JP2017034914A - Control system of power generation windmill - Google Patents

Control system of power generation windmill Download PDF

Info

Publication number
JP2017034914A
JP2017034914A JP2015154547A JP2015154547A JP2017034914A JP 2017034914 A JP2017034914 A JP 2017034914A JP 2015154547 A JP2015154547 A JP 2015154547A JP 2015154547 A JP2015154547 A JP 2015154547A JP 2017034914 A JP2017034914 A JP 2017034914A
Authority
JP
Japan
Prior art keywords
drive train
torque
generator
power generator
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015154547A
Other languages
Japanese (ja)
Other versions
JP6538473B2 (en
Inventor
靖之 小川
Yasuyuki Ogawa
靖之 小川
成幸 中田
Nariyuki Nakada
成幸 中田
益士郎 久谷
Masujiro Hisatani
益士郎 久谷
純二 小野
Junji Ono
純二 小野
吉田 茂雄
Shigeo Yoshida
茂雄 吉田
宏之 梶原
Hiroyuki Kajiwara
宏之 梶原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Kyushu University NUC
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Mitsui Engineering and Shipbuilding Co Ltd filed Critical Kyushu University NUC
Priority to JP2015154547A priority Critical patent/JP6538473B2/en
Publication of JP2017034914A publication Critical patent/JP2017034914A/en
Application granted granted Critical
Publication of JP6538473B2 publication Critical patent/JP6538473B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Abstract

PROBLEM TO BE SOLVED: To attain stabilization of output of a power generator and suppression of torsional vibration of a drive train at the same time.SOLUTION: Rotative force of a windmill blade is transmitted to a power generator by a windmill drive train 11. Blade pitch Δθ of the windmill blade is controlled based on rotating speed Δωof the power generator (a blade pith control part 12) so as to restrict input to a windmill. Torque Δq of the power generator is controlled based on the rotating speed Δωso as to suppress variation in a short cycle of output of the power generator (a torque proportional control part 13). In parallel with the torque proportional control part 13 is provided a drive train damper 14 having a highpass filter 14H combined with a bandpass filter 14B. By controlling a filter parameter of the drive train damper 14, a parallel feedback part is made to close to a single body state of the torque proportional control part 13 so as to stabilize the output of the power generator, at a low frequency side. While, output of the drive train damper 14 is added to the torque proportional control part 13 so as to stabilize a closed loop of the whole of a system fed back to reduce vibration in a low speed shaft and a blade surface, at a high frequency side.SELECTED DRAWING: Figure 1

Description

本発明は、ドライブトレインに生じる捩じり振動の抑制を行う発電用風車の制御システムに関する。   The present invention relates to a control system for a wind turbine for power generation that suppresses torsional vibration generated in a drive train.

風力発電システムでは、一般に複数の制御目的が存在する。例えば、発電効率の最大化を目的とする制御や、風からの入力エネルギーの制限を目的とする制御、発電機出力の安定化を目的とする制御、ドライブトレインの制振(安定化)を目的とする制御、タワーやナセルの制振を目的とする制御、風向に合わせた風車の向きの調整を目的とする制御などが挙げられる。   In wind power generation systems, there are generally multiple control objectives. For example, control aimed at maximizing power generation efficiency, control aimed at limiting input energy from wind, control aimed at stabilizing generator output, and drivetrain damping (stabilization) Control for the purpose of damping the tower and nacelle, and control for the purpose of adjusting the direction of the wind turbine according to the wind direction.

例えば、風からの入力エネルギーの制限は、発電機出力をフィードバックして翼ピッチを調整して発電機出力の一定化を図る(特許文献1参照)。また、発電機出力の安定化を目的とする制御では、回転数をフィードバックして発電機トルクを制御し、発電機出力の瞬間的な変動を抑制して発電出力の一定化を図る。また、ドライブトレインの捩じり振動を抑制する制御では、回転数をフィードバックして電流指令値を変更し、発電機トルクを制御することで捩じり振動を抑制する(特許文献2参照)。   For example, the input energy from the wind is limited by feeding back the generator output and adjusting the blade pitch to make the generator output constant (see Patent Document 1). Further, in the control aimed at stabilizing the generator output, the generator torque is controlled by feeding back the rotation speed, and the instantaneous fluctuation of the generator output is suppressed to make the generator output constant. In the control for suppressing the torsional vibration of the drive train, the rotational speed is fed back to change the current command value, and the generator torque is controlled to suppress the torsional vibration (see Patent Document 2).

