JP2017034954A - Soft actuator comprising composite material - Google Patents

Soft actuator comprising composite material Download PDF

Info

Publication number
JP2017034954A
JP2017034954A JP2015159970A JP2015159970A JP2017034954A JP 2017034954 A JP2017034954 A JP 2017034954A JP 2015159970 A JP2015159970 A JP 2015159970A JP 2015159970 A JP2015159970 A JP 2015159970A JP 2017034954 A JP2017034954 A JP 2017034954A
Authority
JP
Japan
Prior art keywords
soft actuator
soft
cuff
assembly
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015159970A
Other languages
Japanese (ja)
Inventor
鵬凱 金秋
Hougai Kaneaki
鵬凱 金秋
憧 金秋
Sho Kanaaki
憧 金秋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2015159970A priority Critical patent/JP2017034954A/en
Publication of JP2017034954A publication Critical patent/JP2017034954A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manipulator (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a soft actuator which can be used as a drive device of various kinds of machines and devices, especially robot related equipment.SOLUTION: Both end portions of a cover code of a basic material are used as a coupling part, an intermediate portion is used as an operation part and an inside cavity of the operation part is filled with operation elements whose volume is expanded or reduced, or shape changes in response to electric field or magnetic field stimulus. A soft actuator includes means for converting deformation force in an axial direction of the operation elements into the deformation force in an axial direction of the operation elements by the cover code, by giving electric field or magnetic field stimulus.SELECTED DRAWING: Figure 1

Description

発明の詳細な説明Detailed Description of the Invention

本発明は、電気エネルギーを変形エネルギーに変換するソフトアクチュエータに関するものである。  The present invention relates to a soft actuator that converts electrical energy into deformation energy.

従来、各種の機械、装置、特にロボット関連用のアクチュエータとして、電磁モーター、マッキベン型アクチュエータ(例えば、下記特許文献1、非特許文献1)などが使われている、しかしこれらの伝統的なハードアクチュエータは諸問題があり、例えば、電磁モーターの場合は変速機構は必要なので、構造が複雑、重量、振動、ノイズの問題点はある。マッキベン型アクチュエータの場合は空気などの流体をチューブに圧入するためコンプレッサー、給配気ホース、給配気バルブ、更にバルブを制御する電気系統など大かかりの装置は不可欠である、つまり、電気系統と流体系統の二重系統は必要なので、構造が煩雑、重量、携帯困難、微細動作の制御が難しい問題点はある。一方長年来、介護機器、リハビリ機器、アミューズメント機器等用のアクチュエータとしては機能上、性能上で、非剛性、構造簡単、軽量、ノイズフリー運転、繊細な動作を容易に制御できる、等の要請はあった。  Conventionally, electromagnetic motors and McKibben actuators (for example, Patent Document 1 and Non-Patent Document 1 below) have been used as actuators for various machines and devices, particularly robots, but these traditional hard actuators. There are various problems. For example, in the case of an electromagnetic motor, a speed change mechanism is required, so the structure is complicated, and there are problems of weight, vibration, and noise. In the case of McKibben type actuators, a large-scale device such as a compressor, supply / distribution hose, supply / distribution valve, and electrical system for controlling the valve is indispensable to press-fit a fluid such as air into the tube. Since a dual fluid system is necessary, there are problems in that the structure is complicated, the weight is difficult to carry, and the fine operation is difficult to control. On the other hand, for many years, as actuators for nursing care equipment, rehabilitation equipment, amusement equipment, etc., there has been a demand for non-rigidity, simple structure, light weight, noise-free operation, delicate operation, etc. there were.

上記電磁モーター、マッキベン型等のアクチュエータの諸問題点を解決するために、長年静電力、イオン力、電磁力などを利用するソフトアクチュエータ(人工筋肉よもいう)の研究開発がなされ、電気駆動型高分子(Elector−Active Polymer,EAP)、導電性高分子薄膜(Ionic conductive polymer film,ICPF)をベースとしたソフトアクチュエータ、エラストマー系材料に粉体磁気性物質を混合した材料を用いた電磁式ソフトアクチュエータなどが提案されている。  In order to solve the problems of actuators such as the above-mentioned electromagnetic motors and McKibben type, research and development of soft actuators (also called artificial muscles) using electrostatic force, ionic force, electromagnetic force, etc. has been conducted for many years. Soft actuator based on polymer (Electric-Active Polymer, EAP), conductive polymer thin film (Ionic conductive polymer film, ICPF), Electromagnetic software using material in which powder magnetic substance is mixed with elastomeric material Actuators have been proposed.

たとえば下記特許文献2に示すイオン交換樹脂型アクチュエータは、イオン交換樹脂膜とそのイオン交換樹脂膜の両面に接合した電極とからなり、イオン交換樹脂膜の含水状態においてイオン交換樹脂膜に電位差をかけてイオン交換樹脂膜に湾曲および変形力を生じさせるソフトアクチュエータである。  For example, an ion exchange resin type actuator shown in the following Patent Document 2 includes an ion exchange resin membrane and electrodes bonded to both surfaces of the ion exchange resin membrane, and applies a potential difference to the ion exchange resin membrane in a water-containing state of the ion exchange resin membrane. This is a soft actuator that generates bending and deformation forces on the ion exchange resin film.

