JP2017035374A - Lower limb muscular strength measuring system - Google Patents

Lower limb muscular strength measuring system Download PDF

Info

Publication number
JP2017035374A
JP2017035374A JP2015159360A JP2015159360A JP2017035374A JP 2017035374 A JP2017035374 A JP 2017035374A JP 2015159360 A JP2015159360 A JP 2015159360A JP 2015159360 A JP2015159360 A JP 2015159360A JP 2017035374 A JP2017035374 A JP 2017035374A
Authority
JP
Japan
Prior art keywords
output distribution
muscle
lower limb
strength
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015159360A
Other languages
Japanese (ja)
Other versions
JP6593751B2 (en
Inventor
諭 駒田
Satoshi Komada
諭 駒田
翔平 石田
Shohei Ishida
翔平 石田
淳之 平井
Atsuyuki Hirai
淳之 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mie University NUC
Original Assignee
Mie University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mie University NUC filed Critical Mie University NUC
Priority to JP2015159360A priority Critical patent/JP6593751B2/en
Publication of JP2017035374A publication Critical patent/JP2017035374A/en
Application granted granted Critical
Publication of JP6593751B2 publication Critical patent/JP6593751B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lower limb muscular strength measuring system which can remarkably cut the measurement time compared to the conventional method in which a relation between each muscle group strength and output at the tip of the lower limb is analyzed based on a notion of cosine tuning and it is essential to complete a hexagonal output distribution map through a new output distribution drawing method which exposes inclination of each side of the output distribution.SOLUTION: Two muscle group strengths are the greatest in each side in an output distribution in the functionally effective muscle theory, but a muscle group strength is the largest because sum of squares of the muscular strength becomes the smallest in an output distribution of the cosine tuning. Just one side of the output distribution is measured and the muscular strength of the corresponding muscle group is derived by using the characteristics.SELECTED DRAWING: Figure 5

Description

本発明は下肢の筋力を出力分布図として計測し、さらに各筋群の筋力を算出するためのシステムに関する。 The present invention relates to a system for measuring muscle strength of the lower limbs as an output distribution map and further calculating muscle strength of each muscle group.

関節トルク測定器を用いた筋力評価手法は、関節周りに発生するトルクを測定するのみの簡易な方法でありながら測定結果の再現性が高く、一般的に用いられている。しかし、関節トルクは関節周りの複数の筋の合力であるため、個々の筋力を分類して評価することが困難である。 A muscle strength evaluation method using a joint torque measuring device is a simple method that only measures torque generated around a joint, but has high reproducibility of measurement results and is generally used. However, since joint torque is the resultant force of a plurality of muscles around the joint, it is difficult to classify and evaluate individual muscle forces.

最大筋力の評価に筋骨格モデルを導入する手法として、熊本らの提案した機能別実効筋理論がある。この方法では、四肢の動きを2次元平面の運動に限定することで、複数の筋をその働きによって6つの筋群に分類したモデルを用いる。このモデルでは出力分布と呼ばれる肢先端で発揮される最大力の範囲が幾何学的な特徴を持つ6角形で定義され、測定された出力分布図から個々の最大筋力の評価が可能である。特許文献1には出力分布図を計測する発明、および出力分布図から各筋群の筋力を求める発明が開示されている。特許文献2には出力分布図の測定の信頼性を高める発明が開示されている。 As a method of introducing a musculoskeletal model for the evaluation of maximum muscle strength, there is an effective muscle theory by function proposed by Kumamoto et al. In this method, a model in which a plurality of muscles are classified into six muscle groups according to their functions is used by limiting the movement of the limbs to a two-dimensional plane motion. In this model, the range of the maximum force exerted at the limb tip, called output distribution, is defined by a hexagon having geometric features, and individual maximum muscle strength can be evaluated from the measured output distribution chart. Patent Document 1 discloses an invention for measuring an output distribution chart and an invention for obtaining the muscle strength of each muscle group from the output distribution chart. Patent Document 2 discloses an invention that improves the reliability of measurement of an output distribution diagram.

特許文献2においてはオーバル形出力分布からのコサイン調律に基づく各筋群力算出手法も開示されている。出力分布は6角形で表現されるが、実際の出力は頂点部分が丸まっており、実測値と出力分布の間には誤差がある。そこで、出力分布計測で求まる各辺の最大力と、出力分布の頂点からベジエ曲線を用い頂点部分を丸めたオーバル形出力分布を描く方法が提案された。また、実測値との誤差が低減されたオーバル形力分布からコサイン調律に基づいて各筋群力を算出する手法も提案された。ここに、各筋は至適方向と呼ばれる筋活動が最大となる方向からコサインの形状で活動度が低減する所謂コサイン調律に基づいて、オーバル型出力分布との誤差が最小となる各筋群の筋力と至適方向の組を算出する手法が提案された。 Patent Document 2 also discloses a method for calculating each muscle group force based on cosine tuning from an oval output distribution. Although the output distribution is represented by a hexagon, the actual output has rounded vertices, and there is an error between the measured value and the output distribution. Therefore, the maximum force of each side obtained by output distribution measurement and a method of drawing an oval output distribution by rounding the vertex using a Bezier curve from the vertex of the output distribution have been proposed. In addition, a method for calculating each muscle group force based on cosine rhythm from an oval force distribution in which an error from an actual measurement value is reduced has been proposed. Here, each muscle is based on a so-called cosine rhythm in which the activity is reduced in a cosine shape from the direction in which the muscle activity is maximized, which is called the optimal direction. A method to calculate the combination of muscle strength and optimal direction was proposed.

