JP2017029925A - Sludge volume reduction method, and activated sludge treatment apparatus of membrane separation type using the same - Google Patents

Sludge volume reduction method, and activated sludge treatment apparatus of membrane separation type using the same Download PDF

Info

Publication number
JP2017029925A
JP2017029925A JP2015152789A JP2015152789A JP2017029925A JP 2017029925 A JP2017029925 A JP 2017029925A JP 2015152789 A JP2015152789 A JP 2015152789A JP 2015152789 A JP2015152789 A JP 2015152789A JP 2017029925 A JP2017029925 A JP 2017029925A
Authority
JP
Japan
Prior art keywords
activated sludge
sludge
bacteria
bacteriophage
biological reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015152789A
Other languages
Japanese (ja)
Other versions
JP6666000B2 (en
Inventor
由也 佐藤
Yoshiya Sato
由也 佐藤
知行 堀
Tomoyuki Hori
知行 堀
知大 稲葉
Tomohiro Inaba
知大 稲葉
尾形 敦
Atsushi Ogata
敦 尾形
浩 羽部
Hiroshi Habe
浩 羽部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2015152789A priority Critical patent/JP6666000B2/en
Publication of JP2017029925A publication Critical patent/JP2017029925A/en
Application granted granted Critical
Publication of JP6666000B2 publication Critical patent/JP6666000B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an activated sludge treatment apparatus and a method of a membrane separation type which do not require a cost for large-scale renovation work or the like, and can control and reduce an excess sludge amount by a simple method.SOLUTION: An activated sludge treatment apparatus of membrane separation type includes: a biological reaction tank which biologically processes organic waste water; a membrane separation unit for separating organic waste water purified in the biological reaction tank into purified water and activated sludge; a fungivorous bacterium culture tank which regenerates excess sludge generated in the biological reaction tank into activated sludge, and is equipped with aeration means for culturing fungivorous bacteria under an aerobic condition; sludge returning means for sending activated sludge generated in the fungivorous bacterium culture tank to the biological reaction tank, in which excess sludge is regenerated into activated sludge by culturing fungivorous bacteria in excess sludge in the fungivorous bacterium culture tank, and furthermore regenerated activated sludge is repeatedly used in the biological reaction tank.SELECTED DRAWING: Figure 1

Description

本発明は、汚泥減容方法およびそれを用いた膜分離型活性汚泥処理装置に関する。   The present invention relates to a sludge volume reduction method and a membrane separation type activated sludge treatment apparatus using the same.

膜分離型活性汚泥処理装置(MBR; Membrane bioreactor)は、微生物を含む活性汚泥を用いて反応槽内で下水などの廃液中の有機物や窒素成分、リン成分等を分解し、次いで、膜分離ユニットにより浄化水と微生物とを固液分離する技術である。このようにして膜分離型活性汚泥処理装置により系外に排出される浄化水は、良質な処理水となる。一方、活性汚泥は好気性微生物群から主に構成されており、この活性汚泥中の微生物は膜分離型活性汚泥処理装置の運転時間に依存して増殖する。従来、膜分離型活性汚泥処理装置において過剰に増殖した活性汚泥は、活性汚泥濃度を一定に保つために余剰汚泥として廃棄処分されていた。このようにして廃棄される余剰汚泥に加え、他の工場等から排出される泥状廃棄物は総称して汚泥と呼ばれるが、これら汚泥は産業廃棄物の種類別排出量の内43%を占めているため(環境省公開データ(平成24年度))、余剰汚泥量をコントロール・減容化することがMBR運転管理上の重要な課題の一つであった。   Membrane bioreactor (MBR) uses activated sludge containing microorganisms to decompose organic matter, nitrogen components, phosphorus components, etc. in wastewater such as sewage in a reaction tank, and then a membrane separation unit This is a technology for solid-liquid separation of purified water and microorganisms. In this way, the purified water discharged out of the system by the membrane separation type activated sludge treatment apparatus becomes a high-quality treated water. On the other hand, activated sludge is mainly composed of aerobic microorganisms, and microorganisms in the activated sludge grow depending on the operation time of the membrane separation type activated sludge treatment apparatus. Conventionally, activated sludge proliferated excessively in a membrane separation type activated sludge treatment apparatus has been disposed of as excess sludge in order to keep the activated sludge concentration constant. In addition to the excess sludge discarded in this way, the sludge waste discharged from other factories is collectively called sludge, but these sludges account for 43% of industrial waste by type. Therefore, controlling and reducing excess sludge volume was one of the important issues in MBR operation management.

ここで、汚泥減容方法で有力なものとして、余剰汚泥を加圧ジェット処理することで物理的に汚泥中微生物を破砕する方法が挙げられる(特許文献1)。しかし、この方法は高圧ジェット噴射システムを新たに組み込む必要があり、大掛かりな改修工事が必要となる。
また、細菌捕食性の原生動物を添加し、MBRの処理能低下を引き起こすとされる細菌を処理する方法などが考案されている(特許文献2)。しかし、この方法では外部から捕食性生物を加えるため、活性汚泥内の細菌のバランスが大きく変化し、リアクター機能が低下するなどの課題が懸念される。
Here, as a promising method for sludge volume reduction, there is a method of physically crushing microorganisms in sludge by subjecting excess sludge to pressure jet treatment (Patent Document 1). However, this method requires a new high-pressure jet injection system and a large-scale renovation work.
In addition, a method has been devised in which bacteria predatory protozoa are added to treat bacteria that are thought to cause a decrease in MBR processing ability (Patent Document 2). However, in this method, since predatory organisms are added from the outside, there is a concern that the balance of bacteria in the activated sludge changes greatly and the reactor function is lowered.

特開2001−314887号公報JP 2001-314877 A 特開2007−260664号公報JP 2007-260664 A

上記課題に鑑み、本発明は、膜分離型活性汚泥処理装置において、大掛かりな改修工事などのコストを必要とせず、簡便な方法により余剰汚泥量をコントロール・減容することのできる装置及び方法の提供を課題とする。   In view of the above-described problems, the present invention provides a membrane separation type activated sludge treatment apparatus that does not require cost for large-scale repair work and the like, and an apparatus and method that can control and reduce the amount of excess sludge by a simple method. Offering is an issue.

ここで、上記の特許文献1の方法は、膜分離型のシステムを採用していない活性汚泥処理装置に適用する方法である。膜分離型のシステムを採用していない活性汚泥処理装置では、浄化水の系外への排出の際に、一定量の活性汚泥も排出される。一方で、膜分離型活性汚泥処理装置においては、余剰汚泥を生物反応槽より取り出さない限り、生物反応槽内に余剰汚泥が溜まるため余剰汚泥中の有機物濃度が相対的に高くなる。また、上述のように、特許文献1の方法を採用する場合、活性汚泥処理装置内に高圧ジェット噴射システムを新たに組み込む必要がある。それに加えて特許文献1の方法では、活性汚泥中の微生物自体を死滅させるものではないため、増殖した微生物自体による濃度の上昇を解決するものではない。従って、特許文献1の方法は、濃度が相対的に高くなる膜分離型活性汚泥処理装置における余剰汚泥についても繰り返し機能するかわからないという課題も有していた。そこで、本発明者らは、濃度が高い余剰汚泥についても適用可能な余剰汚泥の減容方法について検討した。   Here, the method disclosed in Patent Document 1 is a method applied to an activated sludge treatment apparatus that does not employ a membrane separation type system. In an activated sludge treatment apparatus that does not employ a membrane separation type system, a certain amount of activated sludge is also discharged when purified water is discharged out of the system. On the other hand, in the membrane separation type activated sludge treatment apparatus, unless the excess sludge is taken out from the biological reaction tank, the excess sludge is accumulated in the biological reaction tank, so that the organic matter concentration in the excess sludge becomes relatively high. Moreover, as mentioned above, when employ | adopting the method of patent document 1, it is necessary to newly incorporate a high pressure jet injection system in an activated sludge processing apparatus. In addition, in the method of Patent Document 1, since the microorganisms in the activated sludge are not killed, the increase in concentration due to the grown microorganisms itself is not solved. Therefore, the method of patent document 1 also had the subject that it does not know whether it functions repeatedly also about the excess sludge in the membrane separation type | formula activated sludge processing apparatus from which a density | concentration becomes comparatively high. Therefore, the present inventors examined a volume reduction method of excess sludge that can be applied to excess sludge having a high concentration.

現在までに、本発明者らはパイロットスケールのMBRを様々な条件で運転し、活性汚泥中の微生物組成の変化や、それに伴う廃水処理能の変化を研究してきた。その結果、以下の重要な知見を見出した。
(i) 活性汚泥中に菌食性細菌が常在菌として存在する
(ii) 添加する有機物量に相関して活性汚泥中の微生物量は増加するが、ある値で一定となる、また、一定期間経過後に減少傾向に転じる。この期間には、活性汚泥内では菌食性の細菌が急激に増殖する。
(iii) 添加する有機物量を減少した際には活性汚泥中の微生物量は減少するが、この期間にも菌食性の細菌が急激に増殖する。
To date, the present inventors have operated a pilot scale MBR under various conditions, and have studied changes in the microbial composition in the activated sludge and associated changes in wastewater treatment capacity. As a result, the following important findings were found.
(I) Mycophagous bacteria are present as resident bacteria in activated sludge (ii) The amount of microorganisms in activated sludge increases in correlation with the amount of organic matter added, but is constant at a certain value, and for a certain period After a lapse, it starts to decrease. During this period, mycophagous bacteria grow rapidly in the activated sludge.
(Iii) When the amount of organic matter to be added is reduced, the amount of microorganisms in the activated sludge is reduced, but even during this period, mycophagous bacteria grow rapidly.

これらの知見に基づいて、本発明者らは余剰汚泥を含む槽内において好気条件を保ち、かつ、有機物量を制限したところ、驚くべきことに、有機物を必要とする微生物は死滅・溶菌することに加え、余剰汚泥内に存在する菌食性細菌がそれら不活性化した微生物を分解することで余剰汚泥を減容できることを見出した。これにより、本発明者らはMBR活性汚泥内に常在する菌食性の細菌を優先的に増殖させ、不活性な活性汚泥微生物を捕食・分解することで余剰汚泥を減容できる装置及び方法を提供するに至った。   Based on these findings, the present inventors maintained aerobic conditions in the tank containing excess sludge and restricted the amount of organic matter. Surprisingly, microorganisms that require organic matter are killed and lysed. In addition, the present inventors have found that the excess sludge can be reduced by decomposing these inactivated microorganisms by the bacteriophage bacteria present in the excess sludge. As a result, the present inventors preferentially proliferate mycophagous bacteria residing in the MBR activated sludge, and develop an apparatus and method that can reduce excess sludge by preying and decomposing inactive activated sludge microorganisms. It came to offer.

