JP2017033624A - Organic electroluminescent laminate - Google Patents

Organic electroluminescent laminate Download PDF

Info

Publication number
JP2017033624A
JP2017033624A JP2015143496A JP2015143496A JP2017033624A JP 2017033624 A JP2017033624 A JP 2017033624A JP 2015143496 A JP2015143496 A JP 2015143496A JP 2015143496 A JP2015143496 A JP 2015143496A JP 2017033624 A JP2017033624 A JP 2017033624A
Authority
JP
Japan
Prior art keywords
coat layer
hard coat
laminate
film
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015143496A
Other languages
Japanese (ja)
Other versions
JP6547481B2 (en
Inventor
啓志 中村
Keishi Nakamura
啓志 中村
佐藤 純
Jun Sato
純 佐藤
正隆 中島
Masataka Nakajima
正隆 中島
智之 堀尾
Tomoyuki Horio
智之 堀尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=57988436&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2017033624(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2015143496A priority Critical patent/JP6547481B2/en
Priority to TW109124644A priority patent/TWI739523B/en
Priority to TW105122573A priority patent/TWI702415B/en
Priority to KR1020167035908A priority patent/KR101769266B1/en
Priority to CN202010715985.1A priority patent/CN111736240A/en
Priority to CN201680002561.2A priority patent/CN106715121A/en
Priority to PCT/JP2016/071042 priority patent/WO2017014198A1/en
Priority to KR1020177012118A priority patent/KR20180020938A/en
Priority to US15/505,011 priority patent/US10288773B2/en
Publication of JP2017033624A publication Critical patent/JP2017033624A/en
Priority to US16/359,764 priority patent/US11360243B2/en
Publication of JP6547481B2 publication Critical patent/JP6547481B2/en
Application granted granted Critical
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a laminate for organic electroluminescence having excellent hardness, transparency and folding endurance.SOLUTION: In a laminate for organic electroluminescence, an optical laminate is laminated on one surface of an organic electroluminescent layer. The laminate for organic electroluminescence is characterized in that cracking or breaking does not occur even if a test, in which the whole surface of the laminate for organic electroluminescence is folded at 180° at intervals of 20 mm, is repeated 100,000 times.SELECTED DRAWING: None

Description

本発明は、有機エレクトロルミネッセンス積層体に関する。 The present invention relates to an organic electroluminescence laminate.

近年、有機エレクトロルミネッセンスに用いる光学フィルムは、優れた硬度を有するとともに、光学フィルムを繰り返し折り畳んでもクラックの生じることのない優れた耐久折り畳み性能が求められることがある。 In recent years, an optical film used for organic electroluminescence has an excellent hardness and sometimes has an excellent durability folding performance that does not cause cracks even when the optical film is repeatedly folded.

しかしながら、硬度と折り畳み性能とは、通常、トレードオフの関係にあるため、従来の光学フィルムでは、硬度の向上を図ると耐久折り畳み性能は低下し、耐久折り畳み性能の向上を図ると硬度が低下してしまい、これらの性能を同時に優れたものとすることができなかった。 However, since hardness and folding performance are usually in a trade-off relationship, with conventional optical films, when the hardness is improved, the durable folding performance is lowered, and when the durable folding performance is improved, the hardness is lowered. Therefore, these performances could not be improved at the same time.

また、有機エレクトロルミネッセンスでは、ガラス基板が用いられている場合が多い。ところが、ガラスは、硬度は高いが折り畳むと割れてしまい折り畳み性能を付与することはできず、また、ガラスは、比重の大きい材料であるため、軽量化を図るには薄くする必要があるが、ガラスを薄くすると強度が低下して割れやすくなる問題があった。 In organic electroluminescence, a glass substrate is often used. However, although glass has high hardness, it cannot be given folding performance because it is broken when folded, and glass is a material with a large specific gravity. When the glass is thinned, there is a problem that the strength is reduced and the glass is easily broken.

また、例えば、特許文献1には、硬度と屈曲性とを備えた光学フィルムとして、セルロースアシレートフィルム、ポリエステルフィルム等の基材フィルムの一方の面上にビッカース硬度の異なる2つのハードコート層を設けた光学フィルムが開示されている。
しかしながら、このような光学フィルムでは、優れた硬度を有するものの、繰り返し折り畳むことにより、基材フィルムが切れたり、折り畳みの跡が付いたりすることがあり、近年要求される耐久折り畳み性能を満たすものではなかった。
Further, for example, in Patent Document 1, as an optical film having hardness and flexibility, two hard coat layers having different Vickers hardness are provided on one surface of a base film such as a cellulose acylate film or a polyester film. An optical film provided is disclosed.
However, such an optical film has excellent hardness, but the base film may be cut off or fold marks may be caused by repeated folding, and it does not satisfy the durable folding performance required in recent years. There wasn't.

また、優れた機械的強度を有することから、光学フィルムにおける基材フィルムとして、ポリイミドフィルムを用いることが検討されているが、一般的にポリイミドフィルムは、透明性が低く、光学フィルムとしての用途には適さないといった問題があった。
更に、基材フィルムとして、ポリイミドフィルムを用いても、近年要求される優れた耐久折り畳み性能と硬度とを両立するのは困難であった。
In addition, since it has excellent mechanical strength, it has been studied to use a polyimide film as a substrate film in an optical film. Generally, a polyimide film has low transparency and is used for an optical film. There was a problem that was not suitable.
Furthermore, even if a polyimide film is used as the base material film, it has been difficult to achieve both excellent durability folding performance and hardness required in recent years.

特開2014−186210号公報JP 2014-186210 A

本発明は、上記現状に鑑みて、優れた硬度、透明性及び耐久折り畳み性能を有する有機エレクトロルミネッセンス用積層体を提供することを目的とするものである。 In view of the above-mentioned present situation, an object of the present invention is to provide a laminate for organic electroluminescence having excellent hardness, transparency, and durable folding performance.

本発明は、有機エレクトロルミネッセンス層の一方の面上に、光学積層体が積層された有機エレクトロルミネッセンス用積層体であって、20mmの間隔で上記有機エレクトロルミネッセンス積層体の全面を180°折り畳む試験を10万回繰り返し行った場合に割れ又は破断が生じないことを特徴とする有機エレクトロルミネッセンス用積層体である。 The present invention is an organic electroluminescence laminate in which an optical laminate is laminated on one surface of an organic electroluminescence layer, and a test is performed in which the entire surface of the organic electroluminescence laminate is folded by 180 ° at intervals of 20 mm. It is a laminate for organic electroluminescence characterized in that it is not cracked or broken when repeated 100,000 times.

本発明の有機エレクトロルミネッセンス用積層体において、光学積層体は、基材フィルムがポリイミドフィルム又はアラミドフィルムであることが好ましい。
また、光学積層体は、基材フィルムの厚みが10〜55μmであることが好ましい。
また、光学積層体は、基材フィルムの有機エレクトロルミネッセンス層と反対側面上に設けられた第一ハードコート層と、上記第一ハードコート層の上記基材フィルム側と反対側面上に設けられた第二ハードコート層とを有することが好ましい。
また、第二ハードコート層は、樹脂成分として多官能(メタ)アクリレートモノマーの硬化物を含有し、第一ハードコート層は、樹脂成分として多官能(メタ)アクリレートの硬化物を含有するとともに、上記樹脂成分中に分散されたシリカ微粒子とを含有することが好ましく、上記シリカ微粒子は、反応性シリカ微粒子であることが好ましい。
また、光学積層体は、単官能モノマーの硬化層を更に有することが好ましい。
In the laminate for organic electroluminescence of the present invention, it is preferable that the base material film of the optical laminate is a polyimide film or an aramid film.
Moreover, it is preferable that the thickness of a base film is 10-55 micrometers in an optical laminated body.
Moreover, the optical laminated body was provided on the side opposite to the base film side of the first hard coat layer, and the first hard coat layer provided on the side opposite to the organic electroluminescence layer of the base film. It is preferable to have a second hard coat layer.
The second hard coat layer contains a cured product of a polyfunctional (meth) acrylate monomer as a resin component, and the first hard coat layer contains a cured product of a polyfunctional (meth) acrylate as a resin component, It is preferable to contain silica fine particles dispersed in the resin component, and the silica fine particles are preferably reactive silica fine particles.
Moreover, it is preferable that an optical laminated body further has the cured layer of a monofunctional monomer.

また、有機エレクトロルミネッセンス層は、基板がポリイミドフィルム、アラミドフィルム、ポリエステルフィルム、ポリエチレンナフタレートフィルム、シクロオレフィンフィルム又はアクリルフィルムであることが好ましい。
以下、本発明を詳細に説明する。
In the organic electroluminescence layer, the substrate is preferably a polyimide film, an aramid film, a polyester film, a polyethylene naphthalate film, a cycloolefin film, or an acrylic film.
Hereinafter, the present invention will be described in detail.

本発明の有機エレクトロルミネッセンス用積層体(以下、エレクトロルミネッセンスを単に有機ELともいう。)は、有機EL層の一方の面上に、光学積層体が積層された構造を有する。
上記光学積層体は、基材フィルムがポリイミドフィルム又はアラミドフィルムであることが好ましい。
ここで、上記ポリイミドフィルム及びアラミドフィルムは、分子中に芳香環を有することから、着色(黄色)されているものが一般的であるが、光学フィルム用途に用いる場合、上記分子中の骨格を変更して透明性を高めた「透明ポリイミド」や「透明アラミド」と呼ばれるフィルムである。一方、着色された従来のポリイミドフィルム等は、耐熱性と屈曲性との面から、プリンターや電子回路等の電子材料用に使用されることが好ましいものである。
これらの材料からなる基材フィルムを用いた有機EL用積層体は、後述する耐久折り畳み試験において割れ又は破断が発生せず、近年要求される優れた耐久折り畳み性能を有するだけでなく、優れた硬度及び透明性をも有する。
また、ポリイミドフィルムやアラミドフィルムは、耐熱性にも優れ、焼成することにより、更に優れた硬度及び透明性を付与することもできる。
The laminate for organic electroluminescence of the present invention (hereinafter, electroluminescence is also simply referred to as organic EL) has a structure in which an optical laminate is laminated on one surface of an organic EL layer.
In the optical laminate, the base film is preferably a polyimide film or an aramid film.
Here, since the polyimide film and the aramid film have an aromatic ring in the molecule, they are generally colored (yellow), but when used for optical film applications, the skeleton in the molecule is changed. It is a film called “transparent polyimide” or “transparent aramid” with improved transparency. On the other hand, a colored conventional polyimide film or the like is preferably used for an electronic material such as a printer or an electronic circuit in terms of heat resistance and flexibility.
The laminate for organic EL using the base film made of these materials does not generate cracks or breaks in the durability folding test described later, and has not only excellent durability folding performance required in recent years, but also excellent hardness. And also has transparency.
Moreover, a polyimide film and an aramid film are excellent also in heat resistance, and can also provide further excellent hardness and transparency by baking.

ここで、本発明の有機EL用積層体において、上記優れた硬度とは、後述する光学積層体におけるハードコート層のJIS K5600−5−4(1999)に規定する鉛筆硬度試験(750g荷重)の条件で測定された硬度が、5H以上であることを意味し、6H以上であることが好ましく、7H以上であることがより好ましい。
また、本発明の有機EL用積層体において、上記優れた透明性とは、後述するハードコート層が、基材フィルム側と反対側表面に凹凸形状を有さない場合には、全光線透過率が85%以上であることを意味し、全光線透過率が90%以上であることが好ましい。
一方、後述するハードコート層が、基材フィルム側と反対側表面に凹凸形状を有する場合には、全光線透過率が80%以上であることを意味し、全光線透過率が85%以上であることが好ましい。
Here, in the organic EL laminate of the present invention, the excellent hardness is a pencil hardness test (load of 750 g) defined in JIS K5600-5-4 (1999) of a hard coat layer in an optical laminate described later. It means that the hardness measured under the conditions is 5H or more, preferably 6H or more, and more preferably 7H or more.
Moreover, in the laminate for organic EL of the present invention, the above-mentioned excellent transparency means the total light transmittance when the hard coat layer described later does not have a concavo-convex shape on the surface opposite to the substrate film side. Is 85% or more, and the total light transmittance is preferably 90% or more.
On the other hand, when the hard coat layer described later has an uneven shape on the surface opposite to the base film side, it means that the total light transmittance is 80% or more, and the total light transmittance is 85% or more. Preferably there is.

上記ポリイミドフィルムとしては、例えば、下記式で表される構造を有する化合物が挙げられる。
なお、下記式中、nは、繰り返し単位であり、2以上の整数を表す。

Figure 2017033624
As said polyimide film, the compound which has a structure represented by a following formula is mentioned, for example.
In the following formula, n is a repeating unit and represents an integer of 2 or more.
Figure 2017033624

Figure 2017033624
Figure 2017033624

Figure 2017033624
Figure 2017033624

Figure 2017033624
Figure 2017033624

Figure 2017033624
Figure 2017033624

Figure 2017033624
Figure 2017033624

Figure 2017033624
Figure 2017033624

Figure 2017033624
Figure 2017033624

Figure 2017033624
Figure 2017033624

Figure 2017033624
Figure 2017033624

Figure 2017033624
Figure 2017033624

Figure 2017033624
Figure 2017033624

Figure 2017033624
Figure 2017033624

Figure 2017033624
Figure 2017033624

Figure 2017033624
Figure 2017033624

Figure 2017033624
Figure 2017033624

Figure 2017033624
Figure 2017033624

また、上記アラミドフィルムとは、一般的に、下記式(18)及び(19)で表される骨格を有するものであり、上記アラミドフィルムとしては、例えば、下記式(20)で表される化合物が挙げられる。
なお、下記式中、nは、繰り返し単位であり、2以上の整数を表す。
The aramid film generally has a skeleton represented by the following formulas (18) and (19). Examples of the aramid film include a compound represented by the following formula (20). Is mentioned.
In the following formula, n is a repeating unit and represents an integer of 2 or more.

Figure 2017033624
Figure 2017033624

Figure 2017033624
Figure 2017033624

Figure 2017033624
Figure 2017033624

上記式(1)〜(17)及び(20)で表されるポリイミドフィルム又はアラミドフィルムは、市販のものを用いても良い。
上記透明ポリイミドフィルムの市販品としては、例えば、三菱ガス化学社製のネオプリム等が挙げられ、上記透明アラミドフィルムの市販品としては、例えば、東レ社製のミクトロン等が挙げられる。
また、上記式(1)〜(17)及び(20)で表されるポリイミドフィルム又はアラミドフィルムは、公知の方法により合成したものを用いても良い。
例えば、上記式(1)で表されるポリイミドフィルムの合成方法は、特開2009−132091号公報に記載されており、具体的には、下記式(21)
Commercially available polyimide films or aramid films represented by the above formulas (1) to (17) and (20) may be used.
Examples of commercially available products of the transparent polyimide film include Neoprim produced by Mitsubishi Gas Chemical Company, and examples of commercially available products of the transparent aramid film include Mikutron manufactured by Toray Industries, Inc.
Moreover, what was synthesize | combined by the well-known method may be used for the polyimide film or aramid film represented by said Formula (1)-(17) and (20).
For example, a method for synthesizing a polyimide film represented by the above formula (1) is described in Japanese Patent Application Laid-Open No. 2009-132091. Specifically, the following formula (21)

Figure 2017033624
Figure 2017033624

で表される4,4’−ヘキサフルオロプロピリデンビスフタル酸二無水物(6FPA)と2,2’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニル(TFDB)とを反応させることにより得ることができる。 And 4,4′-hexafluoropropylidenebisphthalic dianhydride (6FPA) represented by the following reaction with 2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl (TFDB) Can be obtained.

上記ポリイミドフィルム又はアラミドフィルムの重量平均分子量は、3000〜50万の範囲であることが好ましく、5000〜30万の範囲であることがより好ましく、1万〜20万の範囲であることが更に好ましい。重量平均分子量が3000未満であると、充分な強度が得られないことがあり、50万を超えると粘度が上昇し、溶解性が低下するため、表面が平滑で膜厚が均一なフィルムが得られないことがある。
なお、本明細書において、重量平均分子量とは、ゲル浸透クロマトグラフィー(GPC)により測定したポリスチレン換算値である。
The weight average molecular weight of the polyimide film or the aramid film is preferably in the range of 3000 to 500,000, more preferably in the range of 5000 to 300,000, and still more preferably in the range of 10,000 to 200,000. . If the weight average molecular weight is less than 3000, sufficient strength may not be obtained. If the weight average molecular weight exceeds 500,000, the viscosity increases and the solubility decreases, so that a film having a smooth surface and a uniform film thickness is obtained. It may not be possible.
In addition, in this specification, a weight average molecular weight is a polystyrene conversion value measured by gel permeation chromatography (GPC).

上記ポリイミドフィルム又はアラミドフィルムのなかでも、優れた透明性を有することから、分子内又は分子間の電荷移動が起こりにくい構造を有するポリイミドフィルム又はアラミドフィルムが好ましく、具体的には、上記式(1)〜(8)等のフッ素化ポリイミドフィルム、上記式(9)〜(12)等の脂環構造を有するポリイミドフィルム、上記式(20)等のハロゲン基を有するアラミドフィルムが挙げられる。
また、上記式(1)〜(8)等のフッ素化ポリイミドフィルムでは、フッ素化された構造を有するため、高い耐熱性を有しており、ポリイミドフィルム製造時の熱によって着色されることもないので、優れた透明性を有する。
上記基材フィルムは、後述するハードコート層のJIS K5600−5−4(1999)に規定する鉛筆硬度試験(750g荷重)の条件で測定された硬度を、5H以上にできることから、上記式(1)〜(8)等のフッ素化ポリイミドフィルム又は上記式(20)等のハロゲン基を有するアラミドフィルムを用いることが好ましい。なかでも、上記鉛筆硬度を7H以上の極めて優れた硬度を付与できることから、上記式(1)で表されるポリイミドフィルムを用いることがより好ましい。
Among the polyimide films or aramid films, a polyimide film or aramid film having a structure in which charge transfer within a molecule or between molecules hardly occurs is preferable because it has excellent transparency. Specifically, the above formula (1 ) To (8), polyimide films having an alicyclic structure such as the above formulas (9) to (12), and aramid films having a halogen group such as the above formula (20).
Moreover, in the fluorinated polyimide films such as the above formulas (1) to (8), since they have a fluorinated structure, they have high heat resistance and are not colored by heat during the production of the polyimide film. So it has excellent transparency.
Since the base film can have a hardness measured under the pencil hardness test (750 g load) defined in JIS K5600-5-4 (1999) of the hard coat layer described later, the above formula (1 It is preferable to use a fluorinated polyimide film such as) to (8) or an aramid film having a halogen group such as the above formula (20). Especially, since the said pencil hardness can provide the very outstanding hardness of 7H or more, it is more preferable to use the polyimide film represented by the said Formula (1).

上記基材フィルムは、厚みが10〜55μmであることが好ましい。上記基材フィルムの厚みが10μm未満であると、本発明の有機EL用積層体のカールが大きくなり、また、硬度も不充分となって後述する鉛筆硬度が4H以上にできないことがあり、更に、本発明の有機EL用積層体をRoll to Rollで製造する場合、シワが発生しやすくなるため外観の悪化を招く恐れがある。一方、上記基材フィルムの厚みが55μmを超えると、本発明の有機EL用積層体の折り畳み性能が不充分となり、後述する耐久折り畳み試験の要件を満たせないことがあり、また、本発明の有機EL用積層体が重くなり、軽量化の面で好ましくない。 The substrate film preferably has a thickness of 10 to 55 μm. When the thickness of the base film is less than 10 μm, the curl of the organic EL laminate of the present invention is increased, the hardness is insufficient, and the pencil hardness described later may not be 4H or more. When the organic EL laminate of the present invention is produced by Roll to Roll, wrinkles are likely to occur, and the appearance may be deteriorated. On the other hand, if the thickness of the substrate film exceeds 55 μm, the folding performance of the organic EL laminate of the present invention may be insufficient, and may fail to satisfy the requirements for the durability folding test described later. The laminate for EL becomes heavy, which is not preferable in terms of weight reduction.

本発明の有機EL用積層体は、20mmの間隔で上記有機EL用積層体の全面を180°折り畳む試験を10万回繰り返し行った場合に割れ又は破断が生じない。
本発明の有機EL用積層体は、15mmの間隔で上記有機EL用積層体の全面を180°折り畳む試験を10万回繰り返し行った場合に割れ又は破断が生じないことが好ましいく、10mmの間隔で上記有機EL用積層体の全面を180°折り畳む試験を10万回繰り返し行った場合に割れ又は破断が生じないことがより好ましい。
図1は、520mmの間隔で本発明の有機EL用積層体の全面を180°折り畳む試験(以下、耐久折り畳み試験とも言う)を模式的に示す断面図である。本発明において、上記520mmの間隔とは、対向する有機EL積層体間の距離が520mmであることを意味する。
図1(a)に示したように、上記耐久折り畳み試験においては、まず、本発明の有機EL用積層体10の一の辺と、該一の辺に対向する他の辺とを、平行に配置された上固定部11と下固定部12とにそれぞれ固定する。なお、本発明の有機EL用積層体は、任意の形状であってよいが、上記耐久折り畳み試験における本発明の有機EL用積層体10は、矩形であることが好ましい。
また、図1に示したように、上固定部11は固定されており、下固定部12は上固定部11との平行を維持したまま左右に移動可能になっている。
The organic EL laminate of the present invention does not crack or break when the test for folding the entire surface of the organic EL laminate at 180 ° at a distance of 20 mm is repeated 100,000 times.
The organic EL laminate of the present invention is preferably free from cracking or breaking when the test of folding the entire surface of the organic EL laminate at 180 ° at a spacing of 15 mm is repeated 100,000 times. It is more preferable that no cracks or breaks occur when the test for folding the entire surface of the laminate for organic EL 180 ° is repeated 100,000 times.
FIG. 1 is a cross-sectional view schematically showing a test for folding the entire surface of the organic EL laminate of the present invention by 180 ° at an interval of 520 mm (hereinafter also referred to as a durable folding test). In the present invention, the interval of 520 mm means that the distance between the opposed organic EL laminates is 520 mm.
As shown in FIG. 1A, in the durability folding test, first, one side of the organic EL laminate 10 of the present invention and another side facing the one side are parallel to each other. It fixes to the arrange | positioned upper fixing | fixed part 11 and the lower fixing | fixed part 12, respectively. In addition, although the laminated body for organic EL of this invention may be arbitrary shapes, it is preferable that the laminated body 10 for organic EL of this invention in the said durable folding test is a rectangle.
Further, as shown in FIG. 1, the upper fixing portion 11 is fixed, and the lower fixing portion 12 is movable to the left and right while maintaining parallel to the upper fixing portion 11.