また、たとえば下記特許文献3に示す電磁式アクチュエータは、磁気性粉体を配合したエラストマー材料にコイルを埋入し、与える電流の方向及びコイルの構成によってエラストマー材料に変形力を生じさせるソフトアクチュエータである。  Further, for example, the electromagnetic actuator shown in Patent Document 3 below is a soft actuator that embeds a coil in an elastomer material blended with magnetic powder and generates a deformation force on the elastomer material depending on the direction of current to be applied and the configuration of the coil. is there.

更に、例えば下記特許文献4に示す導電性高分子アクチュエータはバイモルフ構造を有する積層体において、2つの樹脂層を備えた積層体であり、第1の樹脂層が導電性樹脂を基体樹脂とする樹脂層であって、アニオンの取込み及び放出することにより伸縮可能な樹脂層であり、第2の樹脂層が導電性樹脂を基体樹脂とする樹脂層であって、印加する電圧の極性により、カチオンの取込み及び放出することにより積層体全体としての膨張または収縮の変形力を生じさせるソフトアクチュエータである。  Further, for example, the conductive polymer actuator shown in Patent Document 4 below is a laminate having two resin layers in a laminate having a bimorph structure, and the first resin layer is a resin having a conductive resin as a base resin. A resin layer that can be expanded and contracted by taking in and releasing anions, and the second resin layer is a resin layer having a conductive resin as a base resin, and depending on the polarity of applied voltage, It is a soft actuator that generates deformation force of expansion or contraction as a whole laminate by taking in and releasing.

特開2007−40365号JP2007-40365 特開平4−275078号Japanese Patent Laid-Open No. 4-275078 PCT/JP2008/072249PCT / JP2008 / 072249 特開2009−107342JP 2009-107342 A

Panasonic Technical Journal Vol.56 No.3 Oct.2010「ロボット特集:人に対して安全な多自由度/空気圧人工筋肉ロボットアームの開発」Panasonic Technical Journal Vol. 56 No. 3 Oct. 2010 "Robot Feature: Development of Multi-DOF / Pneumatic Artificial Muscle Robot Arm Safe for Humans"

上記特許文献及び非特許文献に示したのように単一の変形性材料からなるソフトアクチュエータ、即ち作動機能と連結機能を同一の材料で担うソフトアクチュエータは、作動する他のパーツと少なくても二箇所以上の連結箇所は必要とし、更に、作動による引張破裂力を直に受けるため、得られる作動力は原理的に材料自身の引張破裂強度及び連結強度以上になれない、言い換えると、作動と連結二つの機能を同一材料で担えば、作動力の強さは材料自身の引張破裂強度及び連結強度以上に達すると、材料自身は断裂してしまい、得られる作動出力の強さは自ずと制限されている問題点はある。  As shown in the above-mentioned patent documents and non-patent documents, a soft actuator made of a single deformable material, that is, a soft actuator having the same function for both the operation function and the connection function, is at least two other parts that operate. Since more connection points are required and the tensile burst force due to the operation is directly received, the obtained operation force cannot in principle exceed the tensile burst strength and connection strength of the material itself, in other words, the operation and connection. If the two functions are carried out by the same material, if the strength of the operating force exceeds the tensile burst strength and connection strength of the material itself, the material itself will tear, and the strength of the resulting operating output is naturally limited. There is a problem.

そこで、本発明は、複合材料を用いて、上記した問題点の解消を期し、構造はシンプルで、軽量、ノイズフリー、携行に便利な、強固に連結できるソフトアクチュエータを提供することを課題とする。  Therefore, the present invention aims to provide a soft actuator that uses a composite material and solves the above-described problems, has a simple structure, is lightweight, noise-free, convenient for carrying, and can be firmly connected. .

