JP2017033873A - X-ray high voltage device - Google Patents

X-ray high voltage device Download PDF

Info

Publication number
JP2017033873A
JP2017033873A JP2015155290A JP2015155290A JP2017033873A JP 2017033873 A JP2017033873 A JP 2017033873A JP 2015155290 A JP2015155290 A JP 2015155290A JP 2015155290 A JP2015155290 A JP 2015155290A JP 2017033873 A JP2017033873 A JP 2017033873A
Authority
JP
Japan
Prior art keywords
ray
capacitor
voltage
charging
capacitors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015155290A
Other languages
Japanese (ja)
Other versions
JP6491977B2 (en
JP2017033873A5 (en
Inventor
真二郎 大貫
Shinjiro Onuki
真二郎 大貫
菱川 真吾
Shingo Hishikawa
真吾 菱川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2015155290A priority Critical patent/JP6491977B2/en
Publication of JP2017033873A publication Critical patent/JP2017033873A/en
Publication of JP2017033873A5 publication Critical patent/JP2017033873A5/ja
Application granted granted Critical
Publication of JP6491977B2 publication Critical patent/JP6491977B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • X-Ray Techniques (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve such a problem of a storage type X-ray high voltage device for supplying power from an electrolytic capacitor at the time of shooting, that the electrolytic capacitor must be charged with a voltage required for shooting, and a standby time is required until completion of the charging, and to provide an X-ray high voltage device capable of shortening the charging time of the capacitor.SOLUTION: In an X-ray high voltage device having a rectifier circuit for rectifying an AC power supply, a charging circuit for converting a DC voltage from the rectifier circuit into a predetermined voltage, and outputting a constant current, an electrolytic capacitor supplied with a voltage by the charging circuit and charged, and an X-ray output circuit receiving a DC power from the electrolytic capacitor, the electrolytic capacitor includes a plurality of capacitors connected in parallel, each having a plurality of switches capable of connecting with the charging circuit and X-ray output circuit and disconnecting therefrom, and the plurality of switches are switched according to the use conditions of the X-ray high voltage device.SELECTED DRAWING: Figure 1

Description

本発明は、エネルギー蓄積型の医用X線高電圧装置に係り、特に、初期充電や使用中の充電時間を短縮できる医用X線高電圧装置に関する。   The present invention relates to an energy storage type medical X-ray high voltage apparatus, and more particularly to a medical X-ray high voltage apparatus capable of shortening initial charging and charging time during use.

診療所等で使用される比較的に簡易な医用X線高電圧装置や集団検診用のX線高電圧装置では、家庭用コンセントや発動発電機に接続することで撮影が可能となる、いわゆるエネルギー蓄積型のものが知られている。例えば、インバータに供給される電源として大容量の電解コンデンサを設け、大電流が必要とされる撮影時のみ電解コンデンサに蓄積したエネルギーを用いるようにしたものが提案されている。   In relatively simple medical X-ray high-voltage devices used in clinics and X-ray high-voltage devices for mass screening, so-called energy can be taken by connecting to a household outlet or generator. An accumulation type is known. For example, there has been proposed an apparatus in which a large-capacity electrolytic capacitor is provided as a power source supplied to an inverter, and energy stored in the electrolytic capacitor is used only during photographing that requires a large current.

このように、大電流が必要とされる撮影時に電解コンデンサからのエネルギーを用いる場合、撮影に必要な電圧に充電されるまで、操作者は待機を余儀なくされる。例えば、特開2009−22672号公報(特許文献1)に記載のように、通常、このような機種では、例えばX線撮影の条件の設定と表示を行うための操作パネル等に、充電中である旨や充電が完了した旨等々がランプ等で表示されるようになっている。   Thus, when energy from an electrolytic capacitor is used at the time of photographing that requires a large current, the operator is forced to wait until the voltage necessary for photographing is charged. For example, as described in Japanese Patent Application Laid-Open No. 2009-22672 (Patent Document 1), normally, in such a model, for example, an operation panel for setting and displaying X-ray imaging conditions is being charged. A lamp or the like is displayed so as to indicate that the charging has been completed or that charging has been completed.

特開2009−22672号公報JP 2009-22672 A

従来、充電用のコンデンサを充電し、一定の電圧になるとX線撮影が可能になる。X線撮影が可能になるまでの時間は、コンデンサの静電容量と電流により決まる。ここで、電流は電源設備により制限されるため、実際は、X線撮影が可能になるまでの時間はコンデンサの静電容量で決まる。そのため、エネルギー蓄積型の医用X線高電圧装置においては、充電用のコンデンサに撮影に必要なエネルギーが充電されて必要な電圧になりX線撮影ができるまでの待機時間が必要である。   Conventionally, X-ray photography can be performed when a charging capacitor is charged to a constant voltage. The time until X-ray imaging becomes possible is determined by the capacitance and current of the capacitor. Here, since the current is limited by the power supply equipment, in practice, the time until X-ray imaging becomes possible is determined by the capacitance of the capacitor. Therefore, in the energy storage type medical X-ray high-voltage apparatus, a standby time is required until the charging capacitor is charged with energy necessary for imaging and becomes a necessary voltage to perform X-ray imaging.