すなわち、本発明は、以下の通りである。
本発明の一態様は、
〔1〕有機性排水を生物処理する生物反応槽と、
前記生物反応槽において浄化した有機性排水を浄化水と活性汚泥とに分離するための膜分離ユニットと、
前記生物反応槽において生じた余剰汚泥を活性汚泥へと再生する菌食性細菌培養槽であって、好気条件下で菌食性細菌を培養するための曝気手段を備えている菌食性細菌培養槽と、
前記菌食性細菌培養槽において再生した活性汚泥を前記生物反応槽へと送る汚泥返送手段と
を含む膜分離型活性汚泥処理装置であって、
前記菌食性細菌培養槽において余剰汚泥中の菌食性細菌を培養することにより、余剰汚泥を活性汚泥へと再生し、さらに、前記再生した活性汚泥を前記生物反応槽において繰り返し使用することを特徴とする、膜分離型活性汚泥処理装置に関する。
That is, the present invention is as follows.
One embodiment of the present invention provides:
[1] a biological reaction tank for biologically treating organic wastewater;
A membrane separation unit for separating the organic wastewater purified in the biological reaction tank into purified water and activated sludge;
A bacteriophage bacteria culture tank for regenerating surplus sludge generated in the biological reaction tank into activated sludge, comprising aeration means for culturing bacteriophage bacteria under aerobic conditions; ,
A membrane-separated activated sludge treatment apparatus comprising sludge return means for sending activated sludge regenerated in the bacteriophage bacteria culture tank to the biological reaction tank,
By culturing the bacteriophage bacteria in the excess sludge in the bacteriophage bacteria culture tank, the excess sludge is regenerated into activated sludge, and the regenerated activated sludge is repeatedly used in the biological reaction tank. The present invention relates to a membrane separation type activated sludge treatment apparatus.

また、本発明の膜分離型活性汚泥処理装置の一実施の形態においては、
〔2〕前記菌食性細菌培養槽に対して、有機物の流入を制御するための有機物流入制御手段をさらに含むことを特徴とする。
また、本発明の膜分離型活性汚泥処理装置の一実施の形態においては、
〔3〕前記菌食性細菌培養槽が、有機物量を測定する手段をさらに備えていることを特徴とする。
また、本発明の膜分離型活性汚泥処理装置の一実施の形態においては、
〔4〕前記菌食性細菌が、Xanthomonadaceae科に属する菌食性細菌、Bdellovibrionaceae科に属する菌食性細菌、Myxococcales目に属する菌食性細菌、Sphingobacteriia綱に属する菌食性細菌、Flavobacteriia綱に属する菌食性細菌、及び、Cytophagia綱に属する菌食性細菌の群から選択される少なくとも1つの細菌であることを特徴とする。
また、本発明の膜分離型活性汚泥処理装置の一実施の形態においては、
〔5〕前記菌食性細菌培養槽における菌食性細菌の培養が、少なくとも7日行われることを特徴とする。
なお、本発明の膜分離型活性汚泥処理装置に関する実施の形態ごとの特徴を複数組み合わせて有するものも、本発明の膜分離型活性汚泥処理装置に含まれる。
Moreover, in one embodiment of the membrane separation type activated sludge treatment apparatus of the present invention,
[2] The present invention further comprises an organic matter inflow control means for controlling the inflow of organic matter to the bacteriophage bacterium culture tank.
Moreover, in one embodiment of the membrane separation type activated sludge treatment apparatus of the present invention,
[3] The bacteriophage bacterium culture tank further includes means for measuring the amount of organic matter.
Moreover, in one embodiment of the membrane separation type activated sludge treatment apparatus of the present invention,
[4] The bacteriophage bacterium belongs to the family Xanthomonadaceae, the bacteriophage bacterium belonging to the family Bdellovibrionaceae, the mycophagous bacterium belonging to the order Myxococcales, the phagocytic bacterium belonging to the class Sphingobacteriia, the phagocytic bacterium belonging to the class Flavobacteriia, and , Characterized in that it is at least one bacterium selected from the group of mycophagous bacteria belonging to the class Cytophagia.
Moreover, in one embodiment of the membrane separation type activated sludge treatment apparatus of the present invention,
[5] The culture of the bacteriophage bacteria in the bacteriophage bacteria culture tank is carried out for at least 7 days.
In addition, what has combined the characteristic for every embodiment regarding the membrane separation type | formula activated sludge processing apparatus of this invention in combination is also contained in the membrane separation type | formula activated sludge processing apparatus of this invention.

また、本発明の別の態様によれば、本発明は、
〔6〕膜分離型活性汚泥法において生じた余剰汚泥を活性汚泥へと再生する方法であって、
余剰汚泥を好気条件下、かつ、余剰汚泥に対して外部からの有機物の追加がない条件下で培養する工程を含む方法であって、
前記培養により余剰汚泥中の菌食性細菌を培養し、前記菌食性細菌により余剰汚泥中の有機物を分解することを特徴とする、再生方法に関する。
ここで、本発明の再生方法の一実施の形態においては、
〔7〕前記培養工程により培養する菌食性細菌が、Xanthomonadaceae科に属する菌食性細菌、Bdellovibrionaceae科に属する菌食性細菌、Myxococcales目に属する菌食性細菌、Sphingobacteriia綱に属する菌食性細菌、Flavobacteriia綱に属する菌食性細菌、及び、Cytophagia綱に属する菌食性細菌の群から選択される少なくとも1つの細菌であることを特徴とする。
また、本発明の再生方法の一実施の形態においては、
〔8〕前記培養工程が、少なくとも7日行われることを特徴とする。
なお、本発明の再生方法の各実施の形態における特徴を複数組み合わせたものも、本発明の再生方法に含まれる。
According to another aspect of the present invention, the present invention provides:
[6] A method of regenerating surplus sludge generated in the membrane separation type activated sludge method into activated sludge,
A method comprising culturing surplus sludge under aerobic conditions and under the condition that no organic matter is added from the outside to the surplus sludge,
The present invention relates to a regeneration method characterized by culturing bacteriophage bacteria in excess sludge by the culture and decomposing organic matter in the excess sludge by the bacteriophage bacteria.
Here, in one embodiment of the reproduction method of the present invention,
[7] The bacteriophage bacteria cultivated by the above-mentioned culturing process belong to the family Xanthomonadaceae, bacteriophages belonging to the family Bdellovibrionaceae, bacteriophages belonging to the family Myxococcales, bacteriophages belonging to the class Sphingobacteriia, Flavobacteriia It is characterized by being at least one bacterium selected from the group of mycophagous bacteria and mycophagous bacteria belonging to the class Cytophagia.
In one embodiment of the playback method of the present invention,
[8] The culturing step is performed for at least 7 days.
A combination of a plurality of features in each embodiment of the reproduction method of the present invention is also included in the reproduction method of the present invention.

また、本発明の別の態様によれば、本発明は、
〔9〕上記〔6〕〜〔8〕のいずれか一項に記載の再生方法により再生された活性汚泥を利用して、有機性排水を生物処理する工程を含む、膜分離型活性汚泥方法に関する。
According to another aspect of the present invention, the present invention provides:
[9] A membrane-separated activated sludge method including a step of biologically treating organic wastewater using the activated sludge regenerated by the regeneration method according to any one of [6] to [8] above .

本発明の膜分離型活性汚泥処理装置によれば、菌食性細菌培養槽内で余剰汚泥を簡便に減容するこができる。これにより、余剰汚泥の廃棄量を減らすことが可能となり、さらに再生した活性汚泥を再度生物処理に使用することが可能となる。   According to the membrane-separated activated sludge treatment apparatus of the present invention, excess sludge can be easily reduced in a bacteriophage bacteria culture tank. As a result, it is possible to reduce the amount of excess sludge discarded, and it is possible to use the regenerated activated sludge again for biological treatment.

図1は、下記実施例1において使用した3槽式のポリカーボネート製膜分離活性汚泥処理装置の概略図を示す。FIG. 1 is a schematic view of a three-tank polycarbonate membrane separation activated sludge treatment apparatus used in Example 1 below. 図2は、下記実施例1において使用した3槽式のポリカーボネート製膜分離活性汚泥処理装置の斜視図を示す。FIG. 2 shows a perspective view of a 3-tank polycarbonate membrane separation activated sludge treatment apparatus used in Example 1 below. 図3は、本発明の膜分離活性汚泥処理装置の一実施の形態であって、菌食性細菌培養槽が生物処理槽とは分離して設けられている膜分離活性汚泥処理装置の概略図を示す。FIG. 3 is an embodiment of the membrane separation activated sludge treatment apparatus of the present invention, and is a schematic diagram of a membrane separation activated sludge treatment apparatus in which a bacteriophage bacteria culture tank is provided separately from a biological treatment tank. Show. 図4(a)及び図4(b)は、本発明の膜分離活性汚泥処理装置の一実施の形態であって、菌食性細菌培養槽が生物処理槽とは分離して設けられている膜分離活性汚泥処理装置の実施形態における斜視図をそれぞれ示す。FIG. 4 (a) and FIG. 4 (b) are one embodiment of the membrane separation activated sludge treatment apparatus of the present invention, in which a mycophagous bacterial culture tank is provided separately from the biological treatment tank. The perspective view in embodiment of a separation activated sludge processing apparatus is shown, respectively. 図5は、実施例1に記載の条件により膜分離活性汚泥処理装置を用いて廃水処理運転を行った際のMLSSの経時的変化を示すグラフ(図5(a))、運転期間中に最も相対存在量の増加量が高かった上位10種の微生物の相対存在量変化を示すグラフ(図5(b))、及び、当該上位10種の微生物に関する系統学的情報を示す表(図5(c))である。FIG. 5 is a graph (ML (a)) showing a time-dependent change of MLSS when a wastewater treatment operation is performed using a membrane separation activated sludge treatment apparatus under the conditions described in Example 1, and the most during the operation period. A graph showing the change in relative abundance of the top 10 microorganisms with a high increase in relative abundance (FIG. 5 (b)), and a table showing phylogenetic information on the top 10 microorganisms (FIG. 5 ( c)). 図6は、実施例2に記載の条件により膜分離活性汚泥処理装置を用いて廃水処理運転を行った際のMLSSの経時的変化を示すグラフ(図6(a))、運転期間中に最も相対存在量の増加量が高かった上位10種の微生物の相対存在量変化を示すグラフ(図6(b))、及び、当該上位10種の微生物に関する系統学的情報を示す表(図6(c))である。FIG. 6 is a graph (FIG. 6 (a)) showing a time-dependent change in MLSS when a wastewater treatment operation is performed using a membrane separation activated sludge treatment apparatus under the conditions described in Example 2, and the most during the operation period. A graph showing the change in relative abundance of the top 10 microorganisms with a high relative abundance increase (FIG. 6 (b)), and a table showing phylogenetic information on the top 10 microorganisms (FIG. 6 ( c)). 図7は、実施例3に記載の条件により膜分離活性汚泥処理装置を用いて廃水処理運転を行った際のMLSSの経時的変化を示すグラフ(図7(a))、運転期間中に最も相対存在量の増加量が高かった上位10種の微生物の相対存在量変化を示すグラフ(図7(b))、及び、当該上位10種の微生物に関する系統学的情報を示す表(図7(c))である。FIG. 7 is a graph (FIG. 7 (a)) showing a time-dependent change of MLSS when a wastewater treatment operation is performed using a membrane separation activated sludge treatment apparatus under the conditions described in Example 3, which is the most during the operation period. A graph showing the relative abundance change of the top 10 microorganisms having a high relative abundance increase (FIG. 7B), and a table showing phylogenetic information on the top 10 microorganisms (FIG. 7 ( c)).