特開2002−048050号公報JP 2002-048050 A 特開2005−045849号公報JP 2005-045849 A

しかし、従来の発電機出力の一定化およびドライブトレインの捩じり振動の抑制は共に回転数フィードバックを用いた発電機トルクの制御であるため、互いにトレードオフの関係となる。このためこれらの制御を同時に達成することは困難であった。   However, since the conventional method of stabilizing the generator output and suppressing the torsional vibration of the drive train are both control of the generator torque using the rotational speed feedback, they are in a trade-off relationship. For this reason, it has been difficult to achieve these controls simultaneously.

本発明は、発電機出力の一定化およびドライブトレインの捩じり振動の抑制を同時に達成することを目的としている。   An object of the present invention is to simultaneously achieve a constant generator output and suppression of torsional vibration of a drive train.

本発明の発電用風車制御システムは、風車翼から発電機へと回転力を伝達するドライブトレインと、発電機の回転数を帰還して発電機トルクを制御し、発電機出力を一定に保つトルク比例制御部と、回転数をバンドパスフィルタとハイパスフィルタとを通して発電機トルクへと帰還するドライブトレインダンパとを備え、ドライブトレインの捩じり振動に関わる固有周波数より低周波側に設定した所定周波数をハイパスフィルタの遮断周波数とすることを特徴としている。   The wind turbine control system for power generation according to the present invention includes a drive train that transmits rotational force from the wind turbine blades to the generator, and torque that keeps the generator output constant by controlling the generator torque by returning the rotational speed of the generator. Providing a proportional control unit and a drive train damper that returns the rotational speed to the generator torque through a band-pass filter and a high-pass filter, a predetermined frequency set on the lower frequency side than the natural frequency related to the torsional vibration of the drive train Is the cut-off frequency of the high-pass filter.

発電用風車制御システムは、回転数に基づき風車翼のピッチ角を制御する翼ピッチ制御部を更に備えることが好ましい。   It is preferable that the wind turbine control system for power generation further includes a blade pitch control unit that controls the pitch angle of the wind turbine blades based on the rotational speed.

本発明によれば、発電機出力の一定化およびドライブトレインの捩じり振動の抑制を同時に達成することができる。   According to the present invention, it is possible to simultaneously achieve constant generator output and suppression of drive train torsional vibration.

本発明の一実施形態の発電用風車制御システムを搭載した風力システムの制御ブロック線図である。It is a control block diagram of the wind power system carrying the windmill control system for electric power generation of one Embodiment of this invention. 風車ドライブトレイン(制御対象)の開ループ、翼ピッチ制御部およびトルク制御部を含めた閉ループの周波数応答特性を示すボード線図である。It is a Bode diagram which shows the frequency response characteristic of the closed loop including the open loop of a windmill drive train (control object), a blade pitch control part, and a torque control part. 実施例および比較例で使用された風速(外乱)データのグラフである。It is a graph of the wind speed (disturbance) data used by the Example and the comparative example. 比較例および実施例における発電機出力[W]の経時変化のグラフである。It is a graph of the time-dependent change of the generator output [W] in a comparative example and an example. 比較例および実施例における発電機の回転数[rad/s]の経時変化のグラフである。It is a graph of the time-dependent change of the rotation speed [rad / s] of the generator in a comparative example and an Example.

以下、本発明の実施形態について添付図面を参照して説明する。
図1は、本発明の一実施形態である発電用風車制御システムの制御ブロック線図である。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1 is a control block diagram of a wind turbine control system for power generation that is an embodiment of the present invention.

本実施形態の発電用風車制御システム10は、風車翼(図示せず)と、これに連結される発電機(図示せず)とを含む風車ドライブトレイン(制御対象)11を制御するためのシステムである。風車ドライブトレイン11は、例えば、低速軸、増速機、高速軸(図示せず)等を介して風車翼と発電機とを連結し、風からの回転力を発電機へと伝達する。また風車翼は例えば翼ピッチ角が可変な可変ピッチ翼であり、ピッチ制御は、例えばPI制御で行われる。   A wind turbine control system 10 for power generation according to this embodiment is a system for controlling a wind turbine drive train (control target) 11 including a wind turbine blade (not shown) and a generator (not shown) connected thereto. It is. The windmill drive train 11 connects windmill blades and a generator via, for example, a low-speed shaft, a speed increaser, a high-speed shaft (not shown), and transmits the rotational force from the wind to the generator. The wind turbine blade is a variable pitch blade having a variable blade pitch angle, for example, and the pitch control is performed by, for example, PI control.