そこで、本発明は、充電用コンデンサの充電時間を短縮することができるエネルギー蓄積型の医用X線高電圧装置を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide an energy storage type medical X-ray high voltage apparatus that can shorten the charging time of a charging capacitor.

上記課題を解決するために、本願発明は、その一例を挙げるならば、交流電源を整流する整流回路と、整流回路からの直流電圧を所定の電圧に変換し一定の電流を出力する充電回路と、充電回路により電圧が印加され充電される電解コンデンサと、電解コンデンサからの直流電力を入力とするX線出力回路を有するX線高電圧装置であって、電解コンデンサは複数のコンデンサが並列に接続されており、複数のコンデンサのそれぞれが充電回路及びX線出力回路と接続、開放可能な複数のスイッチを備え、X線高電圧装置の使用条件に応じて複数のスイッチを切り替える構成とする。   In order to solve the above-described problems, the present invention, as an example, provides a rectifier circuit that rectifies an AC power source, a charging circuit that converts a DC voltage from the rectifier circuit into a predetermined voltage, and outputs a constant current. An X-ray high voltage device having an electrolytic capacitor charged with voltage applied by a charging circuit and an X-ray output circuit that receives DC power from the electrolytic capacitor, and the electrolytic capacitor is connected to a plurality of capacitors in parallel Each of the plurality of capacitors includes a plurality of switches that can be connected to and opened from the charging circuit and the X-ray output circuit, and the plurality of switches are switched according to the use conditions of the X-ray high-voltage device.

本発明によれば、初期充電時間が短縮されることで待機時間を短縮できるX線高電圧装置を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the X-ray high voltage apparatus which can shorten standby time by shortening initial charge time can be provided.

実施例1におけるX線高電圧装置の概略ブロック図である。1 is a schematic block diagram of an X-ray high voltage apparatus in Example 1. FIG. 従来の充電からX線撮影までのシーケンス図である。It is a sequence diagram from the conventional charge to X-ray imaging. 実施例1における充電からX線撮影までのシーケンス図である。2 is a sequence diagram from charging to X-ray imaging in Embodiment 1. FIG. 実施例2における充電からX線撮影までのシーケンス図である。6 is a sequence diagram from charging to X-ray imaging in Embodiment 2. FIG. 実施例2における充電からX線撮影までのシーケンス図である。6 is a sequence diagram from charging to X-ray imaging in Embodiment 2. FIG. 実施例2における充電からX線撮影までのシーケンス図である。6 is a sequence diagram from charging to X-ray imaging in Embodiment 2. FIG. 実施例3におけるX線高電圧装置の概略ブロック図である。It is a schematic block diagram of the X-ray high voltage apparatus in Example 3.

本発明の実施例について、以下、図を用いて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本実施例におけるX線高電圧装置の基本的な構成を示す概略ブロック図である。   FIG. 1 is a schematic block diagram showing a basic configuration of an X-ray high voltage apparatus in the present embodiment.

図1において、X線高電圧装置は、例えばコンセントや発動発電機等の電源1からの交流電源を整流する整流回路2と、この整流した直流電圧を所定の電圧に変換し一定の電流を出力する降圧チョッパ回路で構成する充電回路3と、この充電回路3により電圧が印加される電解コンデンサ4と、この電解コンデンサ4の出力を入力とするX線出力回路5とで構成される。さらに、電力を供給する電解コンデンサ4を2つのコンデンサC1、C2の並列構成とし、それぞれのコンデンサC1、C2と、充電回路3及びX線出力回路5を接続、開放することのできるスイッチSC1,SC2からなる切替えスイッチ6を備える。   In FIG. 1, an X-ray high voltage device is a rectifier circuit 2 that rectifies AC power from a power source 1 such as an outlet or a generator, and converts the rectified DC voltage into a predetermined voltage and outputs a constant current. The charging circuit 3 is composed of a step-down chopper circuit, an electrolytic capacitor 4 to which a voltage is applied by the charging circuit 3, and an X-ray output circuit 5 that receives the output of the electrolytic capacitor 4 as an input. Furthermore, the electrolytic capacitor 4 for supplying electric power has a parallel configuration of two capacitors C1 and C2, and switches SC1 and SC2 that can connect and open the capacitors C1 and C2, the charging circuit 3 and the X-ray output circuit 5, respectively. A change-over switch 6 is provided.

図2を用いて、通常の、充電からX線撮影までのシーケンスを説明する。なお、従来のX線高電圧装置の基本的な構成は、図1において電解コンデンサ4が分割されていない1つのコンデンサであり、切替えスイッチ6がなく電解コンデンサ4が充電回路3及びX線出力回路5に直結されている構成であり、この構成を前提に以下説明する。   A normal sequence from charging to X-ray imaging will be described with reference to FIG. The basic configuration of the conventional X-ray high voltage apparatus is one capacitor in which the electrolytic capacitor 4 is not divided in FIG. 1, and there is no changeover switch 6, and the electrolytic capacitor 4 is the charging circuit 3 and the X-ray output circuit. 5 will be described below on the premise of this configuration.