以下に本発明の一実施の形態を図面に基づいて説明する。図1に示す形態において、膜分離型活性汚泥処理装置1は、3つの生物反応槽2、8、10を有する。生物反応槽2には、有機性排水を供給する排水の流入系が接続されており、ポンプ3aを介して下水等の有機性排水が生物反応槽2へと流入する。生物反応槽2へと流入した有機性排水は活性汚泥と混合され生物処理により有機物の分解が行われる。このとき、生物反応槽2にはエアーブロワ4a、散気管5a、及び、フローメーター6aが設置されており、生物反応槽2内は常に好気条件に保たれている。生物反応槽2は、生物反応槽8と連結しており、生物反応槽2内の有機性排水及び活性汚泥の混合物は、連結管7を介して生物反応槽8内へと流入する。生物反応槽8にもエアーブロワ4b、散気管5b、及び、フローメーター6bが設置されており、生物反応槽8内は常に好気条件に保たれている。これによりさらに排水中の有機物の生物分解を促進する。生物反応槽8は生物反応槽10と連結しており、生物反応槽8内の有機性排水及び活性汚泥の混合物は、連結管9を介して生物反応槽10内へと流入する。生物反応槽10にもエアーブロワ4c、散気管5c、及び、フローメーター6cが設置されており、生物反応槽10内は常に好気条件に保たれている。また、生物反応槽10には、生物処理により浄化した排水と活性汚泥とを分離するための膜分離ユニット11及び排出系が設置されている。排出系には、膜間差圧計12、ポンプ3b、及び、フローメーター6dが設置されている。生物処理により浄化した排水は、膜分離ユニット11から排出系へと流出し、処理水として系外へ排出される。また、生物反応槽10には、生物反応槽2へ活性汚泥を返送するための汚泥返送管13及びポンプ3cを有しており、活性汚泥は繰り返し膜分離型活性汚泥処理装置1内で使用される。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In the form shown in FIG. 1, the membrane separation type activated sludge treatment apparatus 1 has three biological reaction tanks 2, 8, and 10. The biological reaction tank 2 is connected to an inflow system of wastewater for supplying organic wastewater, and organic wastewater such as sewage flows into the biological reaction tank 2 via the pump 3a. The organic wastewater that has flowed into the biological reaction tank 2 is mixed with activated sludge and the organic matter is decomposed by biological treatment. At this time, an air blower 4a, a diffuser tube 5a, and a flow meter 6a are installed in the biological reaction tank 2, and the inside of the biological reaction tank 2 is always kept in an aerobic condition. The biological reaction tank 2 is connected to the biological reaction tank 8, and the mixture of the organic waste water and the activated sludge in the biological reaction tank 2 flows into the biological reaction tank 8 through the connection pipe 7. An air blower 4b, an air diffuser 5b, and a flow meter 6b are also installed in the biological reaction tank 8, and the inside of the biological reaction tank 8 is always kept in an aerobic condition. This further promotes biodegradation of organic matter in the wastewater. The biological reaction tank 8 is connected to the biological reaction tank 10, and the mixture of the organic waste water and the activated sludge in the biological reaction tank 8 flows into the biological reaction tank 10 through the connection pipe 9. An air blower 4c, a diffuser tube 5c, and a flow meter 6c are also installed in the biological reaction tank 10, and the inside of the biological reaction tank 10 is always kept in an aerobic condition. The biological reaction tank 10 is also provided with a membrane separation unit 11 and a discharge system for separating the wastewater purified by biological treatment and activated sludge. In the discharge system, a transmembrane pressure gauge 12, a pump 3b, and a flow meter 6d are installed. Wastewater purified by biological treatment flows out from the membrane separation unit 11 to the discharge system and is discharged out of the system as treated water. The biological reaction tank 10 has a sludge return pipe 13 and a pump 3c for returning the activated sludge to the biological reaction tank 2, and the activated sludge is repeatedly used in the membrane separation type activated sludge treatment apparatus 1. The

ここで、本発明の膜分離型活性汚泥処理装置は、菌食性細菌培養槽を含むものである。菌食性細菌培養槽は、活性汚泥中の微生物が増殖し余剰汚泥となったものを活性汚泥へと再生するための槽である。菌食性細菌培養槽における余剰汚泥の再生は、外部からのさらなる有機物の追加を制限し、かつ、好気条件下で余剰汚泥中の菌食性細菌を培養することにより行う。ここで、菌食性細菌培養槽内において、余剰汚泥に対する外部からの有機物の増加を制限することにより余剰汚泥中の多くの微生物は死滅・溶菌する。そして、余剰汚泥内に存在する菌食性細菌は、それら不活性化した微生物を利用・分解することで生育・増殖する。その結果、菌食性細菌は増殖するが、全体として余剰汚泥中の有機物濃度を減少することができる。   Here, the membrane-separated activated sludge treatment apparatus of the present invention includes a bacteriophage bacteria culture tank. The bacteriophagous bacteria culture tank is a tank for regenerating the activated sludge from the microorganisms in the activated sludge which have grown and become excess sludge. The regeneration of the excess sludge in the mycological bacteria culture tank is performed by limiting the addition of further organic substances from the outside and culturing the mycophagous bacteria in the excess sludge under aerobic conditions. Here, many microorganisms in the excess sludge are killed and lysed by restricting the increase of organic substances from the outside with respect to the excess sludge in the bacteriophage bacteria culture tank. The bacteriophage bacteria present in the excess sludge grow and proliferate by utilizing and decomposing these inactivated microorganisms. As a result, the mycophagous bacteria grow, but the organic matter concentration in the excess sludge can be reduced as a whole.

菌食性細菌培養槽は、生物反応槽とは別の槽として設置することもできるし、生物反応層の少なくとも1つを菌食性細菌培養槽として使用することもできる。図1に示す一実施の形態においては、生物反応槽の少なくとも1つが菌食性細菌培養槽として機能することができる。例えば、図1に示す膜分離型活性汚泥処理装置の一実施の形態において、連結管7又は連結管9には、有機物流入制御手段を備えることができる。連結管7に有機物流入制御手段を有する場合、生物反応槽8及び/又は生物反応槽10は菌食性細菌培養槽として使用できる。生物反応槽8及び/又は生物反応槽10を菌食性細菌培養槽として使用するには、連結管7における有機物流入制御手段により有機性排水の流入を止める。これにより生物反応槽2から生物反応槽8及び/又は生物反応槽10への有機性排水の新たな流入を止めることができる。このとき、菌食性細菌培養槽中を好気条件に保つことで菌食性細菌を培養する。また、図1に示す膜分離型活性汚泥処理装置の一実施の形態において、連結管9に有機物流入制御手段を有する場合、生物反応層10を菌食性細菌培養槽として使用することができる。また、別の一実施の形態においては、有機性排水を供給する排水の流入系に有機物流入制御手段を設置することにより、生物反応槽2、8、10を菌食性細菌培養槽とすることもできる。有機物流入制御手段としては、菌食性細菌培養槽中への有機物(すなわち、有機性排水)のさらなる流入を止めることがきるものであれば特に制限されず、ゲート弁等公知の構成を採用することができる。   The bacteriophage bacteria culture tank can be installed as a tank separate from the biological reaction tank, or at least one of the biological reaction layers can be used as the bacteriophage bacteria culture tank. In one embodiment shown in FIG. 1, at least one of the biological reaction tanks can function as a mycophagous bacteria culture tank. For example, in one embodiment of the membrane separation type activated sludge treatment apparatus shown in FIG. 1, the connecting pipe 7 or the connecting pipe 9 can be provided with an organic matter inflow control means. In the case where the connecting pipe 7 has an organic matter inflow control means, the biological reaction tank 8 and / or the biological reaction tank 10 can be used as a mycophagous bacteria culture tank. In order to use the biological reaction tank 8 and / or the biological reaction tank 10 as a mycophagous bacteria culture tank, the inflow of organic waste water is stopped by the organic matter inflow control means in the connecting pipe 7. Thereby, the new inflow of the organic waste water from the biological reaction tank 2 to the biological reaction tank 8 and / or the biological reaction tank 10 can be stopped. At this time, the bacteriophage bacteria are cultured by maintaining the inside of the bacteriophage bacteria culture tank in an aerobic condition. Further, in the embodiment of the membrane separation type activated sludge treatment apparatus shown in FIG. 1, when the connection pipe 9 has the organic matter inflow control means, the bioreaction layer 10 can be used as a mycophagous bacteria culture tank. In another embodiment, the biological reaction tanks 2, 8, 10 may be used as bacteriophage bacteria culture tanks by installing organic matter inflow control means in the inflow system of the wastewater that supplies organic wastewater. it can. The organic matter inflow control means is not particularly limited as long as it can stop further inflow of organic matter (that is, organic wastewater) into the fungal microbial culture tank, and adopts a known configuration such as a gate valve. Can do.

また、本発明の膜分離型活性汚泥処理装置は異なる実施の形態として、生物反応槽とは別に、菌食性細菌培養槽をさらに備えることもできる。このような膜分離型活性汚泥処理装置の一実施の形態としては、図3に示すように、菌食性細菌培養槽15と生物反応槽の少なくとも一つとが、連結管14により連結している。そして、生物反応槽8中において生じた余剰汚泥は、連結管14を介して菌食性細菌培養槽15に送られる。ここで、連結管14には有機物流入制御手段が設けられており、菌食性細菌培養槽15へのさらなる有機性排水等の流入が制限される。なお、菌食性細菌培養槽15は曝気手段(エアーブロワ4d及び散気管5d)を有しており、菌食性細菌培養槽15内は好気条件に保たれる。また、菌食性細菌培養槽は好気条件を監視するためのフローメーター6dを備えていても良い。菌食性細菌培養槽15に余剰汚泥が送られると、有機物の流入が制限され、かつ、好気条件を維持したまま菌食性細菌の培養が行われる。この培養により菌食性細菌は増殖し、菌食性細菌により余剰汚泥中の微生物細胞や有機物が分解処理される。ここで、菌食性細菌培養槽15は、生物反応槽の少なくとも1つ(例えば、余剰汚泥が送られてきた生物反応槽(図3の形態においては生物反応槽8が相当する)や有機性排水が供給される最初の生物反応槽(図3の形態においては生物反応槽2が相当する))に再生した活性汚泥を送るための汚泥返送手段16を有する。この汚泥返送手段を介して、菌食性細菌培養槽中で再生した活性汚泥を生物反応槽へ送り、繰り返し生物処理に使用する。
また、菌食性細菌培養槽15が連結する位置は特に限定されず、以下の形態に限定されないが、図4(a)に示すように、有機性排水が供給される最初の生物反応槽8と連結してもよいし、図4(b)に示すように、2つ目の生物反応槽10と連結してもよい。
Moreover, the membrane separation type | formula activated sludge processing apparatus of this invention can also further be provided with a mycophactic bacteria culture tank as a different embodiment separately from a biological reaction tank. As one embodiment of such a membrane separation type activated sludge treatment apparatus, as shown in FIG. 3, the mycophagous bacteria culture tank 15 and at least one of the biological reaction tanks are connected by a connecting pipe 14. Then, surplus sludge generated in the biological reaction tank 8 is sent to the bacteriophage bacteria culture tank 15 via the connecting pipe 14. Here, the connecting pipe 14 is provided with an organic matter inflow control means, and further inflow of organic waste water or the like into the mycogenic bacteria culture tank 15 is restricted. The bacteriophage bacteria culture tank 15 has aeration means (air blower 4d and diffuser 5d), and the inside of the bacteriophage bacteria culture tank 15 is kept under aerobic conditions. The bacteriophage bacteria culture tank may be provided with a flow meter 6d for monitoring aerobic conditions. When excess sludge is sent to the mycophagous bacteria culture tank 15, the inflow of organic substances is restricted, and the mycophagous bacteria are cultured while maintaining aerobic conditions. By this culture, mycophagous bacteria grow and microbial cells and organic matter in the excess sludge are decomposed by the mycophagous bacteria. Here, the bacteriophage bacterium culture tank 15 is at least one of biological reaction tanks (for example, a biological reaction tank to which surplus sludge has been sent (the biological reaction tank 8 corresponds in the form of FIG. 3) or organic waste water. The sludge return means 16 for sending the activated sludge regenerated to the first biological reaction tank to which is supplied (in the form of FIG. 3 corresponds to the biological reaction tank 2). Via this sludge return means, the activated sludge regenerated in the mycological bacteria culture tank is sent to the biological reaction tank and repeatedly used for biological treatment.
In addition, the position where the mycobacterial bacterial culture tank 15 is connected is not particularly limited and is not limited to the following form, but as shown in FIG. 4 (a), the first biological reaction tank 8 to which organic waste water is supplied and You may connect and you may connect with the 2nd biological reaction tank 10 as shown in FIG.4 (b).