公知の通り、理想的なソフトアクチュエータは生体筋肉である。一般的に人間の体の動きは関節を跨がる一対の骨格筋(随意筋、拮抗筋ともいうが、組織学では横紋筋という)の収縮によって行われる。骨格筋は腱と筋肉の2つの部分からなり、筋腹(筋肉の集合体)の両端が腱部分で、その一方は骨に仲介物として連結し、もう一方は細胞レベルで多数の筋原繊維と結合され、連結機能を担う。多数の筋原繊維からなる筋腹部分が脳からの作動信号により約20%程度収縮し、作動機能を担う。つまり、骨格筋の特徴は、、筋肉は連結する機能はなく、腱の部分は作動(収縮)する機能はないように別々の役割を分担する。このような連結機能と作動機能が分離された仕組みの利点は、構造がシンプルで、連結強度と筋肉の収縮力(作動力)を共に最大限に活かせ、最も大きな出力、強靭性、耐用性を得られる、そして迅速、正確に作動でき、且つエネルギーを効率的に利用できると考えられる。  As is known, an ideal soft actuator is a living muscle. In general, the movement of a human body is performed by contraction of a pair of skeletal muscles (also called voluntary muscles or antagonistic muscles, but striated muscles in histology) straddling a joint. Skeletal muscle consists of two parts, tendon and muscle. Both ends of the muscle abdomen (muscle assembly) are tendon parts, one of which is connected to the bone as a mediator, and the other is a number of myofibrils at the cellular level. And is responsible for the link function. The muscle abdominal part composed of a number of myofibrils contracts by about 20% by the operation signal from the brain, and assumes the operation function. That is, the characteristics of skeletal muscles share different roles so that the muscles do not have a function of connecting and the tendon portion does not have a function of actuating (contracting). The advantage of such a mechanism that separates the connecting function and the operating function is that the structure is simple, and the maximum output, toughness, and durability can be achieved by making the best use of both the connection strength and the muscle contraction force (operating force). It is believed that it can be obtained and can operate quickly and accurately, and energy can be used efficiently.

以上課題の下本件発明者は、生体筋肉の仕組みからヒントを得て、カバーコードを基幹材にし、其の両端部分を連結部とし、中間部分を作動部とする。該作動部腔内に電場的或いは磁場的の刺激に応じて体積が膨張または縮小、或いは形状が変化する素子、例えば、単一材料からなるソフトアクチュエータ(以下”作動素子”という、)を充填する。作動素子に電場的或いは磁場的の刺激を与え、作動素子の半径方向の変形力を、カバーコードによって作動部の軸方向の変形力に変換させる手段を、有することを特徴とするソフトアクチュエータを提供する。  Under the above problems, the present inventor obtains a hint from the mechanism of biological muscles, uses the cover cord as a base material, uses both end portions as connecting portions, and intermediate portions as operating portions. An element whose volume expands or contracts or changes its shape in response to an electric or magnetic stimulus, for example, a soft actuator made of a single material (hereinafter referred to as an “actuating element”) is filled in the working part cavity. . Provided is a soft actuator characterized by having means for applying an electric or magnetic stimulus to the actuating element and converting a radial deformation force of the actuating element into an axial deformation force of the actuating portion by a cover cord. To do.

更に、本発明は、多数の上記基本単位を軸方向に直列連結、または、並列に連結し、或いは直列、並列を同時に連結することにより、作動ストロークの幅、作動出力の強さを調整する手段、を有することを特徴とする複合材料からなるソフトアクチュエータの集合体。  Furthermore, the present invention provides means for adjusting the width of the operation stroke and the strength of the operation output by connecting a large number of the above basic units in series in the axial direction or in parallel, or by connecting in series and parallel at the same time. And an assembly of soft actuators made of a composite material.

更に、本発明は、作動素子の物性、構成、サイズ、または、作動素子に与える電場的或いは磁場的の刺激のパターンを調整することにより、作動出力のパターンを調整する手段、を有することを特徴とする複合材料からなるソフトアクチュエータまたは複合材料からなるソフトアクチュエータの集合体。  Furthermore, the present invention includes means for adjusting the pattern of the operation output by adjusting the physical property, configuration, size of the operation element, or the pattern of electric or magnetic stimulation applied to the operation element. A soft actuator made of a composite material or a collection of soft actuators made of a composite material.

本発明によれば、構造はシンプルで、軽量、ノイズフリー、携行に便利な、強固に連結できるソフトアクチュエータを提供できる効果がある。  According to the present invention, it is possible to provide a soft actuator that is simple in structure, lightweight, noise-free, convenient for carrying, and can be firmly connected.

本発明の一実施形態を説明するための図である。It is a figure for demonstrating one Embodiment of this invention. 本発明の実施例1を説明するための図である。It is a figure for demonstrating Example 1 of this invention. 本発明の実施例2を説明するための図である。It is a figure for demonstrating Example 2 of this invention. 本発明の実施例3を説明するための図である。It is a figure for demonstrating Example 3 of this invention.

実施形態Embodiment

以下、図面を参照しながら本発明を説明する。図1は、本発明の複合材料からなるソフトアクチュエータの一実施形態の基本単位20を説明するための図であり、図1(a)は基本単位20の側面図であり、図中カバーコード1は弾力性の少ないナイロン系繊維の糸で丸編みした筒状のもの(丸編みチューブとも、筒編みスリーブとも言う)を基幹とし、その特徴は軸方向にのみ拘束力があるから腔内半径方向の膨張力を軸方向の収縮力に変換できる。逆に、軸方向の伸長力は腔内半径方向の縮小力に変えることができる。つまり、カバーコード1の長さの変化は腔内半径方向の変化と反比例である。尚、図1(a)は通電していない時の中間状態を示す。  The present invention will be described below with reference to the drawings. FIG. 1 is a diagram for explaining a basic unit 20 of an embodiment of a soft actuator made of a composite material of the present invention. FIG. 1 (a) is a side view of the basic unit 20, and in FIG. Is based on a cylindrical shape (also called a circular knitted tube or cylindrical knitted sleeve) that is circularly knitted with nylon fiber, which has little elasticity, and its features are binding force only in the axial direction. The expansion force can be converted into an axial contraction force. Conversely, the axial extension force can be changed to a reduction force in the radial direction of the cavity. That is, the change in the length of the cover cord 1 is inversely proportional to the change in the intracavity radial direction. FIG. 1A shows an intermediate state when no power is supplied.