図2において、X線高電圧装置の電源が投入(ON)されると発動発電機(ここでは電源を発動発電機として説明する)から整流回路2へ電力が供給される。整流回路2により整流された直流電圧を入力とし降圧チョッパ回路で構成される充電回路3が動作を開始する。この充電回路3は発動発電機の電力容量を超えないような電流を供給するように制御される。充電回路3により供給される電流により電解コンデンサ4が充電されていき、この電解コンデンサ4に印加される電圧は上昇する。このコンデンサ電圧は、例えば発動発電機の電圧が200V、50Hzのときは、280V程度まで(コンデンサ電圧目標値VR12)上昇していくが、その電圧より低い閾値であるX線撮影を許可するX線撮影許可基準値VR11に到達する。このVR11電圧に到達するとX線撮影許可信号がON状態となり、X線撮影が可能になる。X線撮影が可能となり、操作者がX線撮影をすると(撮影信号ON)、電解コンデンサに蓄積された電力が消費されるため、電解コンデンサのコンデンサ電圧は低下する。低下すると再び充電回路が動作を開始し、電解コンデンサの電圧は上昇を開始する。   In FIG. 2, when the power of the X-ray high-voltage device is turned on (ON), electric power is supplied to the rectifier circuit 2 from the motor generator (herein, the power source will be described as the motor generator). The charging circuit 3 composed of a step-down chopper circuit receives the DC voltage rectified by the rectifying circuit 2 as an input and starts operating. The charging circuit 3 is controlled to supply a current that does not exceed the power capacity of the generator. The electrolytic capacitor 4 is charged by the current supplied by the charging circuit 3, and the voltage applied to the electrolytic capacitor 4 increases. This capacitor voltage rises to about 280 V (capacitor voltage target value VR12) when the voltage of the generator / generator is 200 V or 50 Hz, for example, but X-rays permitting X-ray imaging that is a threshold lower than that voltage. The photographing permission reference value VR11 is reached. When this VR11 voltage is reached, the X-ray imaging permission signal is turned on, and X-ray imaging is possible. When X-ray imaging is possible and the operator performs X-ray imaging (imaging signal ON), the electric power stored in the electrolytic capacitor is consumed, so that the capacitor voltage of the electrolytic capacitor decreases. When the voltage drops, the charging circuit starts operating again, and the voltage of the electrolytic capacitor starts to rise.

このようなシーケンスで充電とX線撮影を繰り返す場合、初期充電時や大電力のX線撮影後には、X線撮影許可基準値VR11に電圧が上昇するまで一定の待機時間が必要であった。この待機時間は充電回路から供給される電流と、電解コンデンサの静電容量によって決まるが、例えば初期充電では数十秒から1分程度の待機時間が必要となっていた。   When charging and X-ray imaging are repeated in such a sequence, a certain waiting time is required until the voltage rises to the X-ray imaging permission reference value VR11 after initial charging or after high-power X-ray imaging. The standby time is determined by the current supplied from the charging circuit and the capacitance of the electrolytic capacitor. For example, the initial charging requires a standby time of several tens of seconds to 1 minute.

本実施例では、このような待機時間を短縮するために図1の構成を有し、その充電からX線撮影までのシーケンスを図3を用いて説明する。   In this embodiment, in order to shorten such a standby time, the configuration shown in FIG. 1 is provided, and the sequence from the charging to the X-ray imaging will be described with reference to FIG.

図3において、X線高電圧装置の電源が投入され、充電回路が動作を開始する。まず、電解コンデンサ4の並列に接続されたC1、C2の内のC1に対して充電が開始される。すなわち、スイッチSC1がON(短絡)され、充電回路3がコンデンサC1に接続された状態となり、コンデンサC1に充電が開始される。ここでコンデンサC1は、図2での電解コンデンサ4の全体静電容量の1/2と設定する。そのため、コンデンサC1のコンデンサ電圧は図2に対して1/2の時間でX線撮影許可基準値の電圧VR11まで上昇する。ここでX線の撮影条件が、X線管にかける電圧である管電圧が高管電圧で大電力を除く条件のときX線撮影を許可し、コンデンサC1からの電力を使用するX線撮影許可信号1をONとしX線撮影が可能になる。X線撮影されない状態のときはスイッチSC1をOFF(開放)し、充電されていないコンデンサC2へのスイッチSC2をON(短絡)しコンデンサC2へ充電を開始する。C2の電圧がX線撮影許可基準値の電圧VR21まで到達するとコンデンサC2からの電力を使用するX線撮影許可信号2がONする。コンデンサC1とC2のX線許可信号が共にON状態のときには全てのX線条件、例えば、高管電圧で大電力の条件でのX線撮影も可能になる。このように、コンデンサC1とC2を交互に、X線撮影許可基準値の電圧まで充電するように、スイッチSC1、SC2を切り替えることで、小容量のコンデンサによる充電時間の待ち時間を短縮できる。   In FIG. 3, the X-ray high voltage apparatus is powered on and the charging circuit starts operating. First, charging is started for C1 of C1 and C2 connected in parallel with the electrolytic capacitor 4. That is, the switch SC1 is turned ON (short circuit), the charging circuit 3 is connected to the capacitor C1, and charging of the capacitor C1 is started. Here, the capacitor C1 is set to ½ of the total capacitance of the electrolytic capacitor 4 in FIG. Therefore, the capacitor voltage of the capacitor C1 rises to the voltage VR11 of the X-ray imaging permission reference value in a time ½ that of FIG. Here, when the X-ray imaging conditions are such that the tube voltage, which is the voltage applied to the X-ray tube, is a high tube voltage and excludes large power, X-ray imaging is permitted, and X-ray imaging permission using the power from the capacitor C1 is permitted. The signal 1 is turned on to enable X-ray imaging. When the X-ray imaging is not performed, the switch SC1 is turned off (opened), the switch SC2 to the uncharged capacitor C2 is turned on (short circuit), and charging of the capacitor C2 is started. When the voltage of C2 reaches the voltage VR21 of the X-ray imaging permission reference value, the X-ray imaging permission signal 2 using the power from the capacitor C2 is turned ON. When both the X-ray permission signals of the capacitors C1 and C2 are in the ON state, X-ray imaging can be performed under all X-ray conditions, for example, high tube voltage and high power conditions. In this way, by switching the switches SC1 and SC2 so that the capacitors C1 and C2 are alternately charged up to the voltage of the X-ray imaging permission reference value, the waiting time for charging time with a small-capacitance capacitor can be shortened.

