JP2017029889A - Linear vibration motor, and portable electronic apparatus equipped with linear vibration motor - Google Patents

Linear vibration motor, and portable electronic apparatus equipped with linear vibration motor Download PDF

Info

Publication number
JP2017029889A
JP2017029889A JP2015149866A JP2015149866A JP2017029889A JP 2017029889 A JP2017029889 A JP 2017029889A JP 2015149866 A JP2015149866 A JP 2015149866A JP 2015149866 A JP2015149866 A JP 2015149866A JP 2017029889 A JP2017029889 A JP 2017029889A
Authority
JP
Japan
Prior art keywords
vibration motor
coil
linear vibration
coils
mover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015149866A
Other languages
Japanese (ja)
Inventor
片田 好紀
Yoshinori Katada
好紀 片田
慎 小田島
Shin Odajima
慎 小田島
栞 石井
Shiori ISHII
栞 石井
昇 生川
Noboru Ubukawa
昇 生川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Copal Corp
Original Assignee
Nidec Copal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Copal Corp filed Critical Nidec Copal Corp
Priority to JP2015149866A priority Critical patent/JP2017029889A/en
Priority to PCT/JP2016/071991 priority patent/WO2017018443A1/en
Publication of JP2017029889A publication Critical patent/JP2017029889A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/04Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with electromagnetism
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/12Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moving in alternate directions by alternate energisation of two coil systems

Abstract

PROBLEM TO BE SOLVED: To facilitate installation work of a plurality of coils, while enabling a decrease in thickness and size, and to improve the vibration resistance or impact resistance of the plurality of coils.SOLUTION: A linear vibration motor is equipped with a movable element 10 equipped with a magnet portion 4 and a weight portion 7; a frame body 2 which stores the movable element 10 so as to reciprocate in one axis direction; coils 3A and 3B which are wound around the magnet portion 4 in a direction intersecting the one axis direction, and applies driving force in the one axis direction on the magnet portion 4; and an elastic member 6 which applies elastic force repelling the driving force on the movable element 10. The plurality of coils 3A and 3B is arranged in the one axis direction, and clearances between the adjacent coils are contacted to be integrated, and then fixed to the frame body 2.SELECTED DRAWING: Figure 4

Description

本発明は、リニア振動モータに関するものである。   The present invention relates to a linear vibration motor.

振動モータ(或いは振動アクチュエータ)は、携帯電子機器に内蔵され、着信やアラームなどの信号発生を振動によって携帯者に伝える装置として広く普及しており、携帯者が身につけて持ち運ぶウェアラブル電子機器においては、不可欠な装置になっている。また、振動モータは、タッチパネルなどのヒューマン・インターフェイスにおけるハプティクス(皮膚感覚フィードバック)を実現する装置として、近年注目されている。   Vibration motors (or vibration actuators) are widely used as devices that are built into portable electronic devices and transmit signal generation such as incoming calls and alarms to carriers by vibrations. In wearable electronic devices that are carried by the carriers, , Has become an indispensable device. In recent years, a vibration motor has attracted attention as a device that realizes haptics (skin sensation feedback) in a human interface such as a touch panel.

振動モータは、各種の形態が開発されている中で、直線的な往復振動によって比較的大きな振動を発生させることができるリニア振動モータが注目されている。このリニア振動モータは、直線状の固定シャフトを設け、これに沿って可動子を振動させることで、安定した振動を得ることができ、また固定シャフトで可動子を保持することができるので、落下衝撃時の耐損傷性を得ることができる。   As various types of vibration motors have been developed, a linear vibration motor capable of generating a relatively large vibration by linear reciprocating vibration has attracted attention. This linear vibration motor is provided with a linear fixed shaft, and by vibrating the mover along this, stable vibration can be obtained, and the mover can be held by the fixed shaft. Damage resistance during impact can be obtained.

固定シャフトを備えるリニア振動モータの従来技術は、可動子側に錘とマグネットを設け、固定子側に設けたコイルに通電することでマグネットに駆動力(ローレンツ力)を与えるものにおいて、可動子に振動方向に沿った貫通孔を形成し、この貫通孔に一本の固定シャフトを通したものが提案されている。特に、下記特許文献1に開示された従来技術では、前記コイルをボビンに巻回するようにして振動方向へ複数並べ設け、可動子を振動させる前記駆動力を大きく確保するようにしている。   In the conventional technology of a linear vibration motor having a fixed shaft, a weight and a magnet are provided on the mover side, and a drive force (Lorentz force) is applied to the magnet by energizing a coil provided on the stator side. It has been proposed to form a through hole along the vibration direction and pass a single fixed shaft through the through hole. In particular, in the prior art disclosed in the following Patent Document 1, a plurality of the coils are arranged in the vibration direction so as to be wound around a bobbin so as to ensure a large driving force for vibrating the mover.

特開2012−16153号公報JP 2012-16153 A

携帯電子機器やウェアラブル電子機器の小型化・薄型化に伴い、それに装備される振動モータには一層の小型化・薄型化の要求がなされている。特に、スマートフォンなどのフラットパネル表示部を備える電子機器においては、表示面と直交する厚さ方向の機器内スペースが限られているので、そこに配備される振動モータには小型化且つ薄型化の高い要求がある。   With the reduction in size and thickness of portable electronic devices and wearable electronic devices, there is a demand for further reduction in size and thickness of vibration motors installed therein. In particular, in an electronic device having a flat panel display unit such as a smartphone, the space in the device in the thickness direction orthogonal to the display surface is limited. Therefore, the vibration motor provided therein is reduced in size and thickness. There is a high demand.

そこで、上記特許文献1に示す従来構造からボビンを省いて小型且つ薄型化することが提案される。しかしながら、ボビンを省く場合には、小型且つ薄型のコイルを振動方向に複数並べて筐体に固定したり、これら複数のコイルを可動子に対し環状に配置したりする作業に高い精度が求められる。複数のコイルの相対関係位置がずれている場合には、所望とする振動が得られない可能性があった。   Therefore, it is proposed that the bobbin is omitted from the conventional structure shown in Patent Document 1 to reduce the size and thickness. However, when the bobbin is omitted, high precision is required for the work of arranging a plurality of small and thin coils in the vibration direction and fixing them to the housing, or arranging the plurality of coils in an annular shape with respect to the mover. When the relative relationship positions of the plurality of coils are shifted, there is a possibility that desired vibration cannot be obtained.