特開2000−210272「筋力評価方法およびシステム」JP 2000-210272 “Muscle Strength Evaluation Method and System” 特開2015−077397「下肢の出力分布図測定と筋力算出システム」Japanese Patent Application Laid-Open No. 2015-077397 “Measurement System for Output Distribution of Lower Limb and Muscle Strength Calculation System”

D. Nozaki, et al: "Muscle activity determined by cosine tuningwith a non-trivial preferred direction during isometric force exertion by lower limb", J. Neurophysiol, Vol. 93, pp. 2614-2624, 2005D. Nozaki, et al: "Muscle activity determined by cosine tuning with a non-trivial preferred direction during isometric force exertion by lower limb", J. Neurophysiol, Vol. 93, pp. 2614-2624, 2005

従来の機能別実効理論では4〜6方向の下肢先端での最大力を計測し、幾何学的特徴を満足するように出力分布を作図し、一対の拮抗筋力の比率に適宜の数値を設定するなどの仮定を用いて機能別実効筋力を求める。そのため、測定困難な辺が1つでもあると筋力全体に影響する。 In the conventional effective theory for each function, the maximum force at the lower extremity tip in 4-6 directions is measured, the output distribution is plotted so as to satisfy the geometric characteristics, and an appropriate value is set for the ratio of the paired antagonistic muscle strength. The effective muscular strength by function is obtained using the assumptions such as. Therefore, if there is even one side that is difficult to measure, the whole muscular strength is affected.

特許文献1では、生体間でできるだけ誤差が少ない仮定を用いて、測定した出力分布から各筋群力を導出しているが、被験者のその仮定からのズレが筋群力の誤差となる。さらに、出力分布の1辺の測定結果が全ての筋群力の結果に影響するため、測定がうまく行かない出力分布の辺が1つでもあると、筋群力の計算結果全体的に影響が生じる。 In Patent Document 1, each muscle group force is derived from the measured output distribution using an assumption that there is as little error between living bodies as possible, but a deviation from the assumption of the subject is an error of the muscle group force. Furthermore, since the measurement result of one side of the output distribution affects the results of all muscle group forces, if there is even one side of the output distribution that does not measure well, the calculation result of the muscle group force will be affected as a whole. Arise.

請求項1に記載の発明は、下肢先端で発揮される力について3対6筋群モデルを用い、6角形出力分布図を出力する下肢筋力測定システムである。
この下肢筋力測定システムで求まる6角形出力分布図では、6角形の出力分布図の各辺の傾きを、コサイン調律の考え方から求まる筋力二乗和最小を基に、各筋群力と下肢先端での出力との関係を示す擬似行列から求める。
また、6角形の出力分布図の各辺は、実測される下肢先端力測定値と前記傾きから求め、求まった各辺の下肢先端最大力から、筋力二乗和の最小化に基づくコサイン調律によって各筋力の最大力が決定される。
The invention described in claim 1 is a lower limb muscle strength measurement system that outputs a hexagonal output distribution map using a 3 to 6 muscle group model for the force exerted at the lower extremity tip.
In the hexagonal output distribution diagram obtained by this lower limb muscle strength measurement system, the inclination of each side of the hexagonal output distribution diagram is based on the minimum sum of the squares of the muscular strength obtained from the concept of cosine tuning, and at each muscle group strength and lower extremity tip. It is obtained from a pseudo matrix indicating the relationship with the output.
In addition, each side of the hexagonal output distribution map is obtained from the measured measured values of the lower extremity tip force and the inclination, and is obtained from the obtained lower extremity tip maximum force of each side by cosine tuning based on the minimization of the sum of the squares of the muscular strength. The maximum strength of the muscle strength is determined.