本実施形態ではカバーコード1の両端を縄状に束ね、樹脂で固めて連結部2とし、中間部分を作動部3とする、作動部3腔内に作動素子として、橄欖形の積層導電性高分子材料セル4(以下、セル4という)を充填する。本積層導電性高分子材料セル4の特性は、正電圧(電気回路等の表示は省略、以下同)を印加される場合は体積が半径方向に膨張し、負電圧を印加される場合は体積が半径方向に縮小する。本実施形態では、作動部3の長さとセル4のボリュームの比例は、セル4に正電圧を印加される場合、半径方向の膨張変形が作動部3に最大約20%の短縮を齎せ、負電圧印加される場合、半径方向の縮小変形が作動部3に最大約20%の伸長できるように設定する。作動部3の外周にセル4用の電気導線5は柔軟性導線を用い、作動部3の外周寸法変化に合わせて、曲げたり、伸びたりできるように織り込む。連結部2の上端201を固定物6に固着し、下端202を出力端とし、錘16を連結する。本実施形態で示すように連結部2と作動部3はそれぞれ連結機能と作動機能の役割を分担するので、カバーコード1は弾力性の無い、強靭な繊維素材を使え、そして、多様な方法で強固に連結することができる、其の連結強度は作動材料の強度と出力の強さは無関係である。また、作動材料セル4は連結機能と無関係である。  In this embodiment, both ends of the cover cord 1 are bundled in a rope shape, hardened with a resin to form a connecting portion 2, and an intermediate portion is used as an operating portion 3. A molecular material cell 4 (hereinafter referred to as cell 4) is filled. The characteristics of the laminated conductive polymer material cell 4 are such that the volume expands in the radial direction when a positive voltage is applied (the display of an electric circuit or the like is omitted, the same applies hereinafter), and the volume when a negative voltage is applied. Shrinks in the radial direction. In this embodiment, the proportionality between the length of the actuating part 3 and the volume of the cell 4 is that when a positive voltage is applied to the cell 4, the radial expansion deformation causes the actuating part 3 to shorten about 20% at maximum, When a negative voltage is applied, a setting is made so that the contraction deformation in the radial direction can extend up to about 20% in the operating portion 3. The electric conducting wire 5 for the cell 4 is a flexible conducting wire on the outer periphery of the operating unit 3 and is woven so that it can be bent or stretched in accordance with the change in the outer peripheral dimension of the operating unit 3. The upper end 201 of the connecting portion 2 is fixed to the fixed object 6, the lower end 202 is used as the output end, and the weight 16 is connected. As shown in the present embodiment, the connecting portion 2 and the operating portion 3 share the roles of the connecting function and the operating function, respectively, so that the cover cord 1 can use a tough fiber material having no elasticity, and in various ways. The connection strength is independent of the strength of the working material and the strength of the output. The working material cell 4 is independent of the connecting function.

セル4に正電圧の駆動信号を印加すれば(電気回路の表示を省略する)、作動部3の腔内にある作動材料セル4は半径方向に膨張する、この膨張変形力は、カバーコード1の構造によって作動部3の軸方向の収縮力に変換され、作動部3は短くなる。結果として、図1(b)に示すように、出力端202で相応の収縮力と作動ストロークを得られ、錘16は上方に運動る。正駆動信号を止めれば、セル4は元の長さに戻り、、錘16は中間位置に戻る。逆に、セル4に負電圧を印加すれば、作動部3の腔内にある作動材料セル4は半径方向に縮小する、錘16の重力とカバーコード1の構造によって作動部3の軸方向の伸長力に変換され、作動部3は長くなる。結果として、図1(c)に示すように、錘16は下方に運動る。負駆動信号を止めれば、セル4は元の長さに戻り、、錘16は中間位置に戻る。  If a positive voltage drive signal is applied to the cell 4 (the display of the electric circuit is omitted), the working material cell 4 in the cavity of the working part 3 expands in the radial direction. The structure is converted into the contraction force in the axial direction of the operating portion 3, and the operating portion 3 is shortened. As a result, as shown in FIG. 1B, a corresponding contraction force and operating stroke can be obtained at the output end 202, and the weight 16 moves upward. When the positive drive signal is stopped, the cell 4 returns to the original length, and the weight 16 returns to the intermediate position. On the contrary, if a negative voltage is applied to the cell 4, the working material cell 4 in the cavity of the working unit 3 is contracted in the radial direction. The gravity of the weight 16 and the structure of the cover cord 1 cause the working material 3 to move in the axial direction. It is converted into an extension force, and the operating part 3 becomes longer. As a result, the weight 16 moves downward as shown in FIG. When the negative drive signal is stopped, the cell 4 returns to the original length, and the weight 16 returns to the intermediate position.