風車ドライブトレイン11の風車翼面には、風速Vで風が当たり、その変動によるトルクの変動などが外乱として風車ドライブトレイン11に入力される。発電用風車制御システム10は、発電機回転数ωGの作動点(目標値)からの偏倚ΔωGをPI等のフィードバック制御により翼ピッチ角θの作動点(設定値)からの偏倚Δθに帰還する翼ピッチ制御部(Cp(s))12を備える。また、本実施形態の発電用風車制御システム10は、トルク制御部15を備え、トルク制御部15は、偏倚ΔωGをP制御を通して発電機トルクqの作動点(目標値)からの偏倚Δqに帰還するトルク比例制御部(Cq(s))13と、トルク比例制御部13に並列に設けられ、フィルタを通して偏倚ΔωGを発電機トルクqの作動点(目標値)からの偏倚Δqに帰還するドライブトレインダンパ(Cqp(s))14とを備える。 Wind hits the windmill blade surface of the windmill drive train 11 at the wind speed V, and torque fluctuations due to the fluctuations are input to the windmill drivetrain 11 as disturbances. The wind turbine control system 10 for power generation feeds back the deviation Δω G from the operating point (target value) of the generator rotational speed ω G to the deviation Δθ from the operating point (setting value) of the blade pitch angle θ by feedback control such as PI. The blade pitch control unit (Cp (s)) 12 is provided. Further, the wind turbine control system 10 for power generation according to the present embodiment includes a torque control unit 15. The torque control unit 15 converts the deviation Δω G to the deviation Δq from the operating point (target value) of the generator torque q through P control. A feedback torque proportional control unit (Cq (s)) 13 and a torque proportional control unit 13 are provided in parallel, and the deviation Δω G is fed back to the deviation Δq from the operating point (target value) of the generator torque q through a filter. And a drive train damper (Cqp (s)) 14.

翼ピッチ制御部12は、翼ピッチを調整して、風車翼が風から受ける揚力を調整し、風車ドライブトレイン11へ入力されるパワーを制限する。翼ピッチ制御部12の比例項の係数はKp_p、積分項の係数はKi_pで表される。トルク比例制御部13は、発電機トルクを調整して外乱の影響による発電機出力の変動を抑制する。トルク比例制御部13の比例項の係数はKp_qで表される。すなわち、翼ピッチ制御部12の伝達関数は、Cp(s)=Kp_p+Ki_p/s、トルク比例制御部13の伝達関数は、Cq(s)=Kp_qとなる。   The blade pitch control unit 12 adjusts the blade pitch, adjusts the lift that the wind turbine blade receives from the wind, and limits the power input to the wind turbine drive train 11. The coefficient of the proportional term of the blade pitch control unit 12 is represented by Kp_p, and the coefficient of the integral term is represented by Ki_p. The torque proportional control unit 13 adjusts the generator torque to suppress fluctuations in the generator output due to the influence of disturbance. The coefficient of the proportional term of the torque proportional control unit 13 is represented by Kp_q. That is, the transfer function of the blade pitch control unit 12 is Cp (s) = Kp_p + Ki_p / s, and the transfer function of the torque proportional control unit 13 is Cq (s) = Kp_q.

一方、ドライブトレインダンパ14は、下記(1)式の伝達関数で表されるハイパスフィルタ(HPF(s))14Hと、下記(2)式の伝達関数で表されるバンドパスフィルタ(BPF(s))14Bを備え、ドライブトレインダンパ14は、HPF(s)とBPF(s)の伝達関数の積で表される。

Figure 2017034914
Figure 2017034914
On the other hand, the drive train damper 14 includes a high-pass filter (HPF (s)) 14H represented by a transfer function of the following equation (1) and a bandpass filter (BPF (s) represented by a transfer function of the following equation (2). )) 14B, and the drive train damper 14 is represented by the product of the transfer functions of HPF (s) and BPF (s).
Figure 2017034914
Figure 2017034914

すなわち、ドライブトレインダンパ14は、下記(3)式で表される。

Figure 2017034914
That is, the drive train damper 14 is expressed by the following equation (3).
Figure 2017034914

次に図2を参照して、翼ピッチ制御部12、トルク比例制御部13、ドライブトレインダンパ14の設計方法について説明する。   Next, a design method for the blade pitch control unit 12, the torque proportional control unit 13, and the drive train damper 14 will be described with reference to FIG.