すなわち、X線高電圧装置の必要な管電圧は撮影部位により異なり、比較的低い管電圧で足りる場合は、小容量のコンデンサによる充電電圧で撮影が可能であるので、充電時間の待ち時間を短縮できる、また、高管電圧が必要な場合は、コンデンサC1とC2の両方を用いることで撮影が可能であり、種々の撮影条件に対応しながら、充電時の待ち時間を短縮することができる。   In other words, the tube voltage required for the X-ray high-voltage device differs depending on the part to be imaged. When a relatively low tube voltage is sufficient, imaging can be performed with a charging voltage with a small-capacitance capacitor, thus shortening the waiting time for charging time. In addition, when a high tube voltage is required, shooting can be performed by using both capacitors C1 and C2, and the waiting time during charging can be shortened while accommodating various shooting conditions.

なお、実施例では、電解コンデンサ4を2つのコンデンサC1、C2の並列構成として説明したが、複数のコンデンサが並列に接続された構成としても良いし、切替えスイッチ6を複数のコンデンサのそれぞれが充電回路3及びX線出力回路5に接続、開放することのできる複数のスイッチからなるようにしても良い。   In the embodiment, the electrolytic capacitor 4 is described as a parallel configuration of two capacitors C1 and C2. However, a configuration in which a plurality of capacitors are connected in parallel may be used, and the changeover switch 6 is charged by each of the plurality of capacitors. A plurality of switches that can be connected to and opened from the circuit 3 and the X-ray output circuit 5 may be used.

以上のように、本実施例は、交流電源を整流する整流回路と、整流回路からの直流電圧を所定の電圧に変換し一定の電流を出力する充電回路と、充電回路により電圧が印加され充電される電解コンデンサと、電解コンデンサからの直流電力を入力とするX線出力回路を有するX線高電圧装置であって、電解コンデンサは複数のコンデンサが並列に接続されており、複数のコンデンサのそれぞれが充電回路及びX線出力回路と接続、開放可能な複数のスイッチを備え、X線高電圧装置の使用条件に応じて複数のスイッチを切り替える構成とする
これにより、コンデンサへの初期充電時間が短縮されることで待機時間を短縮できるX線高電圧装置を提供できる。
As described above, in this embodiment, a rectifier circuit that rectifies an AC power source, a charging circuit that converts a DC voltage from the rectifier circuit into a predetermined voltage and outputs a constant current, and a voltage applied by the charging circuit are charged. An X-ray high voltage apparatus having an electrolytic capacitor and an X-ray output circuit that receives DC power from the electrolytic capacitor, the electrolytic capacitor having a plurality of capacitors connected in parallel, Is equipped with a plurality of switches that can be connected to and opened from the charging circuit and the X-ray output circuit, and switches the plurality of switches according to the usage conditions of the X-ray high-voltage device. Thus, it is possible to provide an X-ray high voltage device that can shorten the standby time.

本実施例は、分割した充電用コンデンサそれぞれへの充電の順番を最適化した例について説明する。   In this embodiment, an example in which the order of charging the divided charging capacitors is optimized will be described.

実施例1では、図3で説明したように、コンデンサC1とC2を交互に、X線撮影許可基準値の電圧まで充電するシーケンスについて説明したが、本実施例では、コンデンサC1とC2のコンデンサ電圧を比較し、コンデンサ電圧の高い方のコンデンサから充電を開始するようにした。   In the first embodiment, as described with reference to FIG. 3, the sequence in which the capacitors C1 and C2 are alternately charged up to the voltage of the X-ray imaging permission reference value has been described. However, in this embodiment, the capacitor voltage of the capacitors C1 and C2 And charging was started from the capacitor with the higher capacitor voltage.

