JP2017031069A - Hydrangea macrophilla var. thunbergii extract and production method thereof - Google Patents

Hydrangea macrophilla var. thunbergii extract and production method thereof Download PDF

Info

Publication number
JP2017031069A
JP2017031069A JP2015149828A JP2015149828A JP2017031069A JP 2017031069 A JP2017031069 A JP 2017031069A JP 2015149828 A JP2015149828 A JP 2015149828A JP 2015149828 A JP2015149828 A JP 2015149828A JP 2017031069 A JP2017031069 A JP 2017031069A
Authority
JP
Japan
Prior art keywords
extract
subcritical
temperature
armature
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015149828A
Other languages
Japanese (ja)
Inventor
靖晃 伊東
Yasuaki Ito
靖晃 伊東
広瀬 直宏
Naohiro Hirose
直宏 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP2015149828A priority Critical patent/JP2017031069A/en
Publication of JP2017031069A publication Critical patent/JP2017031069A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Medicines Containing Plant Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain Hydrangea macrophilla var. thunbergii extract which is extracted in a larger amount per unit as compared with Hydrangea macrophilla var. thunbergii extract obtained by conventional hot water extraction with hot water at 100°C or less, and which is excellent in sugar absorption inhibiting function, anti-saccharification function, and the like.SOLUTION: The present invention relates to Hydrangea macrophilla var. thunbergii extract having a sugar absorption suppressing function and saccharification suppressing function, the extract obtained by the subcritical treatment of Hydrangea macrophilla var. thunbergii as a raw material, with water as an extracting solvent, at a temperature of 120-160°C, at a pressure equal to or higher than the saturated vapor pressure of each temperature; and to a production method thereof.SELECTED DRAWING: Figure 1

Description

本発明はアマチャ抽出物及びその製造方法に関する。   The present invention relates to an amateur extract and a method for producing the same.

従来、アマチャ及びアマチャ抽出物が糖の吸収を抑制することや蛋白質の糖化を抑制することなどの優れた機能性を有することが知られている。特に糖吸収抑制機能や糖化抑制機能などによる糖尿病予防機能・治療機能、老化防止機能が注目されている。   Conventionally, it has been known that armatures and armature extracts have excellent functionality such as suppression of sugar absorption and suppression of protein glycation. In particular, attention is focused on diabetes prevention / treatment functions and aging prevention functions such as a sugar absorption inhibitory function and a saccharification inhibitory function.

特許文献1にはアマチャを水等の溶媒を用いて、常温もしくは常圧下での溶媒の沸点の範囲で行う、つまり、水であれば、100℃以下の熱水抽出により得られたアマチャ抽出物をα−グルコシダーゼ阻害剤として用いることが記載されている。また、特許文献2には水やエタノール等の溶媒により60℃でアマチャより抽出したアマチャ抽出物をメイラード反応の阻害剤として用いることが記載されている。   Patent Document 1 discloses an armature extract obtained by hot water extraction at a temperature of 100 ° C. or lower in a range of the boiling point of a solvent at room temperature or normal pressure using a solvent such as water. Is used as an α-glucosidase inhibitor. Patent Document 2 describes that an armature extract extracted from an armature at 60 ° C. with a solvent such as water or ethanol is used as an inhibitor of the Maillard reaction.

特開2005−104891号公報JP-A-2005-104871 特開2007−254344号公報JP 2007-254344 A

従来技術である特許許文献1及び特許文献2には、100℃以下の熱水による熱水抽出により得られるアマチャ抽出物が記載されている。従来技術には、アマチャ抽出物の抽出効率がよくないという問題がある。つまり、アマチャ抽出物の抽出効率を向上させることが望まれている。また、アマチャ抽出物が総合的に糖化を抑制することが望まれている。具体的には、糖吸収抑制機能(α−グルコシダーゼ阻害活性)及び、血液中蛋白質の糖化抑制機能(CML生成阻害活性)をさらに優れたアマチャ抽出物を得ることも望まれている。   Patent documents 1 and 2 which are prior arts describe an armature extract obtained by hot water extraction with hot water at 100 ° C. or lower. The prior art has a problem that the extraction efficiency of the amateur extract is not good. That is, it is desired to improve the extraction efficiency of the amateur extract. Moreover, it is desired that the amacha extract comprehensively suppresses saccharification. Specifically, it is also desired to obtain an armature extract having a further excellent sugar absorption suppressing function (α-glucosidase inhibitory activity) and blood protein glycation suppressing function (CML production inhibitory activity).

本発明は、従来の100℃以下の熱水による熱水抽出により得られたアマチャ抽出物に比べ、単位量あたりの抽出物が多く、糖吸収抑制機能、抗糖化機能等に優れたアマチャ抽出物を得ることを目的とする。   The present invention has a larger amount of extract per unit amount than the conventional hamcha extract obtained by hot water extraction with hot water at 100 ° C. or less, and is excellent in saccharide absorption inhibition function, anti-glycation function, etc. The purpose is to obtain.

本発明は、アマチャを原料とし、抽出溶媒に水を用いて、温度120〜160℃、各温度の飽和蒸気圧以上の圧力で行う亜臨界処理で得られ、糖吸収抑制及び血液中蛋白質の糖化抑制機能を有するアマチャ抽出物並びに製造方法に関する。   The present invention is obtained by a subcritical process using armature as a raw material and using water as an extraction solvent at a temperature of 120 to 160 ° C. and a pressure equal to or higher than a saturated vapor pressure at each temperature, and suppresses sugar absorption and saccharification of protein in blood The present invention relates to an amateur extract having a suppressing function and a manufacturing method.

亜臨界処理工程後、固液分離工程を行うことが好ましい。   It is preferable to perform a solid-liquid separation step after the subcritical treatment step.

亜臨界処理の処理時間が5〜60分であることが望ましい。   It is desirable that the processing time of the subcritical processing is 5 to 60 minutes.

本発明のアマチャ抽出物は、100℃以下の熱水による熱水抽出により得られたアマチャ抽出物に比べ、抽出物単位量あたりの糖吸収抑制機能及び血液中蛋白質の糖化抑制機能に優れたアマチャ抽出物である。また、本発明のアマチャ抽出物の製造方法によれば、熱水抽出により得られたアマチャ抽出物に比べて、抽出物単位量あたりの糖吸収抑制機能及び血液中蛋白質の糖化抑制機能に優れたアマチャ抽出物を製造することができる。   The armature extract of the present invention is superior to the armature extract obtained by hot water extraction with hot water at 100 ° C. or less, and has an excellent ability to suppress sugar absorption per unit amount of extract and to suppress glycation of blood proteins. It is an extract. In addition, according to the method for producing an amacha extract of the present invention, compared to an amacha extract obtained by hot water extraction, the sugar absorption inhibition function per extract unit amount and the glycation inhibition function of blood proteins were excellent. An amateur extract can be produced.