本実施形態の発電用風車制御システム10では、定格域において同時に(A)風からの入力エネルギーを制限し、回転数を安定化させて発電機出力を長周期で安定させ、(B)発電機出力の短周期(t)の時間平均を安定させ、更に(C)系(発電用風車制御システム10全体の閉ループ)を安定化させるとともに風車ドライブトレイン11の低速軸・翼面内の固有値に起因する振動を小さく抑える(2つの振動根の減衰比を大きくする)ことを目的とするが、下記各制御部の係数およびフィルタパラメータの設計では、特に(B)、(C)に主眼を置いて設計が行われる。なお、ここで翼面内の振動とは、風車翼の回転軸周りの振動のことである。   In the wind turbine control system 10 for power generation of this embodiment, (A) the input energy from the wind is simultaneously limited in the rated range, the rotational speed is stabilized, the generator output is stabilized in a long cycle, and (B) the generator Due to the stabilization of the time average of the short cycle (t) of the output, and further stabilization of the system (C) (closed loop of the entire wind turbine control system 10 for power generation) and the inherent value in the low speed shaft and blade surface of the wind turbine drive train 11 The purpose is to reduce the vibration to be reduced (increase the damping ratio of the two vibration roots), but in the design of the coefficients and filter parameters of each control section below, the main points are (B) and (C). Design is done. In addition, the vibration in a blade surface here is a vibration around the rotating shaft of a windmill blade.

図2は、風車ドライブトレイン(制御対象)11の開ループの周波数応答特性(実線S0)、翼ピッチ制御部12およびトルク比例制御部13を含めた閉ループの周波数応答特性(破線S1)を示すボード線図(図2(a):ゲイン線図、図2(b):位相線図)である。図2(a)のゲイン線図において、ピークP1は、ドライブトレイン11の低速軸の固有振動数に対応し、ピークP2は翼面内の振動の固有振動数に対応する。また、ピークP3は、翼ピッチ制御部12とトルク比例制御部13を含む閉ループにおける固有振動数に対応する。なお、図2は後述する実施例に対応するボード線図である。   FIG. 2 is a board showing an open loop frequency response characteristic (solid line S0) of the windmill drive train (control target) 11, a closed loop frequency response characteristic (broken line S1) including the blade pitch control unit 12 and the torque proportional control unit 13. Fig. 2 is a diagram (Fig. 2 (a): gain diagram, Fig. 2 (b): phase diagram). In the gain diagram of FIG. 2A, the peak P1 corresponds to the natural frequency of the low speed shaft of the drive train 11, and the peak P2 corresponds to the natural frequency of the vibration in the blade surface. The peak P3 corresponds to the natural frequency in the closed loop including the blade pitch control unit 12 and the torque proportional control unit 13. FIG. 2 is a Bode diagram corresponding to an embodiment described later.