図4,5,6に本実施例における充電からX線撮影までのシーケンス図を示す。図4はコンデンサC1とC2のコンデンサ電圧が同じ場合、図5は、コンデンサC1のコンデンサ電圧がコンデンサC2のコンデンサ電圧より高い場合、図6は、コンデンサC2のコンデンサ電圧がコンデンサC1のコンデンサ電圧より高い場合のシーケンス図を示している。なお、本実施例における回路構成は、実施例1と同じ図1とする。すなわち、2つに静電容量を分割したコンデンサC1、C2(=0.5×合計容量C0)と直列に接続したスイッチSC1,SC2で構成し、スイッチはそれぞれ独立に動作する。   4, 5 and 6 show sequence diagrams from charging to X-ray imaging in this embodiment. 4 shows that the capacitor voltages of the capacitors C1 and C2 are the same, FIG. 5 shows that the capacitor voltage of the capacitor C1 is higher than the capacitor voltage of the capacitor C2, and FIG. 6 shows that the capacitor voltage of the capacitor C2 is higher than the capacitor voltage of the capacitor C1. The sequence diagram in the case is shown. The circuit configuration in this embodiment is the same as that in the first embodiment shown in FIG. That is, the switches SC1 and SC2 are connected in series with capacitors C1 and C2 (= 0.5 × total capacitance C0) obtained by dividing the capacitance into two, and the switches operate independently.

まず、図4を用いて、コンデンサC1とC2のコンデンサ電圧が同じ場合について説明する。図4に示すように、まず、コンデンサC1とC2のコンデンサ電圧VC1とVC2を比較し、この場合は何れも0Vであるので、コンデンサC1の充電動作から開始し、C1の電圧が目標電圧VR12まで上昇するとC1への充電をやめ、SC1を開放する。その後C2の充電を開始する。これは、実施例1での、コンデンサC1とC2を交互にX線撮影許可基準値の電圧まで充電するシーケンスと同じとなる。   First, the case where the capacitor voltages of the capacitors C1 and C2 are the same will be described with reference to FIG. As shown in FIG. 4, first, the capacitor voltages VC1 and VC2 of the capacitors C1 and C2 are compared. In this case, since both are 0V, the charging operation of the capacitor C1 starts, and the voltage of C1 reaches the target voltage VR12. When it rises, it stops charging C1 and opens SC1. Thereafter, charging of C2 is started. This is the same sequence as in the first embodiment in which the capacitors C1 and C2 are alternately charged to the voltage of the X-ray imaging permission reference value.

次に、図5を用いて、コンデンサC1のコンデンサ電圧がコンデンサC2のコンデンサ電圧より高い場合について説明する。図5に示すように、例えばX線高電圧装置の電源投入後、まず図4と同様に、コンデンサC1とC2の電圧が等しく、コンデンサC1の充電操作を開始し、コンデンサC1の電圧が目標電圧まで上昇するとコンデンサC1への充電をやめスイッチSC1を開放する。ここでコンデンサC2の充電を開始する前にX線撮影が実施されるとコンデンサC1の電圧は下降しX線撮影許可信号がONからOFFになる。ここでコンデンサC1の電圧とコンデンサC2の電圧を比較し、コンデンサC1の電圧が高い場合はコンデンサC1から充電を開始し、コンデンサC1の電圧が目標電圧VR12まで上昇するとコンデンサC1への充電をやめスイッチSC1を開放する。その後コンデンサC2の充電を開始する。   Next, the case where the capacitor voltage of the capacitor C1 is higher than the capacitor voltage of the capacitor C2 will be described with reference to FIG. As shown in FIG. 5, for example, after powering on the X-ray high voltage device, first, similarly to FIG. 4, the voltages of the capacitors C1 and C2 are equal, the charging operation of the capacitor C1 is started, and the voltage of the capacitor C1 becomes the target voltage. When the voltage rises to the upper limit, charging of the capacitor C1 is stopped and the switch SC1 is opened. Here, when X-ray imaging is performed before the charging of the capacitor C2 is started, the voltage of the capacitor C1 drops and the X-ray imaging permission signal is turned from ON to OFF. Here, the voltage of the capacitor C1 and the voltage of the capacitor C2 are compared. When the voltage of the capacitor C1 is high, charging starts from the capacitor C1, and when the voltage of the capacitor C1 rises to the target voltage VR12, charging of the capacitor C1 is stopped. Release SC1. Thereafter, charging of the capacitor C2 is started.

このようにコンデンサC1とC2の電圧を検出、比較し、高い電圧が印加されている方から充電を開始することでコンデンサへの充電待機時間をさらに低減することができる。   Thus, by detecting and comparing the voltages of the capacitors C1 and C2, and starting charging from the direction where a higher voltage is applied, the charging standby time for the capacitor can be further reduced.