本明細書において、「膜分離型活性汚泥処理装置」とは、下水や工場排水等の浄化を行う活性汚泥法の一種で、処理された水(処理水)と固体成分(活性汚泥)との分離を、従来の沈殿池に代えて精密ろ過膜または限外ろ過膜を使って行う装置である。また、このような装置を用いて廃水を処理する方法を、膜分離型活性汚泥法という。なお、本発明が適用可能な膜分離型活性汚泥処理装置は、生物処理槽において余剰となる活性汚泥が生じた際に余剰汚泥を活性汚泥へと再生する菌食性細菌培養槽を備えることができ、これにより再生した活性汚泥を再度利用できる構成を有することのできる装置であれば良く、特に制限されない。本発明が適用可能な膜分離型活性汚泥装置を構成する生物処理槽や膜分離ユニット、エアーブロワ、散気管、ポンプ、フローメーター等の各構成は、本明細書中に特に断りがない限り、通常使用されるものや公知のものを使用することができる。   In this specification, "membrane separation type activated sludge treatment equipment" is a kind of activated sludge process that purifies sewage and industrial wastewater, etc., and is a combination of treated water (treated water) and solid components (activated sludge). The separation is performed by using a microfiltration membrane or an ultrafiltration membrane instead of a conventional sedimentation basin. A method of treating wastewater using such an apparatus is called a membrane separation type activated sludge method. The membrane-separated activated sludge treatment apparatus to which the present invention can be applied can include a bacteriophage bacteria culture tank that regenerates surplus sludge into activated sludge when surplus activated sludge is generated in a biological treatment tank. Any device can be used as long as it can have a configuration in which the activated sludge regenerated thereby can be reused, and is not particularly limited. Each configuration of a biological treatment tank and a membrane separation unit, an air blower, an air diffuser, a pump, a flow meter and the like constituting a membrane separation type activated sludge apparatus to which the present invention can be applied, unless otherwise specified in the present specification. Usually used ones or known ones can be used.

また、「有機性排水」とは、下水や工場排水、飲食店舗廃水等の、有機物を主成分とする排水をいう。   “Organic wastewater” refers to wastewater mainly composed of organic matter, such as sewage, factory wastewater, and restaurant wastewater.

また、「生物反応槽」とは、活性汚泥を用いて有機性排水中の有機物を分解するための槽をいう。MBRは、生物反応層を少なくとも1つ備えていれば良く、複数の生物反応槽を有していてもよい。生物反応槽は、槽内を好気条件に保つためのエアーブロワ、散気管、フローメーター等を備えることができ、また、活性汚泥と処理水とを分離するための膜分離ユニットを備えることができる。
ここで、生物処理での反応槽内の汚泥濃度は、「MLSS」(Mixed Liquor Suspended Solid(活性汚泥浮遊物))で示すことができる。「MLSS」は、活性汚泥とその他の浮遊物質濃度(suspended solids成分(SS成分))との総和をいう。主に活性汚泥濃度の指標として用いられ、単位にはmg/Lが用いられる。
The “biological reaction tank” refers to a tank for decomposing organic matter in organic wastewater using activated sludge. The MBR only needs to include at least one biological reaction layer, and may have a plurality of biological reaction tanks. The biological reaction tank can be equipped with an air blower, an air diffuser, a flow meter, etc. for keeping the inside of the tank in an aerobic condition, and can also be equipped with a membrane separation unit for separating activated sludge and treated water. it can.
Here, the sludge density | concentration in the reaction tank in biological treatment can be shown by "MLSS" (Mixed Liquor Suspended Solid (active sludge suspended matter)). “MLSS” refers to the sum of activated sludge and other suspended solids concentration (suspended solids component (SS component)). Mainly used as an indicator of activated sludge concentration, and the unit is mg / L.

また、水質の有機成分の濃度を示す指標として、「COD」(Chemical Oxygen Demand(化学的酸素要求量))を用いることができる。「COD」は水中の被酸化性物質量を酸化するために必要とする酸素量を示したものであり、単位にはmg/Lが用いられる。また、水質に関する有機成分の濃度を示す指標として、「TOC」(Total Organic Carbon(全有機炭素))を用いることができ、単位にはmg/Lが用いられる。   In addition, “COD” (Chemical Oxygen Demand) can be used as an index indicating the concentration of water-based organic components. “COD” indicates the amount of oxygen required to oxidize the amount of oxidizable substance in water, and mg / L is used as the unit. Further, “TOC” (Total Organic Carbon) can be used as an index indicating the concentration of the organic component related to water quality, and mg / L is used as a unit.

ここで、「活性汚泥」とは、数千種類の好気性微生物群(細菌類、原生動物など)を主成分とする有機汚泥の総称をいい、排水・汚水の浄化手段として下水処理場、し尿処理場、浄化槽などで広く利用されている。本発明に使用できる活性汚泥としては、菌食性細菌を含む限りにおいて特に制限されず、公知の活性汚泥を使用することができる。なお、必要の際には、MBRに使用する前の活性汚泥に対して、菌食性細菌を添加してもよい。活性汚泥に菌食性細菌を添加する際には、例えば、活性汚泥中の微生物量に対して10〜20%程度の割合で添加することができる。   Here, “activated sludge” is a general term for organic sludge mainly composed of thousands of aerobic microorganisms (bacteria, protozoa, etc.). Widely used in treatment plants and septic tanks. The activated sludge that can be used in the present invention is not particularly limited as long as it contains bacteriophage bacteria, and known activated sludge can be used. In addition, when necessary, bactericidal bacteria may be added to the activated sludge before being used for MBR. When adding bacteriophage bacteria to the activated sludge, for example, it can be added at a ratio of about 10 to 20% with respect to the amount of microorganisms in the activated sludge.

また、「余剰汚泥」とは、活性汚泥法などの有機性排水の生物学的処理において、活性汚泥中の微生物濃度を一定に調整する場合に、それよりも過剰に増加した分の汚泥のことをいう。MBRにおいては、活性汚泥濃度(MLSS)を8,000〜15,000mg/L程度に保って運転することが多い。従って、例えば、MBRにおける活性汚泥濃度をMLSS = 8,000〜15,000mg/Lと設定した際には、これ以上にMLSSが上昇した場合、その余剰分が余剰汚泥となる。
より具体的には、生物反応槽中のMLSSを8,000〜15,000mg/Lに維持する一般的な運転とした場合、生物反応槽中のMLSSが8,000〜20,000mg/Lの範囲内となった際に、生物反応槽中の活性汚泥を余剰汚泥として菌食性細菌培養槽へ移すことが好ましく、MLSSの濃度が10,000〜15,000mg/Lの範囲内となった際に余剰汚泥を菌食性細菌培養槽へ移すことがより好ましい。
しかしながら、廃水種や処理の目的により、維持する活性汚泥の濃度(MLSS値)は異なるため、余剰汚泥と判断する基準も同様に廃水種や処理の目的により異なる。
“Excess sludge” refers to the amount of sludge that is excessively increased when the microorganism concentration in the activated sludge is adjusted to a certain level in the biological treatment of organic wastewater such as the activated sludge process. Say. In MBR, operation is often performed while maintaining the activated sludge concentration (MLSS) at about 8,000 to 15,000 mg / L. Therefore, for example, when the activated sludge concentration in the MBR is set to MLSS = 8,000 to 15,000 mg / L, if the MLSS further increases, the surplus becomes surplus sludge.
More specifically, when MLSS in the bioreactor is in the range of 8,000 to 20,000 mg / L, when MLSS in the bioreactor is maintained at 8,000 to 15,000 mg / L In addition, it is preferable to transfer the activated sludge in the biological reaction tank as surplus sludge to the bacteriophage bacteria culture tank, and when the MLSS concentration falls within the range of 10,000 to 15,000 mg / L, the surplus sludge is transferred to the bacteriophage bacteria culture tank. More preferably, it is transferred.
However, since the concentration (MLSS value) of the activated sludge to be maintained differs depending on the wastewater type and the purpose of treatment, the criteria for determining surplus sludge also differ depending on the wastewater type and the purpose of treatment.

本明細書において、「菌食性細菌」とは、他の微生物を殺し、その細胞を栄養源として消費できる細菌のことである。有機性排水に含まれる好気性の菌食性細菌としては、以下に限定されないが、例えば、Xanthomonadaceae科に属する菌食性細菌、Bdellovibrionaceae科に属する菌食性細菌、Myxococcales目に属する菌食性細菌、Sphingobacteriia綱に属する菌食性細菌、Flavobacteriia綱に属する菌食性細菌、及び、Cytophagia綱に属する菌食性細菌を挙げることができる。   As used herein, “mycophagous bacteria” refers to bacteria that can kill other microorganisms and consume the cells as nutrient sources. Examples of aerobic bacteriophage bacteria contained in organic wastewater include, but are not limited to, for example, bacteriophage bacteria belonging to the family Xanthomonadaceae, bacteriophage bacteria belonging to the family Bdellovibrionaceae, bacteriophage bacteria belonging to the order Myxococcales, Sphingobacteriia Mention may be made of the mycophagous bacteria belonging to the class Flavobacteriia, and the mycophagous bacteria belonging to the class Cytophagia.