図2は、本発明の実施形態に従った実施例1を説明するための図であり、上記実施形態の基本単位20を用い、人工筋肉として人間の上肢を模擬したロボットアーム30を構成する。図2(a)は未通電の状態で、図中のパーツ10、パーツ11、パーツ12、パーツ13は、それぞれ上腕骨、前腕骨、上腕二頭筋、上腕三頭筋に見立てる。パーツ10とパーツ11はジョイント14で連結される。パーツ12は上記基本単位20の5個分を直列に連結した集合体を一つの作動デバイスとして機能し、電気導線を電気回路50に連結する(電気回路50の詳細を省略する、以下同)。パーツ12の一端はパーツ10の上端に固着され、もう一端はパーツ11に固着される。パーツ13も同様基本単位20の5個分を直列に連結した集合体を一つの作動デバイスとして機能し、図2(a)に示すようにパーツ10を隔ててパーツ12の反対側に装着され、その一端はパーツ10の上端反面に固着され、もう一端はパーツ11に固着される。  FIG. 2 is a diagram for explaining Example 1 according to the embodiment of the present invention, and uses the basic unit 20 of the above embodiment, and constitutes a robot arm 30 that simulates a human upper limb as an artificial muscle. FIG. 2A shows an unenergized state, and parts 10, 11, 11, 12 and 13 in the figure are regarded as humerus, forearm, biceps and triceps, respectively. Parts 10 and 11 are connected by a joint 14. The part 12 functions as an operating device of an assembly in which five of the basic units 20 are connected in series, and connects an electrical conductor to the electrical circuit 50 (details of the electrical circuit 50 are omitted, the same applies hereinafter). One end of the part 12 is fixed to the upper end of the part 10, and the other end is fixed to the part 11. Similarly, the part 13 also functions as a single actuating device of an assembly of five basic units 20 connected in series, and is mounted on the opposite side of the part 12 across the part 10 as shown in FIG. One end thereof is fixed to the other side of the upper end of the part 10, and the other end is fixed to the part 11.

ロボットアーム30を水平位置(パーツ10とパーツ11は同一水平面)に設置し、パーツ12に正電圧駆動信号を印加すれば、パーツ12全体が収縮し、同時にパーツ13に負電圧を印加すれば、パーツ13全体が伸長し、よって図2(b)に示すようにパーツ11は屈折方向に動いた。逆に、パーツ12に負電圧駆動信号を印加すれば、パーツ12全体が伸長し、同時にパーツ13に正電圧を印加すれば、パーツ13全体が収縮し、図2(c)に示すようにパーツ11は伸展方向に動いた。  If the robot arm 30 is installed in a horizontal position (parts 10 and 11 are on the same horizontal plane) and a positive voltage drive signal is applied to the part 12, the entire part 12 contracts, and at the same time a negative voltage is applied to the part 13, The entire part 13 was extended, and therefore the part 11 moved in the direction of refraction as shown in FIG. On the contrary, if a negative voltage drive signal is applied to the part 12, the entire part 12 expands, and if a positive voltage is applied to the part 13 at the same time, the entire part 13 contracts, as shown in FIG. 11 moved in the direction of extension.

前述の基本作動原理に基づき、電気回路50より出力する駆動信号の極性、電圧、頻度、タイミングなどを変化させれば、ロボットアーム30に多様な動作をさせる事ができる。  If the polarity, voltage, frequency, timing, and the like of the drive signal output from the electric circuit 50 are changed based on the basic operating principle described above, the robot arm 30 can perform various operations.

図3は、前述の実施形態に従った実施例2を説明するための図であり、実施例2では、前述基本単位20を用い、空気圧バンド式マッサージャ用の「カフ」(圧縮袋とも言う)のを構成する。実施例1と同じ部分には同じ符号を付し重複する説明は省略する。「カフ」とはバンドのことで、一般的に輪っか状にして使う。従来の空気圧バンド式マッサージャ用のカフの作動手段、つまり、カフの内径を変化させる手段は、電気エネルギーで、空気圧縮機(エアーポンプ)を回し、給排気機構などによって、カフ内に空気を圧入し、或いは排出し、カフを膨ませたり萎ませたりするものである。このような従来のカフを「空気圧式カフ」という。  FIG. 3 is a diagram for explaining Example 2 according to the above-described embodiment. In Example 2, the above-described basic unit 20 is used, and a “cuff” (also referred to as a compression bag) for a pneumatic band massager is used. Configure The same parts as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted. A “cuff” is a band, generally used in a ring shape. The cuff actuating means for the conventional pneumatic band massager, that is, the means for changing the inner diameter of the cuff is electric energy, and the air compressor (air pump) is turned and air is injected into the cuff by an air supply / exhaust mechanism. Or discharge and inflate or deflate the cuff. Such a conventional cuff is called a “pneumatic cuff”.