次に、図1(b)に示したように、下固定部12を左方に移動させることで、試験片10の屈曲部位を下固定部12に固定された他の辺付近まで移動させ、更に、図1(c)に示したように、下固定部12を右方に移動させることで、試験片10の屈曲部位を上固定部11に固定された一の辺付近まで移動させる。
図1(a)〜(c)に示したように下固定部12を移動させることで、本発明の有機EL用積層体の全面を180°折り畳むことができる。
本発明の有機EL用積層体は、上述した図1(a)〜(c)で表される折り畳み試験を、有機EL用積層体10に10万回行った場合に該試験片に割れ又は破断が生じない。10万回以内に本発明の有機EL用積層体10に割れ又は破断が生じると、本発明の有機EL用積層体の耐久折り畳み性能が不充分となる。本発明では、上記耐久折り畳み試験を本発明の有機EL用積層体10に15万回行った場合に割れ又は破断が生じないことが好ましい。
また、本発明の有機EL用積層体10は、上記耐久折り畳み試験を片面に対して行った場合に、割れ又は破断が生じないものであってもよいが、上記耐久折り畳み試験を両面に対して行った場合に、割れ又は破断が生じないことが好ましい。
なお、本発明では、上述した本発明の有機EL用積層体10を90°回転させて同様の耐久折り畳み試験を行っても、同様に割れ又は破断が生じないものである。
Next, as shown in FIG. 1 (b), the bent portion of the test piece 10 is moved to the vicinity of the other side fixed to the lower fixing portion 12 by moving the lower fixing portion 12 to the left. Further, as shown in FIG. 1C, the bent portion of the test piece 10 is moved to the vicinity of one side fixed to the upper fixing portion 11 by moving the lower fixing portion 12 to the right.
By moving the lower fixing portion 12 as shown in FIGS. 1A to 1C, the entire surface of the organic EL laminate of the present invention can be folded 180 °.
The laminate for organic EL of the present invention is cracked or broken when the folding test shown in FIGS. 1A to 1C is performed 100,000 times on the laminate for organic EL 10 times. Does not occur. When the organic EL laminate 10 of the present invention is cracked or broken within 100,000 times, the durable folding performance of the organic EL laminate of the present invention becomes insufficient. In this invention, when the said durable folding test is performed 150,000 times to the laminated body 10 for organic EL of this invention, it is preferable that a crack or a fracture | rupture does not arise.
Further, the organic EL laminate 10 of the present invention may be one that does not crack or break when the above durability folding test is performed on one side, but the above durability folding test is performed on both sides. When done, it is preferred that no cracks or breaks occur.
In the present invention, even when the above-mentioned laminate 10 for organic EL of the present invention is rotated by 90 ° and the same durability folding test is performed, the same cracking or breakage does not occur.

本発明の有機EL用積層体が干渉縞防止性能を有することが好ましい。
本発明の有機EL用積層体は、折り畳み性能を有するので、折り畳み部において干渉縞が目立ったり、折り畳むことにより干渉縞が動いたりするといった新たな干渉縞の課題を有するためである。
本発明の有機EL用積層体は、波長400nm〜700nmの領域における上記有機EL用積層体の分光反射率を求め、任意の50nmの範囲における前記分光反射率の標準偏差が0.045未満であることが好ましい。
上記分光反射率の標準偏差は、以下の手順により求めることができる。
まず、分光光度計を用いて、5度反射測定法により、本発明の有機EL用積層体の波長380nm〜780nmの範囲の反射率を測定する。具体的には、本発明の有機EL用積層体のハードコート層を形成した側の面に対して、入射角度5度の光を照射し、本発明の有機EL用積層体で反射された正反射方向の反射光を受光して、波長380nm〜780nmの範囲の反射率を測定する。
次いで、上記測定データの波長400〜700nmの範囲について、2次多項式により近似値を求める。
最後に、任意の50nmの範囲について、測定値と2次多項式による近似値との差から標準偏差を算出する。
なお、上記分光反射率は、分光光度計(MPC3100、島津製作所社製)により測定された分光反射率を用いた。
The organic EL laminate of the present invention preferably has interference fringe prevention performance.
This is because the organic EL laminate of the present invention has folding performance, and thus has a new problem of interference fringes such that the interference fringes are conspicuous in the folded portion or the interference fringes move when folded.
The organic EL laminate of the present invention obtains the spectral reflectance of the organic EL laminate in a wavelength range of 400 nm to 700 nm, and the standard deviation of the spectral reflectance in an arbitrary range of 50 nm is less than 0.045. It is preferable.
The standard deviation of the spectral reflectance can be obtained by the following procedure.
First, the reflectance in the wavelength range of 380 nm to 780 nm of the laminate for organic EL of the present invention is measured by a 5-degree reflection measurement method using a spectrophotometer. Specifically, the surface on which the hard coat layer of the organic EL laminate of the present invention is formed is irradiated with light having an incident angle of 5 degrees, and the positive light reflected by the organic EL laminate of the present invention is reflected. The reflected light in the reflection direction is received, and the reflectance in the wavelength range of 380 nm to 780 nm is measured.
Subsequently, an approximate value is calculated | required with a quadratic polynomial about the wavelength range of 400-700 nm of the said measurement data.
Finally, the standard deviation is calculated from the difference between the measured value and the approximate value by the second order polynomial for an arbitrary range of 50 nm.
In addition, the said spectral reflectance used the spectral reflectance measured with the spectrophotometer (MPC3100, Shimadzu Corp. make).

本発明の有機EL用積層体は、波長400nm〜700nmの可視光領域において、任意の50nmの範囲における上記分光反射率の標準偏差が0.045未満である。
上記分光反射率の標準偏差の要件を満たす本発明の有機EL用積層体は、極めて優れた干渉縞防止性能を有しており、折り畳み部に干渉縞が生じず、また、折り畳むことによって生じる動く干渉縞も観察されない。
本発明の有機EL用積層体は、波長400nm〜700nmの可視光領域において、任意の50nmの範囲における上記分光反射率の標準偏差が0.035未満であることが好ましく、0.025未満であることがより好ましい。
また、本発明の有機EL用積層体は、波長400〜700nmの範囲のうち、最も標準偏差が大きい50nmの範囲における標準偏差が、0.045未満であることが更に好ましく、0.035未満であることが特に好ましく、0.025未満であることが最も好ましい。
In the organic EL laminate of the present invention, in the visible light region having a wavelength of 400 nm to 700 nm, the standard deviation of the spectral reflectance in an arbitrary range of 50 nm is less than 0.045.
The laminate for organic EL of the present invention that satisfies the requirement of the standard deviation of the spectral reflectance has an extremely excellent interference fringe prevention performance, and no interference fringes are generated in the folded portion, and the movement caused by folding is performed. No interference fringes are observed.
In the organic EL laminate of the present invention, in the visible light region having a wavelength of 400 nm to 700 nm, the standard deviation of the spectral reflectance in an arbitrary 50 nm range is preferably less than 0.035, and less than 0.025. It is more preferable.
In the organic EL laminate of the present invention, the standard deviation in the range of 50 nm having the largest standard deviation in the wavelength range of 400 to 700 nm is more preferably less than 0.045, and less than 0.035. It is particularly preferred that it is less than 0.025 and most preferred.

本発明の有機EL用積層体において、上記光学積層体は、単官能モノマーの硬化層を更に有することが好ましい。
上記単官能モノマーの硬化層は、上記基材フィルムの有機EL層と反対側面上に有するのが好ましい。
また、上記単官能モノマーの硬化層は、上記基材フィルムと後述する第一ハードコート層との間に有していてもよく、後述する第一のハードコート層と第二ハードコート層との間に有してもよいが、極めて優れた干渉縞防止性を付与する観点から、上記基材フィルムと後述する第一ハードコート層との間に有するのがより好ましい。
上記単官能モノマーの硬化層は、上述した干渉縞防止性能を付与するための層である。
本発明の有機EL用積層体において、上記光学積層体は、上記単官能モノマーの硬化層を形成する際に、後述する単官能モノマーの硬化層用組成物中の単官能モノマー成分が、上記基材フィルム等を溶解することにより、該樹脂基材等の溶解部分の屈折率が段階的に変化し、界面反射を抑制することができるので、極めて優れた干渉縞防止性能を付与することができる。
In the organic EL laminate of the present invention, it is preferable that the optical laminate further has a cured layer of a monofunctional monomer.
It is preferable to have the cured layer of the monofunctional monomer on the side surface opposite to the organic EL layer of the substrate film.
Moreover, the cured layer of the monofunctional monomer may have between the base film and a first hard coat layer described later, and a first hard coat layer and a second hard coat layer described later. Although it may have in between, it is more preferable to have between the said base film and the 1st hard-coat layer mentioned later from a viewpoint which provides the extremely outstanding interference fringe prevention property.
The cured layer of the monofunctional monomer is a layer for imparting the above-described interference fringe prevention performance.
In the laminated body for organic EL of the present invention, when the optical laminated body forms the cured layer of the monofunctional monomer, the monofunctional monomer component in the cured layer composition of the monofunctional monomer described later is By dissolving the material film or the like, the refractive index of the dissolved part of the resin base material or the like changes stepwise and interface reflection can be suppressed, so that extremely excellent interference fringe prevention performance can be imparted. .

上記単官能モノマーの硬化層の厚さとしては、0.5〜8μmであることが好ましい。0.5μm未満であると、上述した干渉縞防止性能を充分に付与できないことがあり、8μmを超えると、充分な鉛筆硬度を付与できないことがある。
上記単官能モノマーの硬化層の厚さのより好ましい範囲は、1〜5μmであり、更に好ましくは、1〜3μmである。
なお、上記ハードコート層の厚さは、断面顕微鏡観察により測定することができる。
The thickness of the cured layer of the monofunctional monomer is preferably 0.5 to 8 μm. When the thickness is less than 0.5 μm, the above-described interference fringe prevention performance may not be sufficiently imparted, and when it exceeds 8 μm, sufficient pencil hardness may not be imparted.
The more preferable range of the thickness of the cured layer of the monofunctional monomer is 1 to 5 μm, and more preferably 1 to 3 μm.
In addition, the thickness of the said hard-coat layer can be measured by cross-sectional microscope observation.

上記単官能モノマーの硬化層に用いる単官能モノマーとしては、例えば、電離放射線硬化型樹脂が挙げられ、なかでも、単官能アクリルモノマーが好適に用いられる。
上記単官能アクリルモノマーとしては、アクリロイルモルホリン、N−アクリロイルオキシエチルヘキサヒドロフタルイミド、シクロヘキシルアクリレート、テトラヒドロフリルアクリレート、イソボルニルアクリレート、フェノキシエチルアクリレート、及び、アダマンチルアクリレートからなる群より選択される少なくとも1種であることが好ましく、なかでも、耐溶剤性に優れるポリイミドフィルム等を樹脂基材として用いた場合であっても、該フィルムを好適に溶解させることができ、極めて優れた干渉縞防止性能を付与できることから、アクリロイルモルホリンであることが好ましい。
Examples of the monofunctional monomer used in the cured layer of the monofunctional monomer include an ionizing radiation curable resin, and among them, a monofunctional acrylic monomer is preferably used.
The monofunctional acrylic monomer is at least one selected from the group consisting of acryloylmorpholine, N-acryloyloxyethylhexahydrophthalimide, cyclohexyl acrylate, tetrahydrofuryl acrylate, isobornyl acrylate, phenoxyethyl acrylate, and adamantyl acrylate. In particular, even when a polyimide film or the like having excellent solvent resistance is used as a resin substrate, the film can be suitably dissolved, and extremely excellent interference fringe prevention performance is imparted. Since it can do, it is preferable that it is acryloyl morpholine.

上記単官能モノマーの硬化層は、例えば、上述した単官能モノマーと溶剤とを含有する単官能モノマーの硬化層用組成物を、上記基材フィルムの面上に塗布し、形成した塗膜を乾燥後硬化させることで形成することができる。
上記単官能モノマーの硬化層用組成物における溶剤としては、後述するハードコート層用組成物で用いる溶剤を好適に用いることができる。
The cured layer of the monofunctional monomer is, for example, applied on the surface of the base film with the composition for a cured layer of the monofunctional monomer containing the above-described monofunctional monomer and a solvent, and the formed coating film is dried. It can be formed by post-curing.
As the solvent in the composition for a cured layer of the monofunctional monomer, a solvent used in the composition for a hard coat layer described later can be suitably used.

上記単官能モノマーの硬化層用組成物は、後述するハードコート層用組成物と同様に、光重合開始剤、分散剤、界面活性剤、帯電防止剤、シランカップリング剤、増粘剤、着色防止剤、着色剤(顔料、染料)、消泡剤、レベリング剤、難燃剤、紫外線吸収剤、接着付与剤、重合禁止剤、酸化防止剤、表面改質剤等を添加していてもよい。 The composition for a cured layer of the monofunctional monomer is similar to the composition for a hard coat layer described later, a photopolymerization initiator, a dispersant, a surfactant, an antistatic agent, a silane coupling agent, a thickener, and coloring. An inhibitor, a colorant (pigment, dye), an antifoaming agent, a leveling agent, a flame retardant, an ultraviolet absorber, an adhesion promoter, a polymerization inhibitor, an antioxidant, a surface modifier, and the like may be added.

本発明の有機EL用積層体において、上記光学積層体は、基材フィルムの有機EL層と反対側面上に設けられた第一ハードコート層と、上記第一ハードコート層の上記基材フィルム側と反対側面上に設けられた第二ハードコート層とを有することが好ましい。
以下、上記第一ハードコート層及び上記第二ハードコート層の両者について、特に区別をする必要がない場合には、単に「ハードコート層」ともいう。
In the laminate for organic EL of the present invention, the optical laminate is a first hard coat layer provided on the side opposite to the organic EL layer of the base film, and the base film side of the first hard coat layer. And a second hard coat layer provided on the opposite side surface.
Hereinafter, both the first hard coat layer and the second hard coat layer are also simply referred to as “hard coat layers” unless it is necessary to distinguish between them.

上記第一ハードコート層とは、硬度を付与するための層であり、断面中央におけるマルテンス硬さが500MPa以上1000MPa未満であることが好ましい。
上記第一ハードコート層のマルテンス硬さを上記範囲とすることにより、上記ハードコート層のJIS K5600−5−4(1999)に規定する鉛筆硬度試験(750g荷重)の硬度が、4H以上とすることができ、また、本発明の有機EL用積層体に充分な耐久折り畳み性能を付与することができる。上記第一ハードコート層の断面中央におけるマルテンス硬さのより好ましい下限は600MPa、より好ましい上限は950MPaである。
The first hard coat layer is a layer for imparting hardness, and the Martens hardness at the center of the cross section is preferably 500 MPa or more and less than 1000 MPa.
By setting the Martens hardness of the first hard coat layer in the above range, the hardness of the pencil hardness test (750 g load) specified in JIS K5600-5-4 (1999) of the hard coat layer is 4H or more. In addition, sufficient durable folding performance can be imparted to the organic EL laminate of the present invention. The more preferable lower limit of the Martens hardness at the cross-sectional center of the first hard coat layer is 600 MPa, and the more preferable upper limit is 950 MPa.

また、上記第二ハードコート層とは、上述した耐久折り畳み性と耐擦傷性を付与するための層であり、断面中央におけるマルテンス硬さが350MPa以上600MPa以下であることが好ましい。上記第二ハードコート層のマルテンス硬さを上記範囲とすることにより、充分な耐久折り畳み性能を有するとともに、#0000番のスチールウールで1kg/cmの荷重をかけながら、上記ハードコート層の表面を3500回往復摩擦させる耐スチールウール試験において傷が生じないといった極めて優れた耐擦傷性を付与することができる。上記第二ハードコート層の断面中央におけるマルテンス硬さのより好ましい下限は375MPa、より好ましい上限は575MPaである。
上記光学積層体において、上記第一ハードコート層のマルテンス硬さは、上記第二ハードコート層のマルテンス硬さよりも大きいことが好ましい。このようなマルテンス硬さの関係を有することで、本発明の有機EL用積層体の鉛筆硬度が特に良好となる。これは、本発明の有機EL用積層体に鉛筆硬度試験を施して鉛筆に荷重をかけて押しこんだときに、本発明の有機EL用積層体の変形が抑制されて、傷や凹み変形が少なくなるためである。また、充分な耐久折り畳み性能を有するとともに、#0000番のスチールウールで1kg/cmの荷重をかけながら、上記ハードコート層の表面を3500回往復摩擦させる耐スチールウール試験において傷が生じないといった極めて優れた耐擦傷性を付与することができる。
上記第一ハードコート層のマルテンス硬さが上記第二ハードコート層のマルテンス硬さよりも大きくする方法としては、例えば、後述するシリカ微粒子の含有量を第一ハードコート層側により多く含有するよう制御する方法等が挙げられる。
本発明の有機EL用積層体において、上記ハードコート層は単一構造であってもよく、この場合、上記ハードコート層に後述するシリカ微粒子が基材フィルム側に偏在するように、すなわち、上記ハードコート層におけるシリカ微粒子の存在割合が、基材フィルム側でより大きく、該基材フィルム側と反対側に行くに従って小さくなるよう傾斜していることが好ましい。
なお、本明細書において、「マルテンス硬さ」とは、ナノインデンテーション法による硬度測定により、圧子を500nm押込んだときの硬度である。
なお、本明細書において、上記ナノインデンテーション法によるマルテンス硬さの測定は、HYSITRON(ハイジトロン)社製の「TI950 TriboIndenter」を用いて行った。すなわち、上記圧子としてBerkovich圧子(三角錐)を、本発明の有機EL用積層体のハードコート層表面から500nm押し込み、一定保持して残留応力の緩和を行った後、除荷させて、緩和後のmax荷重を計測し、該max荷重(Pmax(μN)と深さ500nmのくぼみ面積(A(nm)とを用い、Pmax/Aにより、マルテンス硬さを算出する。
The second hard coat layer is a layer for imparting the above-mentioned durable foldability and scratch resistance, and the Martens hardness at the center of the cross section is preferably 350 MPa or more and 600 MPa or less. By setting the Martens hardness of the second hard coat layer within the above range, the surface of the hard coat layer has sufficient durability folding performance and a load of 1 kg / cm 2 with # 0000 steel wool. It is possible to impart extremely excellent scratch resistance such that no scratches are generated in a steel wool test in which the steel is reciprocated 3500 times. The more preferable lower limit of the Martens hardness at the center of the cross section of the second hard coat layer is 375 MPa, and the more preferable upper limit is 575 MPa.
In the optical layered body, it is preferable that the Martens hardness of the first hard coat layer is larger than the Martens hardness of the second hard coat layer. By having such a Martens hardness relationship, the pencil hardness of the organic EL laminate of the present invention is particularly good. This is because when the organic EL laminate of the present invention is subjected to a pencil hardness test and a pencil is loaded with a load, deformation of the organic EL laminate of the present invention is suppressed, and scratches and dent deformation are prevented. This is because it decreases. In addition, it has sufficient durability folding performance, and scratches do not occur in the steel wool test in which the surface of the hard coat layer is rubbed back and forth 3500 times while applying a load of 1 kg / cm 2 with # 0000 steel wool. Extremely excellent scratch resistance can be imparted.
As a method for making the Martens hardness of the first hard coat layer larger than the Martens hardness of the second hard coat layer, for example, control is made so that the content of silica fine particles described later is contained more on the first hard coat layer side. And the like.
In the organic EL laminate of the present invention, the hard coat layer may have a single structure, and in this case, the silica fine particles described later are unevenly distributed on the base film side in the hard coat layer, that is, the above-mentioned It is preferable that the proportion of silica fine particles in the hard coat layer is inclined so as to be larger on the base film side and smaller as it goes to the side opposite to the base film side.
In the present specification, “Martens hardness” is the hardness when the indenter is pushed in by 500 nm by the hardness measurement by the nanoindentation method.
In addition, in this specification, the measurement of the Martens hardness by the said nanoindentation method was performed using "TI950 TriboIndenter" made from HYSITRON (Heiditron). That is, a Berkovich indenter (triangular pyramid) as the above indenter was pushed in by 500 nm from the surface of the hard coat layer of the organic EL laminate of the present invention and held constant to relieve the residual stress. The max load is measured, and the Martens hardness is calculated by P max / A using the max load (P max (μN) and a recessed area (A (nm 2 ) having a depth of 500 nm).

上記第一ハードコート層は、樹脂成分として多官能(メタ)アクリレートモノマーの硬化物を含有するとともに、該樹脂成分中に分散されたシリカ微粒子を含有することが好ましい。
上記多官能(メタ)アクリレートモノマーとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、トリペンタエリスリトールオクタ(メタ)アクリレート、テトラペンタエリスリトールデカ(メタ)アクリレート、イソシアヌル酸トリ(メタ)アクリレート、イソシアヌル酸ジ(メタ)アクリレート、ポリエステルトリ(メタ)アクリレート、ポリエステルジ(メタ)アクリレート、ビスフェノールジ(メタ)アクリレート、ジグリセリンテトラ(メタ)アクリレート、アダマンチルジ(メタ)アクリレート、イソボロニルジ(メタ)アクリレート、ジシクロペンタンジ(メタ)アクリレート、トリシクロデカンジ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレートや、これらをPO、EO、カプロラクトン等で変性したものが挙げられる。
これらの中でも上述したマルテンス硬さを好適に満たし得ることから、3〜6官能のものが好ましく、例えば、ペンタエリスリトールトリアクリレート(PETA)、ジペンタエリスリトールヘキサアクリレート(DPHA)、ペンタエリスリトールテトラアクリレート(PETTA)、ジペンタエリスリトールペンタアクリレート(DPPA)、トリメチロールプロパントリ(メタ)アクリレート、トリペンタエリスリトールオクタ(メタ)アクリレート、テトラペンタエリスリトールデカ(メタ)アクリレート等が好ましい。
なお、本明細書において、(メタ)アクリレートとは、アクリレート及びメタクリレートを意味する。
The first hard coat layer preferably contains a cured product of a polyfunctional (meth) acrylate monomer as a resin component and also contains silica fine particles dispersed in the resin component.
Examples of the polyfunctional (meth) acrylate monomer include trimethylolpropane tri (meth) acrylate, tripropylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, and pentaerythritol tris. (Meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, trimethylolpropane tri (meth) Acrylate, ditrimethylolpropane tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, tripentaerythritol octa (meta Acrylate, tetrapentaerythritol deca (meth) acrylate, isocyanuric acid tri (meth) acrylate, isocyanuric acid di (meth) acrylate, polyester tri (meth) acrylate, polyester di (meth) acrylate, bisphenol di (meth) acrylate, diglycerin Tetra (meth) acrylate, adamantyl di (meth) acrylate, isoboronyl di (meth) acrylate, dicyclopentane di (meth) acrylate, tricyclodecane di (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, and PO , EO, caprolactone and the like.
Among these, since the above-mentioned Martens hardness can be satisfactorily satisfied, those having 3 to 6 functionalities are preferable, for example, pentaerythritol triacrylate (PETA), dipentaerythritol hexaacrylate (DPHA), pentaerythritol tetraacrylate (PETTA). ), Dipentaerythritol pentaacrylate (DPPA), trimethylolpropane tri (meth) acrylate, tripentaerythritol octa (meth) acrylate, tetrapentaerythritol deca (meth) acrylate, and the like are preferable.
In the present specification, (meth) acrylate means acrylate and methacrylate.

上記シリカ微粒子としては、反応性シリカ微粒子であることが好ましい。上記反応性シリカ微粒子は、上記多官能(メタ)アクリレートモノマーとの間で架橋構造を構成することが可能なシリカ微粒子であり、該反応性シリカ微粒子を含有することで、上記第一ハードコート層の硬度を充分に高めることができる。 The silica fine particles are preferably reactive silica fine particles. The reactive silica fine particles are silica fine particles that can form a crosslinked structure with the polyfunctional (meth) acrylate monomer. By containing the reactive silica fine particles, the first hard coat layer Can be sufficiently increased in hardness.

上記反応性シリカ微粒子は、その表面に反応性官能基を有することが好ましく、該反応性官能基としては、例えば、重合性不飽和基が好適に用いられ、より好ましくは光硬化性不飽和基であり、特に好ましくは電離放射線硬化性不飽和基である。上記反応性官能基の具体例としては、例えば、(メタ)アクリロイル基、ビニル基、アリル基等のエチレン性不飽和結合及びエポキシ基等が挙げられる。 The reactive silica fine particles preferably have a reactive functional group on the surface, and as the reactive functional group, for example, a polymerizable unsaturated group is preferably used, and more preferably a photocurable unsaturated group. Particularly preferred are ionizing radiation-curable unsaturated groups. Specific examples of the reactive functional group include an ethylenically unsaturated bond such as a (meth) acryloyl group, a vinyl group, and an allyl group, and an epoxy group.

上記反応性シリカ微粒子としては特に限定されず、従来公知のものを用いることができ、例えば、特開2008−165040号公報記載の反応性シリカ微粒子等が挙げられる。また、上記反応性シリカ微粒子の市販品としては、例えば、日産化学工業社製;MIBK−SD、MIBK−SDMS、MIBK−SDL、MIBK−SDZL、日揮触媒化成社製;V8802、V8803等が挙げられる。 The reactive silica fine particles are not particularly limited and conventionally known fine particles can be used, and examples thereof include reactive silica fine particles described in JP-A-2008-165040. Moreover, as a commercial item of the said reactive silica microparticles | fine-particles, the product made from Nissan Chemical Industries; MIBK-SD, MIBK-SDMS, MIBK-SDL, MIBK-SDZL, the product made by JGC Catalysts &Chemicals; V8802, V8803 etc. are mentioned, for example. .

また、上記シリカ微粒子は、球状シリカ微粒子であってもよいが、異型シリカ微粒子であることが好ましい。球状シリカ微粒子と異型シリカ微粒子とを混合させてもよい。
なお、本明細書において、上記異型シリカ微粒子とは、ジャガイモ状のランダムな凹凸を表面に有する形状のシリカ微粒子を意味する。
上記異型シリカ微粒子は、その表面積が球状シリカ微粒子と比較して大きいため、このような異型シリカ微粒子を含有することで、上記多官能(メタ)アクリレート等との接触面積が大きくなり、上記ハードコート層の硬度(鉛筆硬度)をより優れたものとすることができる。
上記異型シリカ微粒子か否かは、上記第一ハードコート層の電子顕微鏡による断面観察により確認することができる。
The silica fine particles may be spherical silica fine particles, but are preferably atypical silica fine particles. Spherical silica fine particles and atypical silica fine particles may be mixed.
In the present specification, the atypical silica fine particles mean silica fine particles having a shape having potato-like random irregularities on the surface.
Since the atypical silica fine particles have a larger surface area than the spherical silica fine particles, the inclusion of such atypical silica fine particles increases the contact area with the polyfunctional (meth) acrylate, etc. The layer hardness (pencil hardness) can be made more excellent.
Whether or not the atypical silica fine particles are present can be confirmed by observing a cross section of the first hard coat layer with an electron microscope.

上記シリカ微粒子が異型シリカ微粒子である場合、該異型シリカ微粒子の平均粒子径としては、5〜200nmであることが好ましい。5nm未満であると、微粒子自身の製造が困難になり、微粒子同士が凝集したりすることがあり、また、異型にするのが極めて困難になることがあり、更に、上記塗工前のインキの段階で異型シリカ微粒子の分散性が悪く凝集したりすることがある。一方、上記異型シリカ微粒子の平均粒子径が200nmを超えると、上記ハードコート層に大きな凹凸が形成されたり、ヘイズの上昇といった不具合が生じたりすることがある。
なお、上記異型シリカ微粒子の平均粒子径は、上記ハードコート層の断面顕微鏡観察にて現れた異型シリカ微粒子の外周の2点間距離の最大値(長径)と最小値(短径)との平均値である。
When the silica fine particles are irregular-shaped silica fine particles, the average particle diameter of the irregular-shaped silica fine particles is preferably 5 to 200 nm. When the thickness is less than 5 nm, it is difficult to produce the fine particles themselves, the fine particles may be aggregated, and it may be extremely difficult to make an irregular shape. The dispersibility of atypical silica fine particles may be poor and agglomerate in stages. On the other hand, when the average particle diameter of the irregular-shaped silica fine particles exceeds 200 nm, large irregularities may be formed on the hard coat layer, or a problem such as an increase in haze may occur.
The average particle size of the irregular-shaped silica fine particles is the average of the maximum value (major axis) and the minimum value (minor axis) of the distance between the two points on the outer periphery of the irregular-shaped silica fine particles appearing by cross-sectional microscope observation of the hard coat layer. Value.

上記シリカ微粒子の大きさ及び配合量を制御することで第一ハードコート層の硬度(マルテンス硬さ)を制御でき、その結果、上記第一ハードコート層及び第二ハードコート層を形成することができる。
例えば、上記第一ハードコート層を形成する場合、上記シリカ微粒子は直径が5〜200nmであり、上記樹脂成分100質量部に対して、25〜60質量部であることが好ましい。
The hardness (Martens hardness) of the first hard coat layer can be controlled by controlling the size and blending amount of the silica fine particles, and as a result, the first hard coat layer and the second hard coat layer can be formed. it can.
For example, when forming the first hard coat layer, the silica fine particles have a diameter of 5 to 200 nm, and preferably 25 to 60 parts by mass with respect to 100 parts by mass of the resin component.

また、上記第二ハードコート層は、樹脂成分として多官能(メタ)アクリレートの硬化物を含有することが好ましい。
上記多官能(メタ)アクリレートとしては、上述したものと同様のものが挙げられる。
また、上記第二ハードコート層は、樹脂成分として上記多官能(メタ)アクリレートに加えて、多官能ウレタン(メタ)アクリレート及び/又は多官能エポキシ(メタ)アクリレート等が含まれてもよい。
更に、上記第二ハードコート層は、上述したシリカ微粒子を含有していてもよい。上記第二ハードコート層における上記シリカ微粒子の含有量としては特に限定されないが、例えば、上記第二ハードコート層中、0〜20質量%であることが好ましい。
Moreover, it is preferable that the said 2nd hard-coat layer contains the hardened | cured material of polyfunctional (meth) acrylate as a resin component.
As said polyfunctional (meth) acrylate, the thing similar to what was mentioned above is mentioned.
In addition to the polyfunctional (meth) acrylate, the second hard coat layer may contain polyfunctional urethane (meth) acrylate and / or polyfunctional epoxy (meth) acrylate as a resin component.
Furthermore, the second hard coat layer may contain the silica fine particles described above. Although it does not specifically limit as content of the said silica fine particle in said 2nd hard-coat layer, For example, it is preferable that it is 0-20 mass% in said 2nd hard-coat layer.

上記ハードコート層は、上記第一ハードコート層及び第二ハードコート層のいずれの場合であっても、上述したマルテンス硬さを充足する範囲で、上述した材料以外の材料を含んでいてもよく、例えば、樹脂成分の材料として、電離放射線の照射により硬化物を形成する重合性モノマーや重合性オリゴマー等を含んでいてもよい。
上記重合性モノマー又は重合性オリゴマーとしては、例えば、分子中にラジカル重合性不飽和基を有する(メタ)アクリレートモノマー、又は、分子中にラジカル重合性不飽和基を有する(メタ)アクリレートオリゴマーが挙げられる。
上記分子中にラジカル重合性不飽和基を有する(メタ)アクリレートモノマー、又は、分子中にラジカル重合性不飽和基を有する(メタ)アクリレートオリゴマーとしては、例えば、ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、エポキシ(メタ)アクリレート、メラミン(メタ)アクリレート、ポリフルオロアルキル(メタ)アクリレート、シリコーン(メタ)アクリレート等のモノマー又はオリゴマーが挙げられる。これら重合性モノマー又は重合性オリゴマーは、1種又は2種以上を組み合わせて使用してもよい。なかでも、多官能(6官能以上)で重量平均分子量が1000〜1万のウレタン(メタ)アクリレートが好ましい。
The hard coat layer may contain a material other than the above-described materials as long as it satisfies the above-described Martens hardness in any case of the first hard coat layer and the second hard coat layer. For example, as a resin component material, a polymerizable monomer or a polymerizable oligomer that forms a cured product upon irradiation with ionizing radiation may be included.
Examples of the polymerizable monomer or polymerizable oligomer include a (meth) acrylate monomer having a radically polymerizable unsaturated group in the molecule, or a (meth) acrylate oligomer having a radically polymerizable unsaturated group in the molecule. It is done.
Examples of the (meth) acrylate monomer having a radically polymerizable unsaturated group in the molecule or the (meth) acrylate oligomer having a radically polymerizable unsaturated group in the molecule include urethane (meth) acrylate and polyester (meth) ) Acrylates, epoxy (meth) acrylates, melamine (meth) acrylates, polyfluoroalkyl (meth) acrylates, and silicone (meth) acrylate monomers or oligomers. These polymerizable monomers or polymerizable oligomers may be used alone or in combination of two or more. Of these, urethane (meth) acrylate having a polyfunctionality (6 functionalities or more) and a weight average molecular weight of 1000 to 10,000 is preferable.

なお、硬度や組成物の粘度調整、密着性の改善等のために、上記ハードコートを構成する材料としては、更に単官能(メタ)アクリレートモノマーを含んでいてもよい。
上記単官能(メタ)アクリレートモノマーとしては、例えば、ヒドロキシエチルアクリレート(HEA)、グリシジルメタクリレート、メトキシポリエチレングリコール(メタ)アクリレート、イソステアリル(メタ)アクリレート、2−アクリロイルオキシエチルサクシネート、アクリロイルモルホリン、N−アクリロイルオキシエチルヘキサヒドロフタルイミド、シクロヘキシルアクリレート、テトラヒドロフリルアクリレート、イソボルニルアクリレート、フェノキシエチルアクリレート、及び、アダマンチルアクリレート等が挙げられる。
In addition, in order to adjust the hardness, the viscosity of the composition, improve the adhesion, etc., the material constituting the hard coat may further contain a monofunctional (meth) acrylate monomer.
Examples of the monofunctional (meth) acrylate monomer include hydroxyethyl acrylate (HEA), glycidyl methacrylate, methoxypolyethylene glycol (meth) acrylate, isostearyl (meth) acrylate, 2-acryloyloxyethyl succinate, acryloylmorpholine, N -Acryloyloxyethyl hexahydrophthalimide, cyclohexyl acrylate, tetrahydrofuryl acrylate, isobornyl acrylate, phenoxyethyl acrylate, adamantyl acrylate and the like.

上記重合性モノマーの重量平均分子量は、ハードコート層の硬度を向上させる観点から、1000未満が好ましく、200〜800がより好ましい。
また、上記重合性オリゴマーの重量平均分子量は、1000〜2万であることが好ましく、1000〜1万であることがより好ましく、2000〜7000であることが更に好ましい。
なお、本明細書において、上記重合性モノマー及び重合性オリゴマーの重量平均分子量は、GPC法で測定したポリスチレン換算の重量平均分子量である。
From the viewpoint of improving the hardness of the hard coat layer, the weight average molecular weight of the polymerizable monomer is preferably less than 1000, and more preferably 200 to 800.
Moreover, the weight average molecular weight of the polymerizable oligomer is preferably 1000 to 20,000, more preferably 1000 to 10,000, and still more preferably 2000 to 7000.
In addition, in this specification, the weight average molecular weight of the said polymerizable monomer and polymerizable oligomer is the weight average molecular weight of polystyrene conversion measured by GPC method.

上記ハードコート層は、紫外線吸収剤(UVA)を含有していてもよい。
本発明の有機EL用積層体は、後述するように、折り畳み可能なスマートフォンやタブレット端末のようなモバイル端末に特に好適に用いられるが、このようなモバイル端末は屋外で使用されることが多く、そのため、本発明の有機EL用積層体の下方に配設された偏光子が紫外線に晒されて劣化しやすいという問題がある。
しかしながら、上記ハードコート層は、上記偏光子の表示画面側に配置されるため、該ハードコート層に紫外線吸収剤が含有されていると、上記偏光子が紫外線に晒されることによる劣化を好適に防止することができる。
なお、上記紫外線吸収剤(UVA)は、上記光学積層体における基材フィルムに含有されていてもよい。この場合、上記紫外線吸収剤(UVA)は、上記ハードコート層に含有されていなくてもよい。
The hard coat layer may contain an ultraviolet absorber (UVA).
As described later, the organic EL laminate of the present invention is particularly preferably used for a mobile terminal such as a foldable smartphone or tablet terminal, but such a mobile terminal is often used outdoors, Therefore, there exists a problem that the polarizer arrange | positioned under the organic electroluminescent laminated body of this invention is exposed to an ultraviolet-ray, and deteriorates easily.
However, since the hard coat layer is disposed on the display screen side of the polarizer, if the hard coat layer contains an ultraviolet absorber, the polarizer is preferably deteriorated by exposure to ultraviolet rays. Can be prevented.
In addition, the said ultraviolet absorber (UVA) may be contained in the base film in the said optical laminated body. In this case, the ultraviolet absorber (UVA) may not be contained in the hard coat layer.

上記紫外線吸収剤としては、例えば、トリアジン系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、及び、ベンゾトリアゾール系紫外線吸収剤等が挙げられる。 As said ultraviolet absorber, a triazine type ultraviolet absorber, a benzophenone type ultraviolet absorber, a benzotriazole type ultraviolet absorber, etc. are mentioned, for example.

上記トリアジン系紫外線吸収剤としては、例えば、2−(2−ヒドロキシ−4−[1−オクチルオキシカルボニルエトキシ]フェニル)−4,6−ビス(4−フェニルフェニル)−1,3,5−トリアジン、2−[4−[(2−ヒドロキシ−3−ドデシルオキシプロピル)オキシ]−2−ヒドロキシフェニル]−4,6−ビス(2,4−ジメチルフェニル)−1,3,5−トリアジン、2,4−ビス[2−ヒドロキシ−4−ブトキシフェニル]−6−(2,4−ジブトキシフェニル)−1,3,5−トリアジン、2−[4−[(2−ヒドロキシ−3−トリデシルオキシプロピル)オキシ]−2−ヒドロキシフェニル]−4,6−ビス(2,4−ジメチルフェニル)−1,3,5−トリアジン、および2−[4−[(2−ヒドロキシ−3−(2’−エチル)ヘキシル)オキシ]−2−ヒドロキシフェニル]−4,6−ビス(2,4−ジメチルフェニル)−1,3,5−トリアジン等が挙げられる。
また、市販されているトリアジン系紫外線吸収剤としては、例えば、TINUVIN460、TINUVIN477(いずれも、BASF社製)、LA−46(ADEKA社製)等が挙げられる。
Examples of the triazine ultraviolet absorber include 2- (2-hydroxy-4- [1-octyloxycarbonylethoxy] phenyl) -4,6-bis (4-phenylphenyl) -1,3,5-triazine. 2- [4-[(2-hydroxy-3-dodecyloxypropyl) oxy] -2-hydroxyphenyl] -4,6-bis (2,4-dimethylphenyl) -1,3,5-triazine, 2 , 4-Bis [2-hydroxy-4-butoxyphenyl] -6- (2,4-dibutoxyphenyl) -1,3,5-triazine, 2- [4-[(2-hydroxy-3-tridecyl) Oxypropyl) oxy] -2-hydroxyphenyl] -4,6-bis (2,4-dimethylphenyl) -1,3,5-triazine, and 2- [4-[(2-hydroxy-3- (2) ' -Ethyl) hexyl) oxy] -2-hydroxyphenyl] -4,6-bis (2,4-dimethylphenyl) -1,3,5-triazine and the like.
Examples of commercially available triazine ultraviolet absorbers include TINUVIN460, TINUVIN477 (both manufactured by BASF), LA-46 (manufactured by ADEKA), and the like.

上記ベンゾフェノン系紫外線吸収剤としては、例えば、2−ヒドロキシベンゾフェノン、2,4−ジヒドロキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシベンゾフェノン、2,2’,4,4’−テトラヒドロキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン、ヒドロキシメトキシベンゾフェノンスルホン酸及びその三水塩、ヒドロキシメトキシベンゾフェノンスルホン酸ナトリウム等が挙げられる。
また、市販されているベンゾフェノン系紫外線吸収剤としては、例えば、CHMASSORB81/FL(BASF社製)等が挙げられる。
Examples of the benzophenone-based ultraviolet absorber include 2-hydroxybenzophenone, 2,4-dihydroxybenzophenone, 2,2′-dihydroxy-4,4′-dimethoxybenzophenone, 2,2 ′, 4,4′-tetrahydroxy. Examples include benzophenone, 2-hydroxy-4-methoxybenzophenone, hydroxymethoxybenzophenone sulfonic acid and its trihydrate, and hydroxymethoxybenzophenone sodium sulfonate.
Moreover, as a commercially available benzophenone type ultraviolet absorber, CHMASSORB81 / FL (made by BASF) etc. are mentioned, for example.

上記ベンゾトリアゾール系紫外線吸収剤としては、例えば、2−エチルヘキシル−3−〔3−tert−ブチル−4−ヒドロキシ−5−(5−クロロ−2H−ベンゾトリアゾール−2−イル)フェニル〕プロピオネート、2−(2H−ベンゾトリアゾール−2−イル)−6−(直鎖及び側鎖ドデシル)−4−メチルフェノール、2−〔5−クロロ(2H)−ベンゾトリアゾール−2−イル〕−4−メチル−6−(tert−ブチル)フェノール、2−(2H−ベンゾトリアゾール−2−イル)−4,6−ジ−tert−ペンチルフェノール、2−(2’−ヒドロキシ−5’−メチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’,5’−ジ−tert−ブチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’−tert−ブチル−5’−メチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’,5’−ジ−tert−ブチルフェニル)−5−クロロベンゾトリアゾール、2−(2’−ヒドロキシ−3’−(3’ ’,4’ ’,5’ ’,6’ ’−テトラヒドロフタルイミドメチル)−5’−メチルフェニル)ベンゾトリアゾール、2,2−メチレンビス(4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール)、及び、2−(2’−ヒドロキシ−3’−tert−ブチル−5’−メチルフェニル)−5−クロロベンゾトリアゾール等が挙げられる。
また、市販されているベンゾトリアゾール系紫外線吸収剤としては、例えば、KEMISORB71D、KEMISORB79(いずれも、ケミプロ化成社製)、JF−80、JAST−500(いずれも、城北化学社製)、ULS−1933D(一方社製)、RUVA−93(大塚化学社製)等が挙げられる。
Examples of the benzotriazole ultraviolet absorber include 2-ethylhexyl-3- [3-tert-butyl-4-hydroxy-5- (5-chloro-2H-benzotriazol-2-yl) phenyl] propionate, 2 -(2H-benzotriazol-2-yl) -6- (linear and side chain dodecyl) -4-methylphenol, 2- [5-chloro (2H) -benzotriazol-2-yl] -4-methyl- 6- (tert-butyl) phenol, 2- (2H-benzotriazol-2-yl) -4,6-di-tert-pentylphenol, 2- (2′-hydroxy-5′-methylphenyl) benzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-tert-butylphenyl) benzotriazole, 2- (2′-hydroxy-3′-tert) -Butyl-5'-methylphenyl) benzotriazole, 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl) -5-chlorobenzotriazole, 2- (2'-hydroxy-3' -(3 ′ ′, 4 ′ ′, 5 ′ ′, 6 ′ ′-tetrahydrophthalimidomethyl) -5′-methylphenyl) benzotriazole, 2,2-methylenebis (4- (1,1,3,3-tetra Methylbutyl) -6- (2H-benzotriazol-2-yl) phenol) and 2- (2′-hydroxy-3′-tert-butyl-5′-methylphenyl) -5-chlorobenzotriazole Can be mentioned.
Moreover, as a commercially available benzotriazole type ultraviolet absorber, for example, KEMISORB 71D, KEMISORB 79 (all manufactured by Chemipro Kasei Co., Ltd.), JF-80, JAST-500 (all manufactured by Johoku Chemical Co., Ltd.), ULS-1933D (Manufactured by one company), RUVA-93 (manufactured by Otsuka Chemical Co., Ltd.) and the like.

上記紫外線吸収剤は、なかでも、トリアジン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤が好適に用いられる。
上記紫外線吸収剤は、ハードコート層を構成する樹脂成分との溶解性が高いほうが好ましく、また、上述した耐久折り畳み試験後のブリードアウトが少ないほうが好ましい。
上記紫外線吸収剤は、ポリマー化又はオリゴマー化されていることが好ましい。
上記紫外線吸収剤としては、ベンゾトリアゾール、トリアジン、ベンゾフェノン骨格を有するポリマー又はオリゴマーが好ましく、具体的には、ベンゾトリアゾールやベンゾフェノン骨格を有する(メタ)アクリレートと、メチルメタクリレート(MMA)とを任意の比率で熱共重合したものであることが好ましい。
なお、上記UVAは、上記有機EL層を紫外線から保護する役割も果たすことができる。
Among these ultraviolet absorbers, triazine ultraviolet absorbers and benzotriazole ultraviolet absorbers are preferably used.
The ultraviolet absorber preferably has higher solubility with the resin component constituting the hard coat layer, and preferably has less bleed-out after the above-described durability folding test.
The UV absorber is preferably polymerized or oligomerized.
As the ultraviolet absorber, a polymer or oligomer having a benzotriazole, triazine, or benzophenone skeleton is preferable, and specifically, (meth) acrylate having a benzotriazole or benzophenone skeleton and methyl methacrylate (MMA) in an arbitrary ratio. It is preferable that it is what was heat-copolymerized with.
The UVA can also serve to protect the organic EL layer from ultraviolet rays.

上記紫外線吸収剤の含有量としては特に限定されないが、上記ハードコート層の樹脂固形分100質量部に対して1〜6質量部であることが好ましい。1質量部未満であると、上述した紫外線吸収剤をハードコート層に含有させる効果を充分に得ることができないことがあり、6質量部を超えると、上記ハードコート層に著しい着色や強度低下が生じることがある。上記紫外線吸収剤の含有量のより好ましい下限は2質量部、より好ましい上限は5質量部である。 Although it does not specifically limit as content of the said ultraviolet absorber, It is preferable that it is 1-6 mass parts with respect to 100 mass parts of resin solid content of the said hard-coat layer. If the amount is less than 1 part by mass, the effect of containing the above-described ultraviolet absorber in the hard coat layer may not be sufficiently obtained. If the amount exceeds 6 parts by mass, the hard coat layer may be markedly colored or deteriorated in strength. May occur. The minimum with more preferable content of the said ultraviolet absorber is 2 mass parts, and a more preferable upper limit is 5 mass parts.

上記ハードコート層の層厚みとしては、上記第一ハードコート層である場合、2.0〜5.0μmであることが好ましく、上記第二ハードコート層である場合、0.5〜4.0μmであることが好ましい。上記各層厚みの下限未満であると、上記ハードコート層の硬度が著しく低下することがあり、上記各層厚みの上限を超えると、上記ハードコート層を形成するための塗液のコーティングが困難となり、また、厚みが厚すぎることに起因した加工性(特に、耐チッピング性)が悪化することがある。
上記第一ハードコート層の層厚みのより好ましい下限は2.5μm、より好ましい上限は4.5μmであり、上記第二ハードコート層の層厚みのより好ましい下限は1.0μm、より好ましい上限は3.5μmである。
なお、上記ハードコート層の層厚みは、断面の電子顕微鏡(SEM、TEM、STEM)観察により測定して得られた任意の10カ所の厚みの平均値である。
The layer thickness of the hard coat layer is preferably 2.0 to 5.0 μm in the case of the first hard coat layer, and 0.5 to 4.0 μm in the case of the second hard coat layer. It is preferable that If it is less than the lower limit of each layer thickness, the hardness of the hard coat layer may be significantly reduced, and if it exceeds the upper limit of each layer thickness, coating of the coating liquid to form the hard coat layer becomes difficult, Moreover, the workability (especially chipping resistance) resulting from the thickness being too thick may deteriorate.
The more preferred lower limit of the layer thickness of the first hard coat layer is 2.5 μm, the more preferred upper limit is 4.5 μm, the more preferred lower limit of the layer thickness of the second hard coat layer is 1.0 μm, and the more preferred upper limit is 3.5 μm.
In addition, the layer thickness of the said hard-coat layer is an average value of the thickness of arbitrary 10 places obtained by measuring by the electron microscope (SEM, TEM, STEM) observation of a cross section.

上記光学積層体において、ハードコート層を有する本発明の有機EL用積層体は、波長380nmの光の透過率が10%以下であることが好ましく、より好ましくは、8%以下である。上記透過率が10%を超えると、本発明の有機EL用積層体をモバイル端末に用いた場合、偏光子が紫外線に晒されて劣化しやすくなる恐れがある。上記ハードコート層の波長380nmの光の透過率のより好ましい上限は5%である。
また、上記ハードコート層は、ヘイズが2.5%以下であることが好ましい。2.5%を超えると、本発明の有機EL用積層体をモバイル端末に用いた場合、表示画面の白化が問題となる恐れがある。上記ヘイズのより好ましい上限は1.5%であり、更に好ましい上限は1.0%である。
また、上記透過率及びヘイズは、ヘイズメーター(村上色彩技術研究所製、製品番号;HM−150)を用いてJIS K−7361に従い測定することができる。
なお、本発明の有機EL用積層体全体のヘイズは、上記ハードコート層のヘイズと上記基材フィルムのヘイズとの合計となり、上記基材フィルムのヘイズが1%より高い場合、本発明の有機EL用積層体の全体のヘイズは、1%よりも高くなる。
In the above optical laminate, the organic EL laminate of the present invention having a hard coat layer preferably has a light transmittance of 380 nm of 10% or less, more preferably 8% or less. If the transmittance exceeds 10%, when the organic EL laminate of the present invention is used for a mobile terminal, the polarizer may be easily exposed to ultraviolet rays and deteriorate. A more preferable upper limit of the transmittance of light having a wavelength of 380 nm of the hard coat layer is 5%.
The hard coat layer preferably has a haze of 2.5% or less. If it exceeds 2.5%, when the organic EL laminate of the present invention is used in a mobile terminal, whitening of the display screen may be a problem. A more preferable upper limit of the haze is 1.5%, and a more preferable upper limit is 1.0%.
The transmittance and haze can be measured according to JIS K-7361 using a haze meter (manufactured by Murakami Color Research Laboratory, product number: HM-150).
The haze of the entire organic EL laminate of the present invention is the sum of the haze of the hard coat layer and the haze of the substrate film. When the haze of the substrate film is higher than 1%, The overall haze of the laminate for EL is higher than 1%.

上記ハードコート層は、必要に応じて、例えば、滑剤、可塑剤、充填剤、帯電防止剤、アンチブロッキング剤、架橋剤、光安定剤、酸化防止剤、染料、顔料等の着色剤等のその他の成分が含有されていてもよい。 If necessary, the hard coat layer may be, for example, a lubricant, a plasticizer, a filler, an antistatic agent, an antiblocking agent, a crosslinking agent, a light stabilizer, an antioxidant, a colorant such as a dye, or a pigment. These components may be contained.

また、上記光学積層体は、上記基材フィルムの上述したハードコート層(第一ハードコート層及び第二ハードコート層)が設けられた反対側面上に、別のハードコート層(以下、裏面ハードコート層ともいう)が形成されていてもよい。上記裏面ハードコート層としては、例えば、上述したハードコート層と同様の層が挙げられる。
また、上記裏面ハードコート層としては、裏面ハードコート層(1)及び/又は裏面ハードコート層(2)を有することが好ましい。
上記裏面ハードコート層(1)及び裏面ハードコート層(2)としては、上述した第一ハードコート層又は上述した第二ハードコート層と同様の組成及び厚さからなる層が挙げられる。
すなわち、上記光学積層体が上記裏面ハードコート層を有する場合、該裏面ハードコート層としては、上述した第一ハードコート層と同様の裏面ハードコート層(1)を有する構造、上述した第二ハードコート層と同様の裏面ハードコート層(1)を有する構造、上述した第一ハードコート層と同様の裏面ハードコート層(1)と上述した第二ハードコート層と同様の裏面ハードコート層(2)とを基材フィルム側からこの順で積層された構造、上述した第二ハードコート層と同様の裏面ハードコート層(1)と上述した第一ハードコート層と同様の裏面ハードコート層(2)とを基材フィルム側からこの順で積層された構造が挙げられる。
なお、上記裏面ハードコート層は、最表面側と反対側面に配置されるため、後述する防汚性能は不要である。
In addition, the optical layered body is provided with another hard coat layer (hereinafter referred to as a back hard disk) on the opposite side surface of the base film on which the above-described hard coat layers (first hard coat layer and second hard coat layer) are provided. (Also referred to as a coat layer) may be formed. As said back surface hard-coat layer, the layer similar to the hard-coat layer mentioned above is mentioned, for example.
The back hard coat layer preferably has a back hard coat layer (1) and / or a back hard coat layer (2).
Examples of the back hard coat layer (1) and the back hard coat layer (2) include layers having the same composition and thickness as the first hard coat layer or the second hard coat layer described above.
That is, when the optical laminate has the back hard coat layer, the back hard coat layer has a structure having the back hard coat layer (1) similar to the first hard coat layer described above, and the second hard coat described above. A structure having a back hard coat layer (1) similar to the coat layer, a back hard coat layer (1) similar to the first hard coat layer described above, and a back hard coat layer (2 similar to the second hard coat layer described above) ) Are laminated in this order from the base film side, the back hard coat layer (1) similar to the second hard coat layer described above, and the back hard coat layer (2 similar to the first hard coat layer described above) ) Are laminated in this order from the base film side.
In addition, since the said back surface hard-coat layer is arrange | positioned on the side surface opposite to the outermost surface side, the antifouling performance mentioned later is unnecessary.

また、本発明の有機EL用積層体は、防汚性能を有することが好ましい。このような防汚性能は、例えば、上記光学積層体におけるハードコート層に防汚剤を含有させることで得ることができる。
上記防汚剤を含有するハードコート層は、表面の水に対する接触角が100°以上であることが好ましく、製造直後の本発明の有機EL用積層体においては、上記ハードコート層の表面の水に対する接触角は105°以上であることがより好ましく、#0000番のスチールウールで1kg/cmの荷重をかけながら、上記第二ハードコート層の表面を3500回往復摩擦させる耐スチールウール試験を行った後のハードコート層の表面の水に対する接触角は90°以上であることが好ましく、103°以上であることがより好ましい。
Moreover, it is preferable that the laminated body for organic EL of this invention has antifouling performance. Such antifouling performance can be obtained, for example, by adding an antifouling agent to the hard coat layer in the optical laminate.
The hard coat layer containing the antifouling agent preferably has a surface contact angle with water of 100 ° or more, and in the laminate for organic EL of the present invention immediately after production, the water on the surface of the hard coat layer. More preferably, the contact angle with respect to the surface of the second hard coat layer is reciprocated 3500 times while applying a load of 1 kg / cm 2 with # 0000 steel wool. The contact angle of water on the surface of the hard coat layer after the treatment is preferably 90 ° or more, and more preferably 103 ° or more.

上記防汚剤は、上記ハードコート層の最表面側に偏在して含まれていることが好ましい。上記ハードコート層に均一に防汚剤が含有されている場合、充分な防汚性能を付与するために添加量を増やす必要があり、ハードコート層の膜強度の低下につながる恐れがある。なお、上記ハードコート層が上述した第一ハードコート層及び第二ハードコート層を有する場合、上記防汚剤は、最表面側に配置される第二ハードコート層の最表面側に偏在して含まれていることが好ましい。
上記防汚剤をハードコート層の最表面側に偏在させる方法としては、例えば、該ハードコート層を形成時において、後述するハードコート層用組成物を用いて形成した塗膜を乾燥させ、硬化させる前に、上記塗膜に熱をかけて該塗膜に含まれる樹脂成分の粘度を下げることにより流動性を上げ、上記防汚剤を最表面側に偏在させる方法や、表面張力の低い防汚剤を選定して用い、上記塗膜の乾燥時に熱をかけずに該塗膜の表面に上記防汚剤を浮かせ、その後塗膜を硬化させることで、上記防汚剤を最表面側に偏在させる方法等が挙げられる。
It is preferable that the antifouling agent is contained unevenly on the outermost surface side of the hard coat layer. When the antifouling agent is uniformly contained in the hard coat layer, it is necessary to increase the amount of addition in order to impart sufficient antifouling performance, which may lead to a decrease in the film strength of the hard coat layer. When the hard coat layer has the first hard coat layer and the second hard coat layer described above, the antifouling agent is unevenly distributed on the outermost surface side of the second hard coat layer disposed on the outermost surface side. It is preferably included.
As a method of unevenly distributing the antifouling agent on the outermost surface side of the hard coat layer, for example, at the time of forming the hard coat layer, a coating film formed using a composition for a hard coat layer described later is dried and cured. Before the coating, heat is applied to the coating film to lower the viscosity of the resin component contained in the coating film to increase fluidity, and the antifouling agent is unevenly distributed on the outermost surface side. Select and use a stain, float the antifouling agent on the surface of the coating without applying heat when drying the coating, and then cure the coating to bring the antifouling agent to the outermost surface. The method of making it unevenly distributed is mentioned.

上記防汚剤としては特に限定されず、例えば、含シリコーン系防汚剤、含フッ素系防汚剤、含シリコーン系かつ含フッ素系防汚剤が挙げられ、それぞれ単独で使用してもよく、混合して使用してもよい。また、上記防汚剤としては、アクリル系防汚剤であってもよい。
上記防汚剤の含有量としては、上述した樹脂材料100質量部に対して、0.01〜3.0重量部であることが好ましい。0.01重量部未満であると、ハードコート層に充分な防汚性能を付与できないことがあり、また、滑り性が悪いため、耐スチールウール試験でも傷が生じることがある。一方、3.0重量部を超えると、ハードコート層の硬度が低下する恐れがあり、また、防汚剤自身が玉状(ミセル状)態になり、ハードコート層の樹脂成分と防汚剤とが、微細に相分離(海島状態)してしまうことがあり、白くなるおそれがある。
また、上記防汚剤は、重量平均分子量が2万以下であることが好ましく、防汚性能の耐久性を改善するために、反応性官能基を好ましくは1以上、より好ましくは2以上有する化合物である。なかでも、2以上の反応性官能基を有する防汚剤を用いることにより、優れた耐擦傷性を付与することができる。
なお、上記防汚剤が反応性官能基を有さない場合、本発明の有機EL用積層体がロール状の場合でも、シート状の場合でも、重ねたときに裏面に防汚剤が転移してしまい、該裏面に他の部材を貼ったり、塗ったりしようとすると、該他の部材の剥がれ発生することがあり、更に、複数回の折り畳み試験を行うことで容易に剥がれる場合がある。
なお、上記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算により求めることができる。
The antifouling agent is not particularly limited, and examples thereof include silicone-containing antifouling agents, fluorine-containing antifouling agents, silicone-containing and fluorine-containing antifouling agents, and each may be used alone. You may mix and use. The antifouling agent may be an acrylic antifouling agent.
The content of the antifouling agent is preferably 0.01 to 3.0 parts by weight with respect to 100 parts by weight of the resin material described above. If the amount is less than 0.01 part by weight, the hard coat layer may not be provided with sufficient antifouling performance, and the slipperiness is poor, so that scratches may occur even in the steel wool resistance test. On the other hand, if it exceeds 3.0 parts by weight, the hardness of the hard coat layer may decrease, and the antifouling agent itself becomes a ball (micelle) state, and the resin component and the antifouling agent of the hard coat layer However, there is a possibility of fine phase separation (sea-island state) and whitening.
The antifouling agent preferably has a weight average molecular weight of 20,000 or less, and preferably has 1 or more, more preferably 2 or more reactive functional groups in order to improve the durability of the antifouling performance. It is. Among them, excellent scratch resistance can be imparted by using an antifouling agent having two or more reactive functional groups.
In addition, when the said antifouling agent does not have a reactive functional group, the antifouling agent is transferred to the back surface when it is stacked, whether it is a roll or a sheet, according to the present invention. Therefore, if another member is pasted or applied to the back surface, the other member may be peeled off and may be easily peeled off by performing a plurality of folding tests.
In addition, the said weight average molecular weight can be calculated | required by polystyrene conversion by gel permeation chromatography (GPC).

更に、上記反応性官能基を有する防汚剤は、防汚性能の性能持続性(耐久性)が良好となり、なかでも、上述した含フッ素系防汚剤を含むハードコート層は、指紋が付きにくく(目立ちにくく)、拭き取り性も良好である。更に、上記ハードコート層形成用組成物の塗工時の表面張力を下げることができるので、レベリング性がよく、形成するハードコート層の外観が良好なものとなる。
また、上記含シリコーン系防汚剤を含むハードコート層は、滑り性がよく、耐スチールウール性が良好である。
このような含シリコーン系防汚剤をハードコート層に含む本発明の有機EL用積層体は、指やペンなどで接触したときの滑りがよくなるため、触感がよくなる。また、上記ハードコート層に指紋も付きにくく(目立ちにくく)、拭き取り性も良好となる。更に、上記ハードコート層を形成する際の組成物(ハードコート層用組成物)の塗工時の表面張力を下げることができるので、レベリング性がよく、形成するハードコート層の外観が良好なものとなる。
また、上記反応性官能基を有する防汚剤としては、市販品として入手可能であり、上記以外の市販品としては、例えば、含シリコーン系防汚剤としては、例えば、SUA1900L10(新中村化学社製)、SUA1900L6(新中村化学社製)、Ebecryl1360(ダイセルサイテック社製)、UT3971(日本合成社製)、BYKUV3500(ビックケミー社製)、BYKUV3510(ビックケミー社製)、BYKUV3570(ビックケミー社製)、X22−164E、X22−174BX、X22−2426、KBM503.KBM5103(信越化学社製)、TEGO−RAD2250、TEGO−RAD2300.TEGO−RAD2200N、TEGO−RAD2010、TEGO−RAD2500、TEGO−RAD2600、TEGO−RAD2700(エボニックジャパン社製)、メガファックRS854(DIC社製)等が挙げられる。
含フッ素系防汚剤としては、例えば、オプツールDAC、オプツールDSX(ダイキン工業社製)、メガファックRS71、メガファックRS74(DIC社製)、LINC152EPA、LINC151EPA、LINC182UA(共栄社化学社製)、フタージェント650A、フタージェント601AD、フタージェント602等が挙げられる。
また、含フッ素系かつ含シリコーン系で反応性官能基を有する防汚剤としては、例えば、メガファックRS851、メガファックRS852、メガファックRS853、メガファックRS854(DIC社製)、オプスターTU2225、オプスターTU2224(JSR社製)、X71−1203M(信越化学社製)等が挙げられる。
Furthermore, the antifouling agent having the reactive functional group has good antifouling performance durability (durability), and in particular, the hard coat layer containing the above-mentioned fluorine-containing antifouling agent has a fingerprint. Difficult (not conspicuous) and good wiping property. Furthermore, since the surface tension at the time of application | coating of the said composition for hard-coat layer formation can be lowered | hung, leveling property is good and the external appearance of the hard-coat layer to form becomes a favorable thing.
In addition, the hard coat layer containing the silicone-containing antifouling agent has good sliding properties and good steel wool resistance.
Since the laminate for organic EL of the present invention containing such a silicone-containing antifouling agent in the hard coat layer has a good sliding feeling when brought into contact with a finger or a pen, the tactile sensation is improved. In addition, fingerprints are hardly attached to the hard coat layer (not easily noticeable), and the wiping property is good. Furthermore, since the surface tension at the time of coating of the composition (hard coat layer composition) at the time of forming the hard coat layer can be lowered, the leveling property is good and the appearance of the hard coat layer to be formed is good. It will be a thing.
Moreover, as said antifouling agent which has the said reactive functional group, it can obtain as a commercial item, As a commercial item other than the above, as a silicone-containing antifouling agent, for example, SUA1900L10 (Shin Nakamura Chemical Co., Ltd.) ), SUA1900L6 (manufactured by Shin-Nakamura Chemical Co., Ltd.), Ebecryl 1360 (manufactured by Daicel Cytec Co., Ltd.), UT3971 (manufactured by Nihon Gosei Co., Ltd.), BYKUV3500 (manufactured by BYK Chemie), BYKUV3510 (manufactured by BYK Chemie), BYKUV3570 (manufactured by BYK Chemie), X22 -164E, X22-174BX, X22-2426, KBM503. KBM5103 (manufactured by Shin-Etsu Chemical Co., Ltd.), TEGO-RAD2250, TEGO-RAD2300. TEGO-RAD2200N, TEGO-RAD2010, TEGO-RAD2500, TEGO-RAD2600, TEGO-RAD2700 (manufactured by Evonik Japan), Megafax RS854 (manufactured by DIC) and the like can be mentioned.
As the fluorine-containing antifouling agent, for example, OPTOOL DAC, OPTOOL DSX (manufactured by Daikin Industries, Ltd.), Megafuck RS71, Megafuck RS74 (manufactured by DIC), LINC152EPA, LINC151EPA, LINC182UA (manufactured by Kyoeisha Chemical Co., Ltd.), 650A, tangent 601AD, tangent 602, and the like.
Examples of the antifouling agent having a fluorine-containing and silicone-containing reactive functional group include, for example, MegaFac RS851, MegaFac RS852, MegaFac RS853, MegaFac RS854 (manufactured by DIC), Opstar TU2225, Opstar TU2224. (Manufactured by JSR), X71-1203M (manufactured by Shin-Etsu Chemical Co., Ltd.) and the like.

なお、上記光学積層体において、上記第一ハードコート層には、該第一ハードコート層形成時の組成物の塗布性を向上させるため、必要に応じて界面活性剤(レベリング剤)が含まれていてもよい。
上記レベリング剤は、添加量が多くなり過ぎると、第一ハードコート層を形成する際の塗膜に泡が発生して、欠陥になったり、第二ハードコート層を積層させる際、第二ハードコート層がはじいたり、密着性が悪化したりすることがある。
また、第一ハードコート層を形成する際の塗膜も不均一であったり、凸凹や欠陥等があったりすると、上述した耐久折り畳み試験で、割れや破断が生じてしまうことがある。
In the optical layered body, the first hard coat layer contains a surfactant (leveling agent) as necessary in order to improve the coating property of the composition when forming the first hard coat layer. It may be.
When the leveling agent is added in an excessive amount, bubbles are generated in the coating film when the first hard coat layer is formed, resulting in defects or when the second hard coat layer is laminated. The coat layer may repel or adhesion may deteriorate.
Moreover, when the coating film at the time of forming a 1st hard-coat layer is also non-uniform | heterogenous, there are unevenness | corrugation, a defect, etc., a crack and a fracture | rupture may arise in the durable folding test mentioned above.

上記ハードコート層は、例えば、上記樹脂成分と、反応性シリカ微粒子、紫外線吸収剤やその他の成分等とを添加したハードコート層用組成物を用いて形成することができる。
上記ハードコート層用組成物は、必要に応じて溶媒を含有してもよい。
The hard coat layer can be formed using, for example, a hard coat layer composition to which the resin component and reactive silica fine particles, an ultraviolet absorber, and other components are added.
The said composition for hard-coat layers may contain a solvent as needed.

上記溶媒としては、アルコール(例、メタノール、エタノール、プロパノール、イソプロパノール、n−ブタノール、s−ブタノール、t−ブタノール、ベンジルアルコール、PGME、エチレングリコール、ジアセトンアルコール)、ケトン(例、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン、ヘプタノン、ジイソブチルケトン、ジエチルケトン、ジアセトンアルコール)、エステル(酢酸メチル、酢酸エチル、酢酸ブチル、酢酸n−プロピル、酢酸イソプロピル、蟻酸メチル、PGMEA)、脂肪族炭化水素(例、ヘキサン、シクロヘキサン)、ハロゲン化炭化水素(例、メチレンクロライド、クロロホルム、四塩化炭素)、芳香族炭化水素(例、ベンゼン、トルエン、キシレン)、アミド(例、ジメチルホルムアミド、ジメチルアセトアミド、n−メチルピロリドン)、エーテル(例、ジエチルエーテル、ジオキサン、テトラヒドロフラン)、エーテルアルコール(例、1−メトキシ−2−プロパノール)、カーボネート(炭酸ジメチル、炭酸ジエチル、炭酸エチルメチル)、等が挙げられる。これらの溶媒、単独で用いられてもよく、2種類以上が併用されてもよい。
なかでも、上記溶媒としては、上述した重合性モノマー及び/又は重合性オリゴマー等の樹脂成分、並びに、他の添加剤を溶解或いは分散させ、上記ハードコート層用組成物を好適に塗工できる点で、メチルイソブチルケトン、メチルエチルケトンが好ましい。
Examples of the solvent include alcohols (eg, methanol, ethanol, propanol, isopropanol, n-butanol, s-butanol, t-butanol, benzyl alcohol, PGME, ethylene glycol, diacetone alcohol), ketones (eg, acetone, methyl ethyl ketone, Methyl isobutyl ketone, cyclopentanone, cyclohexanone, heptanone, diisobutyl ketone, diethyl ketone, diacetone alcohol), ester (methyl acetate, ethyl acetate, butyl acetate, n-propyl acetate, isopropyl acetate, methyl formate, PGMEA), aliphatic Hydrocarbons (eg, hexane, cyclohexane), halogenated hydrocarbons (eg, methylene chloride, chloroform, carbon tetrachloride), aromatic hydrocarbons (eg, benzene, toluene, xylene), Amide (eg, dimethylformamide, dimethylacetamide, n-methylpyrrolidone), ether (eg, diethyl ether, dioxane, tetrahydrofuran), ether alcohol (eg, 1-methoxy-2-propanol), carbonate (dimethyl carbonate, diethyl carbonate, Ethyl methyl carbonate), and the like. These solvents may be used alone or two or more of them may be used in combination.
Among them, as the solvent, the resin component such as the polymerizable monomer and / or polymerizable oligomer described above, and other additives can be dissolved or dispersed to suitably apply the hard coat layer composition. And methyl isobutyl ketone and methyl ethyl ketone are preferred.

上記ハードコート層用組成物は、総固形分が25〜55%であることが好ましい。25%より低いと残留溶剤が残ったり、白化が生じたりするおそれがある。55%を超えると、ハードコート層用組成物の粘度が高くなり、塗工性が低下して表面にムラやスジが出たりすることがある。上記固形分は、30〜50%であることがより好ましい。 The hard coat layer composition preferably has a total solid content of 25 to 55%. If it is lower than 25%, residual solvent may remain or whitening may occur. When it exceeds 55%, the viscosity of the composition for hard coat layers is increased, the coatability is lowered, and unevenness and streaks may appear on the surface. The solid content is more preferably 30 to 50%.

上記ハードコート層用組成物を用いて上記光学積層体を製造する方法としては、例えば、上記基材フィルムの一方の面上に、ハードコート層用組成物を塗布して塗布層を形成し、該塗布層を乾燥後硬化させる方法が挙げられる。 As a method for producing the optical laminate using the hard coat layer composition, for example, on one surface of the base film, the hard coat layer composition is applied to form a coating layer, Examples include a method of curing the coating layer after drying.

上記ハードコート層用組成物を上記基材フィルムの一方の面上に塗布して塗布層を形成する方法としては、例えば、スピンコート法、ディップ法、スプレー法、ダイコート法、バーコート法、ロールコーター法、メニスカスコーター法、フレキソ印刷法、スクリーン印刷法、ビードコーター法等の公知の各種方法を挙げることができる。 Examples of the method for forming the coating layer by applying the hard coat layer composition on one surface of the substrate film include spin coating, dipping, spraying, die coating, bar coating, and rolls. Various known methods such as a coater method, a meniscus coater method, a flexographic printing method, a screen printing method, and a bead coater method can be used.

上記塗膜の乾燥方法としては特に限定されないが、一般的に30〜120℃で10〜120秒間乾燥を行うとよい。
また、上記塗膜の硬化方法としては、上記ハードコート層用組成物の組成等に応じて公知の方法を適宜選択すればよい。例えば、上記ハードコート層用組成物が紫外線硬化型のものであれば、塗布層に紫外線を照射することにより硬化させればよい。
Although it does not specifically limit as a drying method of the said coating film, Generally it is good to dry for 10 to 120 second at 30-120 degreeC.
Moreover, what is necessary is just to select a well-known method suitably according to the composition etc. of the said composition for hard-coat layers as a hardening method of the said coating film. For example, if the hard coat layer composition is of an ultraviolet curable type, the coating layer may be cured by irradiating with ultraviolet rays.

なお、上記ハードコート層が上述した第一ハードコート層及び第二ハードコート層を有する構成の場合、第一ハードコート層を形成するために調製した第一ハードコート層用組成物を、上記基材フィルム上に塗布し形成した塗膜を乾燥させた後ハーフキュアーさせる。上記塗膜を完全に硬化させずハーフキュアーさせた状態で後述する第二ハードコート層を形成することで、該第一ハードコート層及び第二ハードコート層の密着性が極めて優れたものとなる。上記塗膜をハーフキュアーさせる方法としては、例えば、上記乾燥させた塗膜に紫外線を100mJ/cm以下で照射する方法等が挙げられる。
上記ハーフキュアーさせた第一ハードコート層上に、第二ハードコート層を形成するために調製した第二ハードコート層用組成物を塗布し形成した塗膜を乾燥させた後、該塗膜を完全に硬化させることで上記第一ハードコート層上に第二ハードコート層を形成することができる。なお、上記第二ハードコート層用組成物を用いた塗膜を完全に硬化させることで、上記ハードコート層(第二ハードコート層)表面の耐スチールウール性が優れたものとなる。上記第二ハードコート層用組成物の塗膜を完全硬化させる方法としては、例えば、上記塗膜を窒素雰囲気下(酸素濃度が500ppm以下が好ましく、より好ましくは200ppm以下、更に好ましくは100ppm以下)で、紫外線照射により硬化させる方法が挙げられる。また、最表面となる上記第二ハードコート層の第一ハードコート層側と反対側面の架橋度(反応率)を上げることでも上記耐スチールウール性が改善できる。
なお、上述した方法で第一ハードコート層及び第二ハードコート層を形成する際、充分に硬化されたハードコート層(第一ハードコート層及び第二ハードコート層)を得るために、紫外線照射量は、全体で150mJ/cm以上であることが好ましい。
In the case where the hard coat layer has the first hard coat layer and the second hard coat layer described above, the composition for the first hard coat layer prepared for forming the first hard coat layer is the above group. The coating film formed on the material film is dried and then half cured. By forming a second hard coat layer to be described later in a state where the coating film is not completely cured but half cured, the adhesion between the first hard coat layer and the second hard coat layer becomes extremely excellent. . Examples of the method of half-curing the coating film include a method of irradiating the dried coating film with ultraviolet rays at 100 mJ / cm 2 or less.
The second hard coat layer composition prepared for forming the second hard coat layer was applied onto the half-cured first hard coat layer and the formed coating film was dried. By completely curing, the second hard coat layer can be formed on the first hard coat layer. In addition, the steel wool resistance of the surface of the said hard-coat layer (2nd hard-coat layer) will be excellent by fully hardening the coating film using the said composition for 2nd hard-coat layers. As a method for completely curing the coating film of the second hard coat layer composition, for example, the coating film is in a nitrogen atmosphere (oxygen concentration is preferably 500 ppm or less, more preferably 200 ppm or less, and further preferably 100 ppm or less). And the method of hardening by ultraviolet irradiation is mentioned. The steel wool resistance can also be improved by increasing the degree of cross-linking (reaction rate) on the side opposite to the first hard coat layer side of the second hard coat layer, which is the outermost surface.
In addition, when forming a 1st hard-coat layer and a 2nd hard-coat layer by the method mentioned above, in order to obtain the hard-coat layer fully hardened | cured (a 1st hard-coat layer and a 2nd hard-coat layer), ultraviolet irradiation The total amount is preferably 150 mJ / cm 2 or more.

本発明において、上記ハードコート層は、従来公知の熱硬化系のゾルゲル法を用いてなるものであってもよい。
なお、上記熱硬化系のゾルゲル法とは、一般的に、エポキシ基を有するアルコキシシラン化合物を加水分解し、重縮合反応により、流動性を失ったゲルとし、このゲルを加熱して酸化物を得る方法が一般的に知られているが、その他、例えば、アルコキシシラン化合物を加水分解し、重縮合反応させて酸化物を得る方法や、イソシアネート基を有するアルコキシシラン化合物を加熱して重縮合させて酸化物を得る方法、更にはアルコキシシラン化合物とイソシアネート基を有する化合物とを任意の割合で混合させて、加水分解し、重縮合反応させる方法であってもよい。
上記エポキシ基を有するアルコキシシラン化合物としては、分子中にエポキシ基と加水分解性ケイ素基を各々少なくとも1個有するものであれば特に限定されず、例えば、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン等が挙げられる。
In the present invention, the hard coat layer may be formed using a conventionally known thermosetting sol-gel method.
The thermosetting sol-gel method is generally a method in which an alkoxysilane compound having an epoxy group is hydrolyzed to a gel that loses fluidity by a polycondensation reaction. The method of obtaining is generally known, but in addition, for example, the alkoxysilane compound is hydrolyzed and subjected to a polycondensation reaction to obtain an oxide, or the alkoxysilane compound having an isocyanate group is heated to polycondensate. Alternatively, an oxide may be obtained, or an alkoxysilane compound and an isocyanate group-containing compound may be mixed at an arbitrary ratio, followed by hydrolysis and a polycondensation reaction.
The alkoxysilane compound having an epoxy group is not particularly limited as long as it has at least one epoxy group and hydrolyzable silicon group in the molecule. For example, γ-glycidoxypropyltrimethoxysilane, γ -Glycidoxypropyltriethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltriethoxysilane and the like.

上記エポキシ基を有するアルコキシシラン化合物の加水分解物は、上記エポキシ基を有するアルコキシシラン化合物を適当な溶媒中に溶解して加水分解を行うことにより得ることができる。使用する溶媒としては、例えば、メチルエチルケトン、イソプロピルアルコール、メタノール、エタノール、メチルイソブチルケトン、酢酸エチル、酢酸ブチル等のアルコール、ケトン、エステル類、ハロゲン化炭化水素、トルエン、キシレン等の芳香族炭化水素、あるいはこれらの混合物が挙げられる。なかでも、皮膜を形成するのに適当な乾燥速度を有する点で、メチルエチルケトンが好ましい。 The hydrolyzate of the alkoxysilane compound having the epoxy group can be obtained by performing hydrolysis by dissolving the alkoxysilane compound having the epoxy group in an appropriate solvent. Examples of the solvent used include alcohols such as methyl ethyl ketone, isopropyl alcohol, methanol, ethanol, methyl isobutyl ketone, ethyl acetate and butyl acetate, ketones, esters, halogenated hydrocarbons, aromatic hydrocarbons such as toluene and xylene, Alternatively, a mixture thereof can be mentioned. Of these, methyl ethyl ketone is preferred because it has a drying rate suitable for forming a film.

上記加水分解を行う場合に、必要に応じて触媒を使用してもよい。使用する触媒としては、特に限定されず、公知の酸触媒又は塩基触媒を使用することができる。
上記酸触媒としては、例えば、酢酸、クロロ酢酸、クエン酸、安息香酸、ジメチルマロン酸、蟻酸、プロピオン酸、グルタール酸、グリコール酸、マロン酸、マレイン酸、トルエンスルホン酸、シュウ酸等の有機酸;塩酸、硝酸、ハロゲン化シラン等の無機酸;酸性コロイダルシリカ、酸化チアニアゾル等の酸性ゾル状フィラー、等を挙げることができる。これらは単独で使用してもよいし、2種以上を併用してもよい。
上記塩基触媒としては、水酸化ナトリウム、水酸化カルシウム等のアルカリ金属又はアルカリ土類金属の水酸化物の水溶液、アンモニア水、アミン類の水溶液等を挙げることができる。なかでも、触媒反応の効率が高い、塩酸又は酢酸の使用が好ましい。
When performing the said hydrolysis, you may use a catalyst as needed. It does not specifically limit as a catalyst to be used, A well-known acid catalyst or a base catalyst can be used.
Examples of the acid catalyst include organic acids such as acetic acid, chloroacetic acid, citric acid, benzoic acid, dimethylmalonic acid, formic acid, propionic acid, glutaric acid, glycolic acid, malonic acid, maleic acid, toluenesulfonic acid, and oxalic acid. And inorganic acids such as hydrochloric acid, nitric acid, and halogenated silane; acidic sol-like fillers such as acidic colloidal silica and oxidized thania sol; These may be used alone or in combination of two or more.
Examples of the base catalyst include aqueous solutions of alkali metal or alkaline earth metal hydroxides such as sodium hydroxide and calcium hydroxide, aqueous ammonia, and aqueous solutions of amines. Of these, the use of hydrochloric acid or acetic acid, which has high catalytic reaction efficiency, is preferred.

また、上記アルコキシシラン化合物としては特に限定されず、例えば、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン、テトラブトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリイソプロポキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリイソプロポキシシラン、エチルトリブトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジイソプロポキシシラン、ジメチルジブトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、ジエチルジイソプロポキシシラン、ジエチルジブトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−クロロプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン等が挙げられる。
これらは、2種以上を併用してもよい。
Further, the alkoxysilane compound is not particularly limited, and for example, tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, tetrabutoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methyltriisopropoxysilane, methyltrimethoxysilane. Butoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, ethyltriisopropoxysilane, ethyltributoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, dimethyldiisopropoxysilane, dimethyldibutoxysilane, diethyldimethoxysilane, diethyldi Ethoxysilane, diethyldiisopropoxysilane, diethyldibutoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, γ-methacryloxy Trimethoxysilane, .gamma.-chloropropyl trimethoxy silane, .gamma.-mercaptopropyltrimethoxysilane, and the like.
Two or more of these may be used in combination.

また、上記イソシアネート基を有するアルコキシシラン化合物としては特に限定されず、例えば、3−イソシアネートプロピルトリエトキシシラン、3−イソシアネートプロピルトリメトキシシラン、2−イソシアネートエチルトリn−プロポキシシラン等が挙げられる。 Moreover, it does not specifically limit as an alkoxysilane compound which has the said isocyanate group, For example, 3-isocyanatopropyltriethoxysilane, 3-isocyanatepropyltrimethoxysilane, 2-isocyanatoethyltri n-propoxysilane etc. are mentioned.

また、上記イソシアネート基を有する化合物は特に限定されず、例えば、トリレンジイソシアネート(TDI)、3,3’−トリレン−4,4’−イソシアネート、ジフェニルメタン4,4’−ジイソシアネート(MDI)、トリフェニルメタンp,p’ ,p’ ’ −トリイソシアネート(T.M)、2,4−トリレンダイマー(TT)、ナフタレン−1,5−ジイソシアネート、トリス(4−フェニルイソシアネート)チオホスフェート、クルード(MDI)、TDI三量体、ジシクロヘキサメタン4,4’−ジイソシアネート(HMDI)、水素添加TDI(HTDI)、メタキシリレンジイソシアネート(XDI)、ヘキサヒドロメタキシリレンジイソシアネート(HXDI)、ヘキサメチレンジイソシアネート、トリメチルプロパン−1−メチル−2−イソシアノ−4−カババメート、ポリメチレンポリフェニルイソシアネート、3,3’ −ジメトキシ4,4’−ジフェニルジイソシアネート、ジフェニルエーテル2,4,1’−トリイソシアネート、m−キシリレンジイソシアネート(MXDI)、ポリメチレンポリフェニルイソシアネート(PAPI)等が挙げられる。 The compound having an isocyanate group is not particularly limited, and examples thereof include tolylene diisocyanate (TDI), 3,3′-tolylene-4,4′-isocyanate, diphenylmethane 4,4′-diisocyanate (MDI), and triphenyl. Methane p, p ′, p ′ ′-triisocyanate (TM), 2,4-tolylene dimer (TT), naphthalene-1,5-diisocyanate, tris (4-phenylisocyanate) thiophosphate, crude (MDI) ), TDI trimer, dicyclohexamethane 4,4′-diisocyanate (HMDI), hydrogenated TDI (HTDI), metaxylylene diisocyanate (XDI), hexahydrometaxylylene diisocyanate (HXDI), hexamethylene diisocyanate, Trimethylpropane 1-methyl-2-isocyano-4-carbamate, polymethylene polyphenyl isocyanate, 3,3′-dimethoxy 4,4′-diphenyl diisocyanate, diphenyl ether 2,4,1′-triisocyanate, m-xylylene diisocyanate (MXDI) ), Polymethylene polyphenyl isocyanate (PAPI) and the like.

上記ハードコート層は、上記基材フィルムと反対側表面に凹凸形状を有していても、有していなくてもよいが、外光による反射や、画面のぎらつきを防ぐ等の視認性を向上させる観点からは、上記基材フィルム側と反対側表面に凹凸形状を有することが好ましい。
上記凹凸形状を有するハードコート層は、上記第一ハードコート層が基材フィルムと反対側表面に凹凸形状を有するものであっても良いし、上記第二ハードコート層の基材フィルムと反対側の面上に凹凸形状を有するものであっても良い。
上記ハードコート層の凹凸形状は、該ハードコート層の上記基材フィルム側と反対側表面の凹凸の平均間隔をSmとし、凹凸部の平均傾斜角をθaとし、凹凸の算術平均粗さをRaとした場合に、下記式を満たすことが好ましい。
30μm<Sm<90μm、
2<θa<15、
0.5μm<Ra<1.5μm
上記Sm、θa及びRaは、JIS B 0601−1994に準拠する方法で得られる値であり、例えば、表面粗さ測定器:SE−3400/小坂研究所製等により測定して求めることができる。
The hard coat layer may or may not have a concavo-convex shape on the surface opposite to the base film, but it has visibility such as preventing reflection by external light and screen glare. From the viewpoint of improving, it is preferable to have a concavo-convex shape on the surface opposite to the base film side.
The hard coat layer having the concavo-convex shape may be one in which the first hard coat layer has a concavo-convex shape on the surface opposite to the base film, or the side opposite to the base film of the second hard coat layer. It may have an uneven shape on the surface.
The concave and convex shape of the hard coat layer is defined as Sm as the average interval between the concave and convex portions on the surface opposite to the base film side of the hard coat layer, θa as the average inclination angle of the concave and convex portions, and Ra as the arithmetic average roughness It is preferable that the following formula is satisfied.
30 μm <Sm <90 μm,
2 <θa <15,
0.5 μm <Ra <1.5 μm
Said Sm, (theta) a, and Ra are the values obtained by the method based on JISB0601-1994, For example, it can measure and obtain | require by the surface roughness measuring device: SE-3400 / made by Kosaka Laboratory.

上記ハードコート層の凹凸形状は、該ハードコート層の上記基材フィルム側と反対側表面の凹凸の平均間隔をSmとし、凹凸部の平均傾斜角をθaとし、凹凸の算術平均粗さをRaとした場合に、下記式を満たすことが好ましい。
Sm:好ましくは30μm<Sm<600μm、
より好ましくは30μm<Sm<90μm
θa:好ましくは0.1<θa<1.2、
より好ましくは0.1<θa<0.5
Ra:好ましくは0.02μm<Ra<1.0μm、
より好ましくは0.02μm<Ra<0.20μm
上記Sm、θa及びRaは、JIS B 0601−1994に準拠する方法で得られる値であり、例えば、表面粗さ測定器:SE−3400/小坂研究所製等により測定して求めることができる。
The concave and convex shape of the hard coat layer is defined as Sm as the average interval between the concave and convex portions on the surface opposite to the base film side of the hard coat layer, θa as the average inclination angle of the concave and convex portions, and Ra as the arithmetic average roughness It is preferable that the following formula is satisfied.
Sm: Preferably 30 μm <Sm <600 μm,
More preferably, 30 μm <Sm <90 μm
θa: preferably 0.1 <θa <1.2,
More preferably, 0.1 <θa <0.5
Ra: Preferably 0.02 μm <Ra <1.0 μm,
More preferably, 0.02 μm <Ra <0.20 μm
Said Sm, (theta) a, and Ra are the values obtained by the method based on JISB0601-1994, For example, it can measure and obtain | require by the surface roughness measuring device: SE-3400 / made by Kosaka Laboratory.

上記ハードコート層の上記基材フィルム側と反対側表面の凹凸形状は、防眩剤を含む組成物により形成したもの、樹脂の相分離により形成したもの、エンボス加工により形成したものであってもよい。
なかでも、上記ハードコート層の上記基材フィルム側と反対側表面の凹凸形状は、防眩剤を含むハードコート層用組成物により形成したものであることが好ましい。
上記防眩剤は微粒子であり、形状は、真球状、楕円状、不定形など、特に限定されない。また、上記防眩剤として、無機系、有機系の微粒子を使用することができ、好ましくは透明性の微粒子がよい。
有機系微粒子の具体例としては、プラスチックビーズを挙げることができる。プラスチックビーズとしては、ポリスチレンビーズ(屈折率1.60)、メラミンビーズ(屈折率1.57)、アクリルビーズ(屈折率1.49〜1.53)、アクリル−スチレン共重合体ビーズ(屈折率1.54〜1.58)、ベンゾグアナミン−ホルムアルデヒド縮合物ビーズ(屈折率1.66)、メラミン−ホルムアルデヒド縮合物(屈折率1.66)、ポリカーボネートビーズ(屈折率1.57)、ポリエチレンビーズ(屈折率1.50)、等が挙げられる。上記プラスチックビーズは、その表面に疎水性基を有することが好ましく、例えば、ポリスチレンビーズを挙げることができる。
無機系微粒子としては、不定形シリカ、球状等、ある特定形状を持った無機シリカビーズ等を挙げることができる。
なかでも、上記防眩剤として、アクリル−スチレン共重合体ビーズ及び/又は不定形シリカを使用することが好ましい。
The uneven shape on the surface opposite to the base film side of the hard coat layer may be formed by a composition containing an antiglare agent, formed by phase separation of a resin, or formed by embossing. Good.
Especially, it is preferable that the uneven | corrugated shape of the surface on the opposite side to the said base film side of the said hard-coat layer is formed with the composition for hard-coat layers containing an anti-glare agent.
The antiglare agent is a fine particle, and the shape is not particularly limited, such as a true sphere, an ellipse, or an indefinite shape. As the antiglare agent, inorganic or organic fine particles can be used, and transparent fine particles are preferable.
Specific examples of the organic fine particles include plastic beads. Examples of plastic beads include polystyrene beads (refractive index 1.60), melamine beads (refractive index 1.57), acrylic beads (refractive index 1.49 to 1.53), acrylic-styrene copolymer beads (refractive index 1). .54 to 1.58), benzoguanamine-formaldehyde condensate beads (refractive index 1.66), melamine-formaldehyde condensate (refractive index 1.66), polycarbonate beads (refractive index 1.57), polyethylene beads (refractive index) 1.50), and the like. The plastic beads preferably have a hydrophobic group on the surface, and examples thereof include polystyrene beads.
Examples of the inorganic fine particles include inorganic silica beads having a specific shape such as amorphous silica and spherical shape.
Among them, it is preferable to use acrylic-styrene copolymer beads and / or amorphous silica as the antiglare agent.

上記防眩剤の平均粒径は、1〜10μmであることが好ましく、3〜8μmであることがより好ましい。上記平均粒径は、トルエン5質量%分散液の状態で、レーザー回折散乱法粒度分布測定装置により測定して得られた値である。
上記防眩剤の含有量は、バインダー樹脂固形分100質量部に対して1〜40質量部であることが好ましく、5〜30質量部であることがより好ましい。
The average particle size of the antiglare agent is preferably 1 to 10 μm, and more preferably 3 to 8 μm. The average particle diameter is a value obtained by measuring with a laser diffraction / scattering particle size distribution measuring apparatus in the state of 5 mass% toluene dispersion.
The content of the antiglare agent is preferably 1 to 40 parts by mass and more preferably 5 to 30 parts by mass with respect to 100 parts by mass of the binder resin solid content.

また、上記基材フィルム側と反対側表面の凹凸形状を有するハードコート層は、更に内部散乱粒子を含有するものであることが好ましい。上記内部散乱粒子は、内部ヘイズを付与し、面ギラ(シンチレーション)等を抑制し得るものである。
上記内部散乱粒子としては、上記ハードコート層を構成するバインダー樹脂との屈折率の差が比較的大きい有機粒子が挙げられ、例えば、アクリル−スチレン共重合体ビーズ(屈折率1.54〜1.58)、メラミンビーズ(屈折率1.57)、ポリスチレンビーズ(屈折率1.60)、ポリ塩化ビニルビーズ(屈折率1.60)、ベンゾグアナミン−ホルムアルデヒド縮合物ビーズ(屈折率1.66)、メラミン−ホルムアルデヒド縮合物(屈折率1.66)、等のプラスチックビーズを挙げることができる。
これらの粒子は、上記防眩剤としての性質と内部散乱粒子としての性質を兼ね備えたものを使用してもよい。
Moreover, it is preferable that the hard-coat layer which has the uneven | corrugated shape of the surface on the opposite side to the said base film side contains an internal scattering particle further. The internal scattering particles impart internal haze and can suppress surface glare (scintillation) and the like.
Examples of the internal scattering particles include organic particles having a relatively large refractive index difference from the binder resin constituting the hard coat layer. For example, acrylic-styrene copolymer beads (refractive index of 1.54 to 1. 58), melamine beads (refractive index 1.57), polystyrene beads (refractive index 1.60), polyvinyl chloride beads (refractive index 1.60), benzoguanamine-formaldehyde condensate beads (refractive index 1.66), melamine -Plastic beads such as formaldehyde condensate (refractive index 1.66) can be mentioned.
These particles may have the properties as the antiglare agent and the properties as internal scattering particles.

上記内部散乱粒子の平均粒径は、0.5〜10μmであることが好ましく、1〜8μmであることがより好ましい。上記平均粒径は、トルエン5質量%分散液の状態で、レーザー回折散乱法粒度分布測定装置により測定して得られた値である。
上記内部散乱粒子の添加量は、バインダー樹脂固形分100質量部に対して0.1〜40質量%であることが好ましく、1〜30質量%であることがより好ましい。
The average particle diameter of the internal scattering particles is preferably 0.5 to 10 μm, and more preferably 1 to 8 μm. The average particle diameter is a value obtained by measuring with a laser diffraction / scattering particle size distribution measuring apparatus in the state of 5 mass% toluene dispersion.
The amount of the internal scattering particles added is preferably 0.1 to 40% by mass and more preferably 1 to 30% by mass with respect to 100 parts by mass of the binder resin solid content.

上記基材フィルム側と反対側表面の凹凸形状を有するハードコート層のバインダー樹脂としては、上述したハードコート層に使用することのできるバインダー樹脂と同様のものを挙げることができる。 Examples of the binder resin of the hard coat layer having a concavo-convex shape on the surface opposite to the base film side include the same binder resins that can be used for the hard coat layer described above.

上記基材フィルム側と反対側表面の凹凸形状を有するハードコート層は、更に、本発明の効果を阻害しない程度に必要に応じてその他の成分を含んでいてもよい。上記その他の成分としては、上述したハードコート層に使用できるその他の成分と同様のものを挙げることができる。 The hard coat layer having a concavo-convex shape on the surface opposite to the base film side may further contain other components as necessary to the extent that the effects of the present invention are not impaired. As said other component, the thing similar to the other component which can be used for the hard-coat layer mentioned above can be mentioned.

上記基材フィルム側と反対側表面の凹凸形状を有するハードコート層は、公知の方法により形成するとよい。例えば、バインダー樹脂、防眩剤及びその他の成分を溶剤と混合分散してハードコート層用組成物を調製して、公知の方法により形成することができる。上記ハードコート層用組成物の調製方法と、これを用いてハードコート層を形成する方法としては、上述したハードコート層用組成物の調製方法と、該ハードコート層を形成する方法と同様の方法をそれぞれ挙げることができる。 The hard coat layer having a concavo-convex shape on the surface opposite to the base film side may be formed by a known method. For example, a binder resin, an antiglare agent, and other components can be mixed and dispersed with a solvent to prepare a hard coat layer composition, which can be formed by a known method. The method for preparing the hard coat layer composition and the method for forming the hard coat layer using the same are the same as the method for preparing the hard coat layer composition described above and the method for forming the hard coat layer. Each method can be mentioned.

上記基材フィルム側と反対側表面の凹凸形状を有するハードコート層の層厚みは、1〜10μmであることが好ましい。1μm未満であると、防眩性を好適に付与することができないおそれがある。10μmを超えると、カールやクラックなどが生じるおそれがある。
上記層厚みは、光学積層体の断面を、電子顕微鏡(SEM、TEM、STEM)で観察することにより測定して得られた値である。
It is preferable that the layer thickness of the hard-coat layer which has the uneven | corrugated shape of the surface on the opposite side to the said base film side is 1-10 micrometers. If it is less than 1 μm, the antiglare property may not be suitably imparted. If it exceeds 10 μm, curling or cracking may occur.
The layer thickness is a value obtained by measuring the cross section of the optical layered body with an electron microscope (SEM, TEM, STEM).

上記光学積層体は、導電性層を更に有することが好ましい。
上記導電性層としては、例えば、導電剤として導電性繊維状フィラーを含むことが好ましい。
The optical layered body preferably further has a conductive layer.
As said electroconductive layer, it is preferable that a conductive fibrous filler is included as a electrically conductive agent, for example.

上記導電性繊維状フィラーは、繊維径が200nm以下であり、繊維長が1μm以上であることが好ましい。
上記繊維径が200nmを超えると、製造する導電性層のヘイズ値が高くなったり光透過性能が不充分となったりすることがある。上記導電性繊維状フィラーの繊維径の好ましい下限は導電性層の導電性の観点から10nmであり、上記繊維径のより好ましい範囲は10〜180nmである。
また、上記導電性繊維状フィラーの繊維長が1μm未満であると、充分な導電性能を有する導電性層を形成できないことがあり、凝集が発生してヘイズ値の上昇や光透過性能の低下を招く恐れがあることから、上記繊維長の好ましい上限は500μmであり、上記繊維長のより好ましい範囲は3〜300μmであり、更に好ましい範囲は10〜30μmである。
なお、上記導電性繊維状フィラーの繊維径、繊維長は、例えば、SEM、STEM、TEM等の電子顕微鏡を用い、1000〜50万倍にて上記導電性繊維状フィラーの繊維径及び繊維長を測定した10カ所の平均値として求めることができる。
The conductive fibrous filler preferably has a fiber diameter of 200 nm or less and a fiber length of 1 μm or more.
When the fiber diameter exceeds 200 nm, the haze value of the conductive layer to be produced may increase or the light transmission performance may be insufficient. The preferable lower limit of the fiber diameter of the conductive fibrous filler is 10 nm from the viewpoint of the conductivity of the conductive layer, and the more preferable range of the fiber diameter is 10 to 180 nm.
Moreover, when the fiber length of the conductive fibrous filler is less than 1 μm, a conductive layer having sufficient conductive performance may not be formed, and aggregation may occur, resulting in an increase in haze value or a decrease in light transmission performance. Therefore, the upper limit of the fiber length is preferably 500 μm, the more preferable range of the fiber length is 3 to 300 μm, and the further preferable range is 10 to 30 μm.
The fiber diameter and fiber length of the conductive fibrous filler are, for example, the fiber diameter and fiber length of the conductive fibrous filler at 1000 to 500,000 times using an electron microscope such as SEM, STEM, or TEM. It can obtain | require as an average value of 10 places measured.

上記導電性繊維状フィラーとしては、例えば、導電性炭素繊維、金属繊維及び金属被覆合成繊維からなる群より選択される少なくとも1種であることが好ましい。
上記導電性炭素繊維としては、例えば、気相成長法炭素繊維(VGCF)、カーボンナノチューブ、ワイヤーカップ、ワイヤーウォール等が挙げられる。これらの導電性炭素繊維は、1種又は2種以上を使用することができる。
The conductive fibrous filler is preferably at least one selected from the group consisting of conductive carbon fibers, metal fibers, and metal-coated synthetic fibers, for example.
Examples of the conductive carbon fiber include vapor grown carbon fiber (VGCF), carbon nanotube, wire cup, and wire wall. These conductive carbon fibers can use 1 type (s) or 2 or more types.

上記金属繊維としては、例えば、ステンレススチール、鉄、金、銀、アルミニウム、ニッケル、チタン等を細く、長く伸ばす伸線法、又は、切削法により作製された繊維が使用できる。このような金属繊維は、1種又は2種以上を使用することができる。これらの金属繊維の中でも、導電性に優れることから、銀を用いた金属繊維が好ましい。 As said metal fiber, the fiber produced by the wire-drawing method or the cutting method which extends stainless steel, iron, gold | metal | money, silver, aluminum, nickel, titanium etc. thinly and long can be used, for example. Such metal fiber can use 1 type (s) or 2 or more types. Among these metal fibers, metal fibers using silver are preferable because of excellent conductivity.

上記金属被覆合成繊維としては、例えば、アクリル繊維に金、銀、アルミニウム、ニッケル、チタン等をコーティングした繊維等が挙げられる。このような金属被覆合成繊維は、1種又は2種以上を使用することができる。これらの金属被覆合成繊維の中でも、導電性に優れることから、銀を用いた金属被覆合成繊維が好ましい。 Examples of the metal-coated synthetic fibers include fibers obtained by coating acrylic fibers with gold, silver, aluminum, nickel, titanium, and the like. One or more kinds of such metal-coated synthetic fibers can be used. Among these metal-coated synthetic fibers, a metal-coated synthetic fiber using silver is preferable because of its excellent conductivity.

上記導電性層における導電性繊維状フィラーの含有量としては、例えば、導電性層を構成する樹脂成分100質量部に対して20〜3000質量部であることが好ましい。20質量部未満であると、充分な導電性能を有する導電性層を形成できないことがあり、3000質量部を超えると、本発明の導電性積層体のヘイズが高くなったり光透過性能が不充分となったりすることがある。また、導電性繊維状フィラーの接点にバインダー樹脂が入る量が多くなることで導電性層の導通が悪化し、本発明の導電性積層体に目標の抵抗値を得られないことがある。上記導電性繊維状フィラーの含有量のより好ましい下限は50質量部、より好ましい上限は1000質量部である。
なお、上記導電性層の樹脂成分としては特に限定されず従来公知の材料が挙げられる。
As content of the conductive fibrous filler in the said conductive layer, it is preferable that it is 20-3000 mass parts with respect to 100 mass parts of resin components which comprise a conductive layer, for example. When the amount is less than 20 parts by mass, a conductive layer having sufficient conductivity may not be formed. When the amount exceeds 3000 parts by mass, the haze of the conductive laminate of the present invention increases or the light transmission performance is insufficient. It may become. Further, the amount of the binder resin entering the contact of the conductive fibrous filler is increased, so that the conductivity of the conductive layer is deteriorated, and the target resistance value may not be obtained in the conductive laminate of the present invention. The minimum with more preferable content of the said conductive fibrous filler is 50 mass parts, and a more preferable upper limit is 1000 mass parts.
In addition, it does not specifically limit as a resin component of the said electroconductive layer, A conventionally well-known material is mentioned.

また、上記導電性繊維状フィラー以外のその他の導電剤としては、例えば、第4級アンモニウム塩、ピリジニウム塩、第1〜第3アミノ基等のカチオン性基を有する各種のカチオン性化合物、スルホン酸塩基、硫酸エステル塩基、リン酸エステル塩基、ホスホン酸塩基などのアニオン性基を有するアニオン性化合物、アミノ酸系、アミノ硫酸エステル系などの両性化合物、アミノアルコール系、グリセリン系、ポリエチレングリコール系などのノニオン性化合物、スズ及びチタンのアルコキシドのような有機金属化合物並びにそれらのアセチルアセトナート塩のような金属キレート化合物等、更に、上記に列記した化合物を高分子量化した化合物、更に、第3級アミノ基、第4級アンモニウム基、又は、金属キレート部を有し、かつ、電離放射線により重合可能なモノマー又はオリゴマー、或いは電離放射線により重合可能な重合可能な官能基を有し、かつ、カップリング剤のような有機金属化合物等の重合性化合物等が挙げられる。
上記その他の導電剤の含有量としては、上記導電性層を構成する樹脂成分100質量部に対して、1〜50質量部であることが好ましい。1質量部未満であると、充分な導電性能を有する導電性層を形成できないことがあり、50質量部を超えると、本発明の導電性積層体のヘイズが高くなったり光透過性能が不充分となったりすることがある。
Examples of other conductive agents other than the conductive fibrous filler include various cationic compounds having a cationic group such as a quaternary ammonium salt, a pyridinium salt, and first to third amino groups, and sulfonic acid. Anionic compounds having anionic groups such as bases, sulfate ester bases, phosphate ester bases, phosphonate bases, amphoteric compounds such as amino acids and aminosulfuric acid esters, nonions such as amino alcohols, glycerols and polyethylene glycols Compounds, organometallic compounds such as tin and titanium alkoxides, and metal chelate compounds such as acetylacetonate salts thereof, compounds obtained by increasing the molecular weight of the compounds listed above, and tertiary amino groups , A quaternary ammonium group or a metal chelate moiety, and ionization Polymerizable monomer or oligomer by line, or have a polymerizable polymerizable functional groups by ionizing radiation, and the polymerizable compound of the organic metal compounds, such as coupling agents.
As content of the said other electrically conductive agent, it is preferable that it is 1-50 mass parts with respect to 100 mass parts of resin components which comprise the said electroconductive layer. When the amount is less than 1 part by mass, a conductive layer having sufficient conductivity may not be formed. When the amount exceeds 50 parts by mass, the haze of the conductive laminate of the present invention increases or the light transmission performance is insufficient. It may become.

更に、上記導電剤としては、例えば、導電性微粒子も用いることができる。
上記導電性微粒子の具体例としては、金属酸化物からなるものを挙げることができる。そのような金属酸化物としては、例えば、ZnO(屈折率1.90、以下、カッコ内の数値は屈折率を表す。)、CeO(1.95)、Sb(1.71)、SnO(1.997)、ITOと略して呼ばれることの多い酸化インジウム錫(1.95)、In(2.00)、Al(1.63)、アンチモンドープ酸化錫(略称;ATO、2.0)、アルミニウムドープ酸化亜鉛(略称;AZO、2.0)等を挙げることができる。上記導電性微粒子の平均粒径は、0.1nm〜0.1μmであることが好ましい。かかる範囲内であることにより、上記導電性微粒子を導電性層を構成する樹脂成分の原料中に分散した際、ヘイズがほとんどなく、全光線透過率が良好な高透明な膜を形成可能な組成物が得られる。
上記導電性微粒子の含有量としては、上記導電性層を構成する樹脂成分100質量部に対して、10〜400質量部であることが好ましい。10質量部未満であると、充分な導電性能を有する導電性層を形成できないことがあり、400質量部を超えると、本発明の導電性積層体のヘイズが高くなったり光透過性能が不充分となったりすることがある。
Furthermore, as the conductive agent, for example, conductive fine particles can also be used.
Specific examples of the conductive fine particles include those made of a metal oxide. As such a metal oxide, for example, ZnO (refractive index 1.90, the numerical value in parenthesis represents a refractive index), CeO 2 (1.95), Sb 2 O 3 (1.71). , SnO 2 (1.997), indium tin oxide (1.95) often referred to as ITO, In 2 O 3 (2.00), Al 2 O 3 (1.63), antimony-doped tin oxide (Abbreviation: ATO, 2.0), aluminum-doped zinc oxide (abbreviation: AZO, 2.0), and the like can be given. The average particle size of the conductive fine particles is preferably 0.1 nm to 0.1 μm. By being within such a range, when the conductive fine particles are dispersed in the raw material of the resin component constituting the conductive layer, a composition capable of forming a highly transparent film having almost no haze and good total light transmittance. A thing is obtained.
As content of the said electroconductive fine particles, it is preferable that it is 10-400 mass parts with respect to 100 mass parts of resin components which comprise the said electroconductive layer. If the amount is less than 10 parts by mass, a conductive layer having sufficient conductivity may not be formed. If the amount exceeds 400 parts by mass, the haze of the conductive laminate of the present invention is increased or the light transmission performance is insufficient. It may become.

上記導電剤としては、例えば、芳香族共役系のポリ(パラフェニレン)、複素環式共役系のポリピロール、ポリチオフェン、脂肪族共役系のポリアセチレン、含ヘテロ原子共役系のポリアニリン、混合型共役系のポリ(フェニレンビニレン)、分子中に複数の共役鎖を持つ共役系である複鎖型共役系、前述の共役高分子鎖を飽和高分子にグラフト又はブロック共重した高分子である導電性複合体等の高分子量化導電剤を用いることもできる。 Examples of the conductive agent include aromatic conjugated poly (paraphenylene), heterocyclic conjugated polypyrrole, polythiophene, aliphatic conjugated polyacetylene, heteroatom-containing polyaniline, and mixed conjugated poly. (Phenylene vinylene), a double-chain conjugated system which is a conjugated system having a plurality of conjugated chains in the molecule, a conductive complex which is a polymer obtained by grafting or block co-polymerizing the above-mentioned conjugated polymer chain onto a saturated polymer, etc. It is also possible to use a high molecular weight conductive agent.

上記導電性層は、屈折率調整粒子を含んでいてもよい。
上記屈折率調整粒子としては、例えば、高屈折率微粒子や低屈折率微粒子等が挙げられる。
上記高屈折率微粒子としては特に限定されず、例えば、芳香族系ポリイミド樹脂や、エポキシ樹脂、(メタ)アクリル樹脂(アクリレート、メタクリレート化合物)、ポリエステル樹脂及びウレタン樹脂等の樹脂材料に芳香環や硫黄原子や臭素原子を含有させた屈折率の高い樹脂並びにその前駆体等の屈折率の高い材料からなる微粒子、又は、金属酸化物微粒子や金属アルコキシド微粒子等が挙げられる。
上記低屈折率微粒子としては特に限定されず、例えば、エポキシ樹脂、(メタ)アクリル樹脂、ポリエステル樹脂及びウレタン樹脂等の樹脂材料にフッ素原子を含有させた屈折率の低い樹脂並びにその前駆体等の屈折率の低い材料からなる微粒子、又は、フッ化マグネシウム微粒子、中空や多孔質状の微粒子(有機系、無機系)等が挙げられる。
The conductive layer may contain refractive index adjusting particles.
Examples of the refractive index adjusting particles include high refractive index fine particles and low refractive index fine particles.
The high refractive index fine particles are not particularly limited, and for example, aromatic ring resin or sulfur resin such as aromatic polyimide resin, epoxy resin, (meth) acrylic resin (acrylate, methacrylate compound), polyester resin and urethane resin. Examples thereof include fine particles made of a material having a high refractive index such as a resin having a high refractive index containing atoms and bromine atoms and precursors thereof, or metal oxide fine particles and metal alkoxide fine particles.
The low refractive index fine particles are not particularly limited. For example, a resin having a low refractive index containing a fluorine atom in a resin material such as an epoxy resin, a (meth) acrylic resin, a polyester resin, and a urethane resin, and a precursor thereof. Examples include fine particles made of a material having a low refractive index, magnesium fluoride fine particles, hollow or porous fine particles (organic or inorganic), and the like.

上記有機EL層としては、従来公知のものを用いることができる。
本発明の有機EL用積層体において、上記有機EL層に用いる基板は、ポリイミドフィルム、アラミドフィルム、ポリエステルフィルム、ポリエチレンナフタレートフィルム、シクロオレフィンフィルム又はアクリルフィルムが好ましい。
A conventionally well-known thing can be used as said organic EL layer.
In the organic EL laminate of the present invention, the substrate used for the organic EL layer is preferably a polyimide film, an aramid film, a polyester film, a polyethylene naphthalate film, a cycloolefin film, or an acrylic film.

本発明の有機EL積層体は、上記有機EL層と光学積層体との間に、公知のタッチパネルや位相差フィルム等が積層されていてもよい。
本発明の有機EL用積層体において、上記タッチパネルに用いる基板は、ポリイミドフィルム、アラミドフィルム、ポリエステルフィルム、ポリエチレンナフタレートフィルム、シクロオレフィンフィルム又はアクリルフィルムが好ましい。
In the organic EL laminate of the present invention, a known touch panel, retardation film or the like may be laminated between the organic EL layer and the optical laminate.
In the organic EL laminate of the present invention, the substrate used for the touch panel is preferably a polyimide film, an aramid film, a polyester film, a polyethylene naphthalate film, a cycloolefin film, or an acrylic film.

本発明の有機EL用積層体は、上述した構成を有し、耐久折り畳み試験で割れ又は破断を生じないものであるため、極めて優れた折り畳み性を有し、更に、優れた硬度及び透明性を有する。
このような本発明の有機EL用積層体は、液晶表示装置等の画像表示装置の表面保護フィルムとして使用できるだけでなく、曲面ディスプレイや、曲面を有する製品の表面保護フィルム、折り畳み式の部材の表面保護フィルムとして使用できる。
なかでも、本発明の有機EL用積層体は、極めて優れた折り畳み性を有するため、折り畳み式の部材の表面保護フィルムとして好適に用いられる。
また、本発明の有機EL用積層体は、折り畳み式スマートフォンや折り畳み式タブレット等の用途として用いられる部材であるため、抗菌性を有するものであることが好ましい。上記抗菌性を付与する方法としては特に限定されず、従来公知の方法が挙げられる。
また、本発明の有機EL用積層体は、従来公知の方法によるブルーライトカット性を有することが好ましい。なお、上記ブルーライトとは、波長385〜495nmの光を意味する。
Since the laminate for organic EL of the present invention has the above-described configuration and does not cause cracking or breaking in the durability folding test, it has extremely excellent foldability, and further has excellent hardness and transparency. Have.
Such a laminate for organic EL of the present invention can be used not only as a surface protective film for an image display device such as a liquid crystal display device, but also for a curved display, a surface protective film for a product having a curved surface, and the surface of a foldable member. Can be used as a protective film.
Especially, since the laminated body for organic EL of this invention has the extremely outstanding foldability, it is used suitably as a surface protection film of a foldable member.
Moreover, since the laminated body for organic EL of this invention is a member used as uses, such as a foldable smart phone and a foldable tablet, it is preferable that it is what has antimicrobial property. The method for imparting antibacterial properties is not particularly limited, and conventionally known methods can be mentioned.
Moreover, it is preferable that the laminated body for organic EL of this invention has the blue light cut property by a conventionally well-known method. The blue light means light having a wavelength of 385 to 495 nm.

上記折り畳み式の部材としては、折り畳まれる構造を備えた部材であれば特に限定されず、例えば、折り畳み式スマートフォンや折り畳み式タッチパネル、タブレット、折り畳み式の(電子)アルバム等が挙げられる。
折り畳まれる構造を備えた部材での、折り畳み箇所は、1箇所であっても、複数個所であってもよい。折り畳みの方向も必要に応じて任意に決めることができる。
The foldable member is not particularly limited as long as it is a member having a structure that can be folded, and examples thereof include a foldable smartphone, a foldable touch panel, a tablet, and a foldable (electronic) album.
The member provided with the structure to be folded may be folded at one place or plural places. The direction of folding can also be arbitrarily determined as necessary.

本発明の有機EL用積層体は、上述した構成からなるものであるため、優れた硬度、透明性及び耐久折り畳み性能を有するものとなる。
このため、本発明の有機EL用積層体は、曲面ディスプレイや、曲面を有する製品の表面保護フィルム、折り畳み式の部材の表面保護フィルムとして好適に使用することができる。
Since the laminated body for organic EL of this invention consists of the structure mentioned above, it has the outstanding hardness, transparency, and durable folding performance.
For this reason, the laminated body for organic EL of this invention can be used conveniently as a curved surface display, the surface protection film of the product which has a curved surface, and the surface protection film of a foldable member.

耐久折り畳み試験を模式的に示す断面図である。It is sectional drawing which shows a durable folding test typically.

以下に実施例及び比較例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例及び比較例のみに限定されるものではない。
なお、文中、「部」又は「%」とあるのは特に断りのない限り、質量基準である。
Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to these examples and comparative examples.
In the text, “part” or “%” is based on mass unless otherwise specified.

Figure 2017033624
Figure 2017033624

(実施例1)
基材フィルムとして、厚さ30μmの上記式(1)で表されるポリイミドフィルムを準備し、該基材フィルムの一方の面上に、下記組成のハードコート層用組成物1を塗布し、塗膜を形成した。
次いで、形成した塗膜に対して、70°1分間加熱させることにより塗膜中の溶剤を蒸発させ、紫外線照射装置(フュージョンUVシステムジャパン社製、光源Hバルブ)を用いて、紫外線を空気中にて積算光量が100mJ/cmになるように照射して塗膜をハーフキュアーさせて厚さ3μmの第一ハードコート層を形成した。
次いで、第一ハードコート層上に、下記組成のハードコート層用組成物Aを塗布し、塗膜を形成した。次いで、形成した塗膜に対して、70°1分間加熱させることにより塗膜中の溶剤を蒸発させ、紫外線照射装置(フュージョンUVシステムジャパン社製、光源Hバルブ)を用いて、紫外線を酸素濃度が200ppm以下の条件下にて積算光量が200mJ/cmになるように照射して塗膜を完全硬化させることにより、厚さ2μmの第二ハードコート層を形成し、光学積層体を製造した。
Example 1
A polyimide film represented by the above formula (1) having a thickness of 30 μm was prepared as a base film, and a hard coat layer composition 1 having the following composition was applied to one surface of the base film, A film was formed.
Next, the solvent in the coating film is evaporated by heating the formed coating film at 70 ° C. for 1 minute, and ultraviolet rays are radiated in the air using an ultraviolet irradiation device (light source H bulb manufactured by Fusion UV System Japan). The film was half-cured by irradiation so that the integrated light amount was 100 mJ / cm 2 to form a first hard coat layer having a thickness of 3 μm.
Subsequently, the hard coat layer composition A having the following composition was applied onto the first hard coat layer to form a coating film. Next, the solvent in the coating film is evaporated by heating the formed coating film at 70 ° C. for 1 minute, and the ultraviolet ray is converted into an oxygen concentration using an ultraviolet irradiation device (light source H bulb manufactured by Fusion UV System Japan). Was applied under the condition of 200 ppm or less so that the integrated light amount was 200 mJ / cm 2 to completely cure the coating film, thereby forming a second hard coat layer having a thickness of 2 μm to produce an optical laminate. .

(ハードコート層用組成物1)
ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(M403、東亜合成社製) 25質量部
ジペンタエリスリトールEO変性ヘキサアクリレート(A−DPH−6E、新中村化学社製) 25質量部
異型シリカ微粒子(平均粒子径25nm、日揮触媒化成社製) 50質量部(固形換算)
光重合開始剤(Irg184) 4重量部
フッ素系レベリング剤(F568、DIC社製) 0.2重量部(固形換算)
溶剤(MIBK) 150質量部
なお、得られた第一ハードコート層のマルテンス硬さは、830MPaであった。
(Composition 1 for hard coat layer)
Mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate (M403, manufactured by Toa Gosei Co., Ltd.) 25 parts by mass Dipentaerythritol EO-modified hexaacrylate (A-DPH-6E, manufactured by Shin-Nakamura Chemical Co., Ltd.) 25 parts by mass atypical silica fine particles (Average particle size 25 nm, manufactured by JGC Catalysts & Chemicals) 50 parts by mass (solid conversion)
Photopolymerization initiator (Irg184) 4 parts by weight Fluorine leveling agent (F568, manufactured by DIC) 0.2 parts by weight (solid conversion)
Solvent (MIBK) 150 parts by mass The Martens hardness of the obtained first hard coat layer was 830 MPa.

(ハードコート層用組成物A)
ウレタンアクリレート(UX5000、日本化薬社製) 25質量部
ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(M403、東亜合成社製) 50質量部
多官能アクリレートポリマー(アクリット8KX−012C、大成ファインケミカル社製) 25質量部(固形換算)
防汚剤(BYKUV3500、ビックケミー社製) 1.5質量部(固形換算)
光重合開始剤(Irg184) 4重量部
溶剤(MIBK) 150質量部
なお、得られた第二ハードコート層のマルテンス硬さは、500MPaであった。
(Composition A for hard coat layer)
Urethane acrylate (UX5000, manufactured by Nippon Kayaku Co., Ltd.) 25 parts by mass A mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate (M403, manufactured by Toa Gosei Co., Ltd.) 50 parts by mass polyfunctional acrylate polymer (Acryt 8KX-012C, Taisei Fine Chemical) 25 parts by mass (solid conversion)
Antifouling agent (BYKUV3500, manufactured by Big Chemie) 1.5 parts by mass (solid conversion)
Photopolymerization initiator (Irg184) 4 parts by weight solvent (MIBK) 150 parts by weight The Martens hardness of the obtained second hard coat layer was 500 MPa.

(実施例2)
第二ハードコート層の厚みを4μmとした以外は、実施例1と同様にして光学積層体を製造した。
(Example 2)
An optical laminate was produced in the same manner as in Example 1 except that the thickness of the second hard coat layer was 4 μm.

(実施例3)
第一ハードコート層の厚みを5μmとした以外は、実施例1と同様にして光学積層体を製造した。
(Example 3)
An optical laminate was produced in the same manner as in Example 1 except that the thickness of the first hard coat layer was 5 μm.

(実施例4)
第二ハードコート層の厚みを0.75μmとした以外は、実施例1と同様にして光学積層体を製造した。
Example 4
An optical laminate was produced in the same manner as in Example 1 except that the thickness of the second hard coat layer was changed to 0.75 μm.

(実施例5)
第一ハードコート層の厚みを2μmとした以外は、実施例1と同様にして光学積層体を製造した。
(Example 5)
An optical laminate was manufactured in the same manner as in Example 1 except that the thickness of the first hard coat layer was 2 μm.

(実施例6)
ハードコート層用組成物1に代えて下記組成のハードコート層用組成物2を用い、ハードコート層用組成物Aに代えて下記組成のハードコート層用組成物Bを用いた以外は、実施例1と同様にして第一ハードコート層及び第二ハードコート層を形成し、光学積層体を製造した。
(Example 6)
Implemented except that the hard coat layer composition 2 having the following composition was used instead of the hard coat layer composition 1 and the hard coat layer composition B having the following composition was used instead of the hard coat layer composition A. The first hard coat layer and the second hard coat layer were formed in the same manner as in Example 1 to produce an optical laminate.

(ハードコート層用組成物2)
ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(M403、東亜合成社製) 25質量部
6官能アクリレート(MF001、第一工業製薬社製) 25質量部
異型シリカ微粒子(平均粒子径25nm、日揮触媒化成社製) 50質量部(固形換算)
フッ素系レベリング剤(F568、DIC社製) 0.2重量部(固形換算)
光重合開始剤(Irg184) 4重量部
溶剤(MIBK) 150質量部
なお、得られた第一ハードコート層のマルテンス硬さは、890MPaであった。
(Composition 2 for hard coat layer)
Mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate (M403, manufactured by Toa Gosei Co., Ltd.) 25 parts by mass Hexafunctional acrylate (MF001, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) 25 parts by mass atypical silica fine particles (average particle size 25 nm, JGC 50 parts by mass (solid conversion)
Fluorine leveling agent (F568, manufactured by DIC) 0.2 parts by weight (solid conversion)
Photopolymerization initiator (Irg184) 4 parts by weight solvent (MIBK) 150 parts by weight The Martens hardness of the obtained first hard coat layer was 890 MPa.

(ハードコート層用組成物B)
ウレタンアクリレート(UX5000、日本化薬社製) 50質量部
ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(M403、東亜合成社製) 50質量部
防汚剤(BYKUV3500、ビックケミー社製) 1.5質量部(固形換算)
光重合開始剤(Irg184) 4重量部
溶剤(MIBK) 150質量部
なお、得られた第二ハードコート層のマルテンス硬さは、600MPaであった。
(Composition B for hard coat layer)
Urethane acrylate (UX5000, manufactured by Nippon Kayaku Co., Ltd.) 50 parts by mass of a mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate (M403, manufactured by Toa Gosei Co., Ltd.) 50 parts by mass of an antifouling agent (BYKUV3500, manufactured by BYK Chemie) 5 parts by weight (solid conversion)
Photopolymerization initiator (Irg184) 4 parts by weight solvent (MIBK) 150 parts by weight The Martens hardness of the obtained second hard coat layer was 600 MPa.

(実施例7)
ハードコート層用組成物1に代えて下記組成のハードコート層用組成物3を用い、ハードコート層用組成物Aに代えて下記組成のハードコート層用組成物Cを用いた以外は、実施例1と同様にして第一ハードコート層及び第二ハードコート層を形成し、光学積層体を製造した。
(Example 7)
Implemented except that the hard coat layer composition 3 having the following composition was used instead of the hard coat layer composition 1 and the hard coat layer composition C having the following composition was used instead of the hard coat layer composition A. The first hard coat layer and the second hard coat layer were formed in the same manner as in Example 1 to produce an optical laminate.

(ハードコート層用組成物3)
ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(M403、東亜合成社製) 35質量部
ジペンタエリスリトールEO変性ヘキサアクリレート(A−DPH−6E、新中村化学社製) 35質量部
異型シリカ微粒子(平均粒子径25nm、日揮触媒化成社製) 30質量部(固形換算)
光重合開始剤(Irg184) 4重量部
フッ素系レベリング剤(F568、DIC社製) 0.2重量部(固形換算)
溶剤(MIBK) 150質量部
なお、得られた第一ハードコート層のマルテンス硬さは、620MPaであった。
(Composition 3 for hard coat layer)
Mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate (M403, manufactured by Toa Gosei Co., Ltd.) 35 parts by mass Dipentaerythritol EO-modified hexaacrylate (A-DPH-6E, manufactured by Shin-Nakamura Chemical Co., Ltd.) 35 parts by mass atypical silica fine particles (Average particle diameter 25 nm, manufactured by JGC Catalysts & Chemicals) 30 parts by mass (solid conversion)
Photopolymerization initiator (Irg184) 4 parts by weight Fluorine leveling agent (F568, manufactured by DIC) 0.2 parts by weight (solid conversion)
Solvent (MIBK) 150 parts by mass The Martens hardness of the obtained first hard coat layer was 620 MPa.

(ハードコート層用組成物C)
ウレタンアクリレート(KRM8452、ダイセル・オルネクス社製) 100質量部
防汚剤(TEGO−RAD2600、エボニックジャパン社製)
1.5質量部(固形換算)
溶剤(MIBK) 150質量部
なお、得られた第二ハードコート層のマルテンス硬さは、420MPaであった。
(Composition C for hard coat layer)
Urethane acrylate (KRM8452, manufactured by Daicel Ornex) 100 parts by mass antifouling agent (TEGO-RAD2600, manufactured by Evonik Japan)
1.5 parts by weight (solid conversion)
Solvent (MIBK) 150 parts by mass The Martens hardness of the obtained second hard coat layer was 420 MPa.

(実施例8)
ハードコート層用組成物1に代えて下記組成のハードコート層用組成物4を用い、ハードコート層用組成物Aに代えて下記組成のハードコート層用組成物Dを用いた以外は、実施例1と同様にして第一ハードコート層及び第二ハードコート層を形成し、光学積層体を製造した。
(Example 8)
Implemented except that the hard coat layer composition 4 having the following composition was used instead of the hard coat layer composition 1 and the hard coat layer composition D having the following composition was used instead of the hard coat layer composition A. The first hard coat layer and the second hard coat layer were formed in the same manner as in Example 1 to produce an optical laminate.

(ハードコート層用組成物4)
ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(M403、東亜合成社製) 25質量部
6官能アクリレート(MF001、第一工業製薬社製) 10質量部
多官能アクリレートポリマー(PVEEA、AX−4−HC、日本触媒社製)
15質量部(固形換算)
光重合開始剤(Irg184) 4重量部
異型シリカ微粒子(平均粒子径25nm、日揮触媒化成社製) 50質量部(固形換算)
フッ素系レベリング剤(F568、DIC社製) 0.2重量部(固形換算)
溶剤(MIBK) 150質量部
なお、得られた第一ハードコート層のマルテンス硬さは、800MPaであった。
(Composition 4 for hard coat layer)
Mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate (M403, manufactured by Toa Gosei Co., Ltd.) 25 parts by mass hexafunctional acrylate (MF001, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) 10 parts by mass polyfunctional acrylate polymer (PVEEA, AX-4) -HC, manufactured by Nippon Shokubai Co., Ltd.)
15 parts by weight (solid conversion)
Photopolymerization initiator (Irg184) 4 parts by weight atypical silica fine particles (average particle size 25 nm, manufactured by JGC Catalysts & Chemicals) 50 parts by weight (solid conversion)
Fluorine leveling agent (F568, manufactured by DIC) 0.2 parts by weight (solid conversion)
Solvent (MIBK) 150 parts by mass The Martens hardness of the obtained first hard coat layer was 800 MPa.

(ハードコート層用組成物D)
ウレタンアクリレート(UV7600B、日本合成化学社製) 50質量部
ペンタエリスリトールトリアクリレート(M306、東亜合成社製) 50質量部
防汚剤(X71−1203M)(信越化学社製) 0.5質量部(固形換算)
光重合開始剤(Irg184) 4重量部
溶剤(MIBK) 150質量部
なお、得られた第二ハードコート層のマルテンス硬さは、600MPaであった。
(Composition D for hard coat layer)
Urethane acrylate (UV7600B, manufactured by Nippon Synthetic Chemical Co., Ltd.) 50 parts by mass Pentaerythritol triacrylate (M306, manufactured by Toagosei Co., Ltd.) 50 parts by mass of antifouling agent (X71-1203M) (manufactured by Shin-Etsu Chemical Co., Ltd.) 0.5 parts by mass (solid) Conversion)
Photopolymerization initiator (Irg184) 4 parts by weight solvent (MIBK) 150 parts by weight The Martens hardness of the obtained second hard coat layer was 600 MPa.

(実施例9)
ハードコート層用組成物1に代えて下記組成のハードコート層用組成物5を用い、ハードコート層用組成物Aに代えて下記組成のハードコート層用組成物Eを用いた以外は、実施例1と同様にして第一ハードコート層及び第二ハードコート層を形成し、光学積層体を製造した。
Example 9
Implemented except that the hard coat layer composition 5 having the following composition was used instead of the hard coat layer composition 1 and the hard coat layer composition E having the following composition was used instead of the hard coat layer composition A. The first hard coat layer and the second hard coat layer were formed in the same manner as in Example 1 to produce an optical laminate.

(ハードコート層用組成物5)
ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(M403、東亜合成社製) 25質量部
ジペンタエリスリトールEO変性ヘキサアクリレート(A−DPH−6E、新中村化学社製) 25質量部
中実シリカ微粒子(平均粒子径12nm、MIBKSD、日産化学社製)
50質量部(固形換算)
フッ素系レベリング剤(F568、DIC社製) 0.2重量部(固形換算)
光重合開始剤(Irg184) 4重量部
溶剤(MIBK) 150質量部
なお、得られた第一ハードコート層のマルテンス硬さは、730MPaであった。
また、中実シリカ微粒子とは、球状の中実シリカ微粒子であった。
(Composition 5 for hard coat layer)
Mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate (M403, manufactured by Toa Gosei Co., Ltd.) 25 parts by mass Dipentaerythritol EO-modified hexaacrylate (A-DPH-6E, manufactured by Shin-Nakamura Chemical Co., Ltd.) 25 parts by mass solid silica Fine particles (average particle size 12 nm, MIBKSD, manufactured by Nissan Chemical Industries)
50 parts by weight (solid conversion)
Fluorine leveling agent (F568, manufactured by DIC) 0.2 parts by weight (solid conversion)
Photopolymerization initiator (Irg184) 4 parts by weight solvent (MIBK) 150 parts by weight The Martens hardness of the obtained first hard coat layer was 730 MPa.
Further, the solid silica fine particles were spherical solid silica fine particles.

(ハードコート層用組成物E)
ウレタンアクリレート(UV7600B、日本合成社製) 45質量部
ペンタエリスリトールトリアクリレート(M306、東亜合成社製) 45質量部
中実シリカ微粒子(平均粒子径12nm、MIBKSD、日産化学社製) 10質量部
防汚剤(オプツールDAC、ダイキン工業社製) 0.5質量部(固形換算)
光重合開始剤(Irg184) 4重量部
溶剤(MIBK) 150質量部
なお、得られた第二ハードコート層のマルテンス硬さは、500MPaであった。
(Composition E for hard coat layer)
Urethane acrylate (UV7600B, manufactured by Nippon Gosei Co., Ltd.) 45 parts by mass Pentaerythritol triacrylate (M306, manufactured by Toagosei Co., Ltd.) 45 parts by mass Solid silica fine particles (average particle size 12 nm, MIBKSD, manufactured by Nissan Chemical Co., Ltd.) 10 parts by mass antifouling Agent (OPTOOL DAC, manufactured by Daikin Industries, Ltd.) 0.5 parts by mass (solid conversion)
Photopolymerization initiator (Irg184) 4 parts by weight solvent (MIBK) 150 parts by weight The Martens hardness of the obtained second hard coat layer was 500 MPa.

(実施例10)
基材フィルムの厚みを50μmとした以外は、実施例1と同様にして光学積層体を製造した。
(Example 10)
An optical laminate was produced in the same manner as in Example 1 except that the thickness of the base film was 50 μm.

(実施例11)
第一ハードコート層の厚みを5μmとし、第二ハードコート層の厚みを4μmとした以外は、実施例1と同様にして光学積層体を製造した。
(Example 11)
An optical laminate was produced in the same manner as in Example 1 except that the thickness of the first hard coat layer was 5 μm and the thickness of the second hard coat layer was 4 μm.

(実施例12)
基材フィルムの厚みを20μmとした以外は、実施例1と同様にして光学積層体を製造した。
(Example 12)
An optical laminate was produced in the same manner as in Example 1 except that the thickness of the base film was 20 μm.

(実施例13)
基材フィルムとして、厚さ30μmの上記式(1)で表されるポリイミドフィルムに代えて、厚さ30μmの上記式(2)で表されるポリイミドフィルムを用いた以外は、実施例1と同様にして光学積層体を製造した。
(Example 13)
As a base film, it replaced with the polyimide film represented by said Formula (1) with a thickness of 30 micrometers, and was the same as Example 1 except having used the polyimide film represented by the said Formula (2) with a thickness of 30 micrometers. Thus, an optical laminate was produced.

(実施例14)
基材フィルムとして、厚さ30μmの上記式(1)で表されるポリイミドフィルムに代えて、厚さ30μmの上記式(3)で表されるポリイミドフィルムを用いた以外は、実施例1と同様にして光学積層体を製造した。
(Example 14)
As a base film, it replaced with the polyimide film represented by said Formula (1) with a thickness of 30 micrometers, and was the same as Example 1 except having used the polyimide film represented by the said Formula (3) with a thickness of 30 micrometers. Thus, an optical laminate was produced.

(実施例15)
基材フィルムとして、厚さ30μmの上記式(1)で表されるポリイミドフィルムに代えて、厚さ30μmの上記式(8)で表されるポリイミドフィルムを用いた以外は、実施例1と同様にして光学積層体を製造した。
(Example 15)
As a base film, it replaced with the polyimide film represented by said Formula (1) with a thickness of 30 micrometers, and it was the same as Example 1 except having used the polyimide film represented by said Formula (8) with a thickness of 30 micrometers. Thus, an optical laminate was produced.

(実施例16)
基材フィルムとして、厚さ30μmの上記式(1)で表されるポリイミドフィルムに代えて、厚さ30μmの上記式(9)で表されるポリイミドフィルムを用いた以外は、実施例1と同様にして光学積層体を製造した。
(Example 16)
As a base film, it replaced with the polyimide film represented by said Formula (1) with a thickness of 30 micrometers, and was the same as Example 1 except having used the polyimide film represented by the said Formula (9) with a thickness of 30 micrometers. Thus, an optical laminate was produced.

(実施例17)
基材フィルムとして、厚さ30μmの上記式(1)で表されるポリイミドフィルムに代えて、厚さ30μmの上記式(20)で表されるアラミドフィルム(製品名:ミクトロン、東レ社製)を用いた以外は、実施例1と同様にして光学積層体を製造した。
(Example 17)
Instead of the polyimide film represented by the above formula (1) having a thickness of 30 μm as the base film, an aramid film (product name: Miktron, manufactured by Toray Industries, Inc.) represented by the above formula (20) having a thickness of 30 μm is used. An optical laminate was produced in the same manner as in Example 1 except that it was used.

(比較例1)
基材フィルムとして、厚さ30μmの上記式(1)で表されるポリイミドフィルムに代えて、厚さ25μmのトリアセチルセルロースフィルム(TAC、富士フイルム社製)を用いた以外は、実施例1と同様にして光学積層体を製造した。
(Comparative Example 1)
Example 1 except that instead of the polyimide film represented by the above formula (1) having a thickness of 30 μm, a triacetyl cellulose film (TAC, manufactured by FUJIFILM Corporation) having a thickness of 25 μm was used as the base film. An optical laminate was produced in the same manner.

(比較例2)
基材フィルムとして、厚さ30μmの上記式(1)で表されるポリイミドフィルムに代えて、厚さ50μmのポリエチレンテレフタレートフィルム(PETフィルム、東レ社製)を用いた以外は、実施例1と同様にして光学積層体を製造した。
(Comparative Example 2)
The same as Example 1 except that a polyethylene terephthalate film (PET film, manufactured by Toray Industries, Inc.) having a thickness of 50 μm was used as the base film instead of the polyimide film represented by the above formula (1) having a thickness of 30 μm. Thus, an optical laminate was produced.

(比較例3)
基材フィルムとして、厚さ30μmの上記式(1)で表されるポリイミドフィルムに代えて、厚さ30μmのポリエチレンナフタレートフィルム(PENフィルム、帝人社製)を用いた以外は、実施例1と同様にして光学積層体を製造した。
(Comparative Example 3)
Example 1 except that a 30 μm thick polyethylene naphthalate film (PEN film, manufactured by Teijin Ltd.) was used instead of the 30 μm thick polyimide film represented by the above formula (1) as a base film. An optical laminate was produced in the same manner.

(比較例4)
基材フィルムとして、厚さ30μmの上記式(1)で表されるポリイミドフィルムに代えて、厚さ25μmのシクロオレフィンフィルム(COP、日本ゼオン社製)を用いた以外は、実施例1と同様にして光学積層体を製造した。
(Comparative Example 4)
The same as Example 1 except that a cycloolefin film (COP, manufactured by Nippon Zeon Co., Ltd.) having a thickness of 25 μm was used as the base film instead of the polyimide film represented by the above formula (1) having a thickness of 30 μm. Thus, an optical laminate was produced.

(比較例5)
第一ハードコート層の硬化条件を、紫外線照射装置(フュージョンUVシステムジャパン社製、光源Hバルブ)を用いて、紫外線を酸素濃度が200ppm以下の条件下にて積算光量が200mJ/cmになるように照射して塗膜を硬化させた以外は、実施例1と同様にして光学積層体を製造した。
(Comparative Example 5)
The curing condition of the first hard coat layer is as follows. Using an ultraviolet irradiation device (manufactured by Fusion UV System Japan Co., Ltd., light source H bulb), the integrated light quantity becomes 200 mJ / cm 2 under the condition that the ultraviolet ray has an oxygen concentration of 200 ppm or less. An optical laminate was produced in the same manner as in Example 1 except that the coating film was cured by irradiation.

(参考例1)
第一ハードコート層の厚みを10μmとした以外は、実施例1と同様にして光学積層体を製造した。
(Reference Example 1)
An optical laminate was produced in the same manner as in Example 1 except that the thickness of the first hard coat layer was 10 μm.

(参考例2)
第二ハードコート層を設けなかった以外は、実施例1と同様にして光学積層体を製造した。
(Reference Example 2)
An optical laminate was produced in the same manner as in Example 1 except that the second hard coat layer was not provided.

(参考例3)
第一ハードコート層の厚みを2μmとし、第二ハードコート層の厚みを10μmとした以外は、実施例1と同様にして光学積層体を製造した。
(Reference Example 3)
An optical laminate was produced in the same manner as in Example 1 except that the thickness of the first hard coat layer was 2 μm and the thickness of the second hard coat layer was 10 μm.

(参考例4)
基材フィルムの厚みを100μmとした以外は、実施例11と同様にして光学積層体を製造した。
(Reference Example 4)
An optical laminate was produced in the same manner as in Example 11 except that the thickness of the base film was 100 μm.

(参考例5)
第一ハードコート層を設けず、第二ハードコート層の厚みを3μmとした以外は、実施例1と同様にして光学積層体を製造した。
(Reference Example 5)
An optical laminate was produced in the same manner as in Example 1 except that the first hard coat layer was not provided and the thickness of the second hard coat layer was 3 μm.

実施例及び比較例で得られた光学積層体を、市販されている有機EL層に積層し、有機EL層一方の面上に光学積層体が積層された有機EL用積層体を作製し、以下の評価を行った。結果を表2に示した。 The optical laminates obtained in Examples and Comparative Examples are laminated on a commercially available organic EL layer, and an organic EL laminate in which the optical laminate is laminated on one surface of the organic EL layer is prepared. Was evaluated. The results are shown in Table 2.

(耐久折り畳み試験)
実施例及び比較例に係る有機EL積層体(以下、ハードコート層を形成した側の面を表面とし、その反対側面を裏面とする)を、30mm×100mmの長方形にカットして作製したサンプルを、耐久試験機(DLDMLH−FU、ユアサシステム機器社製)に曲げ内径が10mm(対向するサンプル間の距離が20mm)となるようにして取り付け、サンプルのハードコート層を形成した側の面の全面を180°折り畳む試験(裏面が外側となるように折り畳む試験)を10万回行った。
その後、新たなサンプルに入れ替え、該サンプルのハードコート層を形成した側の面と反対側の面の全面を180°折り畳む試験(表面が外側となるように折り畳む試験)を10万回行い、以下の基準にて評価した。
○:上記試験を両面に対して行っても、サンプルに割れが生じていない
△:上記試験を裏面が外側となるように行った場合には、サンプルに割れが生じていなかったが、表面が外側となるように行った場合には、サンプルに割れが生じた
×:上記試験を表面に対して行っても、裏面に対して行っても、サンプルに割れが生じた
(Durable folding test)
Samples prepared by cutting organic EL laminates according to Examples and Comparative Examples (hereinafter, the surface on which the hard coat layer is formed as the front surface and the opposite side surface as the back surface) into a 30 mm × 100 mm rectangle. , Attached to an endurance tester (DLDMMLH-FU, manufactured by Yuasa System Equipment Co., Ltd.) with a bending inner diameter of 10 mm (distance between opposing samples is 20 mm), and the entire surface on the side where the hard coat layer of the sample is formed The test for folding 180 ° (test to fold the back side to the outside) was performed 100,000 times.
Thereafter, the sample is replaced with a new sample, and the test of folding the entire surface of the sample opposite to the surface on which the hard coat layer is formed by 180 ° (the test of folding the surface so that the surface is on the outside) is performed 100,000 times. Evaluation based on the criteria.
○: Even if the above test is performed on both sides, the sample is not cracked. Δ: When the above test is performed so that the back surface is outside, the sample is not cracked. When the test was performed on the outside, the sample was cracked. X: The sample was cracked regardless of whether the test was performed on the front surface or the back surface.

(鉛筆硬度)
実施例及び比較例に係る有機EL積層体の鉛筆硬度を、JIS K5600−5−4(1999)に基づいて測定した。
(Pencil hardness)
The pencil hardness of the organic EL laminates according to Examples and Comparative Examples was measured based on JIS K5600-5-4 (1999).

(耐スチールウール(SW)性)
実施例及び比較例に係る有機EL積層体のハードコート層の最表面を、#0000番のスチールウール(商品名:BON STAR、日本スチールウール社製)を用いて、1kg/cmの荷重をかけながら、速度50mm/secで3500回往復摩擦し、その後のハードコート層表面に傷の有無を目視し下記の基準にて評価した。
○:傷なし
×:傷があった
(Steel wool (SW) resistance)
Using the # 0000 steel wool (trade name: BON STAR, manufactured by Nippon Steel Wool Co., Ltd.), the outermost surface of the hard coat layer of the organic EL laminates according to the examples and comparative examples was subjected to a load of 1 kg / cm 2 . While applying, it was rubbed back and forth 3500 times at a speed of 50 mm / sec, and then the presence or absence of scratches on the surface of the hard coat layer was visually observed and evaluated according to the following criteria.
○: No scratch ×: There was a scratch

(全光線透過率)
全光線透過率(%)は、ヘイズメーター(村上色彩技術研究所製、製品番号;HM−150)を用いてJIS K−7361に従い測定した。
(Total light transmittance)
The total light transmittance (%) was measured according to JIS K-7361 using a haze meter (Murakami Color Research Laboratory, product number: HM-150).

Figure 2017033624
Figure 2017033624

表2に示したように、実施例1〜17に係る有機EL積層体は、耐久折り畳み性能、耐擦傷性及び透明性に優れ、また、鉛筆硬度も5H以上と非常に優れていた。
一方、基材フィルムとして、ポリイミドフィルム又はアラミドフィルムを用いなかった比較例1〜4に係る有機EL積層体は、鉛筆硬度に劣っていた。
また、比較例5に係る有機EL積層体では、第一ハードコート層と第二ハードコート層との密着性が悪いために、耐久折り畳み性に劣っていた。
また、第一ハードコート層が厚すぎた参考例1、第二ハードコート層を形成しなかった参考例2、第二ハードコート層が厚すぎた参考例3、基材フィルムが厚すぎた参考例4に係る有機EL積層体では、上記耐久折り畳み試験を裏面が外側となるように行った場合には割れが生じていなかったが、表面が外側となるように行った場合に割れが生じてしまった。
また、第二ハードコート層を形成しなかった参考例2では、耐擦傷性も劣っていた。
また、第一ハードコート層を形成しなかった参考例5では、鉛筆硬度が劣っていた。
As shown in Table 2, the organic EL laminates according to Examples 1 to 17 were excellent in durable folding performance, scratch resistance and transparency, and the pencil hardness was very excellent at 5H or more.
On the other hand, the organic EL laminated body which concerns on Comparative Examples 1-4 which did not use a polyimide film or an aramid film as a base film was inferior to pencil hardness.
Moreover, in the organic electroluminescent laminated body which concerns on the comparative example 5, since the adhesiveness of a 1st hard-coat layer and a 2nd hard-coat layer was bad, it was inferior to durable foldability.
Also, Reference Example 1 in which the first hard coat layer was too thick, Reference Example 2 in which the second hard coat layer was not formed, Reference Example 3 in which the second hard coat layer was too thick, Reference in which the base film was too thick In the organic EL laminate according to Example 4, cracks did not occur when the endurance folding test was performed so that the back surface was on the outside, but cracks occurred when the front surface was on the outside. Oops.
Further, in Reference Example 2 in which the second hard coat layer was not formed, the scratch resistance was also inferior.
Moreover, in Reference Example 5 in which the first hard coat layer was not formed, the pencil hardness was inferior.

本発明の有機EL積層体は、折り畳み式画像表示装置の表面材として好適に使用することができる。 The organic electroluminescent laminated body of this invention can be used conveniently as a surface material of a foldable image display apparatus.

10 本発明の有機EL用積層体
11 上固定部
12 下固定部
10 Laminated body 11 for organic EL of the present invention 11 Upper fixing portion 12 Lower fixing portion

Claims (8)

有機エレクトロルミネッセンス層の一方の面上に、光学積層体が積層された有機エレクトロルミネッセンス用積層体であって、
20mmの間隔で前記有機エレクトロルミネッセンス積層体の全面を180°折り畳む試験を10万回繰り返し行った場合に割れ又は破断が生じない
ことを特徴とする有機エレクトロルミネッセンス用積層体。
A laminate for organic electroluminescence in which an optical laminate is laminated on one surface of an organic electroluminescence layer,
A laminate for organic electroluminescence which does not break or break when a test of folding the entire surface of the organic electroluminescence laminate by 180 ° at an interval of 20 mm is repeated 100,000 times.
光学積層体は、基材フィルムがポリイミドフィルム又はアラミドフィルムである請求項1記載の有機エレクトロルミネッセンス用積層体。 The laminate for organic electroluminescence according to claim 1, wherein the optical laminate is a polyimide film or an aramid film. 光学積層体は、基材フィルムの厚みが10〜55μmである請求項1又は2記載の有機エレクトロルミネッセンス用積層体。 The organic electroluminescent laminate according to claim 1 or 2, wherein the optical laminate has a base film thickness of 10 to 55 µm. 光学積層体は、基材フィルムの有機エレクトロルミネッセンス層と反対側面上に設けられた第一ハードコート層と、前記第一ハードコート層の前記基材フィルム側と反対側面上に設けられた第二ハードコート層とを有する請求項1、2又は3記載の有機エレクトロルミネッセンス用積層体。 The optical laminate includes a first hard coat layer provided on the side opposite to the organic electroluminescence layer of the base film, and a second hard coat layer provided on the side opposite to the base film side of the first hard coat layer. The laminate for organic electroluminescence according to claim 1, 2 or 3, further comprising a hard coat layer. 第二ハードコート層は、樹脂成分として多官能(メタ)アクリレートモノマーの硬化物を含有し、第一ハードコート層は、樹脂成分として多官能(メタ)アクリレートの硬化物を含有するとともに、前記樹脂成分中に分散されたシリカ微粒子とを含有する請求項4記載の有機エレクトロルミネッセンス用積層体。 The second hard coat layer contains a cured product of a polyfunctional (meth) acrylate monomer as a resin component, and the first hard coat layer contains a cured product of a polyfunctional (meth) acrylate as a resin component, and the resin The laminated body for organic electroluminescence of Claim 4 containing the silica fine particle disperse | distributed in the component. シリカ微粒子は、反応性シリカ微粒子である請求項5記載の有機エレクトロルミネッセンス用積層体。 The laminated body for organic electroluminescence according to claim 5, wherein the silica fine particles are reactive silica fine particles. 光学積層体は、単官能モノマーの硬化層を更に有する請求項1、2、3、4、5又は6記載の有機エレクトロルミネッセンス積層体。 The organic electroluminescence laminate according to claim 1, 2, 3, 4, 5, or 6, wherein the optical laminate further comprises a cured layer of a monofunctional monomer. 有機エレクトロルミネッセンス層は、基板がポリイミドフィルム、アラミドフィルム、ポリエステルフィルム、ポリエチレンナフタレートフィルム、シクロオレフィンフィルム又はアクリルフィルムである請求項1、2、3、4、5、6又は7記載の有機エレクトロルミネッセンス用積層体。 8. The organic electroluminescence layer according to claim 1, wherein the substrate of the organic electroluminescence layer is a polyimide film, an aramid film, a polyester film, a polyethylene naphthalate film, a cycloolefin film, or an acrylic film. Laminated body.
JP2015143496A 2015-07-17 2015-07-17 Organic electroluminescent laminate Active JP6547481B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2015143496A JP6547481B2 (en) 2015-07-17 2015-07-17 Organic electroluminescent laminate
PCT/JP2016/071042 WO2017014198A1 (en) 2015-07-17 2016-07-15 Laminate for optical members and image display device
US15/505,011 US10288773B2 (en) 2015-07-17 2016-07-15 Layered body for optical member and image display device
KR1020167035908A KR101769266B1 (en) 2015-07-17 2016-07-15 Layered body for optical member and image display device
CN202010715985.1A CN111736240A (en) 2015-07-17 2016-07-15 Laminate for optical member and image display device
CN201680002561.2A CN106715121A (en) 2015-07-17 2016-07-15 Laminate for optical members and image display device
TW109124644A TWI739523B (en) 2015-07-17 2016-07-15 Laminated body for optical component and image display device
KR1020177012118A KR20180020938A (en) 2015-07-17 2016-07-15 Layered body for optical member and image display device
TW105122573A TWI702415B (en) 2015-07-17 2016-07-15 Laminated body for optical component and image display device
US16/359,764 US11360243B2 (en) 2015-07-17 2019-03-20 Layered body for optical member and image display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015143496A JP6547481B2 (en) 2015-07-17 2015-07-17 Organic electroluminescent laminate

Publications (2)

Publication Number Publication Date
JP2017033624A true JP2017033624A (en) 2017-02-09
JP6547481B2 JP6547481B2 (en) 2019-07-24

Family

ID=57988436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015143496A Active JP6547481B2 (en) 2015-07-17 2015-07-17 Organic electroluminescent laminate

Country Status (1)

Country Link
JP (1) JP6547481B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017159502A1 (en) * 2016-03-15 2017-09-21 シャープ株式会社 Organic el display device
JP2018020552A (en) * 2016-06-23 2018-02-08 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. Hard coating film and image display device using the same
WO2019202992A1 (en) * 2018-04-19 2019-10-24 東洋紡株式会社 Polyester film for surface protection film of foldable display and use thereof
WO2023163151A1 (en) * 2022-02-28 2023-08-31 日東電工株式会社 Optical laminate for oled display device
WO2023163147A1 (en) * 2022-02-28 2023-08-31 日東電工株式会社 Optical laminate for oled display device
WO2023163148A1 (en) * 2022-02-28 2023-08-31 日東電工株式会社 Optical laminate for oled display device
JP7490958B2 (en) 2018-04-19 2024-05-28 東洋紡株式会社 Polyester film for surface protection of folding displays and its applications

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006193596A (en) * 2005-01-13 2006-07-27 Nippon Synthetic Chem Ind Co Ltd:The Resin molding, method for producing the same and its use
JP2007204736A (en) * 2006-01-05 2007-08-16 Nippon Synthetic Chem Ind Co Ltd:The Resin molded product, method for producing resin molded product and use thereof
JP2010217873A (en) * 2009-02-17 2010-09-30 Toppan Printing Co Ltd Anti-reflection film, method of manufacturing the same, polarizing plate and transmission type liquid crystal display
JP2013168657A (en) * 2009-10-21 2013-08-29 Shin Etsu Chem Co Ltd Transparent multilayer film for protecting surface of solar cell module, and solar cell module
WO2013146482A1 (en) * 2012-03-30 2013-10-03 日本ビー・ケミカル株式会社 Hard coating composition and composition for forming high refractive index anti-blocking layer
JP2014151496A (en) * 2013-02-06 2014-08-25 Mitsubishi Plastics Inc Transparent laminated film and transparent substrate
JP2014205278A (en) * 2013-04-11 2014-10-30 三菱樹脂株式会社 Transparent laminated film and transparent substrate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006193596A (en) * 2005-01-13 2006-07-27 Nippon Synthetic Chem Ind Co Ltd:The Resin molding, method for producing the same and its use
JP2007204736A (en) * 2006-01-05 2007-08-16 Nippon Synthetic Chem Ind Co Ltd:The Resin molded product, method for producing resin molded product and use thereof
JP2010217873A (en) * 2009-02-17 2010-09-30 Toppan Printing Co Ltd Anti-reflection film, method of manufacturing the same, polarizing plate and transmission type liquid crystal display
JP2013168657A (en) * 2009-10-21 2013-08-29 Shin Etsu Chem Co Ltd Transparent multilayer film for protecting surface of solar cell module, and solar cell module
WO2013146482A1 (en) * 2012-03-30 2013-10-03 日本ビー・ケミカル株式会社 Hard coating composition and composition for forming high refractive index anti-blocking layer
JP2014151496A (en) * 2013-02-06 2014-08-25 Mitsubishi Plastics Inc Transparent laminated film and transparent substrate
JP2014205278A (en) * 2013-04-11 2014-10-30 三菱樹脂株式会社 Transparent laminated film and transparent substrate

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017159502A1 (en) * 2016-03-15 2017-09-21 シャープ株式会社 Organic el display device
JP2018020552A (en) * 2016-06-23 2018-02-08 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. Hard coating film and image display device using the same
WO2019202992A1 (en) * 2018-04-19 2019-10-24 東洋紡株式会社 Polyester film for surface protection film of foldable display and use thereof
JPWO2019202992A1 (en) * 2018-04-19 2021-03-11 東洋紡株式会社 Polyester film for surface protection film of foldable display and its use
US11845841B2 (en) 2018-04-19 2023-12-19 Toyobo Co., Ltd. Polyester film for surface protection film of foldable display and use thereof
JP7490958B2 (en) 2018-04-19 2024-05-28 東洋紡株式会社 Polyester film for surface protection of folding displays and its applications
WO2023163151A1 (en) * 2022-02-28 2023-08-31 日東電工株式会社 Optical laminate for oled display device
WO2023163147A1 (en) * 2022-02-28 2023-08-31 日東電工株式会社 Optical laminate for oled display device
WO2023163148A1 (en) * 2022-02-28 2023-08-31 日東電工株式会社 Optical laminate for oled display device

Also Published As

Publication number Publication date
JP6547481B2 (en) 2019-07-24

Similar Documents

Publication Publication Date Title
WO2017014198A1 (en) Laminate for optical members and image display device
JP7016604B2 (en) Laminated body for touch panel, foldable image display device
TWI786045B (en) Optical laminate, and image display device
JP6578780B2 (en) Laminate for touch panel and foldable image display device
JP7016602B2 (en) Hard-coated film for touch panels and foldable image display device
JP6547481B2 (en) Organic electroluminescent laminate
US8795823B2 (en) Optical layered body, polarizer and image display device
JP7016603B2 (en) Hard-coated film for touch panels and foldable image display device
TWI629177B (en) Optical laminate, polarizing plate and image display device
JP7016605B2 (en) Laminated body for touch panel and foldable image display device
TWI619613B (en) Optical laminate, polarizing plate and image display device
JP6773049B2 (en) Optical film, polarizing plate and image display device
WO2007099721A1 (en) Transparent and electrically conductive film and touch panels
JP7000701B2 (en) Optical film and image display device
JP7238872B2 (en) HARD COAT FILM FOR TOUCH PANEL AND FOLDABLE IMAGE DISPLAY DEVICE
JP7238870B2 (en) LAMINATED BODY FOR TOUCH PANEL AND FOLDABLE IMAGE DISPLAY DEVICE
JP7238869B2 (en) Laminate for touch panel, foldable image display device
JP7238871B2 (en) HARD COAT FILM FOR TOUCH PANEL AND FOLDABLE IMAGE DISPLAY DEVICE
JP2018172528A (en) Hard coat film, foldable image display device and method for manufacturing hard coat film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190610

R150 Certificate of patent or registration of utility model

Ref document number: 6547481

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157