Xanthomonadaceae科に属する菌食性細菌としては、例えば、Lysobacter属細菌を挙げることができ、この細菌は細胞外に分解酵素を分泌して他の菌を溶解することが知られている。その他、Xanthomonadaceae科に属する菌食性細菌及びその近縁種としては、以下に限定されないが、Luteimonas sp.、Xanthomonas sp.、Pseudoxanthomonas sp.、及び、Thermomonas sp.を挙げることができる。
Bdellovibrionaceae科に属する菌食性細菌としては、例えば、Bdellovibrio属細菌を挙げることができる。この細菌は他の細菌の細胞内に侵入し、細胞内部から他の細菌を捕食することが知られている。その他、Bdellovibrionaceae科に属する菌食性細菌及びその近縁種としては、以下に限定されないが、Vampirovibrio sp.を挙げることができる。
Myxococcales目に属する菌食性細菌としては、例えば、Myxcoccus属細菌を挙げることができ、この細菌は細胞外に分解酵素を分泌して他の菌を溶解することが知られている。その他、Myxococcales目に属する菌食性細菌及びその近縁種としては、以下に限定されないが、Sorangium cellulosumを挙げることができる。
Sphingobacteriia綱に属する菌食性細菌としては、例えば、Saprospira属細菌を挙げることができる。その他、Shingobacteriia綱に属する菌食性細菌及びその近縁種としては、以下に限定されないが、Lewinella cohaerens、Aquiflexum sp.、Sphingobacterium sp.を挙げることができる。
Flavobacteriia綱に属する菌食性細菌としては、例えば、Flavobacterium 属細菌を挙げることができる。その他、Flavobacteriia綱に属する菌食性細菌及びその近縁種としては、以下に限定されないが、Chryseobacterium、Imtechella halotolerans、Alkaliflexus sp.、Solitalea koreensisを挙げることができる。
Cytophagia綱に属する菌食性細菌としては、例えば、Cytophaga属細菌を挙げることができる。その他、Cytophagia綱に属する菌食性細菌及びその近縁種としては、以下に限定されないが、Leadbetterella byssophilaを挙げることができる。
Examples of the mycophagous bacteria belonging to the family Xanthomonadaceae include the genus Lysobacter, which is known to secrete degrading enzymes outside the cell and dissolve other bacteria. Other examples of mycophagous bacteria belonging to the family Xanthomonadaceae and related species include, but are not limited to, Luteimonas sp., Xanthomonas sp., Pseudoxanthomonas sp., And Thermomonas sp.
Examples of mycophagous bacteria belonging to the family Bdellovibrionaceae include Bdellovibrio bacteria. This bacterium is known to invade into the cells of other bacteria and prey on other bacteria from inside the cells. Other examples of mycophagous bacteria belonging to the family Bdellovibrionaceae and related species thereof include, but are not limited to, Vampirovibrio sp.
Examples of mycophagous bacteria belonging to the order Myxococcales include Myxcoccus bacteria, which are known to secrete degrading enzymes outside the cells and dissolve other bacteria. Other examples of mycophagous bacteria belonging to the order Myxococcales and related species include, but are not limited to, Sorangium cellulosum.
Examples of mycophagous bacteria belonging to the class Sphingobacteriia include Saprospira bacteria. Other examples of the phagocytic bacteria belonging to the class Shingobacteriia and related species thereof include, but are not limited to, Lewinella cohaerens, Aquiflexum sp., And Sphingobacterium sp.
Examples of bacteriophage bacteria belonging to the class Flavobacteriia include Flavobacterium bacteria. In addition, examples of mycophagous bacteria belonging to the Flavobacteriia class and related species thereof include, but are not limited to, Chryseobacterium, Imtechella halotolerans, Alkaliflexus sp., And Solidalea koreensis.
Examples of mycophagous bacteria belonging to the class Cytophagia include Cytophaga bacteria. Other examples of mycophagous bacteria belonging to the class Cytophagia and related species include, but are not limited to, Leadbetterella byssophila.

本明細書において、「菌食性細菌培養槽」とは、余剰汚泥中の菌食性細菌を培養することにより余剰汚泥を活性汚泥へ再生するための槽である。「菌食性細菌培養槽」における余剰汚泥の培養は、「好気条件下」かつ「余剰汚泥に対して外部からの有機物の追加がない条件下」で行われる。このような条件下においては、例えば、上記に列挙するような菌食性細菌の1種又は複数の種を増殖させることができる。そして、菌食性細菌培養槽中で増殖した菌食性細菌が、余剰汚泥中で死滅・溶菌した他の微生物やその他の有機物を分解することにより、余剰汚泥中の有機物濃度が減少する。
ここで、「余剰汚泥に対して外部からの有機物の追加がない条件」とは、菌食性細菌培養槽において余剰汚泥を培養する際に、余剰汚泥に対して外部からの追加の有機物の混入がないことを意味する。具体的には、培養中の菌食性細菌培養槽に対して、有機性排水や活性汚泥のさらなる流入がないことを意味する。そのような条件を満たすためには、例えば、膜分離型活性汚泥処理装置内において、菌食性細菌培養槽への有機性排水や活性汚泥の流入を一時的に止めるための有機物流入制御手段を使用すればよい。
In the present specification, the “bacterial phagocytic culture tank” is a tank for regenerating surplus sludge into activated sludge by culturing bacteriophage bacteria in the surplus sludge. The surplus sludge is cultured in the “bacteriophagous bacterial culture tank” under “aerobic conditions” and “under no additional organic substances from the outside to the surplus sludge”. Under such conditions, for example, one or more species of mycophagous bacteria as listed above can be grown. Then, the bacteriophage bacteria grown in the bacteriophage bacteria culture tank decompose other microorganisms and other organic substances that have been killed or lysed in the excess sludge, thereby reducing the organic matter concentration in the excess sludge.
Here, “the condition that no organic matter is added from the outside to the surplus sludge” means that when surplus sludge is cultured in the bacteriophage bacteria culture tank, the extra sludge is contaminated with extra organic matter from the outside. Means no. Specifically, it means that there is no further inflow of organic waste water or activated sludge to the fungal phagocytic culturing tank being cultured. In order to satisfy such conditions, for example, in the membrane-separated activated sludge treatment apparatus, organic matter inflow control means for temporarily stopping the inflow of organic waste water or activated sludge to the mycological bacteria culture tank is used. do it.

菌食性細菌培養槽における好気条件としては、培養中に好気性の菌食性細菌が生育できる範囲の条件であれば特に制限されない。好気条件としは、例えば、活性汚泥中の溶存酸素量(DO、単位mg/L)が2.0以上になるように調整することができる。すなわち、菌食性細菌培養槽は、槽内を好気条件とするための曝気手段を備えている。曝気手段としては、上記の好気的条件を満たすものである限り限定されず、例えば公知のエアーブロワや散気管を使用することができる。
また、菌食性細菌培養槽における余剰汚泥の培養は、7〜14日培養することが好ましく、10〜14日培養することがより好ましい。菌食性細菌培養槽において余剰汚泥を培養する際の温度は、25〜35℃の範囲内で行うことが好ましく、29〜31℃の範囲内で行うことがより好ましい。菌食性細菌培養槽において余剰汚泥を培養する際のpHは、6〜9の中性付近とすることが好ましい。
There are no particular restrictions on the aerobic conditions in the bacteriophage bacterium culture tank as long as aerobic bacteriophage bacteria can grow during the culture. As the aerobic condition, for example, the dissolved oxygen amount (DO, unit mg / L) in the activated sludge can be adjusted to be 2.0 or more. That is, the bacteriophage bacteria culture tank is provided with aeration means for making the inside of the tank an aerobic condition. The aeration means is not limited as long as the aerobic condition is satisfied, and for example, a known air blower or a diffuser can be used.
Moreover, it is preferable to culture | cultivate the excess sludge in a bacteriophage bacteria culture tank for 7 to 14 days, and it is more preferable to culture for 10 to 14 days. The temperature for culturing excess sludge in the mycophagous bacterial culture tank is preferably within the range of 25 to 35 ° C, and more preferably within the range of 29 to 31 ° C. It is preferable that the pH when surplus sludge is cultivated in a mycophagous bacterial culture tank be around 6 to 9 neutral.

なお、菌食性細菌培養槽における余剰汚泥の培養は、MLSSの値が20〜80%減容するまで行うことが好ましく、50〜80%減容するまで行うことがより好ましい。ここで、膜分離型活性汚泥処理装置内(例えば、生物処理槽内など)において、槽内の有機物量を測定するには、公知の自動TOC測定装置やMLSS測定器(例えば、飯島電子工業社製、IM-50P)などを用いてTOCやMLSS、CODとして算出することができる。
また、菌食性細菌培養槽において減容・再生した活性汚泥は、汚泥返送管により生物反応槽等へ戻されて再利用することができる。なお、菌食性細菌層へ余剰汚泥を送るための連結管や、再生した活性汚泥を生物処理槽へ送る汚泥返送管にはポンプを備えていても良い。
In addition, it is preferable to perform the culture | cultivation of the excess sludge in a bacteriophage bacteria culture tank until the value of MLSS reduces 20 to 80%, and it is more preferable to carry out until it reduces 50 to 80%. Here, in the membrane-separated activated sludge treatment apparatus (for example, in a biological treatment tank), in order to measure the amount of organic substances in the tank, a known automatic TOC measuring device or MLSS measuring device (for example, Iijima Electronics Co., Ltd.) It can be calculated as TOC, MLSS, and COD using IM-50P).
Further, the activated sludge whose volume has been reduced and regenerated in the bacteriophage bacteria culture tank can be returned to the biological reaction tank or the like by the sludge return pipe and reused. In addition, you may equip the sludge return pipe | tube which sends the surplus sludge to a bacteriophage bacteria layer, and the sludge return pipe | tube which sends the regenerated activated sludge to a biological treatment tank.

下記試験においては、図1および図2に示すような、3槽式、ポリカーボネート製の膜分離活性汚泥処理装置(MBR:Membrane bioreactor)を用いた。
MBRの各槽の容量は、それぞれ、第一槽が92L、第二槽が80.5L、大三槽が57.5Lである。このように、本試験に用いた膜分離活性汚泥処理装置は、合計230L容量のパイロットスケールリアクターである。
活性汚泥としては、茨城県県西流域下水道事務所のきぬアクアステーションから分譲された標準活性汚泥を用いた。
In the following test, a 3-tank, polycarbonate membrane separation activated sludge treatment apparatus (MBR: Membrane bioreactor) as shown in FIGS. 1 and 2 was used.
The capacity of each tank of MBR is 92L for the first tank, 80.5L for the second tank, and 57.5L for the three large tanks, respectively. As described above, the membrane separation activated sludge treatment apparatus used in this test is a pilot scale reactor having a total capacity of 230 L.
As the activated sludge, standard activated sludge distributed from Kinu Aqua Station of the West Basin Sewerage Office in Ibaraki Prefecture was used.

廃水としては、有機性の人工下水を用いた。有機物の濃度として、(i)低濃度、又は、(ii)高濃度の2種類を用いており、それぞれの組成は以下に示す通りである。
(i)低濃度(COD: 450mg/L)の人工下水の組成:CH3COONa(2.65g/L)、 NH4Cl(0.376g/L)、KH2PO4(0.109g/L)、peptone(0.706g/L)、FeCl3・6H2O(0.782g/L)、CaCl2(1.56mg/L)、MgSO4(1.56mg/L)、KCl(1.56mg/L)、及び、NaCl(1.56mg/L)
(ii)高濃度(COD:900 mg/L)の人工下水の組成:CH3COONa(5.30g/L)、NH4Cl(0.751g/L)、KH2PO4(0.217g/L)、peptone(1.41g/L)、FeCl3・6H2O(1.57mg/L)、CaCl2(3.13mg/L)、MgSO4(3.13mg/L)、KCl(3.13mg/L)、及び、NaCl(3.13mg/L)
As waste water, organic artificial sewage was used. As the concentration of the organic substance, two types of (i) low concentration or (ii) high concentration are used, and the respective compositions are as shown below.
(I) Composition of artificial sewage with low concentration (COD: 450mg / L): CH3COONa (2.65g / L), NH4Cl (0.376g / L), KH2PO4 (0.109g / L), peptone (0.706g / L), FeCl3 ・ 6H2O (0.782g / L), CaCl2 (1.56mg / L), MgSO4 (1.56mg / L), KCl (1.56mg / L), and NaCl (1.56mg / L)
(Ii) Composition of artificial sewage with high concentration (COD: 900 mg / L): CH3COONa (5.30 g / L), NH4Cl (0.751 g / L), KH2PO4 (0.217 g / L), peptone (1.41 g / L) , FeCl3 ・ 6H2O (1.57mg / L), CaCl2 (3.13mg / L), MgSO4 (3.13mg / L), KCl (3.13mg / L), and NaCl (3.13mg / L)

なお、MBRの各槽には、曝気ブロワが設置され、運転期間中は恒常的に曝気することで槽内を好気的環境に調整することとした。
MBRには、系外から第一槽に人工下水が導入され、人工下水は第一槽から第二槽、第三槽(膜分離槽)の順に流れる。
第三槽である膜分離槽には固体成分と液体成分を分離する膜分離ユニットが配される。膜分離ユニットは4枚の分離膜を有する。分離膜には150mm×300mmのPAN(ポリアクリロニトリル)製の扁平で袋状の平膜(阿波製紙製、孔径0.07μm)を用いる。この分離膜は袋外から袋内に水を引き入れることでろ別を行い、ろ過液を浄化水として系外に排出する。また、ろ別された活性汚泥は第一層に返送される。
人工下水の系内への流入速度、処理水の系外への流出速度、第三槽から第一層への汚泥返送速度のすべてを115L/dayに設定した。これにより水理学的滞留時間(HRT:Hydraulic retention time)は2日となる。
本実施例では前半(1〜7日目)は低濃度人工下水を用いて、後半(8〜19日目)は高濃度人工下水を用いて、計19日間の廃水処理運転を行った。
本実施例に関し、物理化学的パラメータとして、前記人工下水のMLSS(Mixed Liquor Suspended Solid)、温度、pH、並びに、処理水中の有機物濃度(TOC:Total Organic Carbon、COD:Chemical Oxygen Demand)等の測定を行い、運転状況に応じた物理化学的パラメータの変化を観察した。
MLSSの測定は、MLSS測定器(飯島電子工業社製、IM-50P)を用い、汚泥界面から30cm付近で行った。また、温度及びpHの各測定は、pH測定器(HORIBA社製、D-55)を用い、前記汚泥界面から30cm付近で行った。また、処理水中の有機物濃度について、TOC値はTOC分析装置 (島津製作所、TOC-L)を用いて、COD値はCOD分析装置(Hach、DR2800またはDRB200)と対応するキット(Hach、TNT820またはTNT821)を用いて測定した。
各時点における活性汚泥を採取し、次世代シークエンサ(Illumina社製、MiSeq)を用いて微生物菌叢解析を行った。
ここで、次世代シークエンサでの微生物菌叢解析は、以下の手順で行った。先ず、遠心分離により得た標準活性汚泥の汚泥サンプル(遠心沈殿物)に対して、平均粒子径0.1mmのジルコニア/シリカ混合ビーズ(Zirconia/Silica Beads)を加えた状態で、ビーズビータ(バイオメディカルサイエンス社製、Shake Master)に供し、汚泥サンプルに含まれる微生物の細胞を破砕する。次いで、得られた細胞破砕液から、フェノール・クロロホルム抽出法により染色体DNAを抽出・精製する。次いで、前記染色体DNAの16S rRNAをターゲットにしたユニバーサルプライマーを基に、illumina用のバーコード配列等を付加した参考文献(J Gregory Caporaso et al., The ISME Journal (2012) 6, 1621-1624))の補足情報に記載のプライマーを用いて、PCR(Polymerase Chain Reaction)法による16S rRNA遺伝子の増幅を行った。
得られたPCR増幅産物からAMPure磁気ビーズ(Beckmann coulter社製、A63881)及び精製用マグネットスタンド(Beckmann coulter社製、A32782)を用いて、未反応のプライマー及びプライマーダイマーを除去し、次いで、得られた精製産物をアガロースゲル電気泳動により分画し、スピンカラム(Promega社製、Wizard SV Gel and PCR Clean-up System)を用いて目的の断片長を有するPCR増幅産物のみを精製した。次いで、PCR増幅産物サンプルにおけるDNA濃度をDNA染色用蛍光試薬キットQuant-iT PicoGreen dsDNA Assay Kit(Thermo scientific製、P11496)及び微量用蛍光スペクトロメータ(Thermo scientific製、NanoDrop 3300)を用いて定量した。測定したDNA濃度を基に、PCR増幅産物サンプルより必要量をMiSeq Reagent Kits v2(Illumina社製、MS-102-2003)に供し、前記次世代シークエンサによるDNA配列解析を行った。
次世代シークエンサによる解析の結果、10,000〜100,000reads/サンプル程度の配列データが取得された。取得された前記配列データについて、ソフトウエアea-utils-1.1.2-301(https://code.google.com/p/ea-utils/downloads/listより入手)を用いて遺伝子配列情報の連結を行い、更に、ソフトウエアMothur version 1.31.2を用いてキメラ配列を除去した後、ソフトウエアQIIME version 1.6.0により遺伝子配列の系統学的解析を行い、各微生物種の相対存在率の増減と物理化学的パラメータ(MLSSの増減)との関係性を考察した。なお、ソフトウエアMothur version 1.31.2の詳細については参考文献(Schloss P. D et al., Appl. Environ. Microbiol (2009) 75, 7537-7541.)を参照でき、ソフトウエアQIIME version 1.6.0に詳細ついては参考文献(Caporaso J. G et al., Nat. Methods (2010) 7, 335-336.)を参照することができる。
An aeration blower was installed in each MBR tank, and the inside of the tank was adjusted to an aerobic environment by aeration during operation.
In the MBR, artificial sewage is introduced into the first tank from outside the system, and the artificial sewage flows in the order of the first tank, the second tank, and the third tank (membrane separation tank).
A membrane separation unit that separates the solid component and the liquid component is disposed in the membrane separation tank as the third tank. The membrane separation unit has four separation membranes. As the separation membrane, a flat and bag-shaped flat membrane made of PAN (polyacrylonitrile) of 150 mm × 300 mm (Awa Paper Co., Ltd., pore diameter 0.07 μm) is used. This separation membrane performs filtration by drawing water into the bag from outside the bag, and discharges the filtrate as purified water out of the system. The filtered activated sludge is returned to the first layer.
The inflow rate of artificial sewage into the system, the outflow rate of treated water out of the system, and the sludge return rate from the third tank to the first layer were all set to 115 L / day. This results in a hydraulic retention time (HRT) of 2 days.
In this example, the waste water treatment operation for a total of 19 days was performed using low-concentration artificial sewage in the first half (1-7 days) and high-concentration artificial sewage in the second half (8-19 days).
Regarding this example, measurement of the artificial sewage MLSS (Mixed Liquor Suspended Solid), temperature, pH, organic substance concentration in the treated water (TOC: Total Organic Carbon, COD: Chemical Oxygen Demand), etc. And observed changes in physicochemical parameters according to the driving conditions.
MLSS measurement was performed around 30 cm from the sludge interface using an MLSS measuring instrument (Iijima Electronics Co., Ltd., IM-50P). Moreover, each measurement of temperature and pH was performed in the vicinity of 30 cm from the sludge interface using a pH meter (HORIBA, D-55). The TOC value (Shimadzu Corporation, TOC-L) is used for the organic substance concentration in the treated water, and the COD value is a kit (Hach, TNT820 or TNT821) corresponding to the COD analyzer (Hach, DR2800 or DRB200). ).
Activated sludge at each time point was collected, and microbial flora analysis was performed using a next-generation sequencer (Illumina, MiSeq).
Here, the microbial flora analysis in the next-generation sequencer was performed according to the following procedure. First, a bead beater (biomedical) with zirconia / silica beads with an average particle size of 0.1 mm added to a sludge sample (centrifugal sediment) of standard activated sludge obtained by centrifugation. Crush the microorganism cells contained in the sludge sample. Next, chromosomal DNA is extracted and purified from the obtained cell lysate by a phenol / chloroform extraction method. Next, based on a universal primer targeting 16S rRNA of the chromosomal DNA, a reference document (J Gregory Caporaso et al., The ISME Journal (2012) 6, 1621-1624) to which a barcode sequence for illumina and the like was added. 16S rRNA gene was amplified by PCR (Polymerase Chain Reaction) method using the primers described in the supplementary information.
Using the AMPure magnetic beads (Beckmann coulter, A63881) and the purification magnetic stand (Beckmann coulter, A32782), unreacted primers and primer dimers were removed from the obtained PCR amplification product, and then obtained. The purified product was fractionated by agarose gel electrophoresis, and only the PCR amplification product having the desired fragment length was purified using a spin column (Promega, Wizard SV Gel and PCR Clean-up System). Next, the DNA concentration in the PCR amplification product sample was quantified using a fluorescent reagent kit for DNA staining Quant-iT PicoGreen dsDNA Assay Kit (manufactured by Thermo scientific, P11496) and a fluorescence spectrometer for trace amounts (manufactured by Thermo scientific, NanoDrop 3300). Based on the measured DNA concentration, the necessary amount from the PCR amplification product sample was subjected to MiSeq Reagent Kits v2 (manufactured by Illumina, MS-102-2003), and DNA sequence analysis was performed using the next-generation sequencer.
As a result of analysis by a next-generation sequencer, sequence data of about 10,000 to 100,000 reads / sample was obtained. For the obtained sequence data, linkage of gene sequence information using software ea-utils-1.1.2-301 (available from https://code.google.com/p/ea-utils/downloads/list) Furthermore, after removing the chimeric sequence using the software Mothur version 1.31.2, phylogenetic analysis of the gene sequence was performed using the software QIIME version 1.6.0, and the relative abundance of each microbial species was increased and decreased. The relationship with physicochemical parameters (increase / decrease in MLSS) was considered. For details of the software Mothur version 1.31.2, reference literature (Schloss P. D et al., Appl. Environ. Microbiol (2009) 75, 7537-7541.) Can be referred to, and the software QIIME version 1.6.0. For more details, reference literature (Caporaso J. G et al., Nat. Methods (2010) 7, 335-336.) Can be referred to.