従来の「空気圧式カフ」の作動手段で分かるように、作動させるには空気圧縮機及び給気機構などは不可欠である、よって、空気圧縮機及びモーター、給気機構自体の重さは大きく、給気ホース、給気制御バルプなどが必要なので機器全体の構造は大きく、複雑で、そして、運転時の騒音、振動、更に携帯に不便などの問題点はある。  As can be seen from the operation means of the conventional “pneumatic cuff”, an air compressor and an air supply mechanism are indispensable to operate, so the weight of the air compressor and motor, the air supply mechanism itself is large, Since an air supply hose and an air supply control valve are required, the overall structure of the device is large and complicated, and there are problems such as noise and vibration during operation, and inconvenience in carrying.

図3(a)は、バンド式マッサージャ用カフ7の構造を示す図であり、図中カフ7の本体は丈夫な生地で縫製されたもので、其の中に長尺方向に沿って、上記基本単位20の5個分を直列に連結した集合体21,22,23を並列に設けて、カフ7の中に入れ、それぞれの両端とをカフ7に縫い付ける。列ごとに配線を配置し別々駆動するように電気回路50に連結する。カフ7の両端に連結用マジックテープ15を縫い付ける。  FIG. 3 (a) is a diagram showing the structure of the band-type massager cuff 7, in which the main body of the cuff 7 is sewn with a strong fabric, and the above-mentioned is along the longitudinal direction in the above. Aggregates 21, 22, and 23 in which five of the basic units 20 are connected in series are provided in parallel, placed in the cuff 7, and both ends are sewn to the cuff 7. Wiring is arranged for each column and connected to the electric circuit 50 so as to be driven separately. The connecting magic tape 15 is sewn to both ends of the cuff 7.

図3(b)は、カフ7を小腿部に巻きつけて、稼働する状態を示す図である。電気回路50より一斉に正電圧駆動信号を集合体21,22,23に印加すれば、集合体21,22,23が同時に収縮し脹脛を圧迫し、駆動信号が止めれば、集合体21,22,23は元の長さに戻る、この伸縮作動により、マッサージ効果を得られる。或いは、電気回路50より集合体21,22,23に順番或いは逆順番、または個々に一定の間隔をおいて、正電圧駆動信号を印加すれば、集合体21,22,23が別々に収縮し脹脛を圧迫し、多様なマッサージ効果を得られる。本実施例のカフ7を用いたバンド式マッサージャは、エアーポンプ、給気ホースなどは不要で、軽量、ノイズフリー、携帯に便利のため、多様な環境で使用することができ、特にエコノミークラス症候群の予防に適宜する。そして、小腿部だけではなく、上腕など他の部位のマッサージにも応用できる。  FIG.3 (b) is a figure which shows the state which winds the cuff 7 around a thigh part and operates. If a positive voltage drive signal is applied simultaneously from the electric circuit 50 to the aggregates 21, 22, 23, the aggregates 21, 22, 23 contract simultaneously to compress the calves and if the drive signal stops, the aggregates 21, 22 , 23 return to their original length, and this expansion / contraction action provides a massage effect. Alternatively, if a positive voltage drive signal is applied from the electric circuit 50 to the aggregates 21, 22, 23 in order or in reverse order, or at regular intervals, the aggregates 21, 22, 23 contract separately. Various massage effects can be obtained by pressing the calves. The band-type massager using the cuff 7 of this embodiment does not require an air pump, an air supply hose, etc., is lightweight, noise-free, and convenient to carry, so it can be used in various environments, especially economy class syndrome Appropriate for prevention. And it can be applied not only to the thighs but also to other parts such as the upper arm.

図4は、前述の実施形態に従った実施例3の電子式血圧計用のカフ8を説明するための図であり、図4(a)中カフ8の本体は丈夫な生地で縫製されたもので、其の中に長尺方向に沿って、前述基本単位20の5個分を直列に連結した集合体24を設けて、カフ8の中に入れ、両端とをカフ8に縫い付ける。集合体24の電気導線を電気回路50に連結する。尚、血流の動きを検知するセンサー9をカフ8の中に設け、電気導線を電気回路50に連結する。カフ8の両端に連結用マジックテープ15を縫い付ける。  FIG. 4 is a diagram for explaining the cuff 8 for an electronic blood pressure monitor of Example 3 according to the above-described embodiment, and the main body of the cuff 8 in FIG. 4A is sewn with a strong cloth. An assembly 24 in which five of the basic units 20 are connected in series is provided in the longitudinal direction in the longitudinal direction, and the assembly 24 is placed in the cuff 8 and both ends are sewn to the cuff 8. The electrical conductors of the assembly 24 are connected to the electrical circuit 50. In addition, a sensor 9 for detecting the movement of blood flow is provided in the cuff 8, and the electric conductor is connected to the electric circuit 50. The connecting magic tape 15 is sewn to both ends of the cuff 8.