本発明は、このような問題に対処することを課題の一例とするものである。すなわち、薄型化及びコンパクト化を可能にした上で、複数のコイルの装着作業を容易にすること、などが本発明の目的である。   This invention makes it an example of a subject to cope with such a problem. That is, it is an object of the present invention to make it possible to make a plurality of coils easy to mount while making it thin and compact.

このような目的を達成するために、本発明によるリニア振動モータは、以下の構成を具備するものである。
マグネット部と錘部を備える可動子と、前記可動子を一軸方向に沿って往復動するように収容する枠体と、前記一軸方向に対し交差する方向に沿って前記マグネット部の周囲に巻回され前記マグネット部に前記一軸方向に沿う駆動力を付与するコイルと、前記駆動力に反発する弾性力を前記可動子に付与する弾性部材とを備え、前記コイルは、前記一軸方向に沿って複数配設されるとともに、隣接する他のコイルとの間を接触させて一体化され、前記枠体に固定されていることを特徴とするリニア振動モータ。
In order to achieve such an object, a linear vibration motor according to the present invention has the following configuration.
A mover including a magnet part and a weight part, a frame that houses the mover so as to reciprocate along a uniaxial direction, and is wound around the magnet part along a direction intersecting the uniaxial direction. And a coil for applying a driving force along the uniaxial direction to the magnet portion, and an elastic member for applying an elastic force repelling the driving force to the mover, and the coil includes a plurality of coils along the uniaxial direction. A linear vibration motor characterized in that the linear vibration motor is disposed and integrated with another adjacent coil and fixed to the frame.

本発明は、以上説明したように構成されているので、薄型化及びコンパクト化を可能にした上で、複数のコイルの装着作業を容易にすること、などの目的を達成することができる。   Since the present invention is configured as described above, it is possible to achieve an object such as facilitating the mounting operation of a plurality of coils while enabling a reduction in thickness and size.

本発明の実施形態に係るリニア振動モータを示した説明図(分解斜視図)である。It is explanatory drawing (decomposed perspective view) which showed the linear vibration motor which concerns on embodiment of this invention. 本発明の実施形態に係るリニア振動モータを示した説明図(断面図)である。It is explanatory drawing (sectional drawing) which showed the linear vibration motor which concerns on embodiment of this invention. 融着前のコイルの一部分を示した説明図(断面図)である。It is explanatory drawing (sectional drawing) which showed a part of coil before melt | fusion. 融着後のコイルの一部分を示した説明図(断面図)である。It is explanatory drawing (sectional drawing) which showed a part of coil after melt | fusion. 本発明の実施形態に係るリニア振動モータを装備した携帯電子機器の一例を示した説明図(斜視図)である。It is explanatory drawing (perspective view) which showed an example of the portable electronic device equipped with the linear vibration motor which concerns on embodiment of this invention.

以下、図面を参照しながら本発明の実施形態を説明する(以下、異なる図における同一符号は同一部位を示しており、各図における重複説明は省略する。)。図1〜図2は、本発明の一実施形態に係るリニア振動モータの全体構成を示している。各図におけるX方向が振動方向(一軸方向)を示しており、Y方向が幅方向、Z方向が厚さ(高さ)方向を示している。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the drawings (hereinafter, the same reference numerals in different drawings indicate the same parts, and repeated descriptions in the respective drawings are omitted). 1 to 2 show the overall configuration of a linear vibration motor according to an embodiment of the present invention. The X direction in each figure indicates the vibration direction (uniaxial direction), the Y direction indicates the width direction, and the Z direction indicates the thickness (height) direction.

リニア振動モータ1は、マグネット部4、錘部7、シャフト8、これらを連結する連結部材20及び連結片29を有する可動子10と、可動子10を一軸方向に沿って往復動するように収容する枠体2と、前記一軸方向に対し交差する方向に沿ってマグネット部4の周囲に巻回されマグネット部4に前記一軸方向に沿う駆動力を付与する複数のコイル3A,3Bと、前記駆動力に反発する弾性力を可動子10に付与する弾性部材6とを具備している。   The linear vibration motor 1 accommodates a mover 10 having a magnet part 4, a weight part 7, a shaft 8, a connecting member 20 and a connecting piece 29 for connecting them, and a reciprocating movement of the mover 10 along a uniaxial direction. A frame 2 that is wound around the magnet unit 4 along a direction intersecting the uniaxial direction, and a plurality of coils 3A and 3B that apply a driving force to the magnet unit 4 along the uniaxial direction. And an elastic member 6 that imparts an elastic force repelling the force to the mover 10.

可動子10は、マグネット部4における前記一軸方向の一端側に連結部材20を接続するとともに、その他端側には連結片29を接続している。連結部材20と連結片29には、それぞれ、錘部7及びシャフト8が接続されている。錘部7及びシャフト8は、マグネット部4を間に置くようにして、前記一軸方向に沿う一方側と他方側に配設され、錘部7から突出するシャフト8の突端側は自由端となっている(図1及び図2参照)。   The mover 10 has a connecting member 20 connected to one end in the uniaxial direction of the magnet portion 4 and a connecting piece 29 connected to the other end. The weight member 7 and the shaft 8 are connected to the connecting member 20 and the connecting piece 29, respectively. The weight portion 7 and the shaft 8 are disposed on one side and the other side along the uniaxial direction with the magnet portion 4 interposed therebetween, and the protruding end side of the shaft 8 protruding from the weight portion 7 is a free end. (See FIG. 1 and FIG. 2).

マグネット部4は、一軸方向(図示X方向)に沿った極性を有する偏平矩形状のマグネット片4A,4B,4Cを互いに同極が向き合うように複数配置して、スペーサヨーク4D,4Eを間に挟んで結合したものである。マグネット部4の側部には連結部材20の補強片部22が固着されており、これらによってマグネット部4の剛性が高められている。   The magnet unit 4 includes a plurality of flat rectangular magnet pieces 4A, 4B, and 4C having a polarity along a uniaxial direction (X direction in the drawing) so that the same poles face each other, and the spacer yokes 4D and 4E are interposed therebetween. It is something that is sandwiched and joined. The reinforcing piece portion 22 of the connecting member 20 is fixed to the side portion of the magnet portion 4, and thereby the rigidity of the magnet portion 4 is enhanced.