実施例及び比較例のCML生成阻害活性を示すグラフである。It is a graph which shows the CML production | generation inhibitory activity of an Example and a comparative example. 実施例及び比較例のα−グルコシダーゼ阻害活性を示すグラフである。It is a graph which shows the alpha-glucosidase inhibitory activity of an Example and a comparative example.

本発明のアマチャ抽出物は、原料となるアマチャを所定の条件で亜臨界処理する亜臨界処理工程を含む製造方法により製造されたアマチャ抽出物である。   The armature extract of the present invention is an armature extract produced by a production method including a subcritical processing step of subcritically processing a raw material amateur under a predetermined condition.

原料
本発明のアマチャ抽出物の原料となるアマチャとは、ユキノシタ科(Saxifragaceae)アジサイ属(Hydrangea)のアマチャ(Hydrangea serrata var. thunbergii(=Hydrangea macrophylla var. thunbergii Makino))である。本発明においては、花、花穂、果皮、果実、茎、葉、枝、枝葉、幹、樹皮、根茎、根皮、根、種子または全草を原料として用いることができるが、葉及び/または枝先を用いることが好ましい。
Raw material The raw material for the raw material of the extract of the present invention is the genus Hydrangea hydrangea, Hydrangea var. In the present invention, flowers, spikes, pericarps, fruits, stems, leaves, branches, branches and leaves, stems, bark, rhizomes, root barks, roots, seeds or whole plants can be used as raw materials, but leaves and / or branches It is preferable to use the tip.

後述の抽出工程に供するアマチャの状態などは特に限定されず、生の状態のものや乾燥、粉末化したものなどが好適に用いられる。抽出効率に優れるという理由からは、乾燥後、粒径が1〜3mmになるまでミキサー等により粉砕した乾燥粉砕物を用いることが好ましい。なお、原料を使用する際には、抽出工程の前に土などの汚れを洗浄することが好ましい。   The state of the armature used for the extraction step described later is not particularly limited, and a raw state, a dried state, a powdered state, or the like is preferably used. From the reason that the extraction efficiency is excellent, it is preferable to use a dried pulverized product pulverized by a mixer or the like until the particle size becomes 1 to 3 mm after drying. In addition, when using a raw material, it is preferable to wash | clean dirt, such as soil, before an extraction process.

製造方法
本発明のアマチャ抽出物は、原料であるアマチャを所定の条件で亜臨界処理する亜臨界処理工程を経て得られたアマチャ抽出物である。
Manufacturing method The armature extract of the present invention is an armature extract obtained through a subcritical treatment process in which a raw material armature is subcritically treated under predetermined conditions.

抽出工程
抽出工程は、アマチャ原料を亜臨界処理することで亜臨界処理物を得る工程である。亜臨界処理とは、所定温度及び圧力の条件下で亜臨界状態にした抽出溶媒としての亜臨界流体と抽出対象の原料(本発明ではアマチャ)とを接触させることにより、抽出原料から所定の成分を抽出するものである。例えば、水は、圧力22.12MPa、温度374.15℃まで上げると液体でも気体でもない状態を示す。この点を水の臨界点といい、臨界点より低い温度及び圧力の熱水を亜臨界水という。この亜臨界水は、誘電率低下とイオン積の向上により、優れた成分抽出作用と加水分解作用を有する。
Extraction Step The extraction step is a step of obtaining a subcritical processed product by subjecting the amateur material to subcritical processing. The subcritical treatment is a process in which a subcritical fluid as an extraction solvent brought into a subcritical state under a predetermined temperature and pressure is brought into contact with a raw material to be extracted (in the present invention, an armature) to thereby obtain predetermined components from the extracted raw material. Is extracted. For example, when water is raised to a pressure of 22.12 MPa and a temperature of 374.15 ° C., it shows a state where it is neither liquid nor gas. This point is called the critical point of water, and hot water at a temperature and pressure lower than the critical point is called subcritical water. This subcritical water has an excellent component extraction action and hydrolysis action due to a decrease in dielectric constant and an improvement in ionic product.

本発明の亜臨界処理では、抽出溶媒として安全性の観点から水を用いる。亜臨界処理に用いる抽出溶媒として水を用いる場合、高温の水処理であれば液体状態でも気体状態でも利用することができる。即ち、亜臨界処理の処理槽へは、水蒸気を供給してもよく、水を供給してもよく、あるいはその両者を供給してもよい。水または水蒸気の温度は望ましくは100℃以上であり、望まれる反応場としては気体よりも液体状態の方が反応は進みやすいので、密閉に近い容器で強制的に液体の状態にした、いわゆる亜臨界の状態の水の使用が好ましい。より具体的には、金属やセラミックスなどの耐圧容器にアマチャと抽出溶媒である水を入れて、密閉状態に近い状態にし、水の亜臨界状態で、両者の接触を一定時間以上行うことで得られる抽出物を亜臨界処理物とすることができる。   In the subcritical treatment of the present invention, water is used as an extraction solvent from the viewpoint of safety. When water is used as the extraction solvent used for the subcritical treatment, it can be used in a liquid state or a gas state as long as the water treatment is performed at a high temperature. That is, water vapor may be supplied to the subcritical processing tank, water may be supplied, or both of them may be supplied. The temperature of water or water vapor is desirably 100 ° C. or higher, and the desired reaction field is more likely to proceed in a liquid state than in a gas. The use of water in a critical state is preferred. More specifically, it can be obtained by putting the armature and the extraction solvent water in a pressure vessel such as metal or ceramics, making it close to a sealed state, and making contact with each other for a certain time or more in a subcritical state of water. The resulting extract can be a subcritical process.

亜臨界処理温度は、機能性成分を多く含有するアマチャ抽出物が得られるという理由から120〜160℃の間が好ましく、125〜155℃の間がより好ましい。亜臨界処理の温度が120℃未満の場合は、抽出が不十分となり、抽出物の機能性が向上しにくい傾向がある。また、亜臨界処理の温度が160℃を超える場合は、過分解してしまい、機能性成分の効果が低下する傾向がある。   The subcritical processing temperature is preferably between 120 and 160 ° C, more preferably between 125 and 155 ° C, because an armature extract containing a large amount of functional components can be obtained. When the temperature of the subcritical treatment is less than 120 ° C., the extraction becomes insufficient and the functionality of the extract tends to be difficult to improve. Moreover, when the temperature of subcritical processing exceeds 160 degreeC, it will decompose excessively and there exists a tendency for the effect of a functional component to fall.

亜臨界処理圧力は、各温度の飽和蒸気圧以上で行うことが好ましい。各温度での飽和蒸気圧は、日本機械学会蒸気表(1968年)を参照するなどして決定することができる。120〜160℃間の10℃間隔における飽和蒸気圧を例示すると、120℃:0.20MPa(2.02at)、130℃:0.27MPa(2.75at)、140℃:0.36MPa(3.69at)、150℃:0.48MPa(4.85at)、160℃:0.62MPa(6.30at)である。この飽和蒸気圧以上の圧力にすることにより、アマチャの機能性成分が効率的に得られやすくなる。なお、亜臨界処理の圧力の上限は特に定められないが、高圧装置の仕様上、20〜30MPaあたりに抑えることが好ましい。   The subcritical processing pressure is preferably carried out at a saturated vapor pressure or higher at each temperature. The saturated vapor pressure at each temperature can be determined by referring to the Japan Society of Mechanical Engineers steam table (1968). Examples of saturated vapor pressure at intervals of 10 ° C. between 120 to 160 ° C. are 120 ° C .: 0.20 MPa (2.02 at), 130 ° C .: 0.27 MPa (2.75 at), 140 ° C .: 0.36 MPa (3. 69 at), 150 ° C .: 0.48 MPa (4.85 at), and 160 ° C .: 0.62 MPa (6.30 at). By setting the pressure to be equal to or higher than the saturated vapor pressure, it becomes easy to efficiently obtain the functional component of the armature. In addition, although the upper limit of the pressure of a subcritical process is not specifically defined, it is preferable to suppress to around 20-30 MPa on the specification of a high voltage | pressure apparatus.

亜臨界処理時間は、5〜60分の間で行うことが好ましく、10〜30分の間で行うことがより好ましい。この処理時間の範囲にすることにより、アマチャの機能性成分が効率的に得られやすくなる。亜臨界処理時間が5分未満の場合は、得られる抽出物が不十分となる傾向がある。また、亜臨界処理時間が60分を超える場合は、抽出物が過分解してしまい、機能性成分の効果が低下する傾向がある。   The subcritical processing time is preferably 5 to 60 minutes, more preferably 10 to 30 minutes. By setting this processing time range, it becomes easy to efficiently obtain the functional component of the armature. If the subcritical processing time is less than 5 minutes, the resulting extract tends to be insufficient. Moreover, when subcritical processing time exceeds 60 minutes, an extract will decompose | disassemble excessively and there exists a tendency for the effect of a functional component to fall.

すなわち、抽出溶媒を水とした場合におけるアマチャの亜臨界処理による抽出条件は、処理温度は120〜160℃、処理圧力は各温度の飽和蒸気圧以上、処理時間は5〜60分である。この条件で行うことにより、アマチャの機能性成分を効率的に抽出することができる。   That is, when the extraction solvent is water, the extraction conditions by the subcritical processing of the armature are a processing temperature of 120 to 160 ° C., a processing pressure equal to or higher than the saturated vapor pressure of each temperature, and a processing time of 5 to 60 minutes. By performing under this condition, the functional component of the armature can be extracted efficiently.

固液分離工程及び乾燥工程
固液分離工程は、亜臨界処理物を抽出液と原料残渣(固体物)とに分離する工程である。具体的な固液分離工程としては、ろ紙を用いたろ過、遠心分離、デカンテーション、スクリュープレス、ローラープレス、ロータリードラムスクリーン、ベルトスクリーン、振動スクリーン、多重板振動フィルター、真空脱水、加圧脱水、ベルトプレス、遠心濃縮脱水、多重円板脱水などが挙げられる。なかでも、操作が簡便であり、分離効率に優れるという理由から、ろ過が好ましい。
Solid-liquid separation step and drying step The solid-liquid separation step is a step of separating the subcritical processed product into an extract and a raw material residue (solid matter). Specific solid-liquid separation processes include filtration using filter paper, centrifugation, decantation, screw press, roller press, rotary drum screen, belt screen, vibrating screen, multi-plate vibrating filter, vacuum dehydration, pressure dehydration, Belt press, centrifugal concentration dehydration, multiple disk dehydration and the like can be mentioned. Among these, filtration is preferable because the operation is simple and the separation efficiency is excellent.

固液分離工程により得られた抽出液はアマチャの機能性成分を含有するアマチャ抽出液としてそのまま、もしくは濃縮された状態で目的の使用に供することもできるが、より取り扱い性、保存性を高めるために乾燥させることが望ましい。抽出液を乾燥させることにより固形状のアマチャ抽出物が得られる。乾燥方法としては一般的な乾燥方法を用いることができ、自然放置はもちろんのこと、加熱系である箱型乾燥や噴霧乾燥などの伝熱乾燥、マイクロ波乾燥などの内部発熱乾燥、非加熱系である凍結乾燥、真空乾燥、吸引乾燥、加圧乾燥、超音波乾燥等が可能である。一般的で簡便なオーブン、恒温槽を用いて乾燥することももちろん許容される。   The extract obtained by the solid-liquid separation process can be used as it is as an armature extract containing the functional components of armature, or it can be used for the intended purpose in a concentrated state. It is desirable to dry it. A solid armature extract is obtained by drying the extract. As a drying method, a general drying method can be used. Naturally, it is allowed to stand naturally, heat transfer drying such as box drying or spray drying which is a heating system, internal heat drying such as microwave drying, non-heating system Freeze drying, vacuum drying, suction drying, pressure drying, ultrasonic drying, and the like are possible. Of course, it is acceptable to dry using a general and simple oven and thermostat.

また、適宜、活性炭、イオン交換樹脂等の吸着剤を用いた不純物除去工程を乾燥工程の前に行ってもよい。このようにして得られたアマチャ抽出物はそのまま目的の使用に供することもできるし、他の成分を処方、配合して粉末、カプセル、錠剤の形態に加工してもよく、水、アルコールなどの可溶性溶媒に溶解させて液体の形態で使用してもよいのはもちろんのことである。   Moreover, you may perform the impurity removal process using adsorption agents, such as activated carbon and an ion exchange resin, before a drying process suitably. The armature extract thus obtained can be used for the intended purpose as it is, or other ingredients may be formulated and blended to be processed into a powder, capsule or tablet form, such as water, alcohol, etc. Of course, it may be dissolved in a soluble solvent and used in liquid form.

また、機能性の高い成分を選択的に得るために固液分離工程及び乾燥工程を経た抽出物に対し有機溶剤(アルコール類、ケトン類、アセトン類等)による抽出を行ってもよい。なかでも、人体への影響が少なく、食品及び化粧品への使用が容易であるという理由からエタノールが好ましい。   Moreover, in order to selectively obtain a component having high functionality, the extract obtained through the solid-liquid separation step and the drying step may be extracted with an organic solvent (alcohols, ketones, acetones, etc.). Of these, ethanol is preferred because it has little effect on the human body and is easy to use in foods and cosmetics.

アマチャ抽出物における糖吸収抑制の評価方法としてはα−グルコシダーゼ阻害評価が、糖化抑制の評価方法としてはCML(カルボキシメチルリジン)生成阻害評価が挙げられる。   As an evaluation method of sugar absorption suppression in an amateur extract, α-glucosidase inhibition evaluation is exemplified, and as an evaluation method of saccharification suppression, CML (carboxymethyllysine) production inhibition evaluation is exemplified.

α−グルコシダーゼ阻害評価は、抽出物における糖吸収抑制を評価するものであり、α−グルコシダーゼは糖のα−1,4−グルコシド結合を加水分解する反応を触媒する酵素であり、糖類の消化の過程で二糖類を単糖類へと分解する役目がある。小腸では、酵素により分解された単糖類を吸収しており、この吸収により体内の血糖値が上昇する。この酵素の役目を阻害することにより、二糖類を単糖類へと分解されにくくなるので、小腸での単糖類の吸収する度合いが低下し、体内の血糖値が上昇されにくくなり、その結果として、食後の急激な血糖値の上昇抑制を期待される。α−グルコシダーゼ阻害評価は、α−グルコシダーゼ阻害率(%)を算出し、IC50値(終濃度)としてmg/mlで表される。このとき、IC50値が、小さいほど糖吸収抑制の機能に優れるということとなる。   The α-glucosidase inhibition evaluation evaluates the suppression of sugar absorption in the extract, and α-glucosidase is an enzyme that catalyzes a reaction that hydrolyzes the α-1,4-glucoside bond of sugar, In the process, it has the role of breaking down disaccharides into monosaccharides. The small intestine absorbs monosaccharides decomposed by enzymes, and this absorption increases the blood sugar level in the body. By inhibiting the role of this enzyme, disaccharides are less likely to be broken down into monosaccharides, so the degree of absorption of monosaccharides in the small intestine is reduced, and the blood sugar level in the body is less likely to rise. Expected to suppress rapid increase in blood glucose level after meals. In α-glucosidase inhibition evaluation, α-glucosidase inhibition rate (%) is calculated and expressed as mg / ml as IC50 value (final concentration). At this time, the smaller the IC50 value, the better the function of suppressing sugar absorption.

CML生成阻害評価は、AGEs(糖化最終生成物)の1種に非蛍光性のCML(カルボキシメチルリジン)があり、アマドリ化合物の酸化的開裂により生成される。具体的には、脂質の過酸化などから生じるグリオキサール、あるいは次亜塩素酸とセリンから生じるグリコールアルデヒドとリジン残基の反応により生成される。AGEsの1種であるCMLの生成をアマチャ抽出物が阻害すると、糖化反応を抑制することができ、肌の衰えや動脈硬化などの糖化リスクを防ぐことが期待される。CML生成阻害評価は、CML生成阻害率(%)を算出し、IC50値(終濃度)としてmg/mlで表される。このとき、IC50値が小さいほど糖化反応抑制の機能に優れるということとなる。   In the evaluation of inhibition of CML generation, non-fluorescent CML (carboxymethyl lysine) is one of AGEs (final glycation end products), and is generated by oxidative cleavage of an Amadori compound. Specifically, it is produced by the reaction of glyoxal generated from lipid peroxidation or the like, or glycolaldehyde generated from hypochlorous acid and serine and a lysine residue. When an amateur extract inhibits the production of CML, which is one type of AGEs, the saccharification reaction can be suppressed, and it is expected to prevent saccharification risks such as skin deterioration and arteriosclerosis. In the evaluation of CML production inhibition, the CML production inhibition rate (%) is calculated and expressed as mg / ml as IC50 value (final concentration). At this time, the smaller the IC50 value, the better the function of inhibiting saccharification reaction.

アマチャ抽出物
本発明のアマチャ抽出物は、糖吸収抑制機能(α−グルコシダーゼ阻害活性)及び血液中蛋白質の糖化抑制機能(CML生成阻害活性)に優れた機能性を有する。よって、本発明のアマチャ抽出物は、第一段階として、糖吸収抑制機能によって食物中の糖類の分解をしにくくし、体内の血液中に入る糖を減らすことにより糖と体内の蛋白質の反応を減らすことができ、第二段階として、体内において糖化抑制機能によって糖と蛋白質の反応であるAGEs(糖化最終生成物)の1種のCMLの生成自体も抑制されると推定される。このように二段階で糖化抑制に作用することができる。
Amateur extract The amateur extract of the present invention has excellent functionality for a sugar absorption inhibitory function (α-glucosidase inhibitory activity) and a blood protein glycation inhibitory function (CML production inhibitory activity). Therefore, as a first step, the extract of the present invention makes it difficult for the sugars in the food to be decomposed by the sugar absorption suppression function, and reduces the sugars that enter the blood in the body, thereby reducing the reaction between the sugars and the proteins in the body. As a second step, it is presumed that the production itself of one type of CML of AGEs (final glycation end product), which is a reaction between sugar and protein, is also suppressed by the glycation-inhibiting function in the body. Thus, it can act on saccharification suppression in two stages.

本発明のアマチャ抽出物は、熱水抽出により得られたアマチャ抽出物に比べ、単位量あたりの糖吸収抑制機能及び血液中蛋白質の糖化抑制機能に優れたアマチャ抽出物であることから、糖尿病予防剤、糖尿病治療剤、痩身剤、老化予防剤などに好適に用いることができる。   The armature extract of the present invention is an armature extract that is superior in the function of suppressing sugar absorption per unit amount and the function of inhibiting glycation of blood proteins, compared to the armature extract obtained by hot water extraction. It can be suitably used as an agent, a therapeutic agent for diabetes, a slimming agent, an anti-aging agent and the like.

本発明を実施例に基づいて説明するが、本発明は実施例のみに限定されるものではない。   The present invention will be described based on examples, but the present invention is not limited to the examples.

<アマチャ抽出物の調製>
実施例及び比較例のアマチャ抽出物の調製工程を説明する。
<Preparation of amateur extract>
The preparation process of the amateur extract of an Example and a comparative example is demonstrated.

アマチャの乾燥粉砕物の調製
インドネシア産のアマチャ(Hydrangea serrata var. thunbergii)の葉部分を水で洗浄後、オーブンにて絶乾状態としたものをミキサー(象印マホービン株式会社製のBM−RS08)にて粒子径が1〜3mmとなるまで粉砕し、アマチャの乾燥粉砕物を得た。
Preparation of dried crushed hamaches After the leaves of Indonesian hamache (Hydrangea serrata var. Thunbergii) were washed with water, they were completely dried in an oven to a mixer (BM-RS08 made by Elephant Mark Mahobin Co., Ltd.) Then, the mixture was pulverized until the particle diameter became 1 to 3 mm to obtain a dry crushed product of armature.

実施例1(亜臨界処理、125℃)
容積2Lの耐圧容器に、アマチャの乾燥粉砕物を40g入れ、処理温度125℃、処理圧力0.2MPa、処理時間30分(昇温時間3分含む)で亜臨界処理を行った。亜臨界処理の終了後、上記排気バルブを操作して5分間で大気圧まで戻し、処理缶内の処理物(スラリー)を回収した。回収されたスラリーをセルロース製ろ紙(孔径:1μm、ADVANTEC製の5C)で吸引ろ過し、ろ液(亜臨界抽出液)を得た。そして、亜臨界抽出液を凍結乾燥機(東京理化器械株式会社製のFDU−2200)により乾燥させて粉末状態の亜臨界抽出物を16.2g得た。
Example 1 (subcritical treatment, 125 ° C.)
In a pressure-resistant container having a volume of 2 L, 40 g of dry crushed material of the armature was put, and subcritical processing was performed at a processing temperature of 125 ° C., a processing pressure of 0.2 MPa, and a processing time of 30 minutes (including a temperature rising time of 3 minutes). After the subcritical processing was completed, the exhaust valve was operated to return to atmospheric pressure in 5 minutes, and the processed product (slurry) in the processing can was collected. The recovered slurry was subjected to suction filtration with a cellulose filter paper (pore size: 1 μm, ADVANTEC 5C) to obtain a filtrate (subcritical extract). Then, the subcritical extract was dried with a freeze dryer (FDU-2200 manufactured by Tokyo Rika Kikai Co., Ltd.) to obtain 16.2 g of a subcritical extract in a powder state.

実施例2(亜臨界処理、155℃)
亜臨界処理条件を、処理温度155℃、処理圧力0.5MPa、処理時間30分としたこと以外は、実施例1と同様に亜臨界処理、固液分離及び凍結乾燥を行い、粉末状態の亜臨界抽出物を20.3g得た。
Example 2 (subcritical treatment, 155 ° C.)
Subcritical processing, solid-liquid separation and freeze-drying were performed in the same manner as in Example 1 except that the subcritical processing conditions were a processing temperature of 155 ° C., a processing pressure of 0.5 MPa, and a processing time of 30 minutes. 20.3 g of critical extract was obtained.

比較例1(亜臨界処理、165℃)
亜臨界処理条件を、処理温度165℃、処理圧力0.7MPa、処理時間30分としたこと以外は、実施例1と同様に亜臨界処理、固液分離及び凍結乾燥を行い、粉末状態の亜臨界抽出物を20.1g得た。
Comparative Example 1 (subcritical treatment, 165 ° C.)
Subcritical processing, solid-liquid separation and freeze-drying were performed in the same manner as in Example 1 except that the subcritical processing conditions were a processing temperature of 165 ° C., a processing pressure of 0.7 MPa, and a processing time of 30 minutes. 20.1 g of critical extract was obtained.

比較例2(亜臨界処理、175℃)
亜臨界処理条件を、処理温度175℃、処理圧力0.9MPa、処理時間30分としたこと以外は、実施例1と同様に亜臨界処理、固液分離及び凍結乾燥を行い、粉末状態の亜臨界抽出物を21.4g得た。
Comparative Example 2 (subcritical treatment, 175 ° C.)
Subcritical processing, solid-liquid separation and freeze-drying were performed in the same manner as in Example 1 except that the subcritical processing conditions were a processing temperature of 175 ° C., a processing pressure of 0.9 MPa, and a processing time of 30 minutes. 21.4 g of critical extract was obtained.

比較例3(亜臨界処理、195℃)
亜臨界処理条件を、処理温度195℃、処理圧力1.4MPa、処理時間30分としたこと以外は、実施例1と同様に亜臨界処理、固液分離及び凍結乾燥を行い、粉末状態の亜臨界抽出物を24.8g得た。
Comparative Example 3 (subcritical treatment, 195 ° C.)
Subcritical processing, solid-liquid separation and freeze-drying were performed in the same manner as in Example 1 except that the subcritical processing conditions were a processing temperature of 195 ° C., a processing pressure of 1.4 MPa, and a processing time of 30 minutes. 24.8 g of critical extract was obtained.

比較例4(熱水処理)
2L容のビーカーに、アマチャの乾燥粉砕物を40g及び水を1000ml入れ、処理温度90℃、大気圧下、処理時間120分で熱水処理を行い、熱水処理物を得た。熱水処理時間後、セルロース製ろ紙(孔径:1μm、ADVANTEC製の5C)で吸引ろ過し、ろ液(熱水抽出液)を得た。そして、熱水抽出液を凍結乾燥機(東京理化器械株式会社製のFDU−2200)により乾燥させて粉末状態の熱水抽出物17.2gを得た。
Comparative example 4 (hot water treatment)
In a 2 L beaker, 40 g of dried hamaches and 1000 ml of water were placed and subjected to hydrothermal treatment at a treatment temperature of 90 ° C. and atmospheric pressure for a treatment time of 120 minutes to obtain a hydrothermally treated product. After the hot water treatment time, suction filtration was performed with a cellulose filter paper (pore size: 1 μm, ADVANTEC 5C) to obtain a filtrate (hot water extract). Then, the hot water extract was dried by a freeze dryer (FDU-2200 manufactured by Tokyo Rika Kikai Co., Ltd.) to obtain 17.2 g of powdered hot water extract.

<評価>
各実施例及び比較例で調製した抽出物について、下記の評価を行った。
<Evaluation>
The following evaluation was performed about the extract prepared by each Example and the comparative example.

アマチャ抽出量
アマチャ抽出量として乾燥粉砕物1gあたりのアマチャ抽出物量(mg)で算出した。
Amateur extract amount As an extract amount, it was calculated by the amount of extract (mg) per 1 g of dry pulverized product.

CML生成阻害活性試験
各抽出物の濃度が100mg/mlとなるように蒸留水に溶解させ、0.20μmメンブランフィルターによりろ過した溶液を適宜蒸留水にて希釈した溶液100μL、8mg/mLヒト血清アルブミン(Sigma−Aldrich Corporation)200μL、0.1Mリン酸緩衝液(pH7.4)500μL、蒸留水100μL及び2Mグルトース溶液100μLを混合し、全量1mLに調整した。その後、それらの混合液を温度60℃、40時間インキュベートしたもの[サンプル(S)]を糖化反応物のサンプル溶液としてCML生成阻害活性試験に用いた。
対照としては、2Mグルコース溶液の替わりに同量の蒸留水を添加したもの[サンプルブランク(SB)]、サンプルの代わりに同量の蒸留水を添加したもの[コントロール(C)]、サンプル及び2Mグルコース溶液の替わりに同量の蒸留水を添加したもの[コントロールブランク(CB)]も同じ条件で反応させた。
CML Production Inhibitory Activity Test 100 μL of a solution obtained by dissolving each extract in distilled water so that the concentration of each extract is 100 mg / ml and diluting with a 0.20 μm membrane filter is appropriately diluted with distilled water, 8 mg / mL human serum albumin (Sigma-Aldrich Corporation) 200 μL, 0.1 M phosphate buffer (pH 7.4) 500 μL, distilled water 100 μL, and 2 M glutose solution 100 μL were mixed to adjust the total volume to 1 mL. After that, those mixed solutions incubated at a temperature of 60 ° C. for 40 hours [Sample (S)] were used as a sample solution of the saccharification reaction product for the CML production inhibitory activity test.
As a control, the same amount of distilled water added instead of the 2M glucose solution [sample blank (SB)], the same amount of distilled water added instead of the sample [control (C)], the sample and 2M What added the same amount distilled water instead of the glucose solution [control blank (CB)] was also made to react on the same conditions.

特開2013−253072号公報などに記載された、測定キット:CircuLex CML/Nε−(carboxymethyl)lysine ELISA KIT(株式会社サイクレックス)を用いて各実施例及び比較例のCML生成阻害活性(蛋白質の糖化抑制機能)を測定した。
次の試薬を調製し使用した。
洗浄液:測定キットに付属の10×Wash Bufferを精製水で10倍に希釈したもの
第一次抗体溶液:測定キットに付属のPrimary Antibodyに精製水1.25mlを加えて良く混合し、混合液400μlをキットに付属のSample Dilution Bufferにて30倍に希釈したもの
標準液1〜7及びブランク:検量線の作成に使用、キットに付属のCML−HSA Standardを希釈したもの(標準液1:7.0μg/ml、標準液2:3.5μg/ml、標準液3:1.75μg/ml、標準液4:0.875μg/ml、標準液5:0.438μg/ml、標準液6:0.219μg/ml、標準液7:0.109μg/ml、ブランク:0μg/ml)
Using the measurement kit: CircuLex CML / Nε- (carboxymethyl) lysine ELISA KIT (Cyclex Co., Ltd.) described in JP 2013-253072 A and the like, the CML production inhibitory activity of each example and comparative example (protein The glycation inhibiting function) was measured.
The following reagents were prepared and used.
Washing solution: 10 × Wash Buffer attached to the measurement kit diluted 10-fold with purified water Primary antibody solution: 1.25 ml of purified water added to the Primary Antibody attached to the measurement kit and mixed well, 400 μl of the mixture Was diluted 30-fold with Sample Dilution Buffer attached to the kit, and standard solutions 1 to 7 and blank were used for preparing a calibration curve, and CML-HSA Standard attached to the kit was diluted (standard solution 1: 7. 0 μg / ml, standard solution 2: 3.5 μg / ml, standard solution 3: 1.75 μg / ml, standard solution 4: 0.875 μg / ml, standard solution 5: 0.438 μg / ml, standard solution 6: 0. (219 μg / ml, standard solution 7: 0.109 μg / ml, blank: 0 μg / ml)