翼ピッチ制御部12、トルク比例制御部13、ドライブトレインダンパ14の設計は以下の手順(a)〜(e)を通して行われる。
(a)翼ピッチ制御部12の比例項の係数Kp_pと積分項の係数Ki_pを、ゲイン交差周波数や減衰比等を考慮した周知の手法で設計する。
(b)制御対象である風車ドライブトレイン11に対して、トルク比例制御部13の比例項の係数Kp_qを決定する。ここでKp_qは、瞬間的な回転数変動を発電機トルクで相殺し、発電機出力に変動が出ないように周知の手法で決定される。
(c)図2のボード線図から、ドライブトレインダンパ14を設計するために、ハイパスフィルタ14Hの遮断周波数f[Hz]を決定する。遮断周波数fは、ピークP1、P2より低周波側に設定され、遮断周波数fを目安に周波数領域が2つの領域に区切られる。このとき、ハイパスフィルタ14Hの時定数t(=1/τ)は(2πf)-1[s]に設定され、これは発電機の出力の安定性の基準となる時間に対応する。
(d)(c)で決定された遮断周波数f(ハイパスフィルタ14Hの時定数t(=1/τ))以外のCqp(s)の各パラメータを決定する。これらのパラメータは、2つの領域のうち低周波側ではゲインを大きく低下させて発電機出力を安定化させ、並列のフィードバック部分(Cq(s)+Cqp(s))がCq(s)単体の状態に近づくような特性を持たせ、また高周波側では、制御対象である風車ドライブトレイン11にCp(s)、Cq(s)、Cqp(s)をフィードバックした系全体の閉ループを安定化させ、低速軸・翼面内振動の低減する特性を持たせるように決定される。τ以外のパラメータ(Gqqqq,n)は、例えば、従来周知の最適化手法を用い、例えば一番小さい減衰比が最大化するように求められる。なお目的関数は上記低周波側、高周波側の特性が得られればこれに限定されない。
(e)系の固有値や外乱応答特性などを見て、必要に応じて(a)に戻って翼ピッチ制御部12のCp(s)の係数を調整し、(a)〜(d)の制御設計を繰り返す。Cp(s)の係数の調整の仕方は、「長周期の出力安定化」を主な目的とする。
The blade pitch control unit 12, the torque proportional control unit 13, and the drive train damper 14 are designed through the following procedures (a) to (e).
(A) The coefficient Kp_p of the proportional term and the coefficient Ki_p of the integral term of the blade pitch control unit 12 are designed by a known method in consideration of the gain crossover frequency, the attenuation ratio, and the like.
(B) The coefficient Kp_q of the proportional term of the torque proportional control unit 13 is determined for the wind turbine drive train 11 to be controlled. Here, Kp_q is determined by a well-known method so that instantaneous fluctuations in the rotational speed are canceled out by the generator torque so that the generator output does not fluctuate.
(C) In order to design the drive train damper 14 from the Bode diagram of FIG. 2, the cutoff frequency f [Hz] of the high-pass filter 14H is determined. The cut-off frequency f is set on the lower frequency side than the peaks P1 and P2, and the frequency region is divided into two regions using the cut-off frequency f as a guide. At this time, the time constant t (= 1 / τ) of the high-pass filter 14H is set to (2πf) −1 [s], which corresponds to a time that is a reference for the stability of the output of the generator.
(D) Each parameter of Cqp (s) other than the cutoff frequency f (time constant t (= 1 / τ) of the high-pass filter 14H) determined in (c) is determined. In these parameters, on the low frequency side of the two regions, the gain is greatly reduced to stabilize the generator output, and the parallel feedback portion (Cq (s) + Cqp (s)) is a state in which Cq (s) is single. On the high frequency side, the closed loop of the entire system in which Cp (s), Cq (s), and Cqp (s) are fed back to the wind turbine drive train 11 to be controlled is stabilized on the high frequency side. It is determined so as to have the characteristic of reducing the vibration in the shaft / blade surface. The parameters (G q , ω q , ζ q , τ q , n) other than τ are obtained using, for example, a conventionally known optimization method so that the smallest attenuation ratio is maximized, for example. The objective function is not limited to this as long as the characteristics on the low frequency side and the high frequency side can be obtained.
(E) Look at the eigenvalues and disturbance response characteristics of the system, return to (a) as necessary, adjust the coefficient of Cp (s) of the blade pitch control unit 12, and control (a) to (d) Repeat design. The main method of adjusting the coefficient of Cp (s) is “long-period output stabilization”.

次に図3〜図5を参照して本実施形態の発電用風車制御システム10の実施例(シミュレーション結果)を参照して、本発電用風車制御システム10で用いられるドライブトレインダンパ(フィルタCqp(s))14の作用・効果について説明する。   Next, with reference to FIGS. 3 to 5, an example (simulation result) of the wind turbine control system 10 for power generation according to the present embodiment is referred to, and a drive train damper (filter Cqp ( s)) The action and effect of 14 will be described.

実施例のシミュレーションでは、5[MW]クラスの風車を想定し、定格域にある動作点(回転数×トルク)周りで線形化した風車モデルを用いた。翼ピッチ制御部(Cp(s))12、トルク比例制御部(Cq(s))13の各係数Kp_p、Ki_p、Kp_qは、上記手順(a)、(b)を適用して決定し、Kp_p=+0.015[Nms/rad]、Ki_p=+0.015[Nm/rad]、Kp_q=−2.183[Nms/rad]とした。   In the simulation of the example, a wind turbine model linearized around an operating point (number of revolutions × torque) in a rated range was used assuming a wind turbine of 5 [MW] class. The coefficients Kp_p, Ki_p, and Kp_q of the blade pitch control unit (Cp (s)) 12 and the torque proportional control unit (Cq (s)) 13 are determined by applying the above steps (a) and (b), and Kp_p = + 0.015 [Nms / rad], Ki_p = + 0.015 [Nm / rad], and Kp_q = −2.183 [Nms / rad].