連結部材20は、マグネット部4の一端部を覆うとともに一方のシャフト8に接続された連結片部21と、この連結片部21の両端側から延設されマグネット部4の両側面に接着剤を介して接着された二つ補強片部22とを一体に有するコの字状に形成される。この連結部材20は、例えば、非磁性のステンレス等、比較的剛性の高い非磁性金属材料から形成される。   The connecting member 20 covers one end of the magnet part 4 and is connected to one shaft 8. The connecting member 20 extends from both ends of the connecting piece 21, and adhesive is applied to both side surfaces of the magnet part 4. It is formed in a U-shape having two reinforcing pieces 22 bonded together. The connecting member 20 is made of, for example, a nonmagnetic metal material having relatively high rigidity such as nonmagnetic stainless steel.

連結片29は、マグネット部4における連結片部21と逆側の端部を覆う平板状の部材であり、中心軸線に沿って他方のシャフト8を挿入し接続するとともに、中心軸線から離れた位置で錘部7に接続されている。この連結片29は、例えば、非磁性のステンレス等、比較的剛性の高い非磁性金属材料から形成される。
この連結片29における枠体2底面側の端部は、錘部7の同方向側の端面よりも枠体2底面側へ突出している(図2参照)。この突出部分は、可動子10が回転した場合に、摺動受け部2Rに当接する当接部29Cとして機能する。
The connecting piece 29 is a flat plate-like member that covers the end of the magnet part 4 opposite to the connecting piece part 21, and the other shaft 8 is inserted and connected along the center axis, and the position away from the center axis To the weight 7. The connecting piece 29 is made of a nonmagnetic metal material having relatively high rigidity, such as nonmagnetic stainless steel.
The end of the connecting piece 29 on the bottom surface side of the frame body 2 protrudes toward the bottom surface side of the frame body 2 from the end surface on the same direction side of the weight portion 7 (see FIG. 2). This protruding portion functions as a contact portion 29C that contacts the slide receiving portion 2R when the mover 10 rotates.

錘部7は、マグネット部4の一軸方向(図示X方向)両端部に、連結片部21及び連結片29を介して連結されている。この錘部7は、比重の高い金属材料(例えば、タングステン)などによって構成することができ、図示の例では、マグネット部4の厚さよりも大きいZ方向高さを有すると共にマグネット部4の幅より大きいY方向の幅を有する矩形断面形状に形成される。
この錘部7におけるシャフト突出方向側には、前記一軸方向に沿ってマグネット部4側へ凹むように凹部7Cが設けられ、この凹部7C内の空間にシャフト8が配置される。シャフト8は、凹部7C内の底面を通るようにして、錘部7の中心部を貫通している。
また、この凹部7Cは、軸受9の一部又は全部を内在しており、可動子10の比較的大きな振幅を確保する。
The weight portion 7 is connected to both end portions of the magnet portion 4 in one axial direction (X direction in the drawing) via a connecting piece portion 21 and a connecting piece 29. The weight portion 7 can be made of a metal material having a high specific gravity (for example, tungsten). In the illustrated example, the weight portion 7 has a height in the Z direction larger than the thickness of the magnet portion 4 and is larger than the width of the magnet portion 4. It is formed in a rectangular cross-sectional shape having a large width in the Y direction.
A recess 7C is provided on the shaft protruding direction side of the weight portion 7 so as to be recessed toward the magnet portion 4 along the uniaxial direction, and the shaft 8 is disposed in a space in the recess 7C. The shaft 8 passes through the central portion of the weight portion 7 so as to pass through the bottom surface in the concave portion 7C.
In addition, the concave portion 7 </ b> C includes part or all of the bearing 9, and ensures a relatively large amplitude of the mover 10.

枠体2は、各部を収容することができる枠構成を有していればよいが、図示の例では、矩形状の底面2Aの周辺に立設される壁部2B,2C,2D,2Eを備えている。また、枠体2は、枠体2内の収容物を覆う蓋板2Qを必要に応じて備えている。蓋板2Qは壁部2B〜2Eの上端面に取り付けられる矩形板状に形成される。枠体2は、金属板を加工(プレス加工など)することで形成することができる。図示の例では、枠体2は、幅方向(図示Y方向)の寸法に対して、厚さ方向(図示Z方向)の寸法を小さく、振動方向(図示X方向)の寸法を大きくした偏平状(扁平状)の略直方体形状(箱形形状)になっている。   The frame body 2 only needs to have a frame configuration capable of accommodating each part. In the illustrated example, the frame body 2 includes wall portions 2B, 2C, 2D, and 2E that are erected around the rectangular bottom surface 2A. I have. Moreover, the frame 2 is equipped with the cover plate 2Q which covers the accommodation in the frame 2 as needed. The cover plate 2Q is formed in a rectangular plate shape attached to the upper end surfaces of the wall portions 2B to 2E. The frame 2 can be formed by processing (pressing or the like) a metal plate. In the illustrated example, the frame body 2 has a flat shape in which the dimension in the thickness direction (Z direction in the figure) is smaller and the dimension in the vibration direction (X direction in the figure) is larger than the dimension in the width direction (Y direction in the figure). It has a (flat) substantially rectangular parallelepiped shape (box shape).

枠体2の底面2Aにおける前記一軸方向の両側には、二つのシャフト8をそれぞれ摺動自在に支持するように軸受9が固定される。詳細に説明すれば、前記一軸方向の一方側と他方側の各々において、枠体2の底面2Aには、垂直板状に軸受支持部2A2が設けられ、この軸受支持部2A2を貫通するようにして略円筒状の軸受9が嵌合されている。各軸受9は、シャフト8を挿通し軸方向へ自在に摺動する。   Bearings 9 are fixed on both sides of the bottom surface 2A of the frame 2 in the uniaxial direction so as to slidably support the two shafts 8 respectively. More specifically, on each of one side and the other side in the uniaxial direction, the bottom surface 2A of the frame body 2 is provided with a bearing support portion 2A2 in the form of a vertical plate so as to penetrate the bearing support portion 2A2. A substantially cylindrical bearing 9 is fitted. Each bearing 9 passes through the shaft 8 and slides freely in the axial direction.