図5に、前半(1〜7日目)に低濃度人工下水を用い、後半(8〜19日目)に高濃度人工下水を用いて、計19日間の廃水処理運転を行った際の結果を示す。図5(a)は運転期間中のMLSSの変化を示す。図5(b)は、微生物菌叢解析において運転5日目と19日目の相対存在量とを比較した際に、最も増加倍率が高かった上位10種の細菌の倍率変化を示す。また、図5(c)の表は、それら10種の系統学的情報を記載する。
図5(a)に示すように、流入人工下水を低濃度から高濃度にすることでMLSSは急激に増加した(8〜12日)。このMLSSの増加は、活性汚泥内の多くの微生物が人工下水中に含まれる有機物を資化することで急激に増殖したと考えられる。しかし、15日目以降は高濃度の有機物が存在するにも関わらず、緩やかにMLSSが減少し、活性汚泥に含まれる微生物量(固形分)が減少していることが示された。
この結果について考察するため、運転期間中の微生物群菌叢解析をしたところ、活性汚泥中に常在菌として菌食性細菌が存在することが分かった。さらに、微生物量が減少する期間にこれら菌食性細菌のうち、Luteimonas marina、Fusibacter sp.、Luteimonas aestuarii、Proteocatella sphenisci、Luteimonas sp.、及び、Pseudoxanthomonas sp.が急激に増殖していることが分かった。すなわち、菌食性細菌が他の細菌およびその死菌体を捕食・分解しており、活性汚泥中の微生物量減少に寄与していることを示唆していた。
Figure 5 shows the results of a 19-day wastewater treatment operation using low-concentration artificial sewage in the first half (1-7 days) and high-concentration artificial sewage in the second half (8-19 days). Indicates. FIG. 5A shows the change in MLSS during the operation period. FIG. 5 (b) shows the fold change of the top 10 bacteria having the highest increase rate when comparing the relative abundance on the 5th day and 19th day in the microbial flora analysis. Also, the table of FIG. 5 (c) describes the phylogenetic information of those 10 types.
As shown to Fig.5 (a), MLSS increased rapidly by making inflow artificial sewage into a high density | concentration from a low density | concentration (8-12 days). This increase in MLSS is thought to have proliferated rapidly by assimilating organic matter contained in artificial sewage by many microorganisms in activated sludge. However, after the 15th day, despite the presence of high-concentration organic matter, MLSS decreased gradually, indicating that the amount of microorganisms (solid content) contained in the activated sludge decreased.
In order to discuss this result, microbial community flora analysis during the operation period revealed that there were bacteriophage bacteria as resident bacteria in the activated sludge. Furthermore, it was found that among these mybivorous bacteria, Luteimonas marina, Fusibacter sp., Luteimonas aestuarii, Proteocatella sphenisci, Luteimonas sp., And Pseudoxanthomonas sp. That is, it was suggested that the mycophagous bacteria prey on and decompose other bacteria and their dead cells, contributing to the reduction of the amount of microorganisms in the activated sludge.

(実施例2)
本実施例では、前半(1〜21日目)に低濃度の人工下水を用いて、かつ、後半(22〜30日目)に高濃度の人工下水を用い、計30日間の廃水処理運転を行った。なお、低濃度又は高濃度の人工下水を用いた期間、及び、合計の運転処理期間以外の条件については、全て実施例1と同様にして行った。また、MLSSの測定及び微生物群菌叢解析についても、実施例1と同様にして行った。なお、運転期間中は恒常的に曝気することで槽内を好気的環境に保った。
その結果を図6に示す。図6(a)には運転期間中のMLSSの変化を示す。図6(b)は、運転19日目と30日目の相対存在量とを比較して、最も増加倍率が高かった上位10種の倍率変化を示すグラフであり、図6(c)は、それら10種の系統学的情報を示す表である。
流入人工下水を高濃度にすることでMLSSは急激に増加した(22〜26日)。実施例1同様に、活性汚泥内の多くの微生物が人工下水中に含まれる有機物を資化することで急激に増殖したと考えられる。また、26日目以降は緩やかにMLSSが減少し、活性汚泥に含まれる微生物量(固形分)が減少していることが示された。
この運転期間中の微生物群菌叢解析の結果、微生物量が減少する期間に菌食性細菌であるBdellovibrio sp.、Leadbetterella byssophila、Luteimonas marina、Psedoxanthomonas sp.、及び、Aquiflexum sp.が急激に増殖し、菌食性細菌が他の細菌およびその死菌体を捕食・分解することが、活性汚泥中の微生物量減少に寄与していることが示唆された。
(Example 2)
In this example, a low concentration artificial sewage is used in the first half (1st to 21st day) and a high concentration artificial sewage is used in the second half (22th to 30th day). went. The conditions other than the period using the low-concentration or high-concentration artificial sewage and the total operation treatment period were all performed in the same manner as in Example 1. In addition, MLSS measurement and microbial community flora analysis were performed in the same manner as in Example 1. During the operation period, the tank was kept in an aerobic environment by aeration constantly.
The result is shown in FIG. FIG. 6A shows a change in MLSS during the operation period. FIG. 6 (b) is a graph showing the change in the magnification of the top 10 types with the highest increase rate compared with the relative abundance on the 19th and 30th day of operation. It is a table | surface which shows those 10 types of phylogenetic information.
MLSS increased rapidly by increasing the concentration of inflow artificial sewage (22-26 days). Like Example 1, it is thought that many microorganisms in activated sludge proliferated rapidly by assimilating the organic substance contained in artificial sewage. In addition, MLSS decreased gradually after the 26th day, and it was shown that the amount of microorganisms (solid content) contained in activated sludge decreased.
As a result of microbial community flora analysis during this operation period, Bdellovibrio sp., Leadbetterella byssophila, Luteimonas marina, Psedoxanthomonas sp., And Aquiflexum sp. It was suggested that the predation and decomposition of other bacteria and their dead cells contributed to the reduction of the amount of microorganisms in the activated sludge.

(実施例3)
実際の汚泥処理装置では、運転を続けるうちに生物処理を行う生物反応槽内の有機物量が高濃度になり余剰汚泥が生じる。特に、MBRにおいては、生物反応槽より活性汚泥や余剰汚泥が系外に排出されないため、余剰汚泥の有機物濃度は一般的な汚泥処理装置と比較して高くなる。このような有機物が高い状態の余剰汚泥に対して、流入する有機物量を制限することで余剰汚泥を減容させることができるかを確認するため、下記の試験を行った。
本実施例では、前半(1〜4日目)に高濃度人工下水を用いて、後半(5〜21日目)に低濃度人工下水を用いて、計21日間の廃水処理運転を行った。なお、低濃度又は高濃度の人工下水を用いた期間、及び、合計の運転処理期間以外の条件については、全て実施例1と同様にして行った。また、MLSSの測定及び微生物群菌叢解析についても、実施例1と同様にして行った。なお、運転期間中は恒常的に曝気することで槽内を好気的環境に保った。
結果を図5に示す。なお、図7(a)は運転期間中のMLSSの変化を示し、図7(b)は運転5日目と10日目の相対存在量とを比較して、最も増加倍率が高かった上位10種の倍率変化のグラフを示し、図7(c)は、増加倍率において上位10種であった微生物の系統学的情報を記載する。
図7(a)に示すように、流入人工下水を高濃度から低濃度にすることでMLSSは急激に減少した(5〜21日)。なお、MLSSは活性汚泥中の固体成分を検出するため、例えば増殖が弱まった細胞や死菌体、細胞の残骸などもMLSS値にカウントされる。従って、このようなMLSSの急激な減少は、微生物細胞が死滅・破砕・溶解し、その残渣や菌体自体を別の菌食性細菌が分解したことを示していると考えられる。
この運転期間中の微生物群菌叢解析の結果、微生物量が減少する期間に菌食性細菌であるLuteimonas sp.、Thermomonas sp.、及び、Luteimonas marinaが急激に増殖し、菌食性細菌が他の細菌およびその死菌体を捕食・分解したと考えられた。
(Example 3)
In an actual sludge treatment apparatus, the amount of organic matter in the biological reaction tank that performs biological treatment increases as the operation continues, and surplus sludge is generated. In particular, in MBR, activated sludge and surplus sludge are not discharged out of the system from the biological reaction tank, so that the organic matter concentration of surplus sludge is higher than that of a general sludge treatment apparatus. In order to confirm whether the excess sludge can be reduced by restricting the amount of inflowing organic matter with respect to such excess sludge with a high organic matter, the following test was performed.
In this example, wastewater treatment operation was performed for a total of 21 days using high-concentration artificial sewage in the first half (1st to 4th day) and low-concentration artificial sewage in the second half (5th to 21st day). The conditions other than the period using the low-concentration or high-concentration artificial sewage and the total operation treatment period were all performed in the same manner as in Example 1. In addition, MLSS measurement and microbial community flora analysis were performed in the same manner as in Example 1. During the operation period, the tank was kept in an aerobic environment by aeration constantly.
The results are shown in FIG. 7A shows the change in MLSS during the operation period, and FIG. 7B compares the relative abundances on the 5th and 10th days of operation, and the top 10 with the highest increase rate. A graph of species fold change is shown, and FIG. 7 (c) describes phylogenetic information of the top 10 species in increasing magnification.
As shown to Fig.7 (a), MLSS decreased sharply by changing inflow artificial sewage from high concentration to low concentration (5-21 days). Since MLSS detects solid components in activated sludge, for example, cells whose growth has been weakened, dead cells, cell debris, etc. are counted as MLSS values. Therefore, it is considered that such a rapid decrease in MLSS indicates that microbial cells have been killed, crushed, and dissolved, and that the residue and the bacterial bodies themselves have been decomposed by other bacteriophage bacteria.
As a result of the analysis of the microbial flora during this operation period, the mycophagous bacteria Luteimonas sp., Thermomonas sp., And Luteimonas marina grew rapidly during the period when the amount of microorganisms decreased, and the mycophagous bacteria became other bacteria. It was thought that the dead cells were preyed and decomposed.

1 膜分離型活性汚泥処理装置
2、8、10 生物反応槽
3 ポンプ
4 エアーブロワ
5 散気管
6 フローメーター
7、9、14 連結管
11 膜分離ユニット
12 膜間差圧計
13、16 汚泥返送管
15 菌食性細菌培養槽
DESCRIPTION OF SYMBOLS 1 Membrane separation type activated sludge processing apparatus 2, 8, 10 Biological reaction tank 3 Pump 4 Air blower 5 Aeration pipe 6 Flow meter 7, 9, 14 Connection pipe 11 Membrane separation unit 12 Transmembrane pressure gauge 13, 16 Sludge return pipe 15 Bacteriophage bacteria culture tank

Claims (9)