請求項2に記載の発明は請求項1に記載された下肢筋力測定装置であって、背付ベッドと、ベッドに固定され足首を挿入可能なベルトが設けられ、ベルトの内側には足首に当接して足が発揮する2軸方向の力をセンシングするセンサが配置される。また、本発明の下肢筋力測定装置にはセンサの出力データの収集と処理を行いながら測定手順をガイドするコントローラと、前記データ処理結果と前記測定手順を表示するモニターが設けられる。従って、本発明の下肢筋力測定装置に不慣れな者であっても、測定の途中経過を確認しながら次の測定手順に順次ガイドされ、容易に測定を完了させることができる。 The invention according to claim 2 is the leg muscular strength measuring device according to claim 1, wherein a back bed and a belt which is fixed to the bed and into which the ankle can be inserted are provided, and the ankle is placed inside the belt. A sensor that senses the force in the biaxial direction exerted by the foot in contact is disposed. The lower limb strength measuring device of the present invention is provided with a controller for guiding the measurement procedure while collecting and processing the output data of the sensor, and a monitor for displaying the data processing result and the measurement procedure. Therefore, even a person unfamiliar with the lower limb strength measurement apparatus of the present invention can be guided to the next measurement procedure sequentially while confirming the progress of the measurement, and can easily complete the measurement.

従来技術の下肢先端の6角形出力分布図では、6角形の対向辺は互いに並行かつ長さが等しい特徴を用いて、少なくとも4方向での下肢先端の最大力を計測して出力分布を作図する。この方法で作成される出力分布の各辺では、2つの筋群力が最大値になっている。また、各筋群の筋力を導出するには出力分布の計測が完了している必要があり、出力分布の1辺でも正確に計測が行えていないと、筋力全体に影響する。さらに、筋力を導出する際に何らかの仮定が必要であるため、筋力値がその仮定に依存する。
しかし、本発明の作図では、各筋群力の導出に前記仮定が不要である。即ち、本発明では、6角形の出力分布の辺毎に独立して計測を行い、辺毎に最大値を確定させて筋群力を導出する。従って、ある辺での測定結果が他の辺の筋群力に影響を与えることはない。一部の筋群力の測定だけで計測目的が達成される場合、必要とされる筋群力のみに限定した測定ができるので、6角形出力分布図を完成させることが必須であった従来法に比べ、大幅に計測時間を短縮できる。
In the hexagonal output distribution chart of the lower limb tip in the prior art, the opposite side of the hexagon is parallel to each other and has the same length, and the maximum force at the lower limb tip is measured in at least four directions to plot the output distribution. . On each side of the output distribution created by this method, the two muscle group forces are maximum. Moreover, in order to derive the muscular strength of each muscle group, it is necessary to complete the measurement of the output distribution, and if one side of the output distribution is not accurately measured, the entire muscular strength is affected. Furthermore, since some assumption is required when deriving the muscle strength, the muscle strength value depends on the assumption.
However, in the drawing of the present invention, the above assumption is not necessary for deriving each muscle group force. That is, in the present invention, the measurement is performed independently for each side of the hexagonal output distribution, and the maximum value is determined for each side to derive the muscle group force. Therefore, the measurement result at one side does not affect the muscle group strength at the other side. If the measurement objective is achieved by measuring only some muscle group forces, the measurement can be limited to only the required muscle group forces, so it was essential to complete the hexagonal output distribution map. Compared to, measurement time can be greatly reduced.

下肢の2関節リンク機構の3対6筋モデル図である。It is a 3 to 6 muscle model diagram of the two-joint link mechanism of the lower limbs. コサイン調律に基づく出力分布図と筋力が最大となる筋を表した図である。It is the figure showing the output distribution map based on cosine tuning, and the muscle where the muscular strength becomes the maximum. 出力分布図作成に於ける辺計測法を示す図である。It is a figure which shows the edge measurement method in output distribution map preparation. 本システムで用いる出力分布図と、実効筋力算出アルゴリズムのフロー図である。It is an output distribution map used by this system, and a flow chart of an effective muscular strength calculation algorithm. 測定システムを表す。Represents a measurement system. 測定姿勢の図である。It is a figure of a measurement posture. 測定手順のフロー図である。It is a flowchart of a measurement procedure.

機能別実効筋と機能別実効筋力について図1を用いて説明する。下肢の矢状面内の2関節運動に対して、筋の関節に対する機能別に分類した3対6筋を機能別実効筋と定義する。具体的には、第一関節4に寄与する一関節筋群、及び第二関節5に寄与する一関節筋群そして第一関節4と第二関節5の両関節に寄与する二関節筋群で表され、各機能別実効筋が関節で発揮するトルクは機能別実効筋力と呼ぶ。 The effective muscles by function and the effective muscle strength by function will be described with reference to FIG. For 2 joint movements in the sagittal plane of the lower limb, 3 to 6 muscles classified according to the function for the muscle joint are defined as effective muscles by function. Specifically, one joint muscle group contributing to the first joint 4, one joint muscle group contributing to the second joint 5, and two joint muscle groups contributing to both the first joint 4 and the second joint 5 The torque expressed by each function effective muscle is called the effective muscle strength by function.

図1の下肢先端6での矢印は機能的に分類された各筋群が先端で発揮する力の大きさと方向を表し、膝関節5と先端6を結んだ線分、股関節4と膝関節5を結んだ線分、股関節4と先端6を結んだ線分の何れかと平行である。 The arrows at the lower extremity tip 6 in FIG. 1 indicate the magnitude and direction of the force exerted by the functionally classified muscle groups at the tip, the line segment connecting the knee joint 5 and the tip 6, the hip joint 4 and the knee joint 5. And a line segment connecting the hip joint 4 and the tip 6 are parallel to each other.