また、枠体2の底面2A上には、連結片29の位置に対応するように、摺動受け部2Rが設けられる。
摺動受け部2Rは、可動子10がシャフト8回りに回転した場合に、連結片29の当接部29Cを受けて、錘部7が枠体2の内面に直接接触するのを防ぐ。錘部7は、表面を低摩擦に加工することが難しいので、仮に錘部7が枠体2の内面に接触して摺動すると、摺動負荷が大きくなると共に異音の発生も大きくなるおそれがある。しかしながら、本実施の形態では、滑らかに加工しやすい連結片29の当接部29Cを摺動受け部2R上に摺動させるようにしているため、可動子10をスムース且つ静かに振動させることができ、更にはリニア振動モータ1の長寿命化をはかることが可能になる。
Further, on the bottom surface 2 </ b> A of the frame body 2, a slide receiving portion 2 </ b> R is provided so as to correspond to the position of the connecting piece 29.
When the mover 10 rotates around the shaft 8, the sliding receiving portion 2 </ b> R receives the contact portion 29 </ b> C of the connecting piece 29 and prevents the weight portion 7 from directly contacting the inner surface of the frame body 2. Since it is difficult to process the surface of the weight part 7 with low friction, if the weight part 7 comes into contact with the inner surface of the frame body 2 and slides, the sliding load increases and the generation of abnormal noise may increase. There is. However, in this embodiment, since the contact portion 29C of the connecting piece 29 that is easy to process is slid on the slide receiving portion 2R, the mover 10 can be vibrated smoothly and gently. In addition, the life of the linear vibration motor 1 can be extended.

コイル3A,3Bは、前記一軸方向に沿って複数配設され、枠体2に固定されている。
二つのコイル3A,3Bは、それぞれ、芯材を具備しない空芯コイルであり、マグネット部4の断面を囲む矩形状に巻回されている。
これら二つのコイル3A,3Bは、通電された際の磁極が逆になるように、巻方向が逆の状態で直列に接続されている。直列接続された二つのコイル3A,3Bは、その電線の両端部を、枠体2から外部に露出した信号入力部2A1の端子T1,T2に、電気的に接続している。
A plurality of coils 3 </ b> A and 3 </ b> B are arranged along the uniaxial direction and are fixed to the frame body 2.
Each of the two coils 3 </ b> A and 3 </ b> B is an air-core coil that does not include a core material, and is wound in a rectangular shape that surrounds the cross section of the magnet unit 4.
These two coils 3A and 3B are connected in series with their winding directions reversed so that the magnetic poles when energized are reversed. The two coils 3A and 3B connected in series electrically connect both ends of the wire to the terminals T1 and T2 of the signal input unit 2A1 exposed to the outside from the frame body 2.

そして、二つのコイル3A,3Bは、隣接する端部同士が接続され一体化され、枠体2に固定される。各コイル3A(又は3B)は、隣接するマグネット片4A,4B(又は4B,4C)を跨るようにして配置される。
特に本実施の形態の好ましい一例では、図2に示すように、無通電状態にて、隣接するマグネット片4A,4B(又は4B,4C)の境界部分(スペーサヨーク4D又は4E)が、該境界部分を跨る一方のコイル3A(又は3B)の軸方向中心部P1(又はP2)に対し、他方のコイル3B(又は3A)から離れる方向へ偏って配置される。
この構成によれば、コイル3A,3Bへの通電により、可動子10が一軸方向に沿って一方向へ移動した際に、隣接するマグネット片4A,4B(又は4B,4C)の前記境界部分側の磁極が、前記他方のコイル3B(又は3A)の磁界の影響を受け、可動子10に前記一方向に対する逆方向の力が作用するのを軽減することができる。すなわち、最大振幅位置近傍での磁気干渉による損失を低減して、可動子10を高効率に往復振動させることができる。
The two coils 3 </ b> A and 3 </ b> B are connected and integrated at adjacent ends, and are fixed to the frame 2. Each coil 3A (or 3B) is arranged so as to straddle the adjacent magnet pieces 4A and 4B (or 4B and 4C).
Particularly, in a preferred example of the present embodiment, as shown in FIG. 2, the boundary portion (spacer yoke 4D or 4E) of the adjacent magnet pieces 4A, 4B (or 4B, 4C) is in the non-energized state. It is biased in the direction away from the other coil 3B (or 3A) with respect to the axial center portion P1 (or P2) of one coil 3A (or 3B) straddling the part.
According to this configuration, when the mover 10 moves in one direction along one axial direction by energization of the coils 3A and 3B, the boundary portion side of the adjacent magnet pieces 4A and 4B (or 4B and 4C). This magnetic pole is affected by the magnetic field of the other coil 3 </ b> B (or 3 </ b> A), and it is possible to reduce the action of a force in the opposite direction to the one direction on the mover 10. That is, loss due to magnetic interference in the vicinity of the maximum amplitude position can be reduced, and the mover 10 can be reciprocally oscillated with high efficiency.

コイル3A,3B内に可動子10を組み込む作業は、可動子10から一方側の連結片29、錘部7及びシャフト8が外された状態において、マグネット部4の部分が、一体状のコイル3A,3B内に挿通され、この後で、連結部材20の両補強片部22の端部に連結片29が接続され、次に連結片29にシャフト8が接続され、さらに、錘部7が、シャフト8に環状に装着されるとともに連結片29に接続される。   The operation of assembling the mover 10 in the coils 3A and 3B is performed in the state where the connecting piece 29, the weight part 7 and the shaft 8 on one side are removed from the mover 10 so that the magnet part 4 is integrated with the coil 3A. , 3B, and thereafter, the connecting piece 29 is connected to the ends of both reinforcing piece portions 22 of the connecting member 20, the shaft 8 is then connected to the connecting piece 29, and the weight portion 7 is The shaft 8 is annularly mounted and connected to the connecting piece 29.