マイクロプレートの各ウェルに、Sample Dilution Bufferで4倍に希釈したサンプル溶液を60μl、及び第一次抗体溶液を60μl入れて混合した。得られた混合液を抗原固相プレートの各ウェルに100μlずつ分注し、プレートシールで密封後、60rpmで振盪させながら25℃で1時間反応させた。反応終了後、各ウェルの反応液を除去し、洗浄液による洗浄を4回行った後、完全に乾燥させない程度に水分を取り除いた。その後、各ウェルにキットに付属の第二次抗体溶液(HPR Conjugated Detection Antibody)を100μlずつ分注し、プレートシールで密封後、60rpmで振盪させながら25℃で1時間反応させた。反応後、各ウェルの反応液を除去し、洗浄液による洗浄を4回行った後、完全に乾燥させない程度に水分を取り除いた。そして、キットに付属の発色剤(Substrate Reagent)を100μlずつ分注して、混合し、アルミホイルで遮光し、25℃で20分間静置させた。静置後反応停止液を、発色剤を入れた順に加えて反応を停止させた。反応停止後、30分以内にマイクロプレートリーダー(サーモフィッシャーサイエンティフィック株式会社製のマルチスキャンJX)により、測定波長450nm/参照波長540nmの吸光度を測定し、標準液の検量線からCML量を算出した。
[CML生成阻害率とIC50値の算出]
各CML量測定結果を用いて、下記の式により各アマチャ抽出物のCML生成阻害率(%)を算出し、IC50値(終濃度)を求めた。n=3で測定した値の平均値を結果とし、表1及び図1に示す。なお、図中のエラーバーは3回の測定の標準偏差を示す。
式:((C−CB)−(S−SB))/(C−CB)×100
In each well of the microplate, 60 μl of the sample solution diluted 4-fold with the Sample Dilution Buffer and 60 μl of the primary antibody solution were added and mixed. 100 μl of the obtained mixed solution was dispensed into each well of the antigen solid phase plate, sealed with a plate seal, and reacted at 25 ° C. for 1 hour while shaking at 60 rpm. After completion of the reaction, the reaction solution in each well was removed, and washing with a washing solution was performed four times, and then water was removed to such an extent that it was not completely dried. Thereafter, 100 μl of the secondary antibody solution (HPR Conjugated Detection Antibody) attached to the kit was dispensed into each well, sealed with a plate seal, and reacted at 25 ° C. for 1 hour while shaking at 60 rpm. After the reaction, the reaction solution in each well was removed, and washing with a washing solution was performed four times, and then water was removed to such an extent that it was not completely dried. Then, 100 μl of color developing agent (Substrate Reagent) attached to the kit was dispensed, mixed, shielded from light with aluminum foil, and allowed to stand at 25 ° C. for 20 minutes. After standing, the reaction stop solution was added in the order in which the color formers were added to stop the reaction. Within 30 minutes after stopping the reaction, the absorbance at a measurement wavelength of 450 nm / reference wavelength of 540 nm is measured with a microplate reader (Multiscan JX manufactured by Thermo Fisher Scientific Co., Ltd.), and the CML amount is calculated from the calibration curve of the standard solution. did.
[Calculation of CML production inhibition rate and IC50 value]
Using each CML amount measurement result, the CML production inhibition rate (%) of each armature extract was calculated by the following formula, and the IC50 value (final concentration) was obtained. Table 1 and FIG. 1 show the average value of the values measured at n = 3. In addition, the error bar in a figure shows the standard deviation of 3 times of measurement.
Formula: ((C-CB)-(S-SB)) / (C-CB) × 100

α−グルコシダーゼ阻害活性試験
下記の方法により各実施例及び比較例の糖吸収抑制機能(α−グルコシダーゼ阻害活性)を測定した。
次の試薬を調製し使用した。なお、全てのリン酸緩衝液はpH=7.0、0.1Mの同じものを使用した。
アルブミン溶液:ウシ血清由来アルブミンを0.2質量%含有する10mMリン酸緩衝液
酵素溶液:α−グルコシダーゼ(和光純薬製)を0.25unit/ml含有するアルブミン溶液
基質溶液:1mMのp−ニトロフェニル−α−D−グルコシド(和光純薬製)を含有するリン酸緩衝液
反応停止液:0.2M炭酸ナトリウム水溶液
サンプル溶液:各抽出物の濃度が100mg/mlとなるように蒸留水に溶解させ、0.20μmメンブランフィルターによりろ過した溶液を適宜蒸留水にて希釈した溶液
[サンプル(S)]
マイクロプレートの各ウェルに25μlの各サンプル溶液、25μlの基質溶液及び25μlのリン酸緩衝液を順に入れた。さらに、25μlの酵素溶液を加え、37℃で15分間静置させた後、200μlの反応停止液を加えた。その後、吸光プレートリーダーマルチスキャンJX(サーモフィッシャーサイエンティフィック(株))使用し、405nmの吸光度(S)を測定した。
[コントロール(C)]
25μlのサンプル溶液に替えて25μlの蒸留水を使用したこと以外は(S)と同じ条件で反応させ、吸光度(C)を測定した。
[サンプルブランク(SB)]
25μlの酵素溶液に替えて25μlのリン酸緩衝液を使用したこと以外は(S)と同じ条件で反応させ、吸光度(SB)を測定した。
[コントロールブランク(CB)]
25μlのサンプル溶液に替えて25μlの蒸留水を使用したこと、及び25μlの酵素溶液に替えて25μlのリン酸緩衝液を使用したこと以外は(S)と同じ条件で反応させ、吸光度(CB)を測定した。
[α−グルコシダーゼ阻害率とIC50値の算出]
各吸光度測定結果を用いて、下記の式により各アマチャ抽出物のα−グルコシダーゼ阻害率(%)を算出し、IC50値(終濃度)を求めた。n=3で測定した値の平均値を結果とし、表1及び図2に示す。なお、図中のエラーバーは3回の測定の標準偏差を示す。
式:((C−CB)−(S−SB))/(C−CB)×100
α-Glucosidase Inhibitory Activity Test The sugar absorption inhibition function (α-glucosidase inhibitory activity) of each Example and Comparative Example was measured by the following method.
The following reagents were prepared and used. In addition, all the phosphate buffers used the same thing of pH = 7.0 and 0.1M.
Albumin solution: 10 mM phosphate buffer solution containing 0.2% by weight of bovine serum-derived albumin Enzyme solution: Albumin solution substrate solution containing 0.25 unit / ml α-glucosidase (manufactured by Wako Pure Chemical Industries): 1 mM p-nitro Phosphate buffer solution stopping solution containing phenyl-α-D-glucoside (manufactured by Wako Pure Chemical Industries): 0.2 M sodium carbonate aqueous solution sample solution: dissolved in distilled water so that the concentration of each extract is 100 mg / ml A solution obtained by diluting a solution filtered through a 0.20 μm membrane filter with distilled water as appropriate [Sample (S)]
In each well of the microplate, 25 μl of each sample solution, 25 μl of substrate solution and 25 μl of phosphate buffer were put in order. Further, 25 μl of enzyme solution was added and allowed to stand at 37 ° C. for 15 minutes, and then 200 μl of a reaction stop solution was added. Thereafter, the absorbance (S) at 405 nm was measured using an absorbance plate reader Multiscan JX (Thermo Fisher Scientific Co., Ltd.).
[Control (C)]
Absorbance (C) was measured by reacting under the same conditions as (S) except that 25 μl of distilled water was used instead of 25 μl of the sample solution.
[Sample blank (SB)]
Absorbance (SB) was measured by reacting under the same conditions as (S) except that 25 μl of phosphate buffer was used instead of 25 μl of enzyme solution.
[Control blank (CB)]
The reaction was performed under the same conditions as in (S) except that 25 μl of distilled water was used instead of 25 μl of the sample solution, and 25 μl of phosphate buffer was used instead of 25 μl of the enzyme solution, and the absorbance (CB) Was measured.
[Calculation of α-glucosidase inhibition rate and IC50 value]
Using each absorbance measurement result, the α-glucosidase inhibition rate (%) of each armature extract was calculated by the following formula, and the IC50 value (final concentration) was determined. The average value of the values measured at n = 3 is the result and is shown in Table 1 and FIG. In addition, the error bar in a figure shows the standard deviation of 3 times of measurement.
Formula: ((C-CB)-(S-SB)) / (C-CB) × 100