次に手順(c)に基づき、図2のボード線図から、遮断周波数fに対応する角周波数ωcとして、t=5[s](τ=0.2[Hz]=0.4π[rad/s])を選択し、nに関してはn=3とした。また、手順(d)に従い、低速軸・翼面内の振動を小さく抑える(2つの振動根の減衰比を大きくする)ような係数(Gqqqq)を探索し、それぞれGq=20,000[Nms/rad]、ωq=12[rad/s]、ζq=1、τq=0[s/rad]に設定した。なお、図2に、実施例のドライブトレインダンパ14のフィルタCqp(s)の開ループの周波数特性を1点鎖線S2で示し、翼ピッチ制御部12、トルク比例制御部13、ドライブトレインダンパ14を含めた閉ループの周波数応答特性を2点鎖線S3で示す。 Next, based on the procedure (c), from the Bode diagram of FIG. 2, as the angular frequency ωc corresponding to the cutoff frequency f, t = 5 [s] (τ = 0.2 [Hz] = 0.4π [rad / s]), and for n, n = 3. Also, according to the procedure (d), search for coefficients (G q , ω q , ζ q , τ q ) that suppress the vibration in the low-speed shaft / blade surface to a small extent (increase the damping ratio of the two vibration roots). G q = 20,000 [Nms / rad], ω q = 12 [rad / s], ζ q = 1, and τ q = 0 [s / rad], respectively. In FIG. 2, the open loop frequency characteristic of the filter Cqp (s) of the drive train damper 14 of the embodiment is indicated by a one-dot chain line S2, and the blade pitch control unit 12, the torque proportional control unit 13, and the drive train damper 14 are The closed loop frequency response characteristic is shown by a two-dot chain line S3.

一方、比較例として、上記実施例からトルク比例制御部(Cq(s))13およびドライブトレインダンパ(Cqp(s))14を除いたCp(s)のみを備えた発電用風車制御システムのシミュレーション結果も示す。   On the other hand, as a comparative example, a simulation of a wind turbine control system for power generation provided with only Cp (s) excluding the torque proportional control unit (Cq (s)) 13 and the drive train damper (Cqp (s)) 14 from the above embodiment. Results are also shown.

実施例、比較例のシミュレーションでは、図3で示される風速(外乱)の風を風車に与えた。なお、発電機の定格速度(角速度)ωrefは、48.590[rad/s」、定格トルクQrefは、109,073[Nm]、定格出力Prefは、5.3[MW]とした。また、発電機のトルクリミットの最大値としては定格トルクQrefの110%の値、最小値としては0を設定し、翼ピッチ角の可動範囲は0°〜90°に設定した。   In the simulation of the example and the comparative example, the wind speed (disturbance) shown in FIG. 3 was given to the windmill. The rated speed (angular speed) ωref of the generator was 48.590 [rad / s], the rated torque Qref was 109,073 [Nm], and the rated output Pref was 5.3 [MW]. Further, the maximum value of the generator torque limit was set to 110% of the rated torque Qref, the minimum value was set to 0, and the movable range of the blade pitch angle was set to 0 ° to 90 °.

図4(a)、図4(b)は、上記条件の下で計算された比較例および実施例における発電機出力[W]の経時変化であり、図5(a)、図5(b)は、上記条件の下で算出された比較例および実施例における発電機の回転数[rad/s]の経時変化である。   4 (a) and 4 (b) show the change over time in the generator output [W] in the comparative example and the example calculated under the above conditions. FIG. 5 (a) and FIG. 5 (b) Is the change over time of the rotational speed [rad / s] of the generator in the comparative example and the example calculated under the above conditions.

図4(a)、図4(b)に示されるように、実施例では比較例に比べ発電機出力の長周期および短周期の変動が共に大幅に抑制されていることが分かる。図4(a)、図4(b)の比較から実施例において上記目的(A)、(B)が達成されたことが示される。また図5(a)、図5(b)に示されるように、実施例では、比較例に比べて発電機回転数から高周波の振動成分が取り除かれていることが分かる。このことから本実施例において上記目的(C)が達成されたことが示される。   As shown in FIG. 4A and FIG. 4B, it can be seen that both the long-cycle and short-cycle fluctuations of the generator output are significantly suppressed in the example compared to the comparative example. Comparison of FIG. 4A and FIG. 4B shows that the above objects (A) and (B) have been achieved in the examples. Further, as shown in FIGS. 5A and 5B, it can be seen that in the example, the high-frequency vibration component is removed from the generator rotational speed as compared with the comparative example. This shows that the object (C) has been achieved in the present embodiment.