図4(b)は、カフ8を上腕に巻きつけて、使用する状態を示す図である。集合体24に電気回路50より正電圧の駆動信号を印加すれば、集合体24は収縮し上腕の血管を圧迫する、同時にセンサー9の検知及び電気回路50の処理により、収縮期と拡張期の血圧及び脈拍等測定し、表示する。本実施例のカフ8を用いた電子式血圧計は、エアーポンプ、給気ホースなどを不要で、軽量、ノイズフリー、携帯に便利のため、多様な環境で使用することができる。  FIG. 4B is a diagram showing a state in which the cuff 8 is wound around the upper arm and used. When a positive voltage drive signal is applied to the assembly 24 from the electric circuit 50, the assembly 24 contracts and compresses the blood vessels of the upper arm. Simultaneously, detection of the sensor 9 and processing of the electric circuit 50 cause the systolic and diastolic phases. Measure and display blood pressure and pulse. The electronic sphygmomanometer using the cuff 8 of this embodiment does not require an air pump, an air supply hose, etc., is lightweight, noise-free, and convenient to carry, and can be used in various environments.

本発明は、上述した発明の実施形態に限定されるものではなく、本発明の主旨を逸脱しない範囲内において、種々の変更を加え得ることは勿論である。尚、カバーコードの材質、構成においては、十分な強度を有する各種の繊維素材でよく、効率的に腔内半径方向の変形力を軸方向の伸縮力に出現させるものであればよい。作動部腔内に充填する作動素子の材質、構成においては、電場的或いは磁場的の刺激に応じて体積が膨張或いは縮小し、または形状の変化が効率よくするものであればよい。  The present invention is not limited to the above-described embodiment of the present invention, and it is needless to say that various modifications can be made without departing from the gist of the present invention. In addition, the material and configuration of the cover cord may be various fiber materials having sufficient strength, and any material that efficiently causes the intracavity radial deformation force to appear in the axial expansion / contraction force. As the material and configuration of the actuating element filled in the actuating portion cavity, any material may be used as long as the volume expands or contracts or the shape changes efficiently in response to an electric or magnetic stimulus.

本発明の複合材料からなるソフトアクチュエータは、構造はシンプルで、軽量、ノイズフリー運転、携行に便利な長所を有することから、以下に記するような種々の分野に適用できる。
1)各種ロボット関連用アクチュエータ、製造ラインの駆動デバイス、空中、水中作業用アクチュエータといった工業分野。
2)パワーアシスト装置、義足、義手用アクチュエータ、手術用、介護支援用機器と言った医療、福祉分野。
3)バーチャルリアリティ用フィットバック装置、体感アミューズメントゲーム機器、トレーニング機器といった情報、娯楽分野。
The soft actuator made of the composite material of the present invention is simple in structure, light weight, noise-free operation, and convenient for carrying. Therefore, it can be applied to various fields as described below.
1) Industrial fields such as actuators for various robots, drive devices for production lines, actuators for air and underwater operations.
2) Medical and welfare fields such as power assist devices, prosthetic legs, prosthetic hand actuators, surgical and nursing support devices.
3) Information and entertainment fields such as virtual reality fitback devices, bodily amusement game machines, and training equipment.

1 カバーコード
2 連結部
3 作動部
4 作動素子
5 電気導線
6 固定物
7 バンド式マッサージャ用カフ
8 電子式血圧計用のカフ
9 血流の動きを検知するセンサー
10 上腕骨に当たるパーツ
11 前腕骨に当たるパーツ
12 上腕二頭筋に当たるパーツ
13 上腕三頭筋に当たるパーツ
14 ジョイント
15 カフを輪っかにするためのマジックテープ
16 錘
20 実施形態の一基本単位
21,22,23 実施例2の基本単位20の5個分を直列に連結した集合体
24 実施例3の基本単位20の5個分を直列に連結した集合体
30 ロボットアーム
50 電気回路
201 連結部2の上端
202 連結部2の下端
DESCRIPTION OF SYMBOLS 1 Cover cord 2 Connecting part 3 Actuating part 4 Actuating element 5 Electrical conductor 6 Fixed object 7 Band type massager cuff 8 Electronic blood pressure cuff 9 Sensor for detecting blood flow 10 Part hitting the humerus 11 Hit the forearm bone Part 12 Part that hits the biceps 13 Part that hits the triceps 14 Joint 15 Velcro 16 for looping the cuff Weight 20 One basic unit 21, 22, 23 of the basic unit 20 of Example 2 Assembly 24 in which pieces are connected in series Assembly 30 in which five of basic units 20 of Example 3 are connected in series 30 Robot arm 50 Electric circuit 201 Upper end 202 of connecting portion 2 Lower end of connecting portion 2

Claims (4)