次に、図6を用いて、コンデンサC2のコンデンサ電圧がコンデンサC1のコンデンサ電圧より高い場合について説明する。図6に示すように、電源投入後は、図4と同様コンデンサC1とC2を順に充電する、その後撮影信号がONになると図1におけるコンデンサC1と直列に接続されたSC1がON(短絡)しコンデンサC1のエネルギーを利用し、X線撮影が実施される。その後、コンデンサC1への充電が開始される前に撮影信号がONとなると、今度はコンデンサC2のエネルギーを利用し、X線撮影が実施される。この2回のX線撮影が終了した時点でコンデンサC2の電圧がコンデンサC1の電圧より高い場合、コンデンサC2から充電が開始されることになる。その後は他のシーケンスと同様である。   Next, a case where the capacitor voltage of the capacitor C2 is higher than the capacitor voltage of the capacitor C1 will be described with reference to FIG. As shown in FIG. 6, after the power is turned on, the capacitors C1 and C2 are charged in order as in FIG. 4, and then the SC1 connected in series with the capacitor C1 in FIG. X-ray imaging is performed using the energy of the capacitor C1. After that, when the imaging signal is turned on before charging of the capacitor C1 is started, this time, X-ray imaging is performed using the energy of the capacitor C2. When the voltage of the capacitor C2 is higher than the voltage of the capacitor C1 at the time when the two X-rays are finished, charging is started from the capacitor C2. After that, it is the same as other sequences.

このようにコンデンサC1とC2の電圧を検出、比較し、高い電圧が印加されている方から充電を開始することでコンデンサへの充電待機時間をさらに低減することができる。   Thus, by detecting and comparing the voltages of the capacitors C1 and C2, and starting charging from the direction where a higher voltage is applied, the charging standby time for the capacitor can be further reduced.

本実施例は、透視撮影装置に適用した場合について説明する。   In this embodiment, a case where the present invention is applied to a fluoroscopic imaging apparatus will be described.

図7は、本実施例におけるX線高電圧装置の概略ブロック図である。図7において、実施例1の図1と異なる部分は、図1は、電力を供給する電解コンデンサ4が2つのコンデンサC1、C2の並列構成とし、それぞれのコンデンサC1、C2を、充電回路3及びX線出力回路5と接続、開放するスイッチSC1,SC2からなる切替えスイッチ6を有していたのに対し、本実施例では、3つのコンデンサを並列構成にした電解コンデンサ7と、それぞれのコンデンサを、充電回路3及びX線出力回路5と接続、開放するスイッチからなる切替えスイッチ8を有している点である。他の構成は、図1と同様である。   FIG. 7 is a schematic block diagram of the X-ray high voltage apparatus in the present embodiment. 7 differs from FIG. 1 in the first embodiment in that FIG. 1 shows that an electrolytic capacitor 4 for supplying power has a parallel configuration of two capacitors C1 and C2, and the capacitors C1 and C2 are connected to the charging circuit 3 and In contrast to having the changeover switch 6 composed of the switches SC1 and SC2 to be connected to and opened from the X-ray output circuit 5, in this embodiment, an electrolytic capacitor 7 in which three capacitors are arranged in parallel, and the respective capacitors are provided. The switch 8 includes a switch 8 that is connected to and opened from the charging circuit 3 and the X-ray output circuit 5. Other configurations are the same as those in FIG.

まず透視撮影装置の動作について簡単に説明する。透視撮影装置では比較的低出力のX線条件である透視と、中出力,大出力のX線撮影ができる装置であり、透視のX線条件は例えば管電圧125kV、管電流4mA程度である。ただし透視ではX線画像を動画として取り込むためX線が出力される時間は長くなり、数分から数十分出力することがある。   First, the operation of the fluoroscopic apparatus will be briefly described. The fluoroscopic apparatus is an apparatus that can perform fluoroscopy, which is an X-ray condition of relatively low output, and X-ray imaging of medium output and high output. The X-ray condition of fluoroscopy is, for example, a tube voltage of 125 kV and a tube current of about 4 mA. However, in fluoroscopy, an X-ray image is captured as a moving image, so the X-ray is output for a long time, and may be output from several minutes to several tens of minutes.

このような使用条件のため、電力は、電源となる発動発電機と大容量の電解コンデンサの両方から供給しており、透視では低容量の電解コンデンサで十分である。   Because of such usage conditions, electric power is supplied from both the generator / generator as a power source and a large-capacity electrolytic capacitor, and a low-capacity electrolytic capacitor is sufficient in perspective.

そこで本実施例では、図7に示すように、電解コンデンサ7をコンデンサC1,C2,C3の並列構成とし、コンデンサC1,C2は撮影用、コンデンサC3は透視用とする。また、コンデンサC3はコンデンサC1(=C2)に比べ低容量の電解コンデンサで構成する。また、それぞれのコンデンサC1,C2,C3を、充電回路3及びX線出力回路5と接続、開放するスイッチSC1,SC2,SC3からなる切替えスイッチ8を有する。これにより、透視に必要な電圧にC3が充電される時間を短縮することができる。また、撮影時にはC3に接続されているスイッチSC3を開放し、透視に使用する電解コンデンサの電圧が低下しないようにする。これにより、透視撮影装置が透視として動作するときに同期してスイッチSC3をON(短絡)に切替えることで撮影後すぐに透視を開始することが可能となる。   Therefore, in this embodiment, as shown in FIG. 7, the electrolytic capacitor 7 is configured in parallel with capacitors C1, C2, and C3, the capacitors C1 and C2 are used for photographing, and the capacitor C3 is used for fluoroscopy. Further, the capacitor C3 is constituted by an electrolytic capacitor having a lower capacity than the capacitor C1 (= C2). In addition, there is a change-over switch 8 comprising switches SC1, SC2 and SC3 for connecting and opening the capacitors C1, C2 and C3 with the charging circuit 3 and the X-ray output circuit 5, respectively. Thereby, the time for charging C3 to the voltage required for fluoroscopy can be shortened. Further, at the time of photographing, the switch SC3 connected to C3 is opened so that the voltage of the electrolytic capacitor used for fluoroscopy does not decrease. Accordingly, it is possible to start fluoroscopy immediately after imaging by switching the switch SC3 to ON (short circuit) in synchronization with the fluoroscopic imaging device operating as fluoroscopy.

