG. When this ionic liquid 2 was mixed with an equal volume of water, it was completely separated into two layers and confirmed to be hydrophobic.
Further, the melting point of the ionic liquid 2 was 5 ° C., and the decomposition point was 316 ° C. (10%).

[合成例3]イオン液体3の合成

Figure 2017036234
[Synthesis Example 3] Synthesis of ionic liquid 3
Figure 2017036234

トリブチルヘキサデシルホスホニウムブロマイドのかわりにトリブチルドデシルホスホニウムブロマイド(東京化成工業(株)製)を用いた以外は、合成例1と同じ方法でイオン液体3(BDDP・DSS)を無色透明液体として得た(収率70%)。このイオン液体3を等容量の水と混合したところ、完全に2層に分離し、疎水性であることが確認された。
また、イオン液体3の融点は2℃であり、分解点は291℃(10%)であった。
Except for using tributyl dodecyl phosphonium bromide (manufactured by Tokyo Chemical Industry Co., Ltd.) instead of tributyl hexadecyl phosphonium bromide, ionic liquid 3 (BDDP · DSS) was obtained as a colorless transparent liquid in the same manner as in Synthesis Example 1 ( Yield 70%). When this ionic liquid 3 was mixed with an equal volume of water, it was completely separated into two layers and confirmed to be hydrophobic.
The melting point of the ionic liquid 3 was 2 ° C., and the decomposition point was 291 ° C. (10%).

[合成例4]イオン液体4の合成

Figure 2017036234
[Synthesis Example 4] Synthesis of ionic liquid 4
Figure 2017036234

トリブチルヘキサデシルホスホニウムブロマイドのかわりにトリブチルドデシルホスホニウムブロマイド(東京化成工業(株)製)を用いた以外は、合成例2と同じ方法でイオン液体4(BDDP・TMSES)を無色透明液体として得た(収率68%)。イオン液体4の1H−NMRスペクトル(装置:日本電子(株)製AL−400、溶媒:重クロロホルム)を図2に示す。このイオン液体4を等容量の水と混合したところ、完全に2層に分離し、疎水性であることが確認された。
また、イオン液体4の融点は−6℃であり、分解点は311℃(10%)であった。
Except for using tributyl dodecyl phosphonium bromide (manufactured by Tokyo Chemical Industry Co., Ltd.) instead of tributyl hexadecyl phosphonium bromide, ionic liquid 4 (BDDP • TMSES) was obtained as a colorless transparent liquid in the same manner as in Synthesis Example 2 ( Yield 68%). The 1 H-NMR spectrum of ionic liquid 4 (apparatus: AL-400 manufactured by JEOL Ltd., solvent: deuterated chloroform) is shown in FIG. When this ionic liquid 4 was mixed with an equal volume of water, it was completely separated into two layers and confirmed to be hydrophobic.
The melting point of the ionic liquid 4 was −6 ° C., and the decomposition point was 311 ° C. (10%).

[2]LCST挙動の確認
[実施例1−1]
イオン交換水と合成例1で得られたイオン液体1(BHDP・DSS)とを表1に示す各割合で混合液を氷冷し、均一の溶液となることを確認した。
その後、液温をモニターするため、各溶液に熱電対を差し込んだ状態で氷冷を停止し、撹拌しながら自然昇温させて白濁が生じる温度(LCST)を測定した。結果を表1に示す。イオン液体1と水との混合液の水含有量20〜80質量%におけるLCSTをプロットしたグラフを図3に示す。
なお、各LCSTで撹拌を停止すると、イオン交換水とイオン液体1は2層に分離し、また再度氷冷することで均一溶液となることを確認した。
[2] Confirmation of LCST behavior [Example 1-1]
The mixture was ice-cooled with ion-exchanged water and ionic liquid 1 (BHDP · DSS) obtained in Synthesis Example 1 in the proportions shown in Table 1, and it was confirmed that the solution was uniform.
Thereafter, in order to monitor the liquid temperature, ice cooling was stopped in a state where a thermocouple was inserted into each solution, and the temperature (LCST) at which white turbidity was generated by raising the temperature naturally while stirring was measured. The results are shown in Table 1. The graph which plotted LCST in the water content 20-80 mass% of the liquid mixture of the ionic liquid 1 and water is shown in FIG.
When stirring was stopped at each LCST, it was confirmed that the ion-exchanged water and the ionic liquid 1 were separated into two layers and were cooled again on ice to form a homogeneous solution.

[実施例1−2〜1−4]
イオン液体1を、合成例2〜4で得られたイオン液体2(BHDP・TMSES)、イオン液体3(BDDP・DSS)、イオン液体4(BDDP・TMSES)に変更し、それぞれについて、実施例1と同様の実験を行い、LCSTを測定した。結果を併せて表1に示す。またイオン液体2〜4と水との混合液の水含有量20〜80質量%におけるLCSTをプロットしたグラフを図3に併せて示す。
なお、各LCSTで撹拌を停止すると、イオン交換水とイオン液体2〜4のそれぞれは2層に分離し、また再度氷冷することで均一溶液となることを確認した。
[Examples 1-2 to 1-4]
The ionic liquid 1 was changed to the ionic liquid 2 (BHDP · TMSES), the ionic liquid 3 (BDDP · DSS), and the ionic liquid 4 (BDDP · TMSES) obtained in Synthesis Examples 2 to 4, and each of the ionic liquid 1 was changed to Example 1. The same experiment was conducted and LCST was measured. The results are also shown in Table 1. Moreover, the graph which plotted LCST in the water content 20-80 mass% of the liquid mixture of the ionic liquids 2-4 and water is combined with FIG. 3, and is shown.
In addition, when stirring was stopped by each LCST, each of ion-exchange water and the ionic liquids 2-4 isolate | separated into two layers, and it confirmed that it became a homogeneous solution by ice-cooling again.

Figure 2017036234
Figure 2017036234

以上のように、イオン液体1〜4は耐熱性に優れ、またイオン液体1〜4のいずれにおいても、イオン交換水との混合液(水含有量20〜80質量%)とした場合にLCSTを有するとともに、温度を変えることによって可逆的な水との相分離・相溶が可能なイオン液体であることがわかる。
この相分離・相溶を利用することで、水中に溶解した酵素、たんぱく質やレアメタル等を抽出することができる。
また、本発明のイオン液体は、水との特定比率において、特定のLCSTを示すため、LCSTにおける白濁点を指標とすることで、0.1℃単位の高感度温度センサとして利用することができる。
As described above, the ionic liquids 1 to 4 are excellent in heat resistance, and in any of the ionic liquids 1 to 4, LCST is obtained when a mixture with ion-exchanged water (water content 20 to 80% by mass) is used. It can be seen that it is an ionic liquid that can be reversibly phase-separated and compatible with water by changing the temperature.
By utilizing this phase separation / compatibility, enzymes, proteins, rare metals and the like dissolved in water can be extracted.
In addition, since the ionic liquid of the present invention shows a specific LCST in a specific ratio with water, it can be used as a high-sensitivity temperature sensor in units of 0.1 ° C. by using the white cloud point in the LCST as an index. .

[3]レアメタルの回収例
50mLサンプル管に入ったイオン交換水30mLに、塩化ユウロピウム・六水和物(和光純薬工業(株)製)0.3gを加え、良く振盪して完全に溶解させた。この内10mLを2本の50mLサンプル管に取り分け、一方にTBP(トリ−n−ブチルホスフェート)(関東化学(株)製)を5質量%含んだイオン液体3(BDDP・DSS)10mLを、もう一方にTBPを5質量%含んだ酢酸エチル(関東化学(株)製)10mLを加えた。
TBP−BDDP・DSS溶液を加えたサンプル管は、振盪した後、冷蔵庫へ投入して冷却した。均一溶液になったことを確認した後、冷蔵庫から取出し、液を分液ロートへ移した。そのまま液温が上昇し、きれいに2層に別れるまで放置した。その後、分液操作を行い、下層の水層を上層から分離した。
TBP−酢酸エチル溶液を加えたサンプル管は、良く振盪した後、分液ロートに移して分液操作を行い、下層の水層を上層から分離した。
分離した各水層について、陰イオンクロマト分析を行った。5質量%TBP溶液添加前の塩化ユウロピウム・六水和物水溶液の分析値と比較した結果を表2に示す。
[3] Example of rare metal recovery 0.3 g of europium chloride hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) is added to 30 mL of ion-exchanged water contained in a 50 mL sample tube and completely dissolved by shaking. It was. 10 mL of this was divided into two 50 mL sample tubes, and 10 mL of ionic liquid 3 (BDDP / DSS) containing 5% by mass of TBP (tri-n-butyl phosphate) (manufactured by Kanto Chemical Co., Ltd.) On the other hand, 10 mL of ethyl acetate (manufactured by Kanto Chemical Co., Inc.) containing 5% by mass of TBP was added.
The sample tube to which the TBP-BDDP / DSS solution was added was shaken and then put into a refrigerator to be cooled. After confirming that the solution was uniform, the solution was taken out from the refrigerator and the liquid was transferred to a separatory funnel. The liquid temperature rose as it was, and it was left until it was separated into two layers. Then, liquid separation operation was performed and the lower layer aqueous layer was isolate | separated from the upper layer.
The sample tube to which the TBP-ethyl acetate solution was added was shaken well, then transferred to a separatory funnel to perform a liquid separation operation, and the lower aqueous layer was separated from the upper layer.
Each separated aqueous layer was subjected to anion chromatography analysis. Table 2 shows the result of comparison with the analytical value of the europium chloride hexahydrate aqueous solution before addition of the 5 mass% TBP solution.

Figure 2017036234
Figure 2017036234

表2に示されるように、5%TBP BDDP・DSS溶液を添加した方は、希土類元素であるユウロピウムが水層からほぼ完全に抽出されたのに対し、酢酸エチル溶液で抽出した方は、若干ユウロピウムの残留が認められ、BDDP・DSSの方が抽出能に優れていることがわかる。   As shown in Table 2, when the 5% TBP BDDP / DSS solution was added, the rare earth element europium was almost completely extracted from the aqueous layer, whereas the one extracted with the ethyl acetate solution was slightly Europium remains, indicating that BDDP · DSS is superior in extraction ability.

Claims (7)

水との下限臨界共溶温度を有する相分離挙動を示す式(1)で示されるホスホニウム塩と、水とを含み、前記下限臨界共溶温度以下の温度で前記水と前記ホスホニウム塩とが相溶していることを特徴とする組成物。
Figure 2017036234
(式中、R1は、炭素数1〜30のアルキル基を表し、R2は、炭素数1〜30のアルキル基またはアルコキシ基を表し、R3は、炭素数1〜8のアルキル基を表し、nは、1〜4の整数を表す。)
A phosphonium salt represented by the formula (1) showing a phase separation behavior having a lower critical eutectic temperature with water and water, and the water and the phosphonium salt are in a phase at a temperature equal to or lower than the lower critical eutectic temperature. A composition characterized by being dissolved.
Figure 2017036234
(In the formula, R 1 represents an alkyl group having 1 to 30 carbon atoms, R 2 represents an alkyl group having 1 to 30 carbon atoms or an alkoxy group, and R 3 represents an alkyl group having 1 to 8 carbon atoms. And n represents an integer of 1 to 4.)
前記R1が、炭素数2〜5の直鎖アルキル基を表し、前記R2が、炭素数10〜20の直鎖アルキル基を表し、前記R3が、1〜4のアルキル基を表し、前記nが、2または3である請求項1記載の組成物。 R 1 represents a linear alkyl group having 2 to 5 carbon atoms, R 2 represents a linear alkyl group having 10 to 20 carbon atoms, R 3 represents an alkyl group having 1 to 4 carbon atoms, The composition according to claim 1, wherein n is 2 or 3. 前記式(1)で示されるホスホニウム塩が、式(2)〜(5)のいずれかで示される請求項1または2記載の組成物。
Figure 2017036234
The composition according to claim 1 or 2, wherein the phosphonium salt represented by the formula (1) is represented by any one of the formulas (2) to (5).
Figure 2017036234
前記下限臨界共溶温度を指標とした温度センサとして用いられる請求項1〜3のいずれか1項記載の組成物。   The composition according to any one of claims 1 to 3, which is used as a temperature sensor using the lower critical eutectic temperature as an index. 水との下限臨界共溶温度を有する相分離挙動を示す式(1)で示されるホスホニウム塩と、水とを含むことを特徴とする温度センサ。
Figure 2017036234
(式中、R1は、炭素数1〜30のアルキル基を表し、R2は、炭素数1〜30のアルキル基またはアルコキシ基を表し、R3は、炭素数1〜8のアルキル基を表し、nは、1〜4の整数を表す。)
A temperature sensor comprising: a phosphonium salt represented by formula (1) showing a phase separation behavior having a lower critical solution temperature with water; and water.
Figure 2017036234
(In the formula, R 1 represents an alkyl group having 1 to 30 carbon atoms, R 2 represents an alkyl group having 1 to 30 carbon atoms or an alkoxy group, and R 3 represents an alkyl group having 1 to 8 carbon atoms. And n represents an integer of 1 to 4.)
分離抽出対象物を含む水相と混合し、温度制御で可逆的に前記水相と相溶/相分離することで前記抽出対象物を分離抽出するための分離抽出媒体であって、
水との下限臨界共溶温度を有する相分離挙動を示す式(1)で示されるホスホニウム塩からなることを特徴とする分離抽出媒体。
Figure 2017036234
(式中、R1は、炭素数1〜30のアルキル基を表し、R2は、炭素数1〜30のアルキル基またはアルコキシ基を表し、R3は、炭素数1〜8のアルキル基を表し、nは、1〜4の整数を表す。)
A separation / extraction medium for separating and extracting the extraction object by mixing with the aqueous phase containing the separation / extraction object and reversibly dissolving / phase-separating with the aqueous phase under temperature control,
A separation and extraction medium comprising a phosphonium salt represented by the formula (1) showing a phase separation behavior having a lower critical solution temperature with water.
Figure 2017036234
(In the formula, R 1 represents an alkyl group having 1 to 30 carbon atoms, R 2 represents an alkyl group having 1 to 30 carbon atoms or an alkoxy group, and R 3 represents an alkyl group having 1 to 8 carbon atoms. And n represents an integer of 1 to 4.)
分離抽出対象物を含む水相と、請求項6記載の分離抽出媒体とを混合し、前記下限臨界共溶温度以下で相溶させた後、前記下限臨界共溶温度超まで加温して、前記水相と前記ホスホニウム塩とを相分離させることで、前記分離抽出対象物を前記水相から前記分離抽出媒体中に移行させることを特徴とする分離抽出方法。   The aqueous phase containing the separation and extraction object is mixed with the separation and extraction medium according to claim 6, mixed at a temperature lower than or equal to the lower critical eutectic temperature, and then heated to above the lower critical eutectic temperature, A separation / extraction method, wherein the separation / extraction object is transferred from the aqueous phase into the separation / extraction medium by phase separation of the aqueous phase and the phosphonium salt.
JP2015157938A 2015-08-10 2015-08-10 Use of compounds exhibiting lower critical eutectic temperature type phase behavior Active JP6582705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015157938A JP6582705B2 (en) 2015-08-10 2015-08-10 Use of compounds exhibiting lower critical eutectic temperature type phase behavior

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015157938A JP6582705B2 (en) 2015-08-10 2015-08-10 Use of compounds exhibiting lower critical eutectic temperature type phase behavior

Publications (2)

Publication Number Publication Date
JP2017036234A true JP2017036234A (en) 2017-02-16
JP6582705B2 JP6582705B2 (en) 2019-10-02

Family

ID=58048115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015157938A Active JP6582705B2 (en) 2015-08-10 2015-08-10 Use of compounds exhibiting lower critical eutectic temperature type phase behavior

Country Status (1)

Country Link
JP (1) JP6582705B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018124102A1 (en) * 2016-12-27 2018-07-05 国立大学法人北陸先端科学技術大学院大学 Electrochemical light emitting cell
WO2020202280A1 (en) 2019-03-29 2020-10-08 日清紡ホールディングス株式会社 Conductive metal paste

