JP2017033753A - Illumination lamp deterioration prediction method and system - Google Patents

Illumination lamp deterioration prediction method and system Download PDF

Info

Publication number
JP2017033753A
JP2017033753A JP2015152307A JP2015152307A JP2017033753A JP 2017033753 A JP2017033753 A JP 2017033753A JP 2015152307 A JP2015152307 A JP 2015152307A JP 2015152307 A JP2015152307 A JP 2015152307A JP 2017033753 A JP2017033753 A JP 2017033753A
Authority
JP
Japan
Prior art keywords
turbidity
value
illumination
deterioration prediction
illumination lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015152307A
Other languages
Japanese (ja)
Other versions
JP6539144B2 (en
Inventor
橋本 和明
Kazuaki Hashimoto
和明 橋本
謙治 橋爪
Kenji Hashizume
謙治 橋爪
祥文 濱田
Yoshifumi Hamada
祥文 濱田
康仁 曽根
Yasuhito Sone
康仁 曽根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
West Nippon Expressway Engineering Shikoku Co Ltd
Original Assignee
West Nippon Expressway Engineering Shikoku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by West Nippon Expressway Engineering Shikoku Co Ltd filed Critical West Nippon Expressway Engineering Shikoku Co Ltd
Priority to JP2015152307A priority Critical patent/JP6539144B2/en
Publication of JP2017033753A publication Critical patent/JP2017033753A/en
Application granted granted Critical
Publication of JP6539144B2 publication Critical patent/JP6539144B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to accurately predict cleaning timing and replacement timing for an individual illumination lamp.SOLUTION: An illumination lamp deterioration prediction method includes the steps of: previously setting correspondence among an illumination lamp's turbidity, the illumination lamp's illumination output, and an illuminance ratio as a ratio of the illumination lamp's illuminance to a reference value; imaging an illumination lamp, a deterioration prediction target, by using imaging means; acquiring a brightness distribution curve from the imaged picture, calculating a variation coefficient as a slope at the time of shifting to the brightness maximum value on the brightness distribution curve, and calculating a turbidity estimation value for the deterioration prediction target illumination lamp on the basis of the variation coefficient; calculating an illumination output estimation value for the deterioration prediction target illumination lamp on the basis of the brightness maximum value on the brightness distribution curve and the turbidity estimation value; and calculating an illuminance ratio estimation value for the deterioration prediction target illumination lamp by applying the turbidity estimation value and the illumination output estimation value to the set correspondence.SELECTED DRAWING: Figure 2

Description

本発明は、照明灯の劣化予測方法およびシステムに関し、特に、トンネル覆工面の照明灯を、トンネル内を走行する車両に搭載した撮影手段によって撮影して、照明灯個々の劣化度合いを予測する方法およびシステムに関するものである。   The present invention relates to a method and system for predicting deterioration of an illuminating lamp, and in particular, a method of predicting the degree of deterioration of each illuminating lamp by photographing an illuminating lamp on a tunnel lining surface with a photographing means mounted on a vehicle traveling in the tunnel. And the system.

高速道路などのトンネル内は、運転者の視環境が悪い。このため交通量に応じて、照明設備や内装工事を施工したり、各種設備の点検やトンネル付属物の清掃が、行われている。   The driver's visual environment is poor in tunnels such as highways. For this reason, lighting equipment and interior work are constructed according to the traffic volume, inspection of various facilities, and cleaning of tunnel accessories.

トンネル内の視環境を低下させる大きな要因として、トンネル内の照明設備の劣化がある。 A major factor that degrades the visual environment in the tunnel is the deterioration of lighting equipment in the tunnel.

このためトンネル内の照明設備の劣化度合いを評価する試みがなされている。従来にあっては、照度測定車両を定期的に走行させて、路面付近の照度を測定して、照明設備の劣化度合いを評価している。 For this reason, attempts have been made to evaluate the degree of deterioration of the lighting equipment in the tunnel. Conventionally, the illuminance measurement vehicle is periodically run to measure the illuminance near the road surface and evaluate the degree of deterioration of the lighting equipment.

下記特許文献1には、照明器具の交換コスト、消費電力のコストのデータに基づいて照明器具の交換時期を判断するという発明が記載されている。 Patent Document 1 listed below describes an invention in which a lighting fixture replacement time is determined based on data on lighting fixture replacement costs and power consumption costs.

また下記特許文献2には、トンネルに沿って配置された複数の照明器具を清掃する清掃用ロボットに照度測定部を設け、清掃用ロボットが測定対象の照明器具の近傍に位置するときに照度測定部で測定対象の照明器具の光出力を測定するという発明が記載されている。 Further, in Patent Document 2 below, an illuminance measuring unit is provided in a cleaning robot that cleans a plurality of lighting fixtures arranged along a tunnel, and the illuminance measurement is performed when the cleaning robot is located in the vicinity of the lighting fixture to be measured. Describes an invention in which the light output of a lighting fixture to be measured is measured in the unit.

特開2007−59133号公報JP 2007-59133 A 特開2005−339920号公報JP 2005-339920 A

しかしながら、従来にあっては、照明灯個々の劣化については評価することができなかった。 However, in the past, it was impossible to evaluate the deterioration of each illumination lamp.

そこで、本発明は、照明灯個々の劣化度合い、つまり照明出力低下やガラス面の濁度を、たとえばトンネル覆工面撮影車両を走行させて、撮影した画像の解析した結果から評価し、それによって照明灯個々の清掃時期や照明灯個々の交換時期を正確に予測できるようにすることを解決課題とする。 Therefore, the present invention evaluates the degree of deterioration of each illuminating lamp, that is, the decrease in illumination output and the turbidity of the glass surface, for example, by running the tunnel lining surface photographing vehicle and analyzing the photographed image, thereby The problem to be solved is to be able to accurately predict the timing of cleaning individual lamps and the timing of replacing individual lamps.

第1発明は、
照明灯の濁度と、照明灯の照明出力と、照明灯の照度の基準値に対する比率としての照度比率との対応関係を予め設定する対応関係設定ステップと、
劣化予測対象の照明灯を撮影する撮影ステップと、
撮影した画像から輝度分布曲線を取得し、この輝度分布曲線上で輝度最大値に移行するときの傾きとしての変動係数を求め、この変動係数に基づいて、前記劣化予測対象照明灯の濁度推定値を演算する濁度推定ステップと、
前記輝度分布曲線上の輝度最大値と、前記濁度推定値とに基づいて、前記劣化予測対象照明灯の照明出力の推定値を演算する照明出力推定ステップと、
前記濁度推定値および前記照明出力推定値を、前記設定された対応関係に適用して、前記劣化予測対象照明灯の照度比率の推定値を求める照度比率推定ステップと
を含む照明灯の劣化予測方法であることを特徴とする。
The first invention is
Correspondence setting step for presetting the correspondence between the turbidity of the illuminating lamp, the illumination output of the illuminating lamp, and the illuminance ratio as a ratio to the reference value of the illuminance of the illuminating lamp;
A shooting step for shooting the illumination light subject to deterioration prediction;
Obtaining a luminance distribution curve from the photographed image, obtaining a variation coefficient as a slope when shifting to the maximum luminance value on the luminance distribution curve, and estimating the turbidity of the deterioration prediction target illumination lamp based on the variation coefficient A turbidity estimation step for calculating a value;
Illumination output estimation step for calculating an estimated value of the illumination output of the deterioration prediction target illumination lamp based on the luminance maximum value on the luminance distribution curve and the turbidity estimated value;
Illuminance ratio estimation step of applying the turbidity estimated value and the illumination output estimated value to the set correspondence and obtaining an estimated value of the illuminance ratio of the deterioration prediction target illumination lamp. It is a method.

第2発明は、第1発明において、
前記濁度推定ステップでは、各濁度毎に、輝度分布曲線を求め、これら各濁度毎の輝度分布曲線に基づき、変動係数を変数として濁度を推定演算する濁度推定演算式を予め求めておき、この濁度推定演算式に、前記劣化予測対象照明灯の撮影画像から求められた変動係数を適用して、濁度推定値を演算することを特徴とする。
The second invention is the first invention,
In the turbidity estimation step, a luminance distribution curve is obtained for each turbidity, and a turbidity estimation equation for estimating turbidity using a coefficient of variation as a variable is obtained in advance based on the luminance distribution curve for each turbidity. The turbidity estimation value is calculated by applying a coefficient of variation obtained from the captured image of the degradation prediction target illumination lamp to the turbidity estimation calculation formula.

第3発明は、第1発明または第2発明において、
前記照明出力推定ステップでは、各濁度毎に、輝度分布曲線を求め、これら各濁度毎の輝度分布曲線と濁度推定値に基づき、輝度最大値を変数として照明出力を推定演算する照明出力推定演算式を予め求めておき、この照明出力推定演算式に、前記劣化予測対象照明灯の撮影画像から求められた輝度最大値および前記濁度推定値を適用して、照明出力推定値を演算することを特徴とする。
The third invention is the first invention or the second invention,
In the illumination output estimating step, a brightness distribution curve is obtained for each turbidity, and an illumination output for estimating and calculating the illumination output using the maximum brightness value as a variable based on the brightness distribution curve and the estimated turbidity value for each turbidity An estimation calculation formula is obtained in advance, and the illumination output estimation value is calculated by applying the luminance maximum value and the turbidity estimation value obtained from the photographed image of the deterioration prediction target illumination lamp to the lighting output estimation calculation formula. It is characterized by doing.

第4発明は、第1発明から第3発明のいずれかにおいて、
トンネル覆工面に設置された劣化予測対象照明灯を、トンネル内を走行する車両に搭載した撮影手段によって撮影することを特徴とする。
A fourth invention is any one of the first invention to the third invention,
The degradation prediction target illumination lamp installed on the tunnel lining surface is photographed by photographing means mounted on a vehicle traveling in the tunnel.

第5発明は、
トンネル覆工面に設置された劣化予測対象照明灯を、トンネル内を走行する車両に搭載した撮影手段によって撮影して、前記劣化予測対象照明灯の劣化を予測する照明灯の劣化予測システムであって、
照明灯の濁度と、照明灯の照明出力と、照明灯の照度の基準値に対する比率としての照度比率との対応関係を予め設定し、
劣化予測対象の照明灯を前記撮影手段によって撮影し、
撮影した画像から輝度分布曲線を取得し、この輝度分布曲線上で輝度最大値に移行するときの傾きとしての変動係数を求め、この変動係数に基づいて、前記劣化予測対象照明灯の濁度推定値を演算し、
前記輝度分布曲線上の輝度最大値と、前記濁度推定値とに基づいて、前記劣化予測対象照明灯の照明出力の推定値を演算し、
前記濁度推定値および前記照明出力推定値を、前記設定された対応関係に適用して、前記劣化予測対象照明灯の照度比率の推定値を求め、
前記劣化予測対象照明灯の濁度推定値、前記照明出力推定値、前記照度比率推定値に基づいて、前記劣化予測対象照明灯の清掃の必要度および前記劣化予測対象照明灯の光源の劣化度合いを予測すること
を特徴とする。
The fifth invention
A deterioration prediction system for an illumination lamp, wherein a deterioration prediction target illumination lamp installed on a tunnel lining surface is photographed by a photographing means mounted on a vehicle traveling in a tunnel, and the deterioration of the deterioration prediction target illumination lamp is predicted. ,
Preset the correspondence between the turbidity of the illuminating lamp, the illumination output of the illuminating lamp, and the illuminance ratio as a ratio to the reference value of the illuminance of the illuminating lamp,
Photograph the illumination lamp subject to deterioration prediction by the photographing means,
Obtaining a luminance distribution curve from the photographed image, obtaining a variation coefficient as a slope when shifting to the maximum luminance value on the luminance distribution curve, and estimating the turbidity of the deterioration prediction target illumination lamp based on the variation coefficient Calculate the value
Based on the luminance maximum value on the luminance distribution curve and the turbidity estimated value, an estimated value of the illumination output of the deterioration prediction target illumination lamp is calculated,
Applying the turbidity estimated value and the illumination output estimated value to the set correspondence, to obtain an estimated value of the illuminance ratio of the deterioration prediction target illumination lamp,
Based on the turbidity estimated value, the illumination output estimated value, and the illuminance ratio estimated value of the deterioration prediction target illumination lamp, the degree of necessity of cleaning of the deterioration prediction target illumination lamp and the degree of deterioration of the light source of the deterioration prediction target illumination lamp It is characterized by predicting.

第6発明は、第5発明において、
各濁度毎に、輝度分布曲線を求め、これら各濁度毎の輝度分布曲線に基づき、変動係数を変数として濁度を推定演算する濁度推定演算式を予め求めておき、この濁度推定演算式に、前記劣化予測対象照明灯の撮影画像から求められた変動係数を適用して、濁度推定値を演算することを特徴とする。
A sixth invention is the fifth invention,
For each turbidity, a luminance distribution curve is obtained. Based on the luminance distribution curve for each turbidity, a turbidity estimation formula for estimating and calculating turbidity using a coefficient of variation as a variable is obtained in advance. A turbidity estimated value is calculated by applying a coefficient of variation obtained from a photographed image of the deterioration prediction target illumination lamp to an arithmetic expression.

第7発明は、第5発明または第6発明において、
各濁度毎に、輝度分布曲線を求め、これら各濁度毎の輝度分布曲線と濁度推定値に基づき、輝度最大値を変数として照明出力を推定演算する照明出力推定演算式を予め求めておき、この照明出力推定演算式に、前記劣化予測対象照明灯の撮影画像から求められた輝度最大値および前記濁度推定値を適用して、照明出力推定値を演算することを特徴とする。
The seventh invention is the fifth invention or the sixth invention,
For each turbidity, a luminance distribution curve is obtained. Based on the luminance distribution curve for each turbidity and the estimated turbidity value, an illumination output estimation formula for estimating and calculating the illumination output using the maximum luminance value as a variable is obtained in advance. The illumination output estimation value is calculated by applying the maximum luminance value and the turbidity estimation value obtained from the captured image of the deterioration prediction target illumination lamp to the illumination output estimation calculation formula.

第8発明は、第5発明から第7発明のいずれかにおいて、
劣化予測対象照明器具は、複数の劣化予測対象照明灯を備えており、個々の劣化予測対象照明灯の劣化を予測することにより、前記劣化予測対象照明器具の劣化を予測することを特徴とする。
According to an eighth invention, in any one of the fifth invention to the seventh invention,
The deterioration prediction target lighting fixture includes a plurality of deterioration prediction target lighting fixtures, and predicts the deterioration of the deterioration prediction target lighting fixtures by predicting the deterioration of the individual deterioration prediction target lighting fixtures. .

本発明によれば、照明灯個々の劣化度合い、つまり照明出力低下やガラス面の濁度を、たとえばトンネル覆工面撮影車両を走行させて、撮影した画像の解析した結果から評価することができ、それによって照明灯個々の清掃時期や照明灯個々の交換時期を正確に予測できるようになる。   According to the present invention, it is possible to evaluate the degree of deterioration of individual lighting lamps, that is, the reduction in illumination output and turbidity of the glass surface, for example, by running a tunnel lining surface photographing vehicle and analyzing the photographed image, As a result, it becomes possible to accurately predict the cleaning time of each lamp and the replacement time of each lamp.

図1は、本発明に係る照明灯の劣化予測システムの構成を示す図である。FIG. 1 is a diagram showing a configuration of an illumination lamp deterioration prediction system according to the present invention. 図2は、本発明に係る照明灯の劣化予測方法の処理手順を示すフローチャートである。FIG. 2 is a flowchart showing the processing procedure of the illumination lamp deterioration prediction method according to the present invention. 図3(a)は、照明器具を示す図で、図3(b)は、照明灯劣化予測処理プログラムの作成のための前処理に用いられる実験器具を示す図である。Fig.3 (a) is a figure which shows a lighting fixture, FIG.3 (b) is a figure which shows the experimental fixture used for the pre-processing for preparation of a lamp deterioration prediction processing program. 図4に、照明灯の濁度と、照明灯の照明出力と、照明灯の照度比率との対応関係を示す図である。FIG. 4 is a diagram illustrating a correspondence relationship between the turbidity of the illumination lamp, the illumination output of the illumination lamp, and the illuminance ratio of the illumination lamp. 図5(a)は、照明器具の撮影画像の一例を示す図で、図5(b)、(c)、(d)、(e)にそれぞれ、照明出力が100%であって、濁度が0、1、3、5の各レベルのときの解析エリアの画像を示す図である。FIG. 5A is a diagram illustrating an example of a captured image of a lighting fixture. FIGS. 5B, 5C, 5D, and 5E each have an illumination output of 100%, and turbidity. It is a figure which shows the image of the analysis area when each is a level of 0, 1, 3, and 5. FIG. 図6は、解析エリアの画像における輝度分布曲線を示すグラフであり、解析エリアの横断方向画素位置を横軸にとり、輝度値(グレースケール)を縦軸にとって示す図である。FIG. 6 is a graph showing a luminance distribution curve in an image in the analysis area, and shows the pixel position in the transverse direction of the analysis area on the horizontal axis and the luminance value (grayscale) on the vertical axis. 図7は、図6に示される輝度分布曲線の解析結果から得られる変動係数と濁度(濁度のレベル)との関係を示したグラフで、変動係数を横軸にとり、濁度を対数として縦軸にとった図である。FIG. 7 is a graph showing the relationship between the variation coefficient obtained from the analysis result of the luminance distribution curve shown in FIG. 6 and turbidity (turbidity level). The variation coefficient is plotted on the horizontal axis, and turbidity is logarithmic. It is the figure taken on the vertical axis. 図8は、照明出力および濁度の各水準(輝度出力:0〜100%、濁度:0〜5レベル)毎の輝度分布曲線の解析結果から得られる輝度最大値(ピーク値)と照明出力(%)との関係を示したグラフで、輝度最大値(ピーク値)を横軸にとり、照明出力(%)を縦軸にとった図である。FIG. 8 shows the maximum luminance value (peak value) and the illumination output obtained from the analysis result of the luminance distribution curve for each level of illumination output and turbidity (luminance output: 0 to 100%, turbidity: 0 to 5 level). It is the graph which showed the relationship with (%), and is the figure which took the luminance maximum value (peak value) on the horizontal axis, and took the illumination output (%) on the vertical axis. 図9(a)は、濁度推定演算値と傾きの対応関係を示すグラフで、図9(b)は、濁度推定演算値と切片の対応関係を示すグラフである。FIG. 9A is a graph showing the correspondence between the turbidity estimation calculation value and the slope, and FIG. 9B is a graph showing the correspondence between the turbidity estimation calculation value and the intercept. 図10は、実施例の計測結果から得られる輝度分布曲線を示す図である。FIG. 10 is a diagram illustrating a luminance distribution curve obtained from the measurement result of the example. 図11は、照明器具の診断例を示した図である。FIG. 11 is a diagram illustrating an example of diagnosis of a lighting fixture.

以下、図面を参照して、本発明に係る照明灯の劣化予測方法およびシステムの実施形態について説明する。   Hereinafter, embodiments of a method and system for predicting deterioration of an illumination lamp according to the present invention will be described with reference to the drawings.

図1は、本発明に係る照明灯の劣化予測システムの構成を示す。 FIG. 1 shows a configuration of an illumination lamp deterioration prediction system according to the present invention.

車両1は、たとえば道路維持作業に用いられる作業用トラックをベースとする作業車両である。車両1には、撮影手段10および画像データ記憶部20が搭載されている。 The vehicle 1 is a work vehicle based on a work truck used for road maintenance work, for example. The vehicle 1 is equipped with a photographing means 10 and an image data storage unit 20.

車両1の外部のパーソナルコンピュータ2には、照明灯の劣化予測処理のためのプログラムがインストールされている。 The personal computer 2 outside the vehicle 1 is installed with a program for illuminating lamp deterioration prediction processing.

すなわち、車両1がトンネル内を走行しながら、車両1に搭載した撮影手段10によって、トンネル覆工面90に設置されている照明器具50を、撮影する。照明器具50は、図3(a)に示すように、個々の照明灯51、51・・・から構成されている。個々の照明灯51は、たとえばLED素子で構成されている。 That is, the luminaire 50 installed on the tunnel lining surface 90 is photographed by the photographing means 10 mounted on the vehicle 1 while the vehicle 1 travels in the tunnel. As shown in FIG. 3A, the luminaire 50 includes individual illuminating lamps 51, 51. Each illuminating lamp 51 is composed of, for example, an LED element.

車両1の画像データ記憶部20には、撮影手段10で撮影された画像データが記憶される。画像データ記憶部20に記憶された画像データは、照明灯51の劣化予測処理のために、読み出され、記憶媒体あるいはインターネットなどのデータ通信網95を介して外部のパーソナルコンピュータ2に取り込まれる。 The image data storage unit 20 of the vehicle 1 stores image data captured by the imaging unit 10. The image data stored in the image data storage unit 20 is read out for the deterioration prediction process of the illuminating lamp 51 and is taken into the external personal computer 2 via a storage medium or a data communication network 95 such as the Internet.

図2は、本発明に係る照明灯の劣化予測方法の処理手順を示すフローチャートである。照明灯の劣化予測方法の処理内容は、上記した照明灯劣化予測処理プログラムの作成のために予め行われる前処理(ステップ101、102、103)と、照明灯劣化予測処理プログラムがインストールされたパーソナルコンピュータ2で実行される画像解析処理および劣化因子演算処理並びに照明器具の劣化予測処理(ステップ104、105、106、107)とからなる。 FIG. 2 is a flowchart showing the processing procedure of the illumination lamp deterioration prediction method according to the present invention. The processing contents of the illuminating lamp deterioration prediction method include pre-processing (steps 101, 102, and 103) performed in advance for creating the above-described illuminating lamp deterioration prediction processing program and a personal in which the illuminating lamp deterioration prediction processing program is installed. It consists of image analysis processing, deterioration factor calculation processing, and lighting fixture deterioration prediction processing (steps 104, 105, 106, 107) executed by the computer 2.

図3(b)は、照明灯劣化予測処理プログラムの作成のための前処理に用いられる実験器具を示す。 FIG.3 (b) shows the experimental instrument used for the pre-processing for preparation of a lamp deterioration prediction processing program.

すなわち、図3(a)に示すように、トンネル覆工面90に設置されているのと同じ照明器具50が用意され、スタンド61上に設置される。照明器具50の前方には、照度計70、一眼レフカメラ80が配置される。 That is, as shown in FIG. 3A, the same lighting device 50 that is installed on the tunnel lining surface 90 is prepared and installed on the stand 61. An illuminometer 70 and a single-lens reflex camera 80 are disposed in front of the luminaire 50.

以下、図2に示す照明灯の劣化予測方法の処理について説明する。 Hereinafter, the process of the deterioration prediction method of the illuminating lamp shown in FIG. 2 will be described.

(前処理)
前処理では、まず、照明灯51の濁度と、照明灯51の照明出力と、照明灯51の照度の基準値に対する比率としての照度比率との対応関係Mを予め設定する処理が行われる。
(Preprocessing)
In the pre-processing, first, a process of presetting the correspondence M between the turbidity of the illumination lamp 51, the illumination output of the illumination lamp 51, and the illuminance ratio as a ratio of the illuminance of the illumination lamp 51 to the reference value is performed.

そのために、まず、図3(b)に示される一眼レフカメラ80で照明器具50の各照明灯51、51・・・が撮影されるとともに、照度計70によって照明器具50の照度が計測される。   For this purpose, first, each illuminating lamp 51, 51... Of the luminaire 50 is photographed by the single-lens reflex camera 80 shown in FIG. 3B, and the illuminance of the luminaire 50 is measured by the illuminometer 70. .

トンネル内の照明器具50の照度低下の因子は、個々の照明灯51(LED素子)の劣化である照明出力の低下および主として照明器具50のガラス面の汚れ度合いである濁度である。   The factor of the illuminance reduction of the lighting fixture 50 in the tunnel is a reduction in lighting output, which is the deterioration of the individual lighting lamps 51 (LED elements), and turbidity, which is mainly the degree of contamination of the glass surface of the lighting fixture 50.

そこで、図3(b)において、照明器具50の前面であるガラス面の汚れ度合いを再現するために、照明器具50の前面に被覆するビニールの枚数を変化させて、濁度を6段階に変化させた。また個々の照明灯51(LED素子)の劣化である照明出力を再現するために、照明灯51に印加する電力、つまり照明出力を9段階にスイッチングさせて変化させた。濁度および照明出力の各水準毎に照度計70で照度を測定した。 Therefore, in FIG. 3B, in order to reproduce the degree of dirt on the glass surface which is the front surface of the lighting fixture 50, the number of vinyls coated on the front surface of the lighting fixture 50 is changed, and the turbidity is changed in six stages. I let you. In addition, in order to reproduce the illumination output, which is the deterioration of the individual illumination lamps 51 (LED elements), the power applied to the illumination lamps 51, that is, the illumination output was changed in nine stages. The illuminance was measured with an illuminometer 70 for each level of turbidity and illumination output.

こうして6段階の濁度および9段階の照明出力毎に、照度計70にて照度を計測して、濁度および照明出力の各水準毎に測定し、測定した照度(ルクス)の値を予測値(真値)とした。   In this way, the illuminance meter 70 measures the illuminance for each of the 6 levels of turbidity and the 9 levels of illumination output, measures the turbidity and the level of illumination output, and the measured illuminance (lux) value is the predicted value. (True value).

図4に、照明灯51の濁度と、照明灯51の照明出力と、照明灯51の照度比率との対応関係Mを示す。図4では、照明器具50の劣化度合いを写真にて付記している。   FIG. 4 shows the correspondence M between the turbidity of the illuminating lamp 51, the illumination output of the illuminating lamp 51, and the illuminance ratio of the illuminating lamp 51. In FIG. 4, the degree of deterioration of the lighting fixture 50 is appended with a photograph.

すなわち、濁度は、0、1、2、3、4、5の各レベルで表し、レベルの数値が増加するにつれて順次汚れ度合いが大きくなるものとし、照明出力は、100、90、80、70、60、50、40、30、20の各百分率の割合(%)で表し、照明出力の百分率の割合(%)が低下するにつれて順次照明出力が低下するものとした。 That is, the turbidity is represented by each level of 0, 1, 2, 3, 4, 5 and the degree of contamination increases sequentially as the level value increases, and the illumination output is 100, 90, 80, 70. , 60, 50, 40, 30, and 20 are expressed as percentages (%), and the illumination output decreases sequentially as the percentage (%) of the illumination output decreases.

照度比率は、測定した照度の基準値に対する比率である。照明灯51の照明出力が最大(100%)で、濁度が最小(0レベル)のときの測定照度を基準値(照度比率1.00)として、各水準毎の測定照度の基準値(1.00)に対する比率を、照度比率として示している。たとえば、濁度が3レベルで、照明出力が60%のときの照度比率は、0.59となる(ステップ101)。 The illuminance ratio is a ratio of the measured illuminance to a reference value. The measured illuminance when the illumination output of the illuminating lamp 51 is the maximum (100%) and the turbidity is the minimum (0 level) as the reference value (illuminance ratio 1.00), the reference value (1 .00) is shown as the illuminance ratio. For example, the illuminance ratio when the turbidity is 3 levels and the illumination output is 60% is 0.59 (step 101).

前処理では、つぎに、各濁度毎の輝度分布曲線に基づき、変動係数を変数として濁度を推定演算する濁度推定演算式が求められる。 In the preprocessing, next, a turbidity estimation calculation formula for estimating and calculating turbidity using a variation coefficient as a variable is obtained based on the luminance distribution curve for each turbidity.

すなわち、図3(b)に示される一眼レフカメラ80で、濁度および照明出力の各水準毎に、照明器具50の各照明灯51、51・・・を撮影した。 That is, the single-lens reflex camera 80 shown in FIG. 3B photographed the illuminating lamps 51, 51... Of the luminaire 50 for each level of turbidity and illumination output.

こうして6段階の濁度および9段階の照明出力毎に、一眼レフカメラ80により、解析用の撮影画像を取得した。 In this way, a photographed image for analysis was acquired by the single lens reflex camera 80 for each of the 6 levels of turbidity and 9 levels of illumination output.

図5(a)に、照明器具50の撮影画像の一例を示す。照明器具50を構成する各照明灯51のうち特定の照明灯51の周囲領域52を解析エリアとした。 FIG. 5A shows an example of a captured image of the lighting fixture 50. The surrounding area 52 of the specific illuminating lamp 51 among the illuminating lamps 51 constituting the luminaire 50 was set as an analysis area.

図5(b)、(c)、(d)、(e)にそれぞれ、照明出力が100%であって、濁度が0、1、3、5の各レベルのときの解析エリア52の画像を示す。解析エリア52の中央が特定の照明灯51の中心位置に対応する。解析エリア52の画像を輝度の階調のグレースケールで表すと、図中、黒から白に変化するにつれて、輝度が順次高くなる。なお、撮影にあたっては、照明灯51の輝度値のピークを捕らえることができるようにNDフィルタを使用した。 5 (b), (c), (d), and (e), images of the analysis area 52 when the illumination output is 100% and the turbidity is 0, 1, 3, and 5 levels, respectively. Indicates. The center of the analysis area 52 corresponds to the center position of the specific illumination lamp 51. When the image in the analysis area 52 is represented by a gray scale of luminance gradation, the luminance increases sequentially from black to white in the figure. In photographing, an ND filter was used so that the luminance value peak of the illumination lamp 51 could be captured.

図6は、解析エリア52の画像における輝度分布曲線を示すグラフであり、解析エリア52の横断方向T(図5(b)、(c)、(d)、(e)参照)の画素位置を横軸にとり、輝度値(グレースケール)を縦軸にとっている。照明出力が100%であって、濁度が0レベルのときの輝度分布曲線をL0で、照明出力が100%であって、濁度が1レベルのときの輝度分布曲線をL1で、照明出力が100%であって、濁度が3レベルのときの輝度分布曲線をL3で、照明出力が100%であって、濁度が5レベルのときの輝度分布曲線をL5でそれぞれ示す。 FIG. 6 is a graph showing a luminance distribution curve in the image of the analysis area 52. The pixel position in the transverse direction T (see FIGS. 5B, 5C, 5D, and 5E) of the analysis area 52 is shown. The horizontal axis is the luminance value (grayscale). When the illumination output is 100% and the turbidity is 0 level, the luminance distribution curve is L0, and when the illumination output is 100% and the turbidity is 1 level, the luminance distribution curve is L1 and the illumination output. Is a luminance distribution curve when L is 100% and the turbidity is 3 levels, and L5 is a luminance distribution curve when the illumination output is 100% and the turbidity is 5 levels.

図6からわかるように、濁度がレベル0、1、3、5と高くなる(汚くなる)ほど、輝度値のピーク部が下がるなど、輝度分布形状に一様の傾向が確認された。そこで、この輝度分布曲線の分布形状の違いを特徴量とする平均値、標準偏差、最大値、最小値、コントラストの5つの値を解析値として算出した。その結果、濁度予測に影響ある因子として、解析値の平均値と標準偏差により算出される変動係数を採用した。これは濁度レベルによる違いを、輝度最大値に移行するときの傾きとして捉えるためである。変動係数は、輝度分布曲線上で輝度最大値に移行するときの傾きとして表される。 As can be seen from FIG. 6, a uniform tendency was observed in the luminance distribution shape, such as the peak value of the luminance value decreased as the turbidity increased (becomes dirty) at levels 0, 1, 3, and 5. Therefore, five values of an average value, a standard deviation, a maximum value, a minimum value, and a contrast having a difference in distribution shape of the luminance distribution curve as a feature amount are calculated as analysis values. As a result, the coefficient of variation calculated from the average value and standard deviation of the analysis values was adopted as a factor that affects turbidity prediction. This is because the difference due to the turbidity level is regarded as a slope when shifting to the maximum luminance value. The variation coefficient is represented as a slope when shifting to the maximum luminance value on the luminance distribution curve.

図7は、図6に示される輝度分布曲線の解析結果から得られる変動係数と濁度(濁度のレベル)との関係L11を示している。図7は、変動係数を横軸にとり、濁度を対数として縦軸にとったグラフである。 FIG. 7 shows a relationship L11 between the coefficient of variation and the turbidity (turbidity level) obtained from the analysis result of the luminance distribution curve shown in FIG. FIG. 7 is a graph in which the coefficient of variation is plotted on the horizontal axis and the turbidity is taken as a logarithm on the vertical axis.

図7に示す変動係数と濁度(濁度のレベル)との関係L11から、下記(1)式に示すように、変動係数を変数xとして濁度yを推定演算する濁度推定演算式が得られる。
y=−3.303×ln(x)+0.0491 ・・・(1)
y:濁度レベル(推定演算値)
x:変動係数 (ステップ102)
From the relationship L11 between the variation coefficient and turbidity (turbidity level) shown in FIG. 7, as shown in the following equation (1), a turbidity estimation equation for estimating turbidity y using the variation coefficient as a variable x is can get.
y = -3.303 × ln (x) +0.0491 (1)
y: Turbidity level (estimated calculation value)
x: coefficient of variation (step 102)

前処理では、つぎに、各濁度毎の輝度分布曲線と濁度推定値に基づき、輝度最大値を変数として照明出力を推定演算する照明出力推定演算式が求められる。 In the preprocessing, next, an illumination output estimation arithmetic expression for estimating and calculating the illumination output using the maximum luminance value as a variable is obtained based on the luminance distribution curve and the turbidity estimated value for each turbidity.

図8は、照明出力および濁度の各水準(輝度出力:0〜100%、濁度:0〜5レベル)毎の輝度分布曲線(図6では照明出力100%のときの輝度分布曲線を示している)の解析結果から得られる輝度最大値(ピーク値)と照明出力(%)との関係L20、L21、L22、L23、L24、L25を示している。図8は、輝度最大値(ピーク値)を横軸にとり、照明出力(%)を縦軸にとったグラフである。 FIG. 8 shows a luminance distribution curve for each level of illumination output and turbidity (luminance output: 0 to 100%, turbidity: 0 to 5 level) (in FIG. 6, the luminance distribution curve when the illumination output is 100%). The relationship L20, L21, L22, L23, L24, and L25 between the luminance maximum value (peak value) and the illumination output (%) obtained from the analysis result is shown. FIG. 8 is a graph with the luminance maximum value (peak value) on the horizontal axis and the illumination output (%) on the vertical axis.

濁度が0レベルのときの対応関係(線形)をL20で、濁度が1レベルのときの対応関係(線形)をL21で、濁度が2レベルのときの対応関係(線形)をL22で、濁度が3レベルのときの対応関係(線形)をL23で、濁度が4レベルのときの対応関係(線形)をL24で、濁度が5レベルのときの対応関係(線形)をL25でそれぞれ示す。 The correspondence (linear) when the turbidity is 0 level is L20, the correspondence (linear) when the turbidity is 1 level is L21, and the correspondence (linear) when the turbidity is 2 level is L22. The correspondence (linear) when the turbidity is 3 levels is L23, the correspondence (linear) when the turbidity is 4 levels is L24, and the correspondence (linear) when the turbidity is 5 levels is L25. Respectively.

図8に示す各濁度レベル毎の輝度最大値(ピーク値)と照明出力(%)の対応関係L20、L21、L22、L23、L24、L25から、下記(2)式に示すように、輝度最大値を変数uとして照明出力vを推定演算する照明出力推定演算式が得られる。 From the correspondence relationship L20, L21, L22, L23, L24, L25 between the maximum luminance value (peak value) and the illumination output (%) for each turbidity level shown in FIG. An illumination output estimation calculation formula for estimating and calculating the illumination output v using the maximum value as a variable u is obtained.

ただし、下記式(2)における1次関数の傾きaと、切片bは、上記(1)式の濁度推定演算式から得られた濁度推定演算値yから求められる。 However, the slope a and the intercept b of the linear function in the following formula (2) are obtained from the turbidity estimation calculation value y obtained from the turbidity estimation calculation formula of the above formula (1).

濁度推定演算値yと傾きaの対応関係L31は、図9(a)に示される。また濁度推定演算値yと切片bの対応関係L32は、図9(b)に示される。 The correspondence L31 between the turbidity estimation calculation value y and the slope a is shown in FIG. Further, the correspondence L32 between the turbidity estimation calculation value y and the intercept b is shown in FIG.

よって、濁度推定演算値yを対応関係L31に適用して、傾きaが求められる。また濁度推定演算値yを対応関係L32に適用して切片bが求められる。
v=a×u+b ・・・(2)
v:照明出力(推定演算値)
u:輝度最大値(ピーク値)
a:傾き(濁度推定演算値yを対応関係L31に適用)
b:切片(濁度推定演算値yを対応関係L32に適用)
(ステップ103)
Therefore, the gradient a is obtained by applying the turbidity estimation calculation value y to the correspondence L31. Further, the intercept b is obtained by applying the turbidity estimation calculation value y to the correspondence L32.
v = a × u + b (2)
v: Illumination output (estimated calculation value)
u: Maximum luminance value (peak value)
a: Inclination (applying turbidity estimation calculation value y to correspondence L31)
b: intercept (applying turbidity estimation calculation value y to correspondence L32)
(Step 103)

(パーソナルコンピュータ2で実行される画像解析処理および劣化因子演算処理並びに劣化予測処理)
以上のようにして得られた、図4に示される照明灯51の濁度と、照明灯51の照明出力と、照明灯51の照度比率との対応関係M、上記(1)式に示される濁度推定演算式、上記(2)式に示される照明出力推定演算式、図9(a)に示される濁度推定演算値yから傾きaを求める対応関係L31、図9(b)に示される濁度推定演算値yから切片bを求める対応関係L32に基づき、これらが織り込まれた照明灯劣化予測処理プログラムが作成され、パーソナルコンピュータ2にインストールされる。
(Image analysis processing and deterioration factor calculation processing and deterioration prediction processing executed by the personal computer 2)
Correspondence M between the turbidity of the illuminating lamp 51 shown in FIG. 4, the illumination output of the illuminating lamp 51, and the illuminance ratio of the illuminating lamp 51 obtained as described above, as shown in the above equation (1). The turbidity estimation calculation formula, the illumination output estimation calculation formula shown in the above equation (2), the correspondence L31 for obtaining the slope a from the turbidity estimation calculation value y shown in FIG. 9A, and shown in FIG. 9B. On the basis of the correspondence L32 for obtaining the intercept b from the calculated turbidity estimated value y, an illumination lamp deterioration prediction processing program incorporating these is created and installed in the personal computer 2.

そして、車両1を実際に走行させて、図1に示すように、劣化予測対象の照明器具50(照明灯51)の撮影する。 Then, the vehicle 1 is actually traveled, and as shown in FIG. 1, the lighting fixture 50 (illumination lamp 51) to be predicted for deterioration is photographed.

すなわち、車両1がトンネル内を走行しながら、車両1に搭載した撮影手段10によって、トンネル覆工面90に設置されている照明器具50が、撮影される。車両1の画像データ記憶部20には、撮影手段10で撮影された画像データが記憶される。画像データ記憶部20に記憶された画像データは、照明灯51の劣化予測処理のために、読み出され、外部のパーソナルコンピュータ2に取り込まれる。パーソナルコンピュータ2では、照明灯劣化予測処理プログラムが実行される。 That is, the lighting fixture 50 installed on the tunnel lining surface 90 is photographed by the photographing means 10 mounted on the vehicle 1 while the vehicle 1 travels in the tunnel. The image data storage unit 20 of the vehicle 1 stores image data captured by the imaging unit 10. The image data stored in the image data storage unit 20 is read out and taken into the external personal computer 2 for the deterioration prediction process of the illuminating lamp 51. In the personal computer 2, an illumination lamp deterioration prediction processing program is executed.

(濁度推定演算処理)
図5、図6で説明したのと同様にして、画像データから、劣化予測対象の照明器具50のうちの特定の照明灯51について、輝度分布曲線を求める処理が実行される。
(Turbidity estimation calculation processing)
In the same manner as described with reference to FIGS. 5 and 6, a process for obtaining a luminance distribution curve is executed for a specific illuminating lamp 51 in the luminaire 50 to be predicted for deterioration from image data.

ここで、たとえばL3(濁度レベル3)に相当する輝度分布曲線L41が、図10に示すように得られたとする。 Here, for example, it is assumed that a luminance distribution curve L41 corresponding to L3 (turbidity level 3) is obtained as shown in FIG.

そこで、つぎに輝度分布曲線L41から変動係数xの値を求める処理が実行される。たとえば、濁度レベル3に相当する値0.4が得られたとする(図7の矢印A参照)。 Then, the process for obtaining the value of the variation coefficient x from the luminance distribution curve L41 is executed next. For example, assume that a value of 0.4 corresponding to turbidity level 3 is obtained (see arrow A in FIG. 7).

そして、この求められた変動係数x(たとえば0.4)を、上記(1)式の濁度推定演算式(y=−3.303×ln(x)+0.0491)に適用して、濁度推定演算値y(たとえば濁度推定演算値 約3レベル)が求められる(ステップ104)。 Then, the obtained variation coefficient x (for example, 0.4) is applied to the turbidity estimation formula (y = -3.303 × ln (x) +0.0491) of the above formula (1), and the turbidity is calculated. A degree estimation calculation value y (for example, about three levels of turbidity estimation calculation value) is obtained (step 104).

(照明出力演算処理)
つぎに、輝度分布曲線L41からそのピーク値としての輝度最大値uを求める処理が実行される。
(Lighting output calculation processing)
Next, processing for obtaining the maximum luminance value u as the peak value from the luminance distribution curve L41 is executed.

ここで、たとえば輝度最大値uとして、照明出力60%に相当する値40が得られたとする(図10の矢印B、図8の矢印C参照)。 Here, for example, it is assumed that a value 40 corresponding to 60% of the illumination output is obtained as the maximum luminance value u (see arrow B in FIG. 10 and arrow C in FIG. 8).

そこで、この求められた輝度最大値u(たとえば40)を、上記(2)式の照明出力演算式(v=a×u+b)に適用して、照明出力推定演算値v(たとえば照明出力推定演算値 約60%)が求められる。ただし、上記(2)式における傾きaは、ステップ104で得られた濁度推定演算値y(約3レベル)を、図9(a)に示す対応関係L31に適用することでが求められる(図9(a)の矢印D参照)。また、上記(2)式における切片b、ステップ104で得られた濁度推定演算値y(約3レベル)を、図9(b)に示す対応関係L32に適用することでが求められる(図9(b)の矢印E参照)。 Therefore, the obtained maximum luminance value u (for example, 40) is applied to the illumination output calculation formula (v = a × u + b) of the above formula (2) to calculate the illumination output estimation calculation value v (for example, the illumination output estimation calculation). Value approximately 60%). However, the slope a in the above equation (2) is obtained by applying the turbidity estimation calculation value y (about 3 levels) obtained in step 104 to the correspondence L31 shown in FIG. (See arrow D in FIG. 9A). Further, it is obtained by applying the intercept b in the above equation (2) and the turbidity estimation calculation value y (about 3 levels) obtained in step 104 to the correspondence L32 shown in FIG. 9 (b) arrow E).

以上のようにして濁度推定演算値y(たとえば 約3レベル)および照明出力推定演算値v(たとえば 約60%)が演算される(ステップ105)。 As described above, the turbidity estimation calculation value y (for example, about 3 levels) and the illumination output estimation calculation value v (for example, about 60%) are calculated (step 105).

(照度比率演算処理)
つぎに、ステップ104で得られた濁度推定値y(たとえば 約3レベル)およびステップ105で得られた照明出力推定値v(たとえば 約60%)を、図4に示す対応関係Mに適用して、劣化予測対象照明灯51の照度比率の推定値を求める処理が実行される。
(Illuminance ratio calculation processing)
Next, the estimated turbidity value y (eg, about 3 levels) obtained in step 104 and the estimated illumination output value v (eg, about 60%) obtained in step 105 are applied to the correspondence M shown in FIG. Thus, a process for obtaining an estimated value of the illuminance ratio of the degradation prediction target illumination lamp 51 is executed.

たとえば、濁度推定演算値yが約3レベルで、照明出力推定演算値が約60%のときの照度比率は、図4に示す対応関係Mより約0.59となる(ステップ106)。 For example, the illuminance ratio when the turbidity estimation calculation value y is about 3 and the illumination output estimation calculation value is about 60% is about 0.59 from the correspondence M shown in FIG. 4 (step 106).

(照明器具劣化予測処理)
以上のようにして、求められた劣化予測対象照明灯51の濁度推定値y、照明出力推定値v、照度比率推定値に基づいて、個々の劣化予測対象照明灯51の劣化を予測する診断処理が実行される。さらに個々の劣化予測対象照明灯51の劣化を予測することにより、劣化予測対象照明器具50の劣化を予測する診断処理が実行される。この診断処理は、照明器具50を構成する個々の照明灯51についての濁度推定値y、照明出力推定値v、照度比率推定値から、照明器具50全体の健全度を診断し、清掃の必要性および劣化度合いの進行度を予測するというものである。
(Lighting equipment deterioration prediction process)
As described above, based on the obtained turbidity estimated value y, illumination output estimated value v, and illuminance ratio estimated value of the deterioration prediction target illumination lamp 51, the diagnosis for predicting the deterioration of each deterioration prediction target illumination lamp 51 is performed. Processing is executed. Further, by predicting the deterioration of each deterioration prediction target illumination lamp 51, a diagnosis process for predicting the deterioration of the deterioration prediction target lighting fixture 50 is executed. In this diagnosis processing, the soundness of the entire lighting fixture 50 is diagnosed from the turbidity estimated value y, the illumination output estimated value v, and the illuminance ratio estimated value for the individual lighting lamps 51 constituting the lighting fixture 50, and cleaning is necessary. It predicts the degree of progress and the degree of deterioration.

図11は、照明器具50の診断例を示している。この場合、個々の照明灯51についての濁度推定値y、照明出力推定値v、照度比率推定値に、所定のしきい値を設け、このしきい値との比較により、「良」(実線での囲み)、「可」(破線での囲み)、不良(一点鎖線での囲み)の診断結果を示したものである。 FIG. 11 shows a diagnosis example of the lighting fixture 50. In this case, a predetermined threshold value is provided for the turbidity estimated value y, the illumination output estimated value v, and the illuminance ratio estimated value for each of the illuminating lamps 51. ), “Possible” (enclosed by a broken line), and failure (enclosed by an alternate long and short dash line).

たとえば、ある照明灯51aは、「濁度推定値yが3.21、照明出力推定値vが62%、度比率推定値が約0.59」で、「不良」と判断され、他のある照明灯51bは、「濁度推定値yが1.85、照明出力推定値vが78%、度比率推定値が約0.79」で、「良」と判断される。 For example, a certain illuminating lamp 51a is judged as “bad” with “turbidity estimated value y is 3.21, illumination output estimated value v is 62%, degree ratio estimated value is about 0.59”, and there is another The illuminating lamp 51b is judged as “good” with “turbidity estimated value y is 1.85, illumination output estimated value v is 78%, degree ratio estimated value is about 0.79”.

「不良」と判断された照明灯51a、51a´については、交換などの適切な措置を取ることができる。 Appropriate measures such as replacement can be taken for the illuminating lamps 51a and 51a ′ determined to be “defective”.

また、照明器具50を構成する複数の照明灯51の濁度推定値y、照明出力推定値v、照度比率推定値を求めた結果から、照明器具50の全体の劣化を予測することができる。 In addition, it is possible to predict the overall deterioration of the luminaire 50 from the results of obtaining the turbidity estimated value y, the illumination output estimated value v, and the illuminance ratio estimated value of the plurality of illuminating lamps 51 constituting the luminaire 50.

たとえば、照明器具50を構成する複数の照明灯51のうちで「不良」となった照明灯51の個数、すべての照明灯51の濁度推定値yの平均値、照明出力推定値vの平均値、照度比率推定値の平均値を求め、これらと所定のしきい値との比較により、照明器具50全体の劣化を予測することができる。 For example, the number of illuminating lamps 51 that are “defective” among the plurality of illuminating lamps 51 constituting the luminaire 50, the average value of the turbidity estimated value y of all the illuminating lamps 51, and the average of the illumination output estimated value v The average value of the value and the illuminance ratio estimated value is obtained, and the deterioration of the entire lighting fixture 50 can be predicted by comparing these with a predetermined threshold value.

図11の例では、「不良」となった照明灯51の個数が「2個」、すべての照明灯51の濁度推定値yの平均値が2.2、照明出力推定値vの平均値が78%、照度比率推定値の平均値が0.77となっており、これらとしきい値との比較から、たとえば、「不良」となる照明灯51はあるものの照明器具50全体としては「可」であると、照明器具50全体としての劣化度合いを評価、予測することができる。 In the example of FIG. 11, the number of illuminating lamps 51 that are “defective” is “2”, the average value of the turbidity estimated value y of all the illuminating lamps 51 is 2.2, and the average value of the estimated illumination output value v. Is 78% and the average value of the illuminance ratio is 0.77. From a comparison between these values and the threshold value, for example, although there is an illuminating lamp 51 that is “defective”, the overall lighting fixture 50 is “possible. ", It is possible to evaluate and predict the degree of deterioration of the lighting fixture 50 as a whole.

本実施例によれば、濁度推定値y、照明出力推定値v、照度比率推定値といった3つの因子を求めることができるため、個々の照明灯51ないしは照明器具50を維持管理のための適切な判断を行い、適切な措置をとることができる。 According to the present embodiment, three factors such as the turbidity estimated value y, the illumination output estimated value v, and the illuminance ratio estimated value can be obtained. Make appropriate judgments and take appropriate measures.

たとえば照明出力推定値vが高く(LED素子の異常がなく)、濁度推定値yが高い(ガラス面などの汚れが酷い)場合には、その照明灯51ないしはその照明灯51を含む照明器具50を清掃することで対処することができる。また、照明出力推定値vが低い(LED素子の異常がある)場合には、清掃することなく、その照明灯51ないしはその照明灯51を含む照明器具50を交換することで対処することができる(ステップ107)。 For example, when the illumination output estimated value v is high (no abnormality of the LED element) and the turbidity estimated value y is high (dirt on the glass surface or the like is severe), the illumination lamp 51 or a lighting fixture including the illumination lamp 51 is used. This can be dealt with by cleaning 50. Further, when the estimated illumination output value v is low (the LED element is abnormal), it can be dealt with by replacing the illumination lamp 51 or the luminaire 50 including the illumination lamp 51 without cleaning. (Step 107).

以上のように本実施例によれば、個々の照明灯51について、濁度推定値y、照明出力推定値v、照度比率推定値を求めるようにしたので、特にトンネル内の照明器具の設備保守を最適に行ったり、コンクリート覆工面や内装板の清掃作業を効率よく行うことができるなど、道路施設を最適な維持管理できるようになる。 As described above, according to the present embodiment, the turbidity estimated value y, the illumination output estimated value v, and the illuminance ratio estimated value are obtained for each of the illuminating lamps 51. In particular, the equipment maintenance of the luminaires in the tunnel is performed. It is possible to optimally maintain and manage road facilities, such as optimally performing cleaning work on concrete lining surfaces and interior boards.

なお、実施例では、トンネル内の照明灯、照明器具を想定して説明したが、本発明はこれに限定されることなく、任意の照明灯、照明器具の劣化予測に適用することができる。 In addition, although the Example demonstrated the illuminating lamp and lighting fixture in a tunnel, this invention is not limited to this, It can apply to the deterioration prediction of arbitrary illuminating lamps and lighting fixtures.

1 車両 2 パーソナルコンピュータ 10 撮影手段 20 画像データ記憶部 50 照明器具 51 照明灯 90 トンネル覆工面










DESCRIPTION OF SYMBOLS 1 Vehicle 2 Personal computer 10 Image | photographing means 20 Image data memory | storage part 50 Lighting fixture 51 Illumination lamp 90 Tunnel lining surface










Claims (8)

照明灯の濁度と、照明灯の照明出力と、照明灯の照度の基準値に対する比率としての照度比率との対応関係を予め設定する対応関係設定ステップと、
劣化予測対象の照明灯を撮影する撮影ステップと、
撮影した画像から輝度分布曲線を取得し、この輝度分布曲線上で輝度最大値に移行するときの傾きとしての変動係数を求め、この変動係数に基づいて、前記劣化予測対象照明灯の濁度推定値を演算する濁度推定ステップと、
前記輝度分布曲線上の輝度最大値と、前記濁度推定値とに基づいて、前記劣化予測対象照明灯の照明出力の推定値を演算する照明出力推定ステップと、
前記濁度推定値および前記照明出力推定値を、前記設定された対応関係に適用して、前記劣化予測対象照明灯の照度比率の推定値を求める照度比率推定ステップと
を含む照明灯の劣化予測方法。
Correspondence setting step for presetting the correspondence between the turbidity of the illuminating lamp, the illumination output of the illuminating lamp, and the illuminance ratio as a ratio to the reference value of the illuminance of the illuminating lamp;
A shooting step for shooting the illumination light subject to deterioration prediction;
Obtaining a luminance distribution curve from the photographed image, obtaining a variation coefficient as a slope when shifting to the maximum luminance value on the luminance distribution curve, and estimating the turbidity of the deterioration prediction target illumination lamp based on the variation coefficient A turbidity estimation step for calculating a value;
Illumination output estimation step for calculating an estimated value of the illumination output of the deterioration prediction target illumination lamp based on the luminance maximum value on the luminance distribution curve and the turbidity estimated value;
Illuminance ratio estimation step of applying the turbidity estimated value and the illumination output estimated value to the set correspondence and obtaining an estimated value of the illuminance ratio of the deterioration prediction target illumination lamp. Method.
前記濁度推定ステップでは、各濁度毎に、輝度分布曲線を求め、これら各濁度毎の輝度分布曲線に基づき、変動係数を変数として濁度を推定演算する濁度推定演算式を予め求めておき、この濁度推定演算式に、前記劣化予測対象照明灯の撮影画像から求められた変動係数を適用して、濁度推定値を演算することを特徴とする請求項1記載の照明灯の劣化予測方法。 In the turbidity estimation step, a luminance distribution curve is obtained for each turbidity, and a turbidity estimation equation for estimating turbidity using a coefficient of variation as a variable is obtained in advance based on the luminance distribution curve for each turbidity. The illuminance lamp according to claim 1, wherein a turbidity estimation value is calculated by applying a coefficient of variation obtained from a photographed image of the deterioration prediction target illumination lamp to the turbidity estimation calculation formula. Degradation prediction method. 前記照明出力推定ステップでは、各濁度毎に、輝度分布曲線を求め、これら各濁度毎の輝度分布曲線と前記濁度推定値に基づき、輝度最大値を変数として照明出力を推定演算する照明出力推定演算式を予め求めておき、この照明出力推定演算式に、前記劣化予測対象照明灯の撮影画像から求められた輝度最大値および前記濁度推定値を適用して、照明出力推定値を演算することを特徴とする請求項1または2に記載の照明灯の劣化予測方法。 In the illumination output estimation step, a brightness distribution curve is obtained for each turbidity, and the illumination output is estimated and calculated based on the brightness distribution curve for each turbidity and the estimated turbidity, with the maximum brightness value as a variable. An output estimation calculation formula is obtained in advance, and the illumination output estimation value is obtained by applying the maximum luminance value and the turbidity estimation value obtained from the captured image of the deterioration prediction target illumination lamp to the illumination output estimation calculation formula. The method for predicting deterioration of an illuminating lamp according to claim 1, wherein calculation is performed. トンネル覆工面に設置された劣化予測対象照明灯を、トンネル内を走行する車両に搭載した撮影手段によって撮影することを特徴とする請求項1から3のいずれか一項に記載の照明灯の劣化予測方法。 4. The deterioration of the illumination lamp according to claim 1, wherein the degradation prediction target illumination lamp installed on the tunnel lining surface is photographed by a photographing means mounted on a vehicle traveling in the tunnel. 5. Prediction method. トンネル覆工面に設置された劣化予測対象照明灯を、トンネル内を走行する車両に搭載した撮影手段によって撮影して、前記劣化予測対象照明灯の劣化を予測する照明灯の劣化予測システムであって、
照明灯の濁度と、照明灯の照明出力と、照明灯の照度の基準値に対する比率としての照度比率との対応関係を予め設定し、
劣化予測対象の照明灯を前記撮影手段によって撮影し、
撮影した画像から輝度分布曲線を取得し、この輝度分布曲線上で輝度最大値に移行するときの傾きとしての変動係数を求め、この変動係数に基づいて、前記劣化予測対象照明灯の濁度推定値を演算し、
前記輝度分布曲線上の輝度最大値と、前記濁度推定値とに基づいて、前記劣化予測対象照明灯の照明出力の推定値を演算し、
前記濁度推定値および前記照明出力推定値を、前記設定された対応関係に適用して、前記劣化予測対象照明灯の照度比率の推定値を求め、
前記劣化予測対象照明灯の濁度推定値、前記照明出力推定値、前記照度比率推定値に基づいて、前記劣化予測対象照明灯の劣化を予測すること
を特徴とする照明灯の劣化予測システム。
A deterioration prediction system for an illumination lamp, wherein a deterioration prediction target illumination lamp installed on a tunnel lining surface is photographed by a photographing means mounted on a vehicle traveling in a tunnel, and the deterioration of the deterioration prediction target illumination lamp is predicted. ,
Preset the correspondence between the turbidity of the illuminating lamp, the illumination output of the illuminating lamp, and the illuminance ratio as a ratio to the reference value of the illuminance of the illuminating lamp,
Photograph the illumination lamp subject to deterioration prediction by the photographing means,
Obtaining a luminance distribution curve from the photographed image, obtaining a variation coefficient as a slope when shifting to the maximum luminance value on the luminance distribution curve, and estimating the turbidity of the deterioration prediction target illumination lamp based on the variation coefficient Calculate the value
Based on the luminance maximum value on the luminance distribution curve and the turbidity estimated value, an estimated value of the illumination output of the deterioration prediction target illumination lamp is calculated,
Applying the turbidity estimated value and the illumination output estimated value to the set correspondence, to obtain an estimated value of the illuminance ratio of the deterioration prediction target illumination lamp,
A deterioration prediction system for an illumination lamp, wherein deterioration of the deterioration prediction target illumination lamp is predicted based on a turbidity estimation value, the illumination output estimation value, and an illuminance ratio estimation value of the deterioration prediction target illumination lamp.
各濁度毎に、輝度分布曲線を求め、これら各濁度毎の輝度分布曲線に基づき、変動係数を変数として濁度を推定演算する濁度推定演算式を予め求めておき、この濁度推定演算式に、前記劣化予測対象照明灯の撮影画像から求められた変動係数を適用して、濁度推定値を演算することを特徴とする請求項5記載の照明灯の劣化予測システム。 For each turbidity, a luminance distribution curve is obtained. Based on the luminance distribution curve for each turbidity, a turbidity estimation formula for estimating and calculating turbidity using a coefficient of variation as a variable is obtained in advance. 6. The deterioration prediction system for an illumination lamp according to claim 5, wherein a turbidity estimated value is calculated by applying a coefficient of variation obtained from a photographed image of the deterioration prediction target illumination lamp to an arithmetic expression. 各濁度毎に、輝度分布曲線を求め、これら各濁度毎の輝度分布曲線と前記濁度推定値に基づき、輝度最大値を変数として照明出力を推定演算する照明出力推定演算式を予め求めておき、この照明出力推定演算式に、前記劣化予測対象照明灯の撮影画像から求められた輝度最大値および前記濁度推定値を適用して、照明出力推定値を演算することを特徴とする請求項5または6に記載の照明灯の劣化予測システム。 A luminance distribution curve is obtained for each turbidity, and an illumination output estimation calculation formula for estimating and calculating the illumination output using the maximum luminance value as a variable is obtained in advance based on the luminance distribution curve for each turbidity and the estimated turbidity value. The illumination output estimation value is calculated by applying the luminance maximum value obtained from the photographed image of the deterioration prediction target illumination lamp and the turbidity estimation value to the illumination output estimation calculation formula. The illumination lamp deterioration prediction system according to claim 5 or 6. 劣化予測対象照明器具は、複数の劣化予測対象照明灯を備えており、個々の劣化予測対象照明灯の劣化を予測することにより、前記劣化予測対象照明器具の劣化を予測することを特徴とする請求項5から7のいずれか一項に記載の劣化予測システム。   The deterioration prediction target lighting fixture includes a plurality of deterioration prediction target lighting fixtures, and predicts the deterioration of the deterioration prediction target lighting fixtures by predicting the deterioration of the individual deterioration prediction target lighting fixtures. The deterioration prediction system according to any one of claims 5 to 7.
JP2015152307A 2015-07-31 2015-07-31 Method and system for predicting deterioration of lighting Active JP6539144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015152307A JP6539144B2 (en) 2015-07-31 2015-07-31 Method and system for predicting deterioration of lighting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015152307A JP6539144B2 (en) 2015-07-31 2015-07-31 Method and system for predicting deterioration of lighting

Publications (2)

Publication Number Publication Date
JP2017033753A true JP2017033753A (en) 2017-02-09
JP6539144B2 JP6539144B2 (en) 2019-07-03

Family

ID=57986250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015152307A Active JP6539144B2 (en) 2015-07-31 2015-07-31 Method and system for predicting deterioration of lighting

Country Status (1)

Country Link
JP (1) JP6539144B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019050127A (en) * 2017-09-11 2019-03-28 三菱電機株式会社 Inspection method for illumination lamp and inspection program for illumination lamp

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012150895A (en) * 2011-01-17 2012-08-09 Hochiki Corp Lighting fixture diagnosis system and lighting fixture
US20150173156A1 (en) * 2012-06-12 2015-06-18 Danmarks Tekniske Universitet Lighting system with illuminance control

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012150895A (en) * 2011-01-17 2012-08-09 Hochiki Corp Lighting fixture diagnosis system and lighting fixture
US20150173156A1 (en) * 2012-06-12 2015-06-18 Danmarks Tekniske Universitet Lighting system with illuminance control

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019050127A (en) * 2017-09-11 2019-03-28 三菱電機株式会社 Inspection method for illumination lamp and inspection program for illumination lamp

Also Published As

Publication number Publication date
JP6539144B2 (en) 2019-07-03

Similar Documents

Publication Publication Date Title
JP4113570B2 (en) Image processing method, image processing system, and image processing program
JP7327733B2 (en) Method, apparatus and computer readable medium for flicker reduction
JP6566737B2 (en) Information processing apparatus, information processing method, and program
TWI550264B (en) Oil leakage detection device and method
WO2012073657A1 (en) Image processing device, imaging device, image processing method, and white balance adjustment method
CN110335273B (en) Detection method, detection device, electronic apparatus, and medium
CN105758624A (en) Glare testing method and system
JP7285502B2 (en) Inspection system and inspection method
KR20150076371A (en) Apparatus for measuring contamination on lens
WO2014129360A1 (en) Method for evaluating optical properties of transparent substrate
JP2017033753A (en) Illumination lamp deterioration prediction method and system
JP4749142B2 (en) Visual status measurement device
JP6415412B2 (en) Measuring device and measuring method
JP6853216B2 (en) How to improve image quality in images acquired by near-infrared sensitive video cameras and such cameras
CN109330547B (en) Light source adjusting method, device, equipment and endoscope
KR20080004737A (en) Method and measuring device of fatigue
JP2014235806A (en) System and method for detecting failure of aircraft warning light
JP5557054B2 (en) Structure investigation device and structure investigation method
JP2016061646A (en) Color headlight tester and light-dark branch line search method
TS et al. High dynamic imaging for photometry and graphic arts evaluation
Słomiński Typical Causes of Errors during Measuring Luminance Distributions in Relation to Glare Calculations
JP6443089B2 (en) Outdoor glare evaluation apparatus, outdoor glare evaluation method, and outdoor glare evaluation program
JP2008044697A (en) Fluorescent light life diagnostic device of elevator
JP4515991B2 (en) Flicker noise reduction device
DE60305754D1 (en) Method and device for processing measured data

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180621

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190607

R150 Certificate of patent or registration of utility model

Ref document number: 6539144

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250