このように、電解コンデンサの容量は撮影時に使用するコンデンサC1、C2と透視時に使用するコンデンサC3を異なる容量にして、撮影時と透視時で必要な電力を使い分けることで、種々の使用条件に対応しながら、充電時の待ち時間を短縮することができる。   In this way, the capacity of the electrolytic capacitor is different from the capacitors C1 and C2 used at the time of photographing and the capacitor C3 used at the time of fluoroscopy. However, the waiting time during charging can be shortened.

本実施例は、並列構成にしたコンデンサを充電回路及びX線出力回路と接続、開放するスイッチの具体例について説明する。   In this embodiment, a specific example of a switch for connecting and opening a capacitor in parallel with a charging circuit and an X-ray output circuit will be described.

実施例1から3までは、並列構成にしたそれぞれのコンデンサを切り換えるスイッチについては特に指定していないが、本実施例では、半導体スイッチを使用する構成にする。   In the first to third embodiments, a switch for switching each capacitor in parallel configuration is not particularly specified, but in this embodiment, a configuration using a semiconductor switch is used.

半導体スイッチにすることで、例えば連続撮影のような一秒間に数枚撮影を繰り返すようなX線撮影時に適用が可能となる。連続撮影のX線条件は中出力から大出力まであるが、撮影時間は数十msと短いという特徴がある。よって、連続撮影用の比較的低容量のコンデンサと半導体の切替スイッチを複数並列に構成することで連続撮影が可能となる。   By using a semiconductor switch, for example, it can be applied to X-ray imaging in which several images are repeated per second, such as continuous imaging. There are X-ray conditions for continuous imaging from medium power to high power, but the imaging time is as short as several tens of ms. Therefore, continuous shooting is possible by configuring a plurality of relatively low-capacitance capacitors for continuous shooting and semiconductor changeover switches in parallel.

以上実施例について説明したが、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加、削除、置換をすることが可能である。   Although the embodiments have been described above, the present invention is not limited to the above-described embodiments, and includes various modifications. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

1…電源、2…整流回路、3…充電回路、4,7…電解コンデンサ、5…X線出力回路、6,8…切替えスイッチ、C1,C2…コンデンサ、C3…透視用コンデンサ、SC1,SC2,SC3…スイッチ   DESCRIPTION OF SYMBOLS 1 ... Power supply, 2 ... Rectification circuit, 3 ... Charging circuit, 4, 7 ... Electrolytic capacitor, 5 ... X-ray output circuit, 6, 8 ... Changeover switch, C1, C2 ... Capacitor, C3 ... Capacitor for see-through, SC1, SC2 , SC3 ... switch

Claims (5)