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005535690A (en) * 2002-08-06 2005-11-24 ゼネラル・エレクトリック・カンパニイ Antistatic agent and polymer composition obtained from said antistatic agent
JP2007175693A (en) * 2005-12-02 2007-07-12 Tokyo Univ Of Agriculture & Technology Separation method using amide compound
JP2008044849A (en) * 2006-08-10 2008-02-28 Tokyo Univ Of Agriculture & Technology Ionic liquid reversibly compatible with/phase-separable from water by temperature control
JP2013014536A (en) * 2011-07-04 2013-01-24 Nisshinbo Holdings Inc Ionic liquid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005535690A (en) * 2002-08-06 2005-11-24 ゼネラル・エレクトリック・カンパニイ Antistatic agent and polymer composition obtained from said antistatic agent
JP2007175693A (en) * 2005-12-02 2007-07-12 Tokyo Univ Of Agriculture & Technology Separation method using amide compound
JP2008044849A (en) * 2006-08-10 2008-02-28 Tokyo Univ Of Agriculture & Technology Ionic liquid reversibly compatible with/phase-separable from water by temperature control
JP2013014536A (en) * 2011-07-04 2013-01-24 Nisshinbo Holdings Inc Ionic liquid

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
大野弘幸 他2名: "イオン液体界面研究の進歩と展開", 表面科学, vol. 34, no. 4, JPN6019024770, 2013, JP, pages 166 - 172, ISSN: 0004065034 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018124102A1 (en) * 2016-12-27 2018-07-05 国立大学法人北陸先端科学技術大学院大学 Electrochemical light emitting cell
WO2020202280A1 (en) 2019-03-29 2020-10-08 日清紡ホールディングス株式会社 Conductive metal paste

Also Published As

Publication number Publication date
JP6582705B2 (en) 2019-10-02

Similar Documents

Publication Publication Date Title
CA2839203C (en) Ionic liquid
Fukumoto et al. Design and synthesis of hydrophobic and chiral anions from amino acids as precursor for functional ionic liquids
CN109652048B (en) Composite oil displacement agent and preparation method and application thereof
Vander Hoogerstraete et al. Selective Single‐Step Separation of a Mixture of Three Metal Ions by a Triphasic Ionic‐Liquid–Water–Ionic‐Liquid Solvent Extraction System
JP6582705B2 (en) Use of compounds exhibiting lower critical eutectic temperature type phase behavior
CN107628945B (en) Method for synthesizing β -bromoformate compound
TW200415139A (en) Ionic liquids containing borate or phosphate anions
Ishii et al. Facile preparation of ionic liquid containing silsesquioxane framework
EP3500582B1 (en) Porous chiral materials and uses thereof
CN107573360A (en) A kind of Mutiple Targets micromolecular compound S63845 preparation method
Quinn et al. Solvent extraction of rare earths using a bifunctional ionic liquid. Part 1: Interaction with acidic solutions
Kärnä et al. Properties of new low melting point quaternary ammonium salts with bis (trifluoromethanesulfonyl) imide anion
CN109456309B (en) Multi-pyrazole nitrogen-containing heterocyclic compound and preparation and application thereof
JP4388776B2 (en) Flame retardant solvent comprising ionic liquid and method for producing the same
CN104736546A (en) Ionic liquid
BR112019009759A2 (en) 4 - ((6- (2- (2,4-difluorophenyl) -1,1-difluoro-2-hydroxy-3- (5-mercapto-1h-1,2,4-triazol-1-yl) propyl) pyridin-3-yl) oxy) benzonitrile and preparation processes
JP2007175693A (en) Separation method using amide compound
JP2017088551A (en) Compound
JP2010235453A (en) Method for producing platinum complex
EP0061932A1 (en) Composition for use in oil recovery, its method of use, and novel surfactant compounds
Ivanova et al. Synthesis, complexing properties, and selectivity of bis (diphenylphosphorylmethyl) ethers of oligoethylene glycols. Crystal structure of 1, 3-bis (diphenylphosphoryl)-2-oxapropane
CN105102417A (en) Method for producing 4-halosenecioic acid derivative
Takemura et al. Syntheses of macrocyclic compounds possessing fluorine atoms in their cavities: Structures and complexation with cations
CN108727157A (en) The preparation method of glucagon receptor antagonist intermediate
CN103965108B (en) A kind of method of synthesizing Laudanine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190819

R150 Certificate of patent or registration of utility model

Ref document number: 6582705

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250