膝と股の関節トルクT=[Thip,Tknee]と拮抗筋を1つの筋でまとめた機能別実効筋力Tfem=[T,T,Tとの関係を
と表す。ここで、Gは
となる。
Knee and hip joints torque T = [Thip, Tknee] the relationship and functional summarizing T and the antagonist muscle in a single muscle effective strength Tfem = [T 1, T 2 , T 3] T
It expresses. Where G is
It becomes.

次に、先端6での発揮力F=[Fx,Fy]と関節トルクT=[Thip,Tknee]と下肢姿勢の関数であるヤコビ行列Jを用いて次式で表される。
Next, the expression force F = [Fx, Fy] T , the joint torque T = [Thip, Tknee] T and the Jacobian matrix J which is a function of the lower limb posture are expressed by the following equations.

中枢神経によるコサイン調律では筋力の二乗和が最小となるように筋力を分配するため、先端力F=[Fx,Fy]と拮抗筋を1つの筋でまとめた機能別実効筋力Tfem=[T,T,Tの関係式に擬似逆行列
を適用する。ここで、+は疑似逆行列を表す。これにより、筋力の二乗和TfemTfemが最小となる。
In the cosine tuning by the central nervous system, the muscle strength is distributed so that the sum of the squares of the muscle strength is minimized. Therefore, the effective muscle strength by function Tfem = [T that combines the tip force F = [Fx, Fy] T and the antagonist muscle by one muscle. 1 , T 2 , T 3 ] The pseudo-inverse matrix in the relational expression of T
Apply. Here, + represents a pseudo inverse matrix. As a result, the sum of squares of muscle strength Tfem T Tfem is minimized.

次に、図2に示すコサイン調律に基づく出力分布を求める。
これは等式制約により筋力二乗和を最小にしつつ、各筋群力の上下限を満足する中で発揮力7の大きさ|F|を最大化する。図2の辺8はある方向について発揮力7を最大化して求めた辺である。また、発揮力の方向θを0〜360°として、全ての方向について計算すれば残る5方向についての発揮力の最大値が求まり、6角形が作成される。ある筋群が最大力に達する時、発揮力の大きさ|F|は上限|Fmax|になるので、各辺上では1つの筋群力が最大となる。
Next, an output distribution based on the cosine tuning shown in FIG. 2 is obtained.
This maximizes the magnitude | F | of the exertion force 7 while satisfying the upper and lower limits of each muscle group force while minimizing the sum of squares of the muscle force due to equality constraints. The side 8 in FIG. 2 is a side obtained by maximizing the display force 7 in a certain direction. Further, if the direction θ of the exerting force is set to 0 to 360 ° and the calculation is performed for all directions, the maximum value of the exerting force in the remaining five directions is obtained, and a hexagon is created. When a certain muscle group reaches the maximum force, the magnitude of the exertion force | F | becomes the upper limit | Fmax |, so that one muscle group force is maximum on each side.

ここでは下肢の先端発揮力から出力分布を計測する手法と、その結果から未知の各筋群力を導出する手法を述べる。出力分布の各辺の呼び名を筋力が最大になる筋の呼び名と対応させる。出力分布のs辺の傾きaは辺上の力Fmax_s=[|Fmax_s|cosθ, |Fmax_s|sinθ]の角度θに対する微小変位により定義可能である。
Here, we describe a method for measuring the output distribution from the tip exertion force of the lower limbs and a method for deriving unknown muscle group forces from the results. The name of each side of the output distribution is made to correspond to the name of the muscle having the maximum strength. Slope a S of s side of the power distribution is = force on the side Fmax_s [| Fmax_s | cosθ, | Fmax_s | sinθ] can be defined by small displacement with respect to the angle θ of.

次に、aの算出に必要なFmax_sを定義する。まず、[数4]の擬似逆行列を次式で定義する。
この時、コサイン調律に基づく出力分布辺上の力Fmax_sと機能別実効筋力の最大値Tmax_sとの関係は次式となる。
ここで、Zx_i,Zy_iのiにはそれぞれ同じ筋の番号が代入される (例: s=e1ならばi=1,s=f3ならばi=3)。
Next, Fmax_s necessary for calculating a S is defined. First, the pseudo inverse matrix of [Equation 4] is defined by the following equation.
At this time, the relationship between the force Fmax_s on the output distribution side based on the cosine tuning and the maximum value Tmax_s of the effective muscular strength by function is expressed by the following equation.
Here, the same muscle number is assigned to i of Zx_i and Zy_i (e.g., i = 1 if s = e1 and i = 3 if s = f3).