以上のように、本実施形態の発電用風車制御システムによれば、定格域において同時に(A)風からの入力エネルギーを制限し、回転数を安定化させて発電機出力を長周期で安定させ、かつ(B)発電機出力の短周期(t)の時間平均を安定させ、更に(C)系(発電用風車制御システム全体の閉ループ)を安定化させるとともに風車ドライブトレインの低速軸・翼面内の固有値に起因する振動を小さく抑える(2つの振動根の減衰比を大きくする)ことができる。すなわち、発電機出力の一定化およびドライブトレインの捩じり振動の抑制を同時に達成できる。   As described above, according to the wind turbine control system for power generation of this embodiment, (A) the input energy from the wind is simultaneously limited in the rated range, the rotational speed is stabilized, and the generator output is stabilized in a long cycle. And (B) stabilize the time average of the short cycle (t) of the generator output, further stabilize the (C) system (closed loop of the entire wind turbine control system for power generation) and the low-speed shaft / blade surface of the wind turbine drive train It is possible to suppress the vibration caused by the eigenvalues of the two (increase the damping ratio of the two vibration roots). That is, the generator output can be made constant and the torsional vibration of the drive train can be suppressed at the same time.

また、バンドパスフィルタとハイパスフィルタを組み合わせた(3)式のフィルタを用いることで、フィルタ設計手順が明確になり、手順(a)〜(f)に従って容易に設計が行える。   Further, by using the filter of the expression (3) combining the band pass filter and the high pass filter, the filter design procedure becomes clear, and the design can be easily performed according to the procedures (a) to (f).

なお、本実施形態の説明では省略したが、風車システムは、定格域以外(例えば低速域)では、一般に他の運転モードで制御されている。また、風車システムは、風向変化に対応したナセルのヨー制御なども行い、更に風車タワーの制振のための制御など他の制御を備えていてもよい。   Although omitted in the description of the present embodiment, the wind turbine system is generally controlled in other operation modes outside the rated range (for example, the low speed range). The windmill system may also perform nacelle yaw control corresponding to a change in wind direction, and may include other controls such as control for damping the windmill tower.

10 発電用風車制御システム
11 風車ドライブトレイン
12 翼ピッチ制御部
13 トルク比例制御部
14 ドライブトレインダンパ
14B バンドパスフィルタ
14H ハイパスフィルタ
15 トルク制御部
DESCRIPTION OF SYMBOLS 10 Windmill control system for electric power generation 11 Windmill drive train 12 Blade pitch control part 13 Torque proportional control part 14 Drivetrain damper 14B Band pass filter 14H High pass filter 15 Torque control part

Claims (2)

風車翼から発電機へと回転力を伝達するドライブトレインと、
前記発電機の回転数を帰還して発電機トルクを制御し、発電機出力を一定に保つトルク比例制御部と、
前記回転数をバンドパスフィルタとハイパスフィルタとを通して発電機トルクへと帰還するドライブトレインダンパとを備え、
前記ドライブトレインの捩じり振動に関わる固有周波数より低周波側に設定した所定周波数を前記ハイパスフィルタの遮断周波数とする
ことを特徴とする発電用風車制御システム。
A drive train that transmits rotational force from the wind turbine blades to the generator,
A torque proportional control unit that feeds back the rotational speed of the generator to control the generator torque and keeps the generator output constant;
A drive train damper that returns the rotational speed to a generator torque through a band-pass filter and a high-pass filter;
A wind turbine control system for power generation, wherein a predetermined frequency set to a lower frequency side than a natural frequency related to torsional vibration of the drive train is set as a cutoff frequency of the high-pass filter.
前記回転数に基づき前記風車翼のピッチ角を制御する翼ピッチ制御部を更に備えることを特徴とする請求項1に記載の発電用風車制御システム。   The wind turbine control system for power generation according to claim 1, further comprising a blade pitch control unit that controls a pitch angle of the wind turbine blades based on the number of rotations.
JP2015154547A 2015-08-04 2015-08-04 Wind turbine control system for power generation Expired - Fee Related JP6538473B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015154547A JP6538473B2 (en) 2015-08-04 2015-08-04 Wind turbine control system for power generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015154547A JP6538473B2 (en) 2015-08-04 2015-08-04 Wind turbine control system for power generation

Publications (2)

Publication Number Publication Date
JP2017034914A true JP2017034914A (en) 2017-02-09
JP6538473B2 JP6538473B2 (en) 2019-07-03

Family

ID=57989115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015154547A Expired - Fee Related JP6538473B2 (en) 2015-08-04 2015-08-04 Wind turbine control system for power generation

Country Status (1)