また、弾性部材6は、一軸方向に沿った一対のシャフト8とは非同軸に配置され、コイル3とマグネット部4とによって生じる駆動力に反発する弾性力を、可動子10に付与している。図示の例では、弾性部材6として一軸方向(X方向)に沿って延び縮みするコイルバネを用いており、片側2個の弾性部材6を錘部7と枠体2の壁部2B,2Cの間に介在させている。図示の例では、弾性部材6は一対のシャフト8と平行に配置されている。そして、弾性部材6の一端は枠体2の壁部2B,2Cに設けた支持突起2P(図1参照)に係止されており、弾性部材6の他端は錘部7の端部に設けた支持突起(図示せず)に係止されている。   The elastic member 6 is disposed non-coaxially with the pair of shafts 8 along the uniaxial direction, and gives the movable element 10 an elastic force repelling a driving force generated by the coil 3 and the magnet unit 4. . In the illustrated example, a coil spring that extends and contracts along the uniaxial direction (X direction) is used as the elastic member 6, and two elastic members 6 on one side are placed between the weight portion 7 and the wall portions 2 </ b> B and 2 </ b> C of the frame 2. Is intervening. In the illustrated example, the elastic member 6 is disposed in parallel with the pair of shafts 8. One end of the elastic member 6 is locked to a support protrusion 2P (see FIG. 1) provided on the walls 2B and 2C of the frame body 2, and the other end of the elastic member 6 is provided at the end of the weight portion 7. It is latched by the support protrusion (not shown).

次に、上述したコイル3A,3Bの製造工程について詳細に説明する。
コイル3A,3Bを構成する線材Lは、図3に示すように、中心部に位置する線状導体L1と、線状導体L1の外周面を覆う絶縁被覆層L2と、前記絶縁被覆層の外周面を覆う熱溶融層L3とを有する。この線材Lは、コイル状に巻かれた状態で隣接する線材L間の熱溶融層L3同士が熱融着される。
線状導体L1は、例えば銅線等であり、絶縁被覆層L2は、例えばポリウレタン樹脂である。これら線状導体L1及び絶縁被覆層L2には、周知のポリウレタン銅線や、他のエナメル線等を用いることができる。
また、熱溶融層L3は、例えばポリアミド系の熱溶融性樹脂の層であり、絶縁被覆層L2の全周を覆っている。
Next, the manufacturing process of the coils 3A and 3B described above will be described in detail.
As shown in FIG. 3, the wire L constituting the coils 3 </ b> A and 3 </ b> B includes a linear conductor L <b> 1 located at the center, an insulating coating layer L <b> 2 that covers the outer peripheral surface of the linear conductor L <b> 1, and an outer periphery of the insulating coating layer And a hot melt layer L3 covering the surface. In the wire L, the hot-melt layers L3 between the adjacent wire L in a state of being wound in a coil shape are heat-sealed.
The linear conductor L1 is, for example, a copper wire, and the insulating coating layer L2 is, for example, a polyurethane resin. As the linear conductor L1 and the insulating coating layer L2, a known polyurethane copper wire, other enameled wire, or the like can be used.
The heat-melting layer L3 is, for example, a polyamide-based heat-melting resin layer and covers the entire circumference of the insulating coating layer L2.

コイル3A,3Bは、線材Lをコイル状に巻回する巻回工程と、線材Lを加熱して隣接する線材L間の熱溶融層L3同士を融着させる融着工程とを同時進行することにより、一体コイル状に構成される。
詳細に説明すれば、図3及び図4に示すように、線材Lは、断面矩形状の仮芯材Cの外周面に密着状に巻回されながら、同時に温度140〜170℃の温風で加熱される。このため、熱溶融層L3が溶融して、隣接する線材L同士が熱融着する。線材Lは、各コイル3A(又は3B)を構成するようにして、仮芯材Cの外周に複数層状(図示例によれば3層状)に巻かれる。
前記巻回工程及び前記融着工程により一方のコイル3Aが完成した後、線材Lを逆方向に巻くようにして前記巻回工程及び前記融着工程を行い、他方のコイル3Bが形成される。そして、二つのコイル3A,3Bの巻回及び融着作業を全て完了した後、コイル3A,3Bから仮芯材Cが抜かれる。
よって、コイル3Aとコイル3Bは、互いに逆方向に巻かれ、隣接する端部間が熱融着され、且つ隣接する線材L同士も熱融着され、一体筒状に構成される。
Coil 3A, 3B advances simultaneously the winding process which winds the wire L in a coil shape, and the melt | fusion process which heats the wire L and fuse | melts the hot-melt layer L3 between the adjacent wire L Thus, it is configured in an integral coil shape.
More specifically, as shown in FIGS. 3 and 4, the wire L is simultaneously wound around the outer peripheral surface of the temporary core material C having a rectangular cross section, and at the same time with hot air at a temperature of 140 to 170 ° C. Heated. For this reason, the hot melt layer L3 is melted, and the adjacent wire rods L are thermally fused. The wire L is wound around the outer periphery of the temporary core material C in a plurality of layers (three layers according to the illustrated example) so as to constitute each coil 3A (or 3B).
After one coil 3A is completed by the winding step and the fusing step, the winding step and the fusing step are performed by winding the wire L in the reverse direction, and the other coil 3B is formed. Then, after all the winding and fusing operations of the two coils 3A and 3B are completed, the temporary core material C is removed from the coils 3A and 3B.
Therefore, the coil 3A and the coil 3B are wound in opposite directions, the adjacent ends are heat-sealed, and the adjacent wires L are also heat-sealed to form an integral cylindrical shape.

上記構成のリニア振動モータ1によれば、一軸方向に沿って複数配設されたコイル3A,3Bを断面矩形状の空芯状に一体化したため、これらコイル3A,3Bを含む各部品を薄型化及びコンパクト化することができ、その上、複数のコイル3A,3Bを、マグネット部4周囲に環装する作業や、枠体2に固定する作業等も容易である。
しかも、複数のコイル3A,3Bを熱融着により一体化しているため、独立した複数のコイルを用いる場合と比較し、コイル間やコイルと枠体2の間の接合強度に優れており、ひいては、耐振動性や耐衝撃性を向上することができる。
According to the linear vibration motor 1 having the above-described configuration, the coils 3A and 3B arranged in a single axial direction are integrated into an air core having a rectangular cross section, so that each part including the coils 3A and 3B is thinned. In addition, it is possible to reduce the size, and in addition, it is easy to wrap the plurality of coils 3A and 3B around the magnet portion 4 or to fix the coils 3A to the frame 2.
In addition, since the plurality of coils 3A and 3B are integrated by thermal fusion, compared to the case where a plurality of independent coils are used, the bonding strength between the coils and between the coil and the frame 2 is excellent, and consequently Vibration resistance and impact resistance can be improved.