基幹材のカバーコードの両端部分を連結部とし、中間部分を作動部とする、作動部腔内に電場的或いは磁場的刺激に応じて体積が膨張或いは縮小し、または形状が変化する作動素子を充填する。電場的或いは磁場的刺激を与えることにより、作動素子の半径方向の変形力を、カバーコードによって作動部の軸方向の変形力に変換させる手段を、有することを特徴とするソフトアクチュエータ。  An actuating element whose volume expands or contracts in response to an electric or magnetic stimulus in the working part cavity, or whose shape changes in the working part cavity, with both ends of the cover cord of the base material as the connecting part and the intermediate part as the working part. Fill. A soft actuator comprising: means for converting a radial deformation force of an operating element into an axial deformation force of an operating portion by a cover cord by applying an electric field or magnetic field stimulus. 前記請求項1のソフトアクチュエータを基本単位とし、その多数を軸方向に直列連結、または、並列に連結し、或いは直列、並列を同時に連結することにより、作動ストロークの幅、作動出力の強さを調整する手段、を有することを特徴とする複合材料からなるソフトアクチュエータの集合体。  The soft actuator according to claim 1 is a basic unit, and many of them are connected in series in the axial direction or connected in parallel, or connected in series and parallel at the same time, so that the width of the operation stroke and the strength of the operation output can be reduced. An assembly of soft actuators made of a composite material, characterized by comprising means for adjusting. 作動素子の物性、構成、サイズ、または、作動素子に与える電場的或いは磁場的の刺激のパターンを調整することにより、作動出力のパターンを調整する手段、を有することを特徴とする請求項1、2の複合材料からなるソフトアクチュエータ及び複合材料からなるソフトアクチュエータの集合体。  A means for adjusting a pattern of an operation output by adjusting a physical property, a configuration, a size, or a pattern of an electric field or a magnetic field applied to the operation element. 2. A soft actuator composed of two composite materials and an assembly of soft actuators composed of composite materials. 請求項1、2、3の複合材料からなるソフトアクチュエータ及び其の集合体を有する装置、機器、製品。  A device, an apparatus, and a product having the soft actuator made of the composite material according to claim 1, 2, and the assembly thereof.
JP2015159970A 2015-07-29 2015-07-29 Soft actuator comprising composite material Pending JP2017034954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015159970A JP2017034954A (en) 2015-07-29 2015-07-29 Soft actuator comprising composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015159970A JP2017034954A (en) 2015-07-29 2015-07-29 Soft actuator comprising composite material

Publications (1)

Publication Number Publication Date
JP2017034954A true JP2017034954A (en) 2017-02-09

Family

ID=57989228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015159970A Pending JP2017034954A (en) 2015-07-29 2015-07-29 Soft actuator comprising composite material

Country Status (1)

Country Link
JP (1) JP2017034954A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107380290A (en) * 2017-07-28 2017-11-24 江苏大学 A kind of software climbing robot of electromagnetic drive

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107380290A (en) * 2017-07-28 2017-11-24 江苏大学 A kind of software climbing robot of electromagnetic drive
CN107380290B (en) * 2017-07-28 2019-08-02 江苏大学 A kind of software climbing robot of electromagnetic drive

Similar Documents

Publication Publication Date Title
Pan et al. Soft actuators and robotic devices for rehabilitation and assistance
Polygerinos et al. Soft robotics: Review of fluid‐driven intrinsically soft devices; manufacturing, sensing, control, and applications in human‐robot interaction
CN106456435B (en) Actuator device, method and system for limb rehabilitation
Oguntosin et al. Development of a wearable assistive soft robotic device for elbow rehabilitation
CA2839414C (en) An apparatus and method for rehabilitating an injured limb
Yuen et al. Conformable actuation and sensing with robotic fabric
CN108542718B (en) A kind of wearable flexible lower limb exoskeleton based on negative pressure rotary pneumatic artificial-muscle
Yap et al. Design and characterization of low-cost fabric-based flat pneumatic actuators for soft assistive glove application
CN109806548B (en) Light and handy type knee joint rehabilitation ectoskeleton robot
JP2007167484A (en) Muscle strength assist device
Andrikopoulos et al. Design and development of an exoskeletal wrist prototype via pneumatic artificial muscles
JP6710029B2 (en) Actuator and body support device
JP6773953B2 (en) Auxiliary heart device
Noritsugu Pneumatic soft actuator for human assist technology
Sy et al. M-sam: Miniature and soft artificial muscle-driven wearable robotic fabric exosuit for upper limb augmentation
JP2002103270A (en) Pneumatic robot and pneumatic joint driving device
JP2017034954A (en) Soft actuator comprising composite material
JP2022176100A (en) Artificial muscle actuator device
KR101740138B1 (en) Device for assisting muscular strength
JP7068553B2 (en) A device designed to be positioned close to a joint and a general system with the above device
Pedaran et al. Design and implementation soft robotic rehabilitation device for ankle motion exercises
JP2016214047A (en) Electromagnetic force soft actuator
Al-Fahaam Wearable exoskeleton systems based-on pneumatic soft actuators and controlled by parallel processing
Nyugen et al. Design of a soft ankle joint device for correction of inversion/eversion angle during aquatic therapy
Kobayash Development of a muscle suit for realizing all motion of the upper limb