交流電源を整流する整流回路と、該整流回路からの直流電圧を所定の電圧に変換し一定の電流を出力する充電回路と、該充電回路により電圧が印加され充電される電解コンデンサと、該電解コンデンサからの直流電力を入力とするX線出力回路を有するX線高電圧装置であって、
前記電解コンデンサは複数のコンデンサが並列に接続されており、
前記複数のコンデンサのそれぞれが前記充電回路及び前記X線出力回路と接続、開放可能な複数のスイッチを備え、
前記X線高電圧装置の使用条件に応じて前記複数のスイッチを切り替えることを特徴とするX線高電圧装置。
A rectifying circuit for rectifying an AC power supply; a charging circuit for converting a DC voltage from the rectifying circuit into a predetermined voltage and outputting a constant current; an electrolytic capacitor to which a voltage is applied and charged by the charging circuit; An X-ray high voltage apparatus having an X-ray output circuit that receives DC power from a capacitor,
The electrolytic capacitor has a plurality of capacitors connected in parallel,
Each of the plurality of capacitors includes a plurality of switches that can be connected to and opened from the charging circuit and the X-ray output circuit,
An X-ray high voltage apparatus, wherein the plurality of switches are switched according to a use condition of the X-ray high voltage apparatus.
請求項1に記載のX線高電圧装置であって、
前記電解コンデンサは2つのコンデンサが並列に接続されており、
前記複数のスイッチは前記2つのコンデンサのそれぞれが前記充電回路及び前記X線出力回路と接続、開放可能な2つのスイッであり、
前記2つのコンデンサを交互に、X線撮影に必要な基準値の電圧まで充電するように、前記2つのスイッチを切り替えることを特徴とするX線高電圧装置。
The X-ray high voltage apparatus according to claim 1,
The electrolytic capacitor has two capacitors connected in parallel,
The plurality of switches are two switches in which each of the two capacitors can be connected to and opened from the charging circuit and the X-ray output circuit,
An X-ray high-voltage apparatus, wherein the two switches are switched so that the two capacitors are alternately charged to a reference voltage required for X-ray imaging.
請求項1に記載のX線高電圧装置であって、
前記複数のコンデンサのコンデンサ電圧を比較し、高い電圧が印加されているコンデンサの充電を開始するように、前記複数のスイッチを切り替えることを特徴とするX線高電圧装置。
The X-ray high voltage apparatus according to claim 1,
An X-ray high-voltage apparatus characterized by comparing the capacitor voltages of the plurality of capacitors and switching the plurality of switches so as to start charging the capacitor to which a high voltage is applied.
請求項1から3のいずれか1項に記載のX線高電圧装置であって、
前記複数のコンデンサはX線撮影用と透視用のコンデンサであり、
前記X線高電圧装置が透視用として動作するときに同期して、前記X線撮影用と透視用のコンデンサを前記充電回路及び前記X線出力回路と接続、開放可能な前記複数のスイッチを切り替えることを特徴とするX線高電圧装置。
The X-ray high voltage apparatus according to any one of claims 1 to 3,
The plurality of capacitors are capacitors for X-ray photography and fluoroscopy,
Synchronously with the operation of the X-ray high-voltage device for fluoroscopy, the X-ray imaging and fluoroscopy capacitors are connected to the charging circuit and the X-ray output circuit, and the plurality of switches that can be opened are switched. An X-ray high voltage apparatus characterized by the above.
請求項1から4のいずれか1項に記載のX線高電圧装置であって、
前記複数のスイッチを半導体スイッチで構成したことを特徴とするX線高電圧装置。
The X-ray high voltage apparatus according to any one of claims 1 to 4,
An X-ray high-voltage apparatus characterized in that the plurality of switches are constituted by semiconductor switches.
JP2015155290A 2015-08-05 2015-08-05 X-ray high voltage device Active JP6491977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015155290A JP6491977B2 (en) 2015-08-05 2015-08-05 X-ray high voltage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015155290A JP6491977B2 (en) 2015-08-05 2015-08-05 X-ray high voltage device

Publications (3)

Publication Number Publication Date
JP2017033873A true JP2017033873A (en) 2017-02-09
JP2017033873A5 JP2017033873A5 (en) 2018-06-07
JP6491977B2 JP6491977B2 (en) 2019-03-27

Family

ID=57988656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015155290A Active JP6491977B2 (en) 2015-08-05 2015-08-05 X-ray high voltage device

Country Status (1)

Country Link
JP (1) JP6491977B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS603899A (en) * 1983-06-22 1985-01-10 Hitachi Ltd High frequency x-ray device
JPH0582287A (en) * 1991-09-18 1993-04-02 Hitachi Medical Corp Inverter type x-ray device
JPH05144590A (en) * 1991-11-21 1993-06-11 Hitachi Medical Corp Inverter type x-ray device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS603899A (en) * 1983-06-22 1985-01-10 Hitachi Ltd High frequency x-ray device
JPH0582287A (en) * 1991-09-18 1993-04-02 Hitachi Medical Corp Inverter type x-ray device
JPH05144590A (en) * 1991-11-21 1993-06-11 Hitachi Medical Corp Inverter type x-ray device

Also Published As

Publication number Publication date
JP6491977B2 (en) 2019-03-27

Similar Documents

Publication Publication Date Title
US7327827B2 (en) X-ray high voltage device
US9154000B2 (en) Uninterruptible power supply apparatus including a control circuit that executes a first mode when supply of a first AC electric power from a commercial AC power supply is resumed at a time of discharge end
US8189741B2 (en) X-ray tube electrical power supply, associated power supply process and imaging system
KR101023735B1 (en) X-ray device with baterry power
JP6296608B2 (en) Uninterruptible power system
JPWO2012067171A1 (en) Mobile X-ray device
JP5836108B2 (en) X-ray equipment
JP2015015829A (en) Bidirectional ac/dc conversion device, inrush current prevention method and computer program
US20050088860A1 (en) Starting circuit for power-converting apparatus
CN110970957A (en) Wireless charging method, electronic equipment, wireless charging device and wireless charging system
JP5347362B2 (en) Emergency power circuit
JP5683932B2 (en) X-ray diagnostic equipment
JP6491977B2 (en) X-ray high voltage device
JP2010225461A (en) High-voltage device and x-ray computer tomograph
JP2008283729A (en) Uninterruptible power supply unit
JP2006238514A (en) Uninterruptible power supply device
JP2020119657A (en) Electric power unit for x-ray tube and x ray apparatus
JP6095281B2 (en) X-ray generator and mobile X-ray imaging apparatus
JP2013202148A (en) X-ray high voltage generator, and moving type x-ray fluoroscopic photographic apparatus
JPH06208899A (en) Ct scanner
JPH0422100A (en) Computer tomographic scanner
JPH0573900U (en) Inverter type X-ray high voltage device
JP2019204751A (en) X-ray high-voltage device and power supply device
JP6054110B2 (en) X-ray high voltage generator and mobile X-ray fluoroscopic apparatus
JP5660763B2 (en) X-ray CT system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180411

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190304

R150 Certificate of patent or registration of utility model

Ref document number: 6491977

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250