そして、上記構成のリニア振動モータ1によれば、非駆動時(無通電状態)には、可動子10は弾性部材6の弾性力が釣り合う振動中心位置で静止している。
枠体2の信号入力部2A1を介してコイル3に、可動子10の質量と弾性部材6の弾性係数で決まる共振周波数の振動発生電流が入力されると、マグネット部4に一軸方向(図示のX方向)の駆動力(ローレンツ力)が作用し、この駆動力と弾性部材6の弾性反発力によって可動子10が一軸方向に沿って安定した往復振動をする。
According to the linear vibration motor 1 configured as described above, when not driven (non-energized state), the mover 10 is stationary at the vibration center position where the elastic force of the elastic member 6 is balanced.
When a vibration generating current having a resonance frequency determined by the mass of the mover 10 and the elastic coefficient of the elastic member 6 is input to the coil 3 via the signal input portion 2A1 of the frame 2, the magnet portion 4 is uniaxially (not shown) A driving force (Lorentz force) in the X direction acts, and the movable element 10 reciprocates stably along a uniaxial direction by the driving force and the elastic repulsive force of the elastic member 6.

次に、本発明の実施形態に係るリニア振動モータ1を装備した電子機器の一例である携帯電子機器100について説明する(図4参照)。
携帯電子機器100は、薄厚な偏平箱状の筐体内にリニア振動モータ1を装着して、携帯情報端末(例えば、スマートフォンやタブレットパソコン等)を構成している。
この構成によれば、リニア振動モータ1により安定した振動が得られ薄型化や幅方向のコンパクト化が可能であり、通信機能における着信やアラーム機能などの動作開始・終了時を異音が発生し難い安定した振動を応答性よく使用者に伝えることができる。また、リニア振動モータ1の薄型化及びコンパクト化によって高い携帯性或いはデザイン性を追求した携帯電子機器100を得ることができる。更に、リニア振動モータ1は、厚さを抑えた直方体形状の枠体2内に各部を収容したコンパクト形状であるから、薄型化された携帯電子機器100の内部にスペース効率よく装備することができる。また、リニア振動モータ1は、耐衝撃強度が高く、耐久性も高いので、高寿命且つ故障し難い携帯電子機器100を得ることができる。
Next, the portable electronic device 100 which is an example of the electronic device equipped with the linear vibration motor 1 according to the embodiment of the present invention will be described (see FIG. 4).
The portable electronic device 100 includes a linear vibration motor 1 mounted in a thin flat box-shaped housing to constitute a portable information terminal (for example, a smartphone or a tablet personal computer).
According to this configuration, a stable vibration can be obtained by the linear vibration motor 1 and the thickness can be reduced and the width can be reduced, and an abnormal sound is generated at the start and end of an incoming call or alarm function in a communication function. Difficult and stable vibration can be transmitted to the user with good responsiveness. Moreover, the portable electronic device 100 pursuing high portability or design can be obtained by making the linear vibration motor 1 thin and compact. Furthermore, since the linear vibration motor 1 has a compact shape in which each part is housed in a rectangular parallelepiped frame 2 with a reduced thickness, the linear vibration motor 1 can be efficiently installed inside the thinned portable electronic device 100. . Moreover, since the linear vibration motor 1 has high impact resistance strength and high durability, it is possible to obtain a portable electronic device 100 that has a long life and is unlikely to fail.

なお、上記実施の形態によれば、シャフト8を可動子10に具備したが、他例としては、シャフト8を枠体2側に固定し、この固定されたシャフト8に沿って、マグネット部4及び錘部7等を振動させる態様とすることも可能である。   In addition, according to the said embodiment, although the shaft 8 was provided in the needle | mover 10, as another example, the shaft 8 is fixed to the frame 2 side, and the magnet part 4 is along this fixed shaft 8. Further, it is possible to adopt a mode in which the weight portion 7 and the like are vibrated.

また、上記実施の形態によれば、巻方向が異なる複数のコイル3A,3Bを直列接続したが、他例としては、同巻方向の複数のコイル3A,3Bを連結した態様や、複数のコイル3A,3Bを並列接続した態様とすることも可能である。なお、これら他例においては、可動子10が往復振動するようにマグネット部4の磁極位置を変更する。   Moreover, according to the said embodiment, although several coil 3A, 3B from which the winding direction differs was connected in series, as an example, the aspect which connected several coil 3A, 3B of the same winding direction, or several coil It is also possible to adopt a mode in which 3A and 3B are connected in parallel. In these other examples, the magnetic pole position of the magnet unit 4 is changed so that the mover 10 reciprocates.

また、上記実施の形態によれば、線材Lをコイル状に巻回する巻回工程と、線材Lを加熱して隣接する線材L間の熱溶融層L3同士を融着させる融着工程とを同時進行して線材L間を熱融着するようにしたが、他例としては、前記巻回工程と前記融着工程とを交互に繰り返したり、あるいは前記巻回工程の完了後に加熱による前記融着工程を行ったりして、線材L間を熱融着することも可能である。   Moreover, according to the said embodiment, the winding process which winds the wire L in a coil shape, and the melt | fusion process which heats the wire L and fuse | melts the hot melt layers L3 between the adjacent wire L are carried out. Although the wire L is heat-sealed at the same time, as another example, the winding step and the fusion step are alternately repeated, or the fusion by heating after the winding step is completed. It is also possible to heat-bond between the wire rods L by performing a bonding process.

また、上記実施の形態によれば、複数のコイル3A,3Bを熱融着により一体化したが、他例としては、複数のコイル3A,3Bを接着剤により接着し一体化した態様や、複数のコイル3A,3Bを嵌合接続により一体化した態様等とすることも可能である。   Moreover, according to the said embodiment, although several coil 3A, 3B was integrated by heat sealing | fusion, as another example, the aspect which adhere | attached and integrated several coil 3A, 3B with the adhesive agent, or several It is also possible to adopt an embodiment in which the coils 3A and 3B are integrated by fitting connection.

また、上記実施の形態では、弾性部材6としてコイルバネを用いたが、弾性部材6の他例としては、板バネを用いた態様や、ゴム等の弾性体を用いた態様、コイルバネ、板バネ、前記弾性体等を適宜に組み合わせた態様等とすることも可能である。   Moreover, in the said embodiment, although the coil spring was used as the elastic member 6, as another example of the elastic member 6, the aspect using a leaf | plate spring, the aspect using elastic bodies, such as rubber | gum, a coil spring, a leaf | plate spring, It is also possible to adopt an aspect in which the elastic bodies are appropriately combined.

また、上記実施の形態では、特に好ましい態様として、マグネット部4の両端側にシャフト8を接続し、これら二つのシャフト8をそれぞれ軸受9により摺動自在に支持したが、他例としては、マグネット部4の一端側のみにシャフト8を接続し、この単一のシャフト8を軸受9により支持した態様とすることも可能である。   Moreover, in the said embodiment, as a particularly preferable aspect, the shaft 8 was connected to the both ends of the magnet part 4, and these two shafts 8 were each slidably supported by the bearing 9, but as another example, a magnet It is also possible to adopt a mode in which the shaft 8 is connected to only one end side of the portion 4 and the single shaft 8 is supported by the bearing 9.

また、上記実施の形態では、マグネット部4の両端側に分割配置されたシャフト8を一体的に有するように可動子10を構成したが、本願発明はシャフト8の態様に限定されるものでなく、本願発明に係る他の実施の形態としては、前記分割配置されたシャフト8を、マグネット部4を貫通して連続する一体のシャフトに置換した態様(図示せず)や、上記可動子10からシャフト8が省かれた可動子を、枠体2に固定されたシャフトに係合して一軸方向へ案内するようにした態様(図示せず)、上記可動子10からシャフト8を省いた可動子を、シャフトを用いずに弾性部材6によって往復動自在に支持した態様等とすることも可能である。   Moreover, in the said embodiment, although the needle | mover 10 was comprised so that it might have integrally the shaft 8 dividedly arrange | positioned at the both ends of the magnet part 4, this invention is not limited to the aspect of the shaft 8. FIG. As another embodiment according to the present invention, an embodiment (not shown) in which the divided shaft 8 is replaced with an integral shaft that passes through the magnet portion 4 and is continuous, or from the movable element 10 described above. A mode (not shown) in which the mover from which the shaft 8 is omitted is engaged with the shaft fixed to the frame 2 and guided in a uniaxial direction, the mover from which the shaft 8 is omitted from the mover 10 It is also possible to adopt a mode in which the elastic member 6 is reciprocally supported by the elastic member 6 without using a shaft.

また、上記実施の形態では、特に携帯電子機器100に収納し易い好ましい態様として、マグネット部4、コイル3A,3B及び枠体2等を、一軸方向に直交する断面が矩形状(方形状)になるように形成して、リニア振動モータ1全体の同断面が矩形状(方形状)になるようにしたが、他例としては、前記各部位やリニア振動モータ1全体の断面形状を、円形や、正方形、多角形等、図示例以外の形状にすることも可能である。   Moreover, in the said embodiment, as a preferable aspect which is easy to accommodate especially in the portable electronic device 100, the cross section orthogonal to a uniaxial direction is rectangular (square shape) about the magnet part 4, coil 3A, 3B, the frame 2, etc. The cross section of the entire linear vibration motor 1 has a rectangular shape (square shape). However, as another example, the cross-sectional shape of each part or the entire linear vibration motor 1 may be circular or It is also possible to use shapes other than the illustrated examples, such as squares, polygons.

また、図5の携帯電子機器100は、好ましい一例として、リニア振動モータ1を内在したスマートフォン又はタブレットパソコンを示しているが、この携帯電子機器100の他例としては、リニア振動モータ1を内在するようにして、携帯電話や、携帯ゲーム機、携帯型通信時計、ウェアラブル通信端末を含むウェアラブル電子機器、その他のポータブル電子機器を構成することが可能である。   Moreover, although the portable electronic device 100 of FIG. 5 has shown the smart phone or tablet personal computer which contained the linear vibration motor 1 as a preferable example, as another example of this portable electronic device 100, the linear vibration motor 1 is contained. Thus, a wearable electronic device including a mobile phone, a portable game machine, a portable communication watch, a wearable communication terminal, and other portable electronic devices can be configured.

1:リニア振動モータ, 2:枠体, 3A,3B:コイル
4:マグネット部, 6:弾性部材, 7:錘部
8:シャフト, 9:軸受, 10:可動子
20:連結部材, 21:連結片部, 22:補強片部, 29:連結片
L:線材, L1:線状導体, L2:絶縁被覆層, L3:熱溶融層
1: Linear vibration motor, 2: Frame body, 3A, 3B: Coil 4: Magnet part, 6: Elastic member, 7: Weight part 8: Shaft, 9: Bearing, 10: Movable element 20: Connection member, 21: Connection One part, 22: Reinforcement piece part, 29: Connection piece L: Wire rod, L1: Linear conductor, L2: Insulation coating layer, L3: Thermal melt layer

Claims (7)