上式からコサイン調律に基づく出力分布辺上の力の大きさは次式となる。
これより、その微小変位は次式となる。
[数6]に[数10]を代入すると、
となり、コサイン調律に基づく出力分布のs辺の傾きaはヤコビ行列JとGの要素のみによって決定されるため、下肢の姿勢には依存するが筋力には依存しない。また、拮抗する筋同士の辺は同じ傾きを持つ。
From the above equation, the magnitude of the force on the output distribution side based on the cosine tuning is as follows.
Accordingly, the minute displacement is expressed by the following equation.
Substituting [Equation 10] into [Equation 6],
Since the slope a S of the s side of the output distribution based on the cosine rhythm is determined only by the elements of the Jacobian matrices J and G, it depends on the posture of the lower limb but does not depend on the muscle strength. Also, the sides of the antagonistic muscles have the same slope.

上式で決定された出力分布のs辺の傾きaを用いて、計測された下肢先端力Fから出力分布の各辺を決定する方法を示す。その方法は図3に示すように、ある辺11を測定する時、力の計測点9に対しての辺11と同じ傾きの直線を引き、その直線の中心からの距離10を算出する。 A method of determining each side of the output distribution from the measured lower limb tip force F using the slope a S of the s side of the output distribution determined by the above equation will be described. In this method, as shown in FIG. 3, when a certain side 11 is measured, a straight line having the same inclination as the side 11 with respect to the force measurement point 9 is drawn, and a distance 10 from the center of the straight line is calculated.

この中心からの距離が最も大きい時、その最大の計測点は出力分布図のその辺上にあることを意味するので、この最大計測点12と直線11を保存しておく。これらより、被験者が下肢先端力を発揮した時、最も原点から遠い出力分布の辺上の計測点Fmax_sを決定できる。そして、これを6つの辺で実施し、各直線の交点を頂点とすることで6角形の出力分布図を作図できる。 When the distance from the center is the largest, it means that the maximum measurement point is on that side of the output distribution map, so the maximum measurement point 12 and the straight line 11 are stored. From these, when the subject exhibits the lower limb tip force, the measurement point Fmax_s on the side of the output distribution farthest from the origin can be determined. And this is implemented with six sides, and a hexagonal output distribution map can be drawn by using the intersection of each straight line as a vertex.

図2のように、コサイン調律に基づく出力分布のs辺はTsが上限Tmax_sに達した時の先端での最大力Fmax_sである。そのため、s辺を構成する最大力Fmax_sを[数8]に代入して最大機能別実効筋力Tmax_sを得る。 As shown in FIG. 2, the s side of the output distribution based on the cosine tuning is the maximum force Fmax_s at the tip when Ts reaches the upper limit Tmax_s. Therefore, the maximum force Fmax_s by function is obtained by substituting the maximum force Fmax_s constituting the s side into [Equation 8].

さらに本システムでは、リアルタイムで出力分布図を描きつつ測定を行えるような出力分布作図プログラムを組んでいる。そのプログラムのアルゴリズムは図4に示す通りで、まず下肢先端で発揮される二次元平面の力の値を計測する(ステップS1)。 In addition, this system has an output distribution drawing program that allows measurement while drawing an output distribution map in real time. The algorithm of the program is as shown in FIG. 4, and first, the value of the force on the two-dimensional plane exhibited at the tip of the lower limb is measured (step S1).

計測点を通り、[数11]式の出力分布の辺の傾きaより3種類の傾きをそれぞれ持った直線を引く。(ステップS2)ここで、3つの各直線は傾きが同じ出力分布図の辺同士と比較するために中心からの距離を算出する。(ステップS3)それぞれ原点からの距離を比較し(ステップS4)、距離が大きくなっていれば新たな辺として採用するため直線とその直線を作る最大計測点を保存する(ステップS5)。そうでなければ以前のままとする。ただし、同じ傾きの辺は各直線に対して2つ存在するため、原点に対して同じ側の辺とだけ行う。 A straight line having three kinds of inclinations is drawn from the side inclination a S of the output distribution of [Expression 11] through the measurement point. (Step S2) Here, the distance from the center is calculated in order to compare the three straight lines with the sides of the output distribution chart having the same inclination. (Step S3) The distances from the respective origins are compared (Step S4). If the distance is large, a straight line and the maximum measurement point for forming the straight line are stored for use as a new side (Step S5). Otherwise, keep it as before. However, since there are two sides with the same inclination for each straight line, only the side on the same side with respect to the origin is used.

最大計測点から[数8]により対応する実効筋力を算出する。
保存された直線6本から出力分布図が算出できる(ステップS6)。そして、求まった出力分布図と実効筋力をモニター画面に表示し(ステップS7)、これを繰り返すことでリアルタイムでの最大の出力分布図の描画と最大実効筋力の表示が可能となる。このプログラムは被験者が再度最大力を発揮し出力分布の辺より大きくなれば、その力の値で新たな辺を構成するのでプログラムが動作している間は常に測定が可能となる。
The corresponding effective muscle strength is calculated from [Equation 8] from the maximum measurement point.
An output distribution map can be calculated from the six stored straight lines (step S6). Then, the obtained output distribution map and effective muscle strength are displayed on the monitor screen (step S7), and by repeating this, it is possible to draw the maximum output distribution map and display the maximum effective muscle strength in real time. In this program, if the test subject exerts the maximum force again and becomes larger than the side of the output distribution, a new side is constituted by the value of the force, so that the measurement can always be performed while the program is operating.