Figure 2017031069
Figure 2017031069

表1並びに図1及び図2の結果より、本発明のアマチャ抽出物は、熱水抽出により得られたアマチャ抽出物に比べ、単位量あたりの糖吸収抑制機能及び血液中蛋白質の糖化抑制機能に優れたアマチャ抽出物であることがわかる。なお、抽出量と機能性評価との相関はなく、抽出量が多くても、糖吸収抑制機能及び血液中蛋白質の糖化抑制機能への寄与には影響がないことが確認された。   From the results of Table 1 and FIG. 1 and FIG. 2, the armature extract of the present invention has a function of suppressing sugar absorption per unit amount and a function of inhibiting glycation of blood proteins, compared to the armature extract obtained by hot water extraction. It turns out that it is an excellent amateur extract. In addition, there was no correlation with extraction amount and functional evaluation, and it was confirmed that there is no influence in the contribution to the sugar absorption suppression function and the glycation suppression function of blood protein even if there is much extraction amount.

Claims (5)

アマチャを原料とし、抽出溶媒に水を用いて、温度120〜160℃、各温度の飽和蒸気圧以上の圧力で行う亜臨界処理で得られ、糖吸収抑制機能及び糖化抑制機能を有するアマチャ抽出物。 An amateur extract having a sugar absorption inhibiting function and a saccharification inhibiting function, obtained by subcritical processing using an amateur as a raw material and water as an extraction solvent at a temperature of 120 to 160 ° C. and a pressure equal to or higher than the saturated vapor pressure at each temperature. . 前記亜臨界処理の処理時間が5〜60分である請求項1に記載のアマチャ抽出物。 The armature extract according to claim 1, wherein a processing time of the subcritical processing is 5 to 60 minutes. アマチャを原料とし、抽出溶媒に水を用いて、温度120〜160℃、各温度の飽和蒸気圧以上の圧力で亜臨界処理する亜臨界処理工程を含む糖吸収抑制及び糖化抑制機能を有するアマチャ抽出物の製造方法。 Amateur extraction with sugar absorption suppression and saccharification suppression function including subcritical treatment process using amateur as raw material and water as extraction solvent at a temperature of 120-160 ° C and a pressure equal to or higher than the saturated vapor pressure at each temperature. Manufacturing method. 前記亜臨界処理工程後、固液分離工程を行う請求項3に記載のアマチャ抽出物の製造方法。 The manufacturing method of the armature extract of Claim 3 which performs a solid-liquid separation process after the said subcritical process process. 前記亜臨界処理の処理時間が5〜60分である請求項3に記載のアマチャ抽出物の製造方法。 The method for producing an armature extract according to claim 3, wherein a processing time of the subcritical processing is 5 to 60 minutes.
JP2015149828A 2015-07-29 2015-07-29 Hydrangea macrophilla var. thunbergii extract and production method thereof Pending JP2017031069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015149828A JP2017031069A (en) 2015-07-29 2015-07-29 Hydrangea macrophilla var. thunbergii extract and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015149828A JP2017031069A (en) 2015-07-29 2015-07-29 Hydrangea macrophilla var. thunbergii extract and production method thereof

Publications (1)

Publication Number Publication Date
JP2017031069A true JP2017031069A (en) 2017-02-09

Family

ID=57987620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015149828A Pending JP2017031069A (en) 2015-07-29 2015-07-29 Hydrangea macrophilla var. thunbergii extract and production method thereof

Country Status (1)

Country Link
JP (1) JP2017031069A (en)

Similar Documents

Publication Publication Date Title
Bashi et al. Optimization of ultrasound-assisted extraction of phenolic compounds from yarrow (Achillea beibrestinii) by response surface methodology
Zhang et al. Ethanol/salt aqueous two-phase system based ultrasonically assisted extraction of polysaccharides from Lilium davidiivar. unicolor Salisb: Physicochemical characterization and antiglycation properties
Zuorro et al. Influence of extraction conditions on the recovery of phenolic antioxidants from spent coffee grounds
CN104366640B (en) A kind of preparation method of Auricularia polycose beverage
Solomakou et al. Recovery of phenolic compounds from spent coffee grounds through optimized extraction processes
CN107296280A (en) A kind of preparation method of cherry functional component
CN108003204B (en) Method for extracting phenylethanoid glycosides from cistanche tubulosa and application of phenylethanoid glycosides
US7109384B2 (en) Process to extract phenolic compounds from a residual plant material using a hydrothermal treatment
JP5000782B1 (en) Garlic crushed material, active oxygen scavenger, and method for producing garlic crushed material
Carvalho et al. Sugarcane straw extracts: production and purification by amberlite XAD-2
JP5448585B2 (en) Antiallergic agent and method for producing the same
JPH0436242A (en) Production of soya saponin
RU2341277C1 (en) Manufacturing method of alcohol polypore extract
JP2017031069A (en) Hydrangea macrophilla var. thunbergii extract and production method thereof
Hamid et al. Characterization of raw and ripen of banana peel wastes and it’s oils extraction using soxhlet method
RU2613294C1 (en) Method for producing melanin from sunflower husks
JP2017031070A (en) Rubus suavissimus extract and production method thereof
KR101502660B1 (en) A Fucoxanthin and Fucoidan Extraction Method from
JP2006271325A (en) Method for extracting and separating mushroom essence component
JP6344924B2 (en) Method for producing S-allylcysteine
JP5749300B2 (en) Method for producing powdered ceramide
CN109007957A (en) A kind of tobacco extract, preparation method and tobacco product
WO2023095568A1 (en) Method for producing hydroxytyrosol from olive leaves, and hydroxytyrosol-containing composition
CN115228133B (en) Method for extracting combined polyphenol in coarse cereals by continuous compound enzyme method
WO2015002209A1 (en) Agent for preventing an increase in blood pressure and agent for preventing saccharification both containing coffee bean extract as active ingredient, and methods for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190416

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191029