マグネット部と錘部を備える可動子と、前記可動子を一軸方向に沿って往復動するように収容する枠体と、前記一軸方向に対し交差する方向に沿って前記マグネット部の周囲に巻回され前記マグネット部に前記一軸方向に沿う駆動力を付与するコイルと、前記駆動力に反発する弾性力を前記可動子に付与する弾性部材とを備え、
前記コイルは、前記一軸方向に沿って複数配設されるとともに、隣接する他のコイルとの間を接触させて一体化され、前記枠体に固定されていることを特徴とするリニア振動モータ。
A mover including a magnet part and a weight part, a frame that houses the mover so as to reciprocate along a uniaxial direction, and is wound around the magnet part along a direction intersecting the uniaxial direction. A coil for applying a driving force along the uniaxial direction to the magnet portion, and an elastic member for applying an elastic force repelling the driving force to the mover,
A plurality of the coils are arranged along the uniaxial direction, are integrated with each other adjacent to each other, and are fixed to the frame.
前記コイルが芯材を具備しない空芯コイルであることを特徴とする請求項1記載のリニア振動モータ。   The linear vibration motor according to claim 1, wherein the coil is an air-core coil not including a core material. 前記マグネット部が、矩形状の断面を前記一軸方向に連続させた形状に構成され、前記コイルが、前記マグネット部の前記断面を囲む矩形状に巻回されていることを特徴とする請求項1又は2記載のリニア振動モータ。   The magnet part is formed in a shape in which a rectangular cross section is continuous in the uniaxial direction, and the coil is wound in a rectangular shape surrounding the cross section of the magnet part. Or the linear vibration motor of 2. 前記コイルを構成する線材は、中心部に位置する線状導体と、前記線状導体の外周面を覆う絶縁被覆層と、前記絶縁被覆層の外周面を覆う熱溶融層とを有し、コイル状に巻かれた状態で隣接する線材間の前記熱溶融層同士を融着させていることを特徴とする請求項1〜3いずれか1項記載のリニア振動モータ。   The wire constituting the coil has a linear conductor located at the center, an insulating coating layer covering the outer peripheral surface of the linear conductor, and a heat melting layer covering the outer peripheral surface of the insulating coating layer, The linear vibration motor according to any one of claims 1 to 3, wherein the heat-melt layers between adjacent wires are fused in a state of being wound in a shape. 前記線材をコイル状に巻回する巻回工程と、前記線材を加熱して隣接する線材間の前記熱溶融層同士を融着させる融着工程とを含む製造工程より、前記複数のコイルを形成するようにしたことを特徴とする請求項4記載のリニア振動モータの製造方法。   The plurality of coils are formed by a manufacturing process including a winding process of winding the wire in a coil shape and a fusion process of heating the wire to fuse the hot melt layers between adjacent wires. The method of manufacturing a linear vibration motor according to claim 4, wherein: 隣接する前記コイルの一方を前記製造工程により形成した後、隣接する前記コイルの他方を逆巻にして前記製造工程により形成するようにしたことを特徴とする請求項5記載のリニア振動モータの製造方法。   6. The linear vibration motor according to claim 5, wherein after one of the adjacent coils is formed by the manufacturing process, the other coil is reversely wound and formed by the manufacturing process. Method. 請求項1〜4いずれか1項記載のリニア振動モータを備える携帯情報端末。
A portable information terminal comprising the linear vibration motor according to claim 1.
JP2015149866A 2015-07-29 2015-07-29 Linear vibration motor, and portable electronic apparatus equipped with linear vibration motor Pending JP2017029889A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015149866A JP2017029889A (en) 2015-07-29 2015-07-29 Linear vibration motor, and portable electronic apparatus equipped with linear vibration motor
PCT/JP2016/071991 WO2017018443A1 (en) 2015-07-29 2016-07-27 Linear vibration motor, and portable electronic device provided with said linear vibration motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015149866A JP2017029889A (en) 2015-07-29 2015-07-29 Linear vibration motor, and portable electronic apparatus equipped with linear vibration motor

Publications (1)

Publication Number Publication Date
JP2017029889A true JP2017029889A (en) 2017-02-09

Family

ID=57884753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015149866A Pending JP2017029889A (en) 2015-07-29 2015-07-29 Linear vibration motor, and portable electronic apparatus equipped with linear vibration motor

Country Status (2)

Country Link
JP (1) JP2017029889A (en)
WO (1) WO2017018443A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006068688A (en) * 2004-09-03 2006-03-16 Namiki Precision Jewel Co Ltd Vibration actuator
JP2006311155A (en) * 2005-04-27 2006-11-09 Citizen Electronics Co Ltd Electroacoustic transducer
JP2011189337A (en) * 2010-02-16 2011-09-29 Nihon Densan Seimitsu Kk Vibration generator
JP2012016153A (en) * 2010-06-30 2012-01-19 Nidec Copal Corp Vibration actuator
JP2015039298A (en) * 2014-11-28 2015-02-26 日本電産コパル株式会社 Vibration actuator
JP2015097984A (en) * 2013-11-18 2015-05-28 日本電産コパル株式会社 Vibration actuator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006068688A (en) * 2004-09-03 2006-03-16 Namiki Precision Jewel Co Ltd Vibration actuator
JP2006311155A (en) * 2005-04-27 2006-11-09 Citizen Electronics Co Ltd Electroacoustic transducer
JP2011189337A (en) * 2010-02-16 2011-09-29 Nihon Densan Seimitsu Kk Vibration generator
JP2012016153A (en) * 2010-06-30 2012-01-19 Nidec Copal Corp Vibration actuator
JP2015097984A (en) * 2013-11-18 2015-05-28 日本電産コパル株式会社 Vibration actuator
JP2015039298A (en) * 2014-11-28 2015-02-26 日本電産コパル株式会社 Vibration actuator

Also Published As

Publication number Publication date
WO2017018443A1 (en) 2017-02-02

Similar Documents

Publication Publication Date Title
JP6421089B2 (en) Linear vibration motor and portable electronic device including the linear vibration motor
US10566889B2 (en) Linear vibration motor
US10424999B2 (en) Linear vibration motor
WO2017002950A1 (en) Linear vibration motor
JP7081791B2 (en) Vibration actuator
JP6346104B2 (en) Vibration generator
WO2016114383A1 (en) Linear vibration motor
JP2019201486A (en) Linear vibration motor and electronic equipment
WO2017057315A1 (en) Linear vibration motor
JP6824337B2 (en) Vibration motor
WO2017026373A1 (en) Linear vibration motor and portable electronic device provided with linear vibration motor
JP2017175761A (en) Linear vibration motor
JP7022617B2 (en) Vibration actuator
WO2017051843A1 (en) Linear vibration motor
WO2017002949A1 (en) Linear vibration motor
JP2017212793A (en) Linear vibration motor
WO2017018443A1 (en) Linear vibration motor, and portable electronic device provided with said linear vibration motor
WO2017057193A1 (en) Linear vibration motor
JP6479595B2 (en) Linear vibration motor
JP6453182B2 (en) Linear vibration motor and portable electronic device including the linear vibration motor
JP6341901B2 (en) Vibration actuator
JP2016150284A (en) Vibration generator
JP2017208933A (en) Linear vibration motor
JP2016152662A (en) Needle and vibration generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180717

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190129