筋力二乗和最小化に基づく出力分布図の作図と筋力算出を行う装置は、装置全体としては図5のように被験者を任意姿勢で下肢先端を固定し、先端発揮力を計測できる装置と、力センサ26の値から出力分布作図プログラム等の処理をするコンピュータと計測結果を表示するモニター27から成る。このモニター画面上にコンピュータの処理結果を表示する方法はグラフィックプログラムインターフェイスOpenGLを用いて行っている。 An apparatus for drawing an output distribution map and calculating a muscle strength based on the sum of squares of the muscular strength is a device that can measure the tip exertion force by fixing the tip of a lower limb in an arbitrary posture as shown in FIG. It consists of a computer 27 for processing the output distribution drawing program from the value of the sensor 26 and a monitor 27 for displaying the measurement result. A method of displaying the processing result of the computer on the monitor screen is performed using a graphic program interface OpenGL.

被験者を一姿勢で固定した状態で下肢の先端での力を測定する必要があるが、被験者が目標の姿勢(図6の股関節角度θ1と膝関節角度θ2)で測定を行うために力センサ26を有する下肢先端を接続する部分が二次元平面内の任意の位置で固定可能な装置を用いる。 The force at the tip of the lower limb needs to be measured with the subject fixed in one posture, but the force sensor 26 is used for the subject to perform measurement in the target posture (the hip joint angle θ1 and the knee joint angle θ2 in FIG. 6). The apparatus which can fix the part which connects the leg leg which has (2) in arbitrary positions in a two-dimensional plane is used.

図5のような2自由度を持つ装置は下肢接続部分の位置を所定の位置で固定することで、被験者を目標の姿勢にさせる。 The apparatus having two degrees of freedom as shown in FIG. 5 fixes the position of the lower limb connection portion at a predetermined position, thereby causing the subject to take a target posture.

また測定円滑化のために被験者は力の値を視覚的に認識ができるように図5のモニター画面内25のようにリアルタイムで下肢先端の力の大きさと方向を矢印として表示し、同時にこれまでに求まった現時点での出力分布図と[数8]で求めた6つの実効筋力も表示している。 In order to facilitate the measurement, the subject displays the magnitude and direction of the force at the tip of the lower limb as an arrow in real time as shown in the monitor screen 25 of FIG. 5 so that the force value can be visually recognized. The current output distribution map obtained in step (6) and the six effective muscle strengths obtained in [Equation 8] are also displayed.

これにより被験者は自身が現在発揮している下肢先端の力の大きさと方向と共に、これまでに測定された出力分布図が表示されているため、指定された目標の辺に向けて力を発揮することが可能となる。 As a result, the subject displays the power distribution map measured so far, along with the magnitude and direction of the force at the tip of the lower limb that he is currently demonstrating, so he exerts the force toward the specified target side It becomes possible.

測定の流れは図7のフロー図のようになっている。まず、大腿部と下腿部のL1とL2を計測し(ステップS8)、被験者の目標の関節角度θ1とθ2になるように装置の姿勢を合わせる(ステップS9)。被験者を目標の姿勢で固定させ(ステップS10)、脱力状態にさせて力センサに加わる力を読み取る。これは被験者の下肢先端の発揮力のみ測定したいので、下肢の重さを除くために脱力状態の力センサの値を読み取り、重力補償する(ステップS11)。 The flow of measurement is as shown in the flowchart of FIG. First, L1 and L2 of the thigh and crus are measured (step S8), and the posture of the apparatus is adjusted so as to be the target joint angles θ1 and θ2 of the subject (step S9). The subject is fixed in a target posture (step S10), and the force applied to the force sensor is read by making the subject in a weak state. Since it is desired to measure only the exertion force at the tip of the lower limb of the subject, the value of the weak force sensor is read to compensate for gravity in order to remove the weight of the lower limb (step S11).

この処理が終わったら、[数11]を用いて出力分布の辺の傾きを計算し、被験者の出力分布計測を開始する(ステップS13)。そして被験者に辺の方向に向けて最大力発揮したかどうか確認して(ステップS14)、測定を終了する(ステップS15)。 When this processing is completed, the slope of the side of the output distribution is calculated using [Equation 11], and measurement of the output distribution of the subject is started (step S13). Then, it is confirmed whether or not the subject exerts the maximum force toward the side (step S14), and the measurement is finished (step S15).

従来の機能別実効理論では4〜6方向の下肢先端での最大力を計測し、幾何学的特徴を満足するように出力分布を作図し、何らかの仮定を用いて機能別実効筋力を求める。そのため、測定がうまく行かない辺が1つでもあると筋力全体に影響する。一方、本発明の手法は先行技術で必須であった一対の拮抗筋力の比率に適宜の数値を設定するなどの仮定は不要で、辺毎に筋力が独立して求まり、1つの筋力を対象とするならば1方向の最大力の測定のみで良い。そのため、6辺全てを計測せずに、計測したい筋に対応した辺に対する最大力を計測するだけで計測を終了することが可能である。 In the conventional functional effective theory, the maximum force at the tip of the lower limb in 4-6 directions is measured, the output distribution is drawn so as to satisfy the geometric characteristics, and the effective muscle strength by function is obtained using some assumptions. Therefore, if there is even one side that does not measure well, it affects the overall muscle strength. On the other hand, the method of the present invention does not require an assumption such as setting an appropriate numerical value for the ratio of a pair of antagonistic muscle forces, which was essential in the prior art, and the muscle strength is obtained independently for each side, and one muscle strength is targeted. If so, it is only necessary to measure the maximum force in one direction. Therefore, it is possible to end the measurement only by measuring the maximum force for the side corresponding to the muscle to be measured without measuring all six sides.

本装置は、従来の測定装置に比べ短時間で、しかも被験者への負担が少なく計測できるため、多数の計測モニターが必要とされる疫学調査に応用することが可能で、様々な現象と筋力との関連を明らかにする調査などに活用できる。例えば、疫学調査結果を基に、評価と診断を行うことで問題解決を定量的に行うことが可能となり、転倒予防などの対策を検討する場合などにも効果的な活用が期待できる。 This device can be applied to epidemiological studies that require a large number of measurement monitors because it can be measured in a shorter time and with less burden on the subject than conventional measurement devices. This can be used for research to clarify the relationship between For example, it is possible to quantitatively solve problems by performing evaluation and diagnosis based on the results of epidemiological surveys, and effective use can be expected when considering measures such as fall prevention.

1 下肢大腿部
2 下肢下腿部
3 足
25 体幹部
28 足置場移動用スライダ
29 スライダの回転軸
30 測定装置背もたれ部
31 体幹固定ベルト
32 下腹部固定ベルト
33 測定装置座部
34 手すり

DESCRIPTION OF SYMBOLS 1 Lower leg thigh 2 Lower leg lower leg 3 Feet 25 Trunk 28 Slider 29 for moving footrest Slider rotating shaft 30 Measuring device backrest 31 Trunk fixing belt 32 Lower abdominal fixing belt 33 Measuring device seat 34 Handrail

Claims (2)

下肢先端で発揮される力を3対6筋群モデルの6角形出力分布図で出力する下肢筋力測定システムであって、
前記6角形の出力分布図の前記各辺の傾きを、前記コサイン調律の考え方から求まる筋力二乗和最小を基に、各筋群力と下肢先端での出力との関係を示す擬似行列から求め、
前記6角形の出力分布図の各辺を、実測される下肢先端力測定値と前記傾きから求め、前記求まった各辺の下肢先端最大力から、筋力二乗和の最小化に基づくコサイン調律によって各筋群力の最大力を決定することを特徴とする下肢筋力測定システム。
A lower limb muscle strength measurement system that outputs the force exerted at the lower limb tip in a hexagonal output distribution map of a 3 to 6 muscle group model,
The slope of each side of the hexagonal output distribution map is obtained from a pseudo matrix indicating the relationship between each muscle group force and the output at the tip of the lower limb, based on the minimum sum of squared strengths obtained from the concept of cosine tuning,
Each side of the hexagonal output distribution map is obtained from the measured measurement value of the lower extremity tip force and the inclination, and from each obtained upper extremity force of the lower extremity, the cosine rhythm based on the minimization of the sum of the squares of the muscular strength is used. A lower limb strength measurement system characterized by determining the maximum strength of muscle group strength.
前記下肢筋力測定装置システムの下肢筋力測定装置が背付ベッドと、
ベッドに固定され足首を挿入可能なベルトと、
該ベルトの内側に配置され足首に当接して足が発揮する2軸方向の力をセンシングするセンサと、
前記センサの出力データの収集と処理を行いながら測定手順をガイドするコントローラと、
前記データ処理結果と前記測定手順を表示するモニターと、で構成されることを特徴とする請求項1に記載の下肢筋力測定システム。
The lower limb muscle strength measuring device is a back bed,
A belt fixed to the bed and capable of inserting an ankle,
A sensor that is disposed inside the belt and senses a biaxial force exerted by the foot in contact with the ankle;
A controller for guiding the measurement procedure while collecting and processing the output data of the sensor;
The lower limb muscle strength measurement system according to claim 1, further comprising a monitor that displays the data processing result and the measurement procedure.
JP2015159360A 2015-08-12 2015-08-12 Lower limb muscle strength measurement system Active JP6593751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015159360A JP6593751B2 (en) 2015-08-12 2015-08-12 Lower limb muscle strength measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015159360A JP6593751B2 (en) 2015-08-12 2015-08-12 Lower limb muscle strength measurement system

Publications (2)

Publication Number Publication Date
JP2017035374A true JP2017035374A (en) 2017-02-16
JP6593751B2 JP6593751B2 (en) 2019-10-23

Family

ID=58046969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015159360A Active JP6593751B2 (en) 2015-08-12 2015-08-12 Lower limb muscle strength measurement system

Country Status (1)

Country Link
JP (1) JP6593751B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190092798A (en) * 2018-01-31 2019-08-08 선문대학교 산학협력단 Measuring apparatus for strength of lower extremity
JP2020006041A (en) * 2018-07-11 2020-01-16 パラマウントベッド株式会社 Evaluation device
CN110859637A (en) * 2018-08-27 2020-03-06 本田技研工业株式会社 Muscle strength characteristic evaluation method
WO2022249253A1 (en) * 2021-05-24 2022-12-01 日本電信電話株式会社 Force estimation device, force estimation method, and program
WO2024049108A1 (en) * 2022-09-02 2024-03-07 서울대학교병원 Wearable muscle strength measuring device and gravity compensation mechanism-based muscle strength measuring method using same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190092798A (en) * 2018-01-31 2019-08-08 선문대학교 산학협력단 Measuring apparatus for strength of lower extremity
KR102035282B1 (en) 2018-01-31 2019-11-08 선문대학교 산학협력단 Measuring apparatus for strength of lower extremity
JP2020006041A (en) * 2018-07-11 2020-01-16 パラマウントベッド株式会社 Evaluation device
JP7075841B2 (en) 2018-07-11 2022-05-26 パラマウントベッド株式会社 Evaluation device
CN110859637A (en) * 2018-08-27 2020-03-06 本田技研工业株式会社 Muscle strength characteristic evaluation method
US11246521B2 (en) * 2018-08-27 2022-02-15 Honda Motor Co., Ltd. Method for evaluating muscular strength characteristics
CN110859637B (en) * 2018-08-27 2022-06-14 本田技研工业株式会社 Muscle strength characteristic evaluation method
WO2022249253A1 (en) * 2021-05-24 2022-12-01 日本電信電話株式会社 Force estimation device, force estimation method, and program
WO2024049108A1 (en) * 2022-09-02 2024-03-07 서울대학교병원 Wearable muscle strength measuring device and gravity compensation mechanism-based muscle strength measuring method using same

Also Published As

Publication number Publication date
JP6593751B2 (en) 2019-10-23

Similar Documents

Publication Publication Date Title
JP6593751B2 (en) Lower limb muscle strength measurement system
Robert-Lachaine et al. Validation of inertial measurement units with an optoelectronic system for whole-body motion analysis
CN109077785B (en) Bone load detection method based on six-axis parallel bone external fixation device
US8277396B2 (en) Method and apparatus for assessing proprioceptive function
US10631751B2 (en) Motion analysis apparatus, method for analyzing motion, and motion analysis program
Passmore et al. Application of ultrasound imaging to subject-specific modelling of the human musculoskeletal system
Baptista et al. Flexible feedback system for posture monitoring and correction
Morton et al. Pose calibrations for inertial sensors in rehabilitation applications
Challis Estimation of the finite center of rotation in planar movements
Clément et al. Reproducibility analysis of upper limbs reachable workspace, and effects of acquisition protocol, sex and hand dominancy
US11246521B2 (en) Method for evaluating muscular strength characteristics
Ancillao et al. Validation of ankle strength measurements by means of a hand-held dynamometer in adult healthy subjects
US20160317079A1 (en) System And Method For Measuring Skin Movement And Strain And Related Techniques
Tommasi et al. Active head and cervical range of motion: effect of age in healthy females
JP6615441B2 (en) Lower limb muscle strength measuring device
Hani et al. Reliability of a Wearable motion system for clinical evaluation of dynamic lumbar spine function
Flores et al. Quantifying forearm and wrist joint power during unconstrained movements in healthy individuals
Azizpour et al. An experimental method to estimate upper limbs inertial parameters during handcycling
Palmieri et al. Analytical and multibody modeling for the power analysis of standing jumps
Jurkojč et al. The Standard Deviation of Differential Index as an innovation diagnostic tool based on kinematic parameters for objective assessment of a upper limb motion pathology
de Castro et al. Estimated force and moment of shoulder external rotation muscles: differences between transverse and sagittal planes
Han et al. Test–retest Reliability and Concurrent Validity of a Headphone and Necklace Posture Correction System Developed for Office Workers
Liu et al. Kinematic Analysis of Intra-Limb Joint Symmetry via Multi-Sensor Fusion
JP7350678B2 (en) Muscle strength characteristic evaluation method and muscle strength characteristic evaluation device
Song et al. Hierarchical and synergistic organization of control variables during the multi-digit grasp of a free and an externally fixed object

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20150910

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190913

R150 Certificate of patent or registration of utility model

Ref document number: 6593751

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250