有機性排水を生物処理する生物反応槽と、
前記生物反応槽において浄化した有機性排水を浄化水と活性汚泥とに分離するための膜分離ユニットと、
前記生物反応槽において生じた余剰汚泥を活性汚泥へと再生する菌食性細菌培養槽であって、好気条件下で菌食性細菌を培養するための曝気手段を備えている菌食性細菌培養槽と、
前記菌食性細菌培養槽において再生した活性汚泥を前記生物反応槽へと送る汚泥返送手段と
を含む膜分離型活性汚泥処理装置であって、
前記菌食性細菌培養槽において余剰汚泥中の菌食性細菌を培養することにより、余剰汚泥を活性汚泥へと再生し、さらに、前記再生した活性汚泥を前記生物反応槽において繰り返し使用することを特徴とする、膜分離型活性汚泥処理装置。
A biological reaction tank for biological treatment of organic wastewater;
A membrane separation unit for separating the organic wastewater purified in the biological reaction tank into purified water and activated sludge;
A bacteriophage bacteria culture tank for regenerating surplus sludge generated in the biological reaction tank into activated sludge, comprising aeration means for culturing bacteriophage bacteria under aerobic conditions; ,
A membrane-separated activated sludge treatment apparatus comprising sludge return means for sending activated sludge regenerated in the bacteriophage bacteria culture tank to the biological reaction tank,
By culturing the bacteriophage bacteria in the excess sludge in the bacteriophage bacteria culture tank, the excess sludge is regenerated into activated sludge, and the regenerated activated sludge is repeatedly used in the biological reaction tank. Membrane separation type activated sludge treatment equipment.
前記菌食性細菌培養槽に対して、有機物の流入を制御するための有機物流入制御手段をさらに含む、請求項1に記載の装置。   The apparatus according to claim 1, further comprising organic matter inflow control means for controlling inflow of organic matter with respect to the bacteriophage bacterium culture tank. 前記菌食性細菌培養槽が、有機物量を測定する手段をさらに備えている、請求項1又は2に記載の装置。   The apparatus of Claim 1 or 2 with which the said bacteriophage bacteria culture tank is further equipped with the means to measure the amount of organic substances. 前記菌食性細菌が、Xanthomonadaceae科に属する菌食性細菌、Bdellovibrionaceae科に属する菌食性細菌、Myxococcales目に属する菌食性細菌、Sphingobacteriia綱に属する菌食性細菌、Flavobacteriia綱に属する菌食性細菌、及び、Cytophagia綱に属する菌食性細菌の群から選択される少なくとも1つの細菌であることを特徴とする、請求項1〜3のいずれか一項に記載の装置。   The bacteriophage bacterium belongs to the family Xanthomonadaceae, the bacteriophage bacterium belonging to the family Bdellovibrionaceae, the mycophagous bacterium belonging to the order Myxococcales, the bacteriophage bacterium belonging to the class Sphingobacteriia, the phagocytic bacterium belonging to the class Flavobacteriia, and the Cytophagia class Device according to any one of claims 1 to 3, characterized in that it is at least one bacterium selected from the group of mycophagous bacteria belonging to the group. 前記菌食性細菌培養槽における菌食性細菌の培養が、少なくとも7日行われることを特徴とする、請求項1〜4のいずれか一項に記載の装置。   The apparatus according to any one of claims 1 to 4, wherein culture of the bacteriophage bacteria in the bacteriophage bacteria culture tank is performed for at least 7 days. 膜分離型活性汚泥法において生じた余剰汚泥を活性汚泥へと再生する方法であって、
余剰汚泥を好気条件下、かつ、余剰汚泥に対して外部からの有機物の追加がない条件下で培養する工程を含む方法であって、
前記培養により余剰汚泥中の菌食性細菌を培養し、前記菌食性細菌により余剰汚泥中の有機物を分解することを特徴とする、再生方法。
A method of regenerating surplus sludge generated in the membrane separation type activated sludge method into activated sludge,
A method comprising culturing surplus sludge under aerobic conditions and under the condition that no organic matter is added from the outside to the surplus sludge,
A regeneration method comprising culturing bacteriophage bacteria in surplus sludge by the culture and decomposing organic matter in the surplus sludge by the bacteriophage bacteria.
請求項6に記載の再生方法であって、前記培養工程により培養する菌食性細菌が、Xanthomonadaceae科に属する菌食性細菌、Bdellovibrionaceae科に属する菌食性細菌、Myxococcales目に属する菌食性細菌、Sphingobacteriia綱に属する菌食性細菌、Flavobacteriia綱に属する菌食性細菌、及び、Cytophagia綱に属する菌食性細菌の群から選択される少なくとも1つの細菌であることを特徴とする、再生方法。   7. The regeneration method according to claim 6, wherein the bacteriophage bacteria cultivated by the culturing step are fungiphagous bacteria belonging to the family Xanthomonadaceae, bacteriophage bacteria belonging to the family Bdellovibrionaceae, bacteriophage bacteria belonging to the order Myxococcales, Sphingobacteriia A regeneration method, characterized in that it is at least one bacterium selected from the group of mycophagous bacteria belonging to the genus, Mycophagous bacteria belonging to the Flavobacteriia class, and Mycophagous bacteria belonging to the Cytophagia class. 請求項6又は7に記載の再生方法であって、前記培養工程が、少なくとも7日行われることを特徴とする、再生方法。   The regeneration method according to claim 6 or 7, wherein the culturing step is performed for at least 7 days. 請求項6〜8のいずれか一項に記載の再生方法により再生された活性汚泥を利用して、有機性排水を生物処理する工程を含む、膜分離型活性汚泥方法。
A membrane-separated activated sludge method comprising a step of biologically treating organic wastewater using the activated sludge regenerated by the regeneration method according to any one of claims 6 to 8.
JP2015152789A 2015-07-31 2015-07-31 Sludge volume reduction method and membrane-separated activated sludge treatment apparatus using the same Active JP6666000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015152789A JP6666000B2 (en) 2015-07-31 2015-07-31 Sludge volume reduction method and membrane-separated activated sludge treatment apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015152789A JP6666000B2 (en) 2015-07-31 2015-07-31 Sludge volume reduction method and membrane-separated activated sludge treatment apparatus using the same

Publications (2)

Publication Number Publication Date
JP2017029925A true JP2017029925A (en) 2017-02-09
JP6666000B2 JP6666000B2 (en) 2020-03-13

Family

ID=57985608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015152789A Active JP6666000B2 (en) 2015-07-31 2015-07-31 Sludge volume reduction method and membrane-separated activated sludge treatment apparatus using the same

Country Status (1)

Country Link
JP (1) JP6666000B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06106198A (en) * 1992-09-28 1994-04-19 Ebara Infilco Co Ltd Method and device for microbiological reduction of amount of surplus sludge
JP2003190993A (en) * 2001-12-27 2003-07-08 Toyo Clean Kagaku Kk Biological treatment for sludge
JP2004081937A (en) * 2002-08-23 2004-03-18 Sumitomo Heavy Ind Ltd Facility and method for treating organic waste water
JP2005324111A (en) * 2004-05-13 2005-11-24 Matsushita Environment Airconditioning Eng Co Ltd Sewage treatment apparatus
JP2008161836A (en) * 2006-12-28 2008-07-17 Matsushita Environment Airconditioning Eng Co Ltd Waste water treatment apparatus, control unit and waste water treatment method
JP2010269208A (en) * 2009-05-19 2010-12-02 Osaka Seibutsu Kankyo Kagaku Kenkyusho:Kk Sludge treatment method
JP2012115754A (en) * 2010-11-30 2012-06-21 Kurita Water Ind Ltd Method and apparatus for biologically treating organic wastewater
JP2015020150A (en) * 2013-07-23 2015-02-02 栗田工業株式会社 Method for treating organic waste water biologically
JP2015042394A (en) * 2013-08-26 2015-03-05 栗田工業株式会社 Apparatus for biologically treating organic waste water

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06106198A (en) * 1992-09-28 1994-04-19 Ebara Infilco Co Ltd Method and device for microbiological reduction of amount of surplus sludge
JP2003190993A (en) * 2001-12-27 2003-07-08 Toyo Clean Kagaku Kk Biological treatment for sludge
JP2004081937A (en) * 2002-08-23 2004-03-18 Sumitomo Heavy Ind Ltd Facility and method for treating organic waste water
JP2005324111A (en) * 2004-05-13 2005-11-24 Matsushita Environment Airconditioning Eng Co Ltd Sewage treatment apparatus
JP2008161836A (en) * 2006-12-28 2008-07-17 Matsushita Environment Airconditioning Eng Co Ltd Waste water treatment apparatus, control unit and waste water treatment method
JP2010269208A (en) * 2009-05-19 2010-12-02 Osaka Seibutsu Kankyo Kagaku Kenkyusho:Kk Sludge treatment method
JP2012115754A (en) * 2010-11-30 2012-06-21 Kurita Water Ind Ltd Method and apparatus for biologically treating organic wastewater
JP2015020150A (en) * 2013-07-23 2015-02-02 栗田工業株式会社 Method for treating organic waste water biologically
JP2015042394A (en) * 2013-08-26 2015-03-05 栗田工業株式会社 Apparatus for biologically treating organic waste water

Also Published As

Publication number Publication date
JP6666000B2 (en) 2020-03-13

Similar Documents

Publication Publication Date Title
Leyva-Díaz et al. Kinetic modeling and microbiological study of two-step nitrification in a membrane bioreactor and hybrid moving bed biofilm reactor–membrane bioreactor for wastewater treatment
Hasan et al. Kinetic evaluation of simultaneous COD, ammonia and manganese removal from drinking water using a biological aerated filter system
TWI594957B (en) Method of removing recalcitrant organic pollutants
AU2008347921B2 (en) Side stream type membrane bioreactor process
Hasan et al. Simultaneous NH4+-N and Mn2+ removal from drinking water using a biological aerated filter system: Effects of different aeration rates
Molina-Muñoz et al. Microbial community structure and dynamics in a pilot-scale submerged membrane bioreactor aerobically treating domestic wastewater under real operation conditions
Boonnorat et al. Kinetics of phenolic and phthalic acid esters biodegradation in membrane bioreactor (MBR) treating municipal landfill leachate
Sanguanpak et al. Membrane fouling and micro-pollutant removal of membrane bioreactor treating landfill leachate
De Sotto et al. Discriminating activated sludge flocs from biofilm microbial communities in a novel pilot-scale reciprocation MBR using high-throughput 16S rRNA gene sequencing
Jiang et al. Using nano-attapulgite clay compounded hydrophilic urethane foams (AT/HUFs) as biofilm support enhances oil-refinery wastewater treatment in a biofilm membrane bioreactor
Roy et al. Identifying the link between MBRs’ key operating parameters and bacterial community: A step towards optimized leachate treatment
Yuan et al. A novel method to treat old landfill leachate combining multi-stage biological contact oxidation (MBCO) and single-stage autotrophic nitrogen removal using anammox and partial nitrification (SNAP)
Siddiqui et al. Integrated self-forming dynamic membrane (SFDM) and membrane-aerated biofilm reactor (MABR) system enhanced single-stage autotrophic nitrogen removal
Ittisupornrat et al. Effect of prolonged sludge retention times on the performance of membrane bioreactor and microbial community for leachate treatment under restricted aeration
US10227246B2 (en) Method for the treatment of industrial waste
da Costa et al. Comparative study on treatment performance, membrane fouling, and microbial community profile between conventional and hybrid sequencing batch membrane bioreactors for municipal wastewater treatment
Kim et al. Supersaturated-oxygen aeration effects on a high-loaded membrane bioreactor (HL-MBR): Biological performance and microbial population dynamics
You et al. Using combined membrane processes for textile dyeing wastewater reclamation
Moharikar et al. Microbial population dynamics at effluent treatment plants
Zhang et al. An innovative membrane bioreactor and packed-bed biofilm reactor combined system for shortcut nitrification-denitrification
JP2018065081A (en) Method and device for treating waste water
Ji et al. Domestic wastewater treatment in a novel sequencing batch biofilm filter
JP6666000B2 (en) Sludge volume reduction method and membrane-separated activated sludge treatment apparatus using the same
Li et al. Application of micro-flocculation and sand filtration as advanced wastewater treatment technique
Basri et al. Aerobic granular sludge development using diatomite for low-strength wastewater treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190305

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200213

R150 Certificate of patent or registration of utility model

Ref document number: 6666000

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250