Country Link
JP (1) JP6538473B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112081715A (en) * 2020-09-07 2020-12-15 浙江浙能技术研究院有限公司 Method for flexibly inhibiting torsional vibration of driving chain of wind generating set
CN113805494A (en) * 2021-09-03 2021-12-17 东方电气风电股份有限公司 Pure digital wind generating set online simulation method and simulation platform

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003239843A (en) * 2002-02-20 2003-08-27 Toyo Electric Mfg Co Ltd Maximum output control method of generator driven by wind mill
US20050017512A1 (en) * 2003-07-22 2005-01-27 Akira Kikuchi Wind turbine generator system
US20110089693A1 (en) * 2009-10-19 2011-04-21 Adel Nasiri Wind energy power conversion system reducing gearbox stress and improving power stability
JP2015075152A (en) * 2013-10-08 2015-04-20 日産自動車株式会社 Clutch slip start control device of vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003239843A (en) * 2002-02-20 2003-08-27 Toyo Electric Mfg Co Ltd Maximum output control method of generator driven by wind mill
US20050017512A1 (en) * 2003-07-22 2005-01-27 Akira Kikuchi Wind turbine generator system
JP2005045849A (en) * 2003-07-22 2005-02-17 Hitachi Ltd Wind power generator
US20110089693A1 (en) * 2009-10-19 2011-04-21 Adel Nasiri Wind energy power conversion system reducing gearbox stress and improving power stability
JP2015075152A (en) * 2013-10-08 2015-04-20 日産自動車株式会社 Clutch slip start control device of vehicle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
梶原宏之、吉田茂雄、松本拓也: "風車ドライブトレインのモデリングと制振技術", 日本船舶海洋工学会 春季講演会の講演論文, vol. 第20号, JPN6019002858, 25 May 2015 (2015-05-25), JP, pages 337 - 340, ISSN: 0004028364 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112081715A (en) * 2020-09-07 2020-12-15 浙江浙能技术研究院有限公司 Method for flexibly inhibiting torsional vibration of driving chain of wind generating set
CN113805494A (en) * 2021-09-03 2021-12-17 东方电气风电股份有限公司 Pure digital wind generating set online simulation method and simulation platform
CN113805494B (en) * 2021-09-03 2023-09-01 东方电气风电股份有限公司 Online simulation method and simulation platform for pure digital wind generating set

Also Published As

Publication number Publication date
JP6538473B2 (en) 2019-07-03

Similar Documents

Publication Publication Date Title
US8219256B2 (en) Bang-bang controller and control method for variable speed wind turbines during abnormal frequency conditions
US8301311B2 (en) Frequency-responsive wind turbine output control
JP5204307B2 (en) Wind turbine generator control device, wind turbine generator, and wind turbine generator control method
JP6306804B2 (en) Gas turbine power generation system and control system used therefor
WO2010134171A1 (en) Wind turbine generator and control method thereof
WO2015078478A1 (en) Power-ramping pitch feed-forward
EP3500751A1 (en) Dynamic controlled wind turbine shutdown
CN110080943B (en) Double-fed motor transmission chain torsional vibration active control method
JP5455890B2 (en) Wind turbine generator control device, wind turbine generator system, and wind turbine generator control method
US20160305404A1 (en) Method to control the operation of a wind turbine
CN102374118A (en) Power control method for wind generating set
JP6538473B2 (en) Wind turbine control system for power generation
JP6388759B2 (en) Floating wind power generator
TWI543491B (en) Method for feeding electrical energy into an electrical supply grid by means of a wind power installation or wind farm, and wind power installation and wind farm for feeding electrical energy into an electrical supply grid
Pulgar-Painemal et al. Wind farms participation in frequency regulation and its impact on power system damping
CN104500338B (en) Wind power generation active yawing variable-speed stall control system
US20220397092A1 (en) Method for controlling the rotor speed of a wind turbine
CN113167240A (en) Control device for a wind turbine and control method
CN110460098A (en) The double mass shafting stable control methods of wind energy conversion system based on virtual mass block
KR20130094629A (en) Method for controlling the pitch of blade for wind turbine
CN106194581B (en) A kind of method and system improving wind turbine transmission chain operation stability
US20230184216A1 (en) Control a wind turbine with a modified power reference
CN109995077B (en) System inertia support cascade control method based on PMSG fan
KR20140025716A (en) Windmill generator control system
JP2023008840A (en) wind turbine control

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190606

R150 Certificate of patent or registration of utility model

Ref document number: 6538473

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees