JP2017027622A - Pattern recognition device, pattern recognition method, and pattern recognition program - Google Patents

Pattern recognition device, pattern recognition method, and pattern recognition program Download PDF

Info

Publication number
JP2017027622A
JP2017027622A JP2016208790A JP2016208790A JP2017027622A JP 2017027622 A JP2017027622 A JP 2017027622A JP 2016208790 A JP2016208790 A JP 2016208790A JP 2016208790 A JP2016208790 A JP 2016208790A JP 2017027622 A JP2017027622 A JP 2017027622A
Authority
JP
Japan
Prior art keywords
recognition
posterior probability
pattern
calculation
input pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016208790A
Other languages
Japanese (ja)
Other versions
JP6282711B2 (en
Inventor
聡一郎 小野
Soichiro Ono
聡一郎 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Digital Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Solutions Corp filed Critical Toshiba Corp
Priority to JP2016208790A priority Critical patent/JP6282711B2/en
Publication of JP2017027622A publication Critical patent/JP2017027622A/en
Application granted granted Critical
Publication of JP6282711B2 publication Critical patent/JP6282711B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Character Discrimination (AREA)
  • Image Analysis (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pattern recognition device, a pattern recognition method, and a pattern recognition program which allow improvement of system performance.SOLUTION: A pattern recognition device includes: an extraction section for extracting a feature vector from an input pattern; a first calculation section for calculating an identification function value for the feature vector; a second calculation section for calculating a posterior probability for each recognition class corresponding to a classification destination of the input pattern from the identification function value; and a recognition section for classifying the input pattern into one of the recognition classes on the basis of the posterior probability.SELECTED DRAWING: Figure 2

Description

本発明の実施形態は、パターン認識装置、パターン認識方法、及びパターン認識プログラムに関する。   Embodiments described herein relate generally to a pattern recognition apparatus, a pattern recognition method, and a pattern recognition program.

従来から、入力された文字、音声、又は画像などを自動的に分類するパターン認識技術が知られている。このようなパターン認識の分野では、二次形式の形の識別関数が多く用いられている。これらの識別関数には、最近傍決定法及びその実現手段の学習ベクトル量子化、複合類似度及びその派生系である部分空間法、カーネル部分空間法、相互部分空間法、類似ベイズ法(修正二次識別関数)、球面擬似ベイズ法などがある。   Conventionally, a pattern recognition technique for automatically classifying input characters, sounds, images, or the like is known. In the field of such pattern recognition, a discriminant function in the form of a quadratic form is often used. These discriminant functions include the nearest neighbor determination method and the learning vector quantization of its means of realization, the composite similarity and its derivative subspace method, kernel subspace method, mutual subspace method, similarity Bayes method (modified two Order discriminant function), and spherical pseudo Bayes method.

特許第2739950号公報Japanese Patent No. 2739950

しかしながら、従来のパターン認識技術は、用いる識別関数が確率的な意味を有していない。そのため、従来のパターン認識技術では、言語モデルによる知識処理などの他の分野との相性が悪く、システム全体の性能が低下する。   However, in the conventional pattern recognition technology, the discriminant function used does not have a probabilistic meaning. Therefore, the conventional pattern recognition technology is not compatible with other fields such as knowledge processing using a language model, and the performance of the entire system is lowered.

実施形態に係るパターン認識装置は、入力パターンから特徴ベクトルを抽出する抽出部と、前記特徴ベクトルに対する識別関数値を計算する第1計算部と、前記識別関数値から、所定の変換パラメータを用いた第1演算により対数尤度を計算し、得られた対数尤度を用いた第2演算により、前記入力パターンの分類先に相当する認識分類ごとの事後確率を計算する第2計算部と、前記事後確率に基づき、前記入力パターンを前記認識分類のいずれかに分類する認識部と、を備える。   The pattern recognition apparatus according to the embodiment uses an extraction unit that extracts a feature vector from an input pattern, a first calculation unit that calculates a discrimination function value for the feature vector, and a predetermined conversion parameter from the discrimination function value. A second calculation unit that calculates a log likelihood by a first operation and calculates a posteriori probability for each recognition classification corresponding to a classification destination of the input pattern by a second operation using the obtained log likelihood; A recognition unit that classifies the input pattern into one of the recognition classifications based on post-article probability.

第1の実施形態に係るパターン認識装置の構成例を示す図。The figure which shows the structural example of the pattern recognition apparatus which concerns on 1st Embodiment. 第1の実施形態に係るパターン認識機能の構成例を示す図。The figure which shows the structural example of the pattern recognition function which concerns on 1st Embodiment. 第1の実施形態に係るパターン認識時の処理手順例を示すフローチャート。6 is a flowchart showing an example of a processing procedure during pattern recognition according to the first embodiment.

以下に、添付図面を参照して、パターン認識装置、パターン認識方法、及びパターン認識プログラムの実施形態を詳細に説明する。   Hereinafter, embodiments of a pattern recognition apparatus, a pattern recognition method, and a pattern recognition program will be described in detail with reference to the accompanying drawings.

[第1の実施形態]
<装置構成>
図1は、本実施形態に係るパターン認識装置100の構成例を示す図である。図1に示すように、本実施形態に係るパターン認識装置100は、CPU(Central Processing Unit)101、ROM(Read Only Memory)102、及びRAM(Random Access Memory)103などを備えている。また、パターン認識装置100は、外部記憶装置104、入力装置105、表示装置106、及び通信IF(Interface)107などを備えている。本実施形態に係るパターン認識装置100は、各ハードウェアがバスBを介して接続されている。
[First Embodiment]
<Device configuration>
FIG. 1 is a diagram illustrating a configuration example of a pattern recognition apparatus 100 according to the present embodiment. As shown in FIG. 1, a pattern recognition apparatus 100 according to this embodiment includes a CPU (Central Processing Unit) 101, a ROM (Read Only Memory) 102, a RAM (Random Access Memory) 103, and the like. The pattern recognition apparatus 100 includes an external storage device 104, an input device 105, a display device 106, a communication IF (Interface) 107, and the like. In the pattern recognition apparatus 100 according to the present embodiment, each hardware is connected via a bus B.

CPU101は、装置全体の制御や搭載機能を実現する演算装置である。ROM102は、例えば、機能を実現するプログラムや機能設定のデータなどが格納されている不揮発性の半導体メモリである。RAM103は、プログラムやデータが読み出され一時保持される揮発性の半導体メモリである。よって、CPU101は、例えば、ROM102から、プログラムやデータをRAM103上に読み出し、処理を実行することで、装置全体の制御や搭載機能を実現する。   The CPU 101 is an arithmetic device that realizes overall control of the apparatus and a mounting function. The ROM 102 is, for example, a non-volatile semiconductor memory that stores programs for realizing functions, function setting data, and the like. The RAM 103 is a volatile semiconductor memory from which programs and data are read and temporarily stored. Therefore, for example, the CPU 101 reads out a program and data from the ROM 102 onto the RAM 103 and executes processing, thereby realizing control and mounting functions of the entire apparatus.

外部記憶装置104は、例えば、HDD(Hard Disk Drive)やメモリカード(Memory Card)などの不揮発性の記憶装置である。なお、外部記憶装置104には、フレキシブルディスク(FD)、CD(Compact Disk)、及びDVD(Digital Versatile Disk)などの記録媒体も含まれる。入力装置105は、例えば、テンキー、タッチパネル、又はキーボードなどであり、パターン認識装置100に各操作信号を入力するのに用いられる。表示装置106は、例えば、ディスプレイなどであり、パターン認識装置100による処理結果を表示する。通信IF107は、パターン認識装置100を所定のデータ伝送路に接続するインタフェースである。これにより、パターン認識装置100は、通信IF107を介して、他の機器とデータ通信を行うことができる。   The external storage device 104 is a non-volatile storage device such as an HDD (Hard Disk Drive) or a memory card. The external storage device 104 includes recording media such as a flexible disk (FD), a CD (Compact Disk), and a DVD (Digital Versatile Disk). The input device 105 is, for example, a numeric keypad, a touch panel, or a keyboard, and is used to input each operation signal to the pattern recognition device 100. The display device 106 is a display or the like, for example, and displays the processing result by the pattern recognition device 100. The communication IF 107 is an interface that connects the pattern recognition apparatus 100 to a predetermined data transmission path. Accordingly, the pattern recognition apparatus 100 can perform data communication with other devices via the communication IF 107.

以上のように、本実施形態では、上記構成により、入力信号を自動分類するパターン認識機能を提供することができる。   As described above, according to the present embodiment, a pattern recognition function for automatically classifying input signals can be provided by the above configuration.

<パターン認識機能>
本実施形態に係るパターン認識機能について説明する。本実施形態に係るパターン認識装置100は、入力パターンから特徴ベクトルを抽出する。パターン認識装置100は、特徴ベクトルに対する識別関数の値(以下「識別関数値」という)を計算する。パターン認識装置100は、確率的な意味を有する確率尺度に変換するための変換パラメータ(以下「尤度変換パラメータ」という)に基づき、識別関数値を事後確率に変換し、入力パターンの分類先に相当する認識分類ごとの事後確率を計算する。パターン認識装置100は、事後確率に基づき、入力パターンを認識分類のいずれかに分類する。本実施形態に係るパターン認識装置100は、このようなパターン認識機能を有している。
<Pattern recognition function>
The pattern recognition function according to this embodiment will be described. The pattern recognition apparatus 100 according to the present embodiment extracts a feature vector from an input pattern. The pattern recognition apparatus 100 calculates the value of the discriminant function for the feature vector (hereinafter referred to as “discriminant function value”). The pattern recognition apparatus 100 converts the discriminant function value into a posteriori probability based on a conversion parameter (hereinafter referred to as “likelihood conversion parameter”) for conversion into a probability scale having a probabilistic meaning, and sets the input pattern as a classification destination. Calculate posterior probabilities for each corresponding recognition category. The pattern recognition apparatus 100 classifies the input pattern into one of recognition classifications based on the posterior probability. The pattern recognition apparatus 100 according to the present embodiment has such a pattern recognition function.

従来のパターン認識技術では、二次形式の形の識別関数が用いられているが、用いる識別関数が確率的な意味を必ずしも有していない。そのため、従来のパターン認識技術では、言語モデルによる知識処理などの他の分野との相性が悪く、システム全体の性能が低下する。   In the conventional pattern recognition technique, a discriminant function in a quadratic form is used, but the discriminant function used does not necessarily have a probabilistic meaning. Therefore, the conventional pattern recognition technology is not compatible with other fields such as knowledge processing using a language model, and the performance of the entire system is lowered.

そこで、本実施形態に係るパターン認識機能では、上記識別関数が、いずれもガウス分布の対数尤度(尤度の自然対数)の近似とみなせる点に着目し、識別関数一般について統一した取り扱いの方法を提案する。さらに、本実施形態に係るパターン認識機能では、事後確率によって学習指標を与えることで、初期値に依存せず収束を保証し、逐次パターン学習する仕組みを提案する。   Therefore, in the pattern recognition function according to the present embodiment, focusing on the fact that any of the above discriminant functions can be regarded as an approximation of the logarithmic likelihood (natural logarithm of likelihood) of a Gaussian distribution, a handling method unified with respect to discriminant functions in general. Propose. Furthermore, in the pattern recognition function according to the present embodiment, a mechanism is proposed in which convergence is guaranteed without depending on the initial value by providing a learning index based on a posteriori probability, and sequential pattern learning is performed.

以下に、本実施形態に係るパターン認識機能の構成とその動作について説明する。図2は、本実施形態に係るパターン認識機能の構成例を示す図である。図2に示すように、本実施形態に係るパターン認識機能は、信号入力部11、特徴抽出部12、識別関数計算部(第1計算部)13、事後確率計算部(第2計算部)14、認識部15、及び認識結果破棄部16などを有している。本実施形態では、これらの各機能部の動作により、パターン認識の基本機能(以上便宜上「基本機能」という)を実現する。また、本実施形態に係るパターン認識機能は、尤度変換パラメータ更新部(第1更新部)17と辞書更新部(第2更新部)18などを有している。本実施形態では、これらの各機能部の動作により、認識結果に基づくパターン学習機能(以下便宜上「学習機能」という)を実現する。   The configuration and operation of the pattern recognition function according to this embodiment will be described below. FIG. 2 is a diagram illustrating a configuration example of the pattern recognition function according to the present embodiment. As shown in FIG. 2, the pattern recognition function according to the present embodiment includes a signal input unit 11, a feature extraction unit 12, a discrimination function calculation unit (first calculation unit) 13, and a posterior probability calculation unit (second calculation unit) 14. , A recognition unit 15 and a recognition result discarding unit 16. In the present embodiment, the basic function of pattern recognition (hereinafter referred to as “basic function” for convenience) is realized by the operation of each of these functional units. The pattern recognition function according to the present embodiment includes a likelihood conversion parameter update unit (first update unit) 17 and a dictionary update unit (second update unit) 18. In the present embodiment, a pattern learning function based on the recognition result (hereinafter referred to as “learning function” for convenience) is realized by the operation of each of these functional units.

《基本機能》
信号入力部11は、認証対象である入力パターンを入力信号として受け付ける。認証対象である入力パターンには、文字、音声、又は画像などがあり、入力信号には、これらのデジタル情報や、これらのデジタル情報に対して所定の信号処理(例えば「2値化」)を施した前処理のデジタル情報などが相当する。
<Basic functions>
The signal input unit 11 receives an input pattern to be authenticated as an input signal. The input pattern to be authenticated includes characters, sounds, images, and the like, and the input signal is subjected to a predetermined signal process (for example, “binarization”) on the digital information and the digital information. This corresponds to preprocessed digital information.

特徴抽出部12は、入力パターンから特徴ベクトルを抽出する。特徴抽出部12は、信号入力部11からの入力信号を一定次元の数ベクトルに変換する。特徴抽出部12は、入力信号に対して、長さや量子化レベルを正規化するなどの前処理を実行し、前処理後の信号値を得る。特徴抽出部12は、前処理後の信号値に対して、ガウシアンフィルタなどのフィルタ処理やフーリエ変換などの変換処理を実行し、フィルタ/変換処理後の信号値を得る。その結果、特徴抽出部12は、前処理後の信号値やフィルタ/変換処理後の信号値を成分とするベクトルを出力することで、特徴ベクトルを抽出する。   The feature extraction unit 12 extracts a feature vector from the input pattern. The feature extraction unit 12 converts the input signal from the signal input unit 11 into a number vector of a certain dimension. The feature extraction unit 12 performs preprocessing such as normalizing the length and quantization level on the input signal, and obtains a signal value after preprocessing. The feature extraction unit 12 performs filter processing such as a Gaussian filter and conversion processing such as Fourier transform on the pre-processed signal value to obtain a signal value after the filter / conversion processing. As a result, the feature extraction unit 12 extracts a feature vector by outputting a vector whose component is a signal value after preprocessing or a signal value after filtering / conversion processing.

なお、このとき抽出される特徴ベクトルは、すべてノルムが1となるように正規化してもよい。また、特徴抽出部12は、複数の入力信号それぞれに対して特徴ベクトルを抽出したり、1つの入力信号にランダムに生成したノイズなどの相異なる変動を加えたりするなどして、特徴ベクトルを複数抽出してもよい。また、特徴抽出部12は、これらの方法によって抽出された特徴ベクトルを、仮の特徴ベクトルとして扱い、後述する正定値カーネルによって再生核ヒルベルト空間上の特徴ベクトルに変換することとしてもよい。   The feature vectors extracted at this time may be normalized so that the norm is 1. The feature extraction unit 12 extracts a plurality of feature vectors by extracting feature vectors for each of a plurality of input signals or adding different variations such as randomly generated noise to one input signal. It may be extracted. In addition, the feature extraction unit 12 may treat the feature vector extracted by these methods as a temporary feature vector, and may convert the feature vector into a feature vector in the reproduction kernel Hilbert space using a positive definite kernel described later.

識別関数計算部13は、特徴ベクトルに対する識別関数値を計算する。識別関数計算部13は、特徴抽出部12により抽出された特徴ベクトルの認識分類(以下「カテゴリ」という)に対する識別関数値を計算する。   The discriminant function calculator 13 calculates discriminant function values for the feature vectors. The discriminant function calculator 13 calculates a discriminant function value for the recognition classification (hereinafter referred to as “category”) of the feature vector extracted by the feature extractor 12.

例えば、識別関数計算部13は、最近傍決定法による識別関数を用いて識別関数値f(i)(x)を計算する。このときの識別関数は、例えば、認識辞書保持部93が保持する認識辞書のプロトタイプ数を各カテゴリに対して1とする場合、入力された特徴ベクトルxのカテゴリiに対して、

Figure 2017027622
となる。 For example, the discriminant function calculator 13 calculates the discriminant function value f (i) (x) using the discriminant function based on the nearest neighbor determination method. For example, when the number of prototypes of the recognition dictionary held by the recognition dictionary holding unit 93 is 1 for each category, the identification function at this time is as follows for the category i of the input feature vector x:
Figure 2017027622
It becomes.

また、識別関数計算部13は、部分空間法及び複合類似度法による識別関数を用いて識別関数値f(i)(x)を計算してもよい。このときの識別関数は、例えば部分空間法においては、認識辞書保持部93が保持する認識辞書のカテゴリiに対応する部分空間の正規直交基底をr1(i) ,・・・,rh(i)とする場合、

Figure 2017027622
また複合類似度法においては前記部分空間の直交補空間の正規直交基底rh+1(i) ,・・・,rD(i)及び追加のパラメータλ1(i),・・・,λD(i)を用いて
Figure 2017027622
となる(式中の「・」は標準内積を表す)。なお、入力された特徴ベクトルは、||x||=1と正規化されているものとする。 Further, the discriminant function calculation unit 13 may calculate the discriminant function value f (i) (x) using a discriminant function based on the subspace method and the composite similarity method. For example, in the subspace method, the discrimination function at this time is the orthonormal basis of the subspace corresponding to the category i of the recognition dictionary held by the recognition dictionary holding unit 93 as r1 (i),..., Rh (i). If
Figure 2017027622
In the composite similarity method, the orthonormal basis rh + 1 (i),..., RD (i) and the additional parameters λ1 (i),. The
Figure 2017027622
(“•” in the formula represents a standard inner product). It is assumed that the input feature vector is normalized as || x || = 1.

また、識別関数計算部13は、同様に相互部分空間法による識別関数を用いて識別関数値f(i)(x)を計算してもよい。このときの識別関数は、例えば、入力された複数の特徴ベクトルxを主成分分析し、得られた入力部分空間をWとする場合、

Figure 2017027622
となる。 Similarly, the discriminant function calculation unit 13 may calculate the discriminant function value f (i) (x) using the discriminant function based on the mutual subspace method. The discrimination function at this time is, for example, when principal component analysis is performed on a plurality of input feature vectors x and the obtained input subspace is W,
Figure 2017027622
It becomes.

また、識別関数計算部13は、カーネル部分空間法による識別関数を用いて識別関数値f(i)(x)を計算してもよい。このときの識別関数は、例えば、仮の特徴ベクトルをx、学習データをr1(i),・・・,rN(i)、それに付随するパラメータをα1(i),・・・,αN(i)とする場合、

Figure 2017027622
となる。このとき正定値カーネルK(・,・)は、仮の特徴ベクトルxから再生核ヒルベルト空間上への写像を与えており、この写像先を特徴ベクトルxとして取り扱える。また、上記以外の場合も、識別関数は、一般的に値が小さいほど、カテゴリとの類似性が高くなる実数値の関数として統一的に取り扱うことができる。 Further, the discriminant function calculation unit 13 may calculate the discriminant function value f (i) (x) using the discriminant function based on the kernel subspace method. The discriminant function at this time is, for example, x as a temporary feature vector, r1 (i),..., RN (i) as learning data, and α1 (i),. )
Figure 2017027622
It becomes. At this time, the positive definite kernel K (.,.) Gives a mapping from the temporary feature vector x to the reproduction kernel Hilbert space, and can handle this mapping destination as the feature vector x. In other cases as well, the discriminant function can generally be handled uniformly as a real-valued function in which the smaller the value, the higher the similarity to the category.

このように、本実施形態に係る基本機能では、識別関数一般について統一した取り扱い方法を提案する。   As described above, the basic function according to the present embodiment proposes a unified handling method for the discrimination function in general.

なお、認識辞書保持部93は、パターン認識装置100が備える記憶装置の所定の記憶領域に相当し、認識対象の各カテゴリに対する識別関数のパラメータ(識別関数値f(i)(x)の計算に用いるパラメータ)が登録されている認識辞書を保持している。認識辞書の値は、後述する辞書更新部18により更新され、学習結果が反映される。また、認識辞書の初期値は、例えば、上記識別関数の種別に従って、予め定めることができる。   Note that the recognition dictionary holding unit 93 corresponds to a predetermined storage area of a storage device included in the pattern recognition apparatus 100, and is used to calculate parameters of the identification function (identification function values f (i) (x) for each category to be recognized. A recognition dictionary in which parameters to be used are registered. The value of the recognition dictionary is updated by a dictionary updating unit 18 described later, and the learning result is reflected. The initial value of the recognition dictionary can be determined in advance according to the type of the identification function, for example.

事後確率計算部14は、識別関数値f(i)(x)を事後確率に変換し、各カテゴリの事後確率を計算する。事後確率計算部14は、尤度変換パラメータ保持部92が保持する尤度変換パラメータに基づき、識別関数計算部13により計算された識別関数値f(i)(x)をカテゴリごとの事後確率に変換する。なお、尤度変換パラメータ保持部92は、パターン認識装置100が備える記憶装置の所定の記憶領域に相当し、確率的な意味を有する確率尺度に変換するための尤度変換パラメータを保持している。尤度変換パラメータは、後述する尤度変換パラメータ更新部17により更新され、学習結果が反映される。   The posterior probability calculation unit 14 converts the discriminant function value f (i) (x) into the posterior probability, and calculates the posterior probability of each category. The posterior probability calculation unit 14 converts the discrimination function value f (i) (x) calculated by the discrimination function calculation unit 13 into the posterior probability for each category based on the likelihood conversion parameter held by the likelihood conversion parameter holding unit 92. Convert. The likelihood conversion parameter holding unit 92 corresponds to a predetermined storage area of the storage device included in the pattern recognition apparatus 100, and holds a likelihood conversion parameter for conversion into a probability scale having a probabilistic meaning. . The likelihood conversion parameter is updated by a likelihood conversion parameter update unit 17 described later, and the learning result is reflected.

事後確率計算部14は、尤度変換パラメータ保持部92が保持する尤度変換パラメータ(q(i),w(i))を用いた

Figure 2017027622
により、対数尤度l(i)(d)を計算する。なお、式中のd(i)は、識別関数計算部13により計算された識別関数値f(i)(x)であり、全てのカテゴリをまとめてd:=(d(1),・・・,d(c))Tと表せる(c:カテゴリ数、T:転置)。このときの尤度変換パラメータ(q(i),w(i))は、カテゴリによらず、一定の値としてもよい。 The posterior probability calculation unit 14 uses the likelihood conversion parameters (q (i), w (i)) held by the likelihood conversion parameter holding unit 92.
Figure 2017027622
To calculate the log likelihood l (i) (d). Note that d (i) in the formula is the discriminant function value f (i) (x) calculated by the discriminant function calculator 13, and d: = (d (1),. ., D (c)) T (c: number of categories, T: transpose). The likelihood conversion parameters (q (i), w (i)) at this time may be fixed values regardless of the category.

また、事後確率計算部14は、当該カテゴリ以外の識別関数も考慮して、w(i)をc次元ベクトル値とする

Figure 2017027622
により、対数尤度l(i)(d)を計算してもよい。 In addition, the posterior probability calculation unit 14 takes w (i) into a c-dimensional vector value in consideration of an identification function other than the category.
Figure 2017027622
Thus, the log likelihood l (i) (d) may be calculated.

上記各識別関数は、全てガウス分布における対数尤度の近似とみなせる。このことから、本実施形態に係る事後確率計算部14が有する対数尤度l(i)(d)の計算モデルは、一般の識別関数を適切にモデル化したものとみなせる。   Each of the above discriminant functions can be regarded as an approximation of log likelihood in Gaussian distribution. From this, the calculation model of the log likelihood l (i) (d) possessed by the posterior probability calculation unit 14 according to the present embodiment can be regarded as an appropriately modeled general discriminant function.

次に事後確率計算部14は、計算した対数尤度l(i)(d)を用いた

Figure 2017027622
により、事後確率P(i)(d)を計算する。なお、式中のL(i)(d)は、尤度L(d)=exp(l(i)(d))である。 Next, the posterior probability calculation unit 14 uses the calculated log likelihood l (i) (d).
Figure 2017027622
Thus, the posterior probability P (i) (d) is calculated. Note that L (i) (d) in the equation is likelihood L (d) = exp (l (i) (d)).

また、事後確率計算部14は、各カテゴリの事前確率がp(i)の形で与えられる場合、

Figure 2017027622
により、事後確率P(i)(d)を計算してもよい。 In addition, the posterior probability calculation unit 14 gives the prior probability of each category in the form of p (i),
Figure 2017027622
Thus, the posterior probability P (i) (d) may be calculated.

また、事後確率計算部14は、入力パターンの分布する空間の次元数がカテゴリごとに異なる可能性を考慮して、対数尤度l(i)(d)を微小領域で近似的に積分した値

Figure 2017027622
を用いて、事後確率P(i)(d)を計算してもよい。なお、式中のE(i)はカテゴリiの分布の次元数を表し、εは微小領域の大きさを表す。これらの値は、予め定められた正の定数である。また、VE(i)(ε)はE(i)次元体積である。また、E(i),VE(i)(ε)は、例えば、部分空間法の場合、
Figure 2017027622
となる。 In addition, the posterior probability calculation unit 14 takes into account the possibility that the number of dimensions of the space in which the input pattern is distributed varies from category to category, and is a value obtained by approximately integrating the log likelihood l (i) (d) in a minute region.
Figure 2017027622
May be used to calculate the posterior probability P (i) (d). In the equation, E (i) represents the number of dimensions of the distribution of category i, and ε represents the size of the minute region. These values are predetermined positive constants. VE (i) (ε) is an E (i) dimensional volume. E (i) and VE (i) (ε) are, for example, in the case of the subspace method,
Figure 2017027622
It becomes.

認識部15は、事後確率P(i)(d)に基づき、入力パターンをカテゴリのいずれかに分類し、パターン認識する。認識部15は、事後確率計算部14により計算された事後確率P(i)(d)が最大となるカテゴリiに、入力パターンを分類する。認識部15は、入力パターンの分類を認識結果として、認識結果保持部91に格納する。なお、認識結果保持部91は、パターン認識装置100が備える記憶装置の所定の記憶領域に相当する。   The recognition unit 15 classifies the input pattern into one of the categories based on the posterior probabilities P (i) and (d), and recognizes the pattern. The recognizing unit 15 classifies the input patterns into the category i that maximizes the posterior probability P (i) (d) calculated by the posterior probability calculating unit 14. The recognition unit 15 stores the classification of the input pattern in the recognition result holding unit 91 as a recognition result. Note that the recognition result holding unit 91 corresponds to a predetermined storage area of a storage device included in the pattern recognition apparatus 100.

認識結果破棄部16は、認識部15の認識結果(入力パターンの分類結果)が適切か否かを検証し、認識結果が不適切な場合、該当した認識結果を破棄する。このとき認識結果破棄部16は、事後確率P(i)(d)が最大となるカテゴリiが認識結果として適切か否かを検証する。事後確率計算部14により計算された事後確率P(i)(d)には、次のような可能性が含まれる。事後確率P(i)(d)の最大値Pmax(以下「最大事後確率Pmax」という)が十分大きくない場合には、誤った認識結果である可能性が高いと考えられる。また、カテゴリの最大尤度Lmaxや全カテゴリの尤度を合計した全尤度Lallが小さい場合には、例えば、文字を認識するパターン認識に対して、文字以外(画像など)が入力されるなど、認識対象以外のパターンが誤って入力された可能性が高いと考えられる。なお、最大尤度Lmaxは、入力パターンがカテゴリに分類された場合に推定される分類条件の尤度の最大値に相当し、全尤度Lallは、推定される分類条件の尤度の合計値に相当する。   The recognition result discarding unit 16 verifies whether or not the recognition result (input pattern classification result) of the recognition unit 15 is appropriate. If the recognition result is inappropriate, the recognition result discarding unit 16 discards the corresponding recognition result. At this time, the recognition result discarding unit 16 verifies whether or not the category i having the maximum posterior probability P (i) (d) is appropriate as the recognition result. The posterior probability P (i) (d) calculated by the posterior probability calculation unit 14 includes the following possibilities. If the maximum value Pmax of the posterior probabilities P (i) and (d) (hereinafter referred to as “maximum posterior probability Pmax”) is not sufficiently large, it is considered that there is a high possibility of an erroneous recognition result. In addition, when the maximum likelihood Lmax of the category or the total likelihood Lall obtained by summing the likelihoods of all categories is small, for example, a character other than the character (such as an image) is input for pattern recognition for recognizing the character. It is highly probable that a pattern other than the recognition target has been input by mistake. The maximum likelihood Lmax corresponds to the maximum likelihood value of the classification condition estimated when the input pattern is classified into categories, and the total likelihood Lall is the total likelihood value of the estimated classification condition. It corresponds to.

そこで、本実施形態では、認識結果破棄部16が、不適切な認識結果を破棄するための指標R(d)(以下「破棄指標R(d)」という)が定義された

Figure 2017027622
により、認識結果を検証する。なお、式中のa,b,c,d,e,fは予め定められた非負の定数であり、lmax,lallは最大尤度Lmax,全尤度Lallの対数である。 Therefore, in this embodiment, an index R (d) (hereinafter referred to as “discard index R (d)”) for the recognition result discarding unit 16 to discard an inappropriate recognition result is defined.
Figure 2017027622
Thus, the recognition result is verified. Note that a, b, c, d, e, and f in the equation are predetermined non-negative constants, and lmax and lall are logarithms of the maximum likelihood Lmax and the total likelihood Lall.

認識結果破棄部16は、検証結果に基づき、不適切な認識結果を破棄する。具体的には、認識結果破棄部16は、破棄指標R(d)が、予め定められた閾値以上か否かを判定し、認識結果を検証する。認識結果破棄部16は、破棄指標R(d)が閾値以上の場合、不適切な認識結果と判断する。その結果、認識結果破棄部16は、認識結果保持部91にアクセスし、該当データを消去することで、不適切な認識結果を破棄する。   The recognition result discarding unit 16 discards an inappropriate recognition result based on the verification result. Specifically, the recognition result discarding unit 16 determines whether or not the discard index R (d) is greater than or equal to a predetermined threshold value, and verifies the recognition result. The recognition result discarding unit 16 determines that the recognition result is inappropriate when the discard index R (d) is equal to or greater than a threshold value. As a result, the recognition result discarding unit 16 accesses the recognition result holding unit 91 and discards the appropriate data by deleting the corresponding data.

このように、本実施形態に係る基本機能では、事後確率P(i)(d)によって入力パターンを認識し、不適切な認識結果を破棄する。これにより、本実施形態に係る基本機能では、確率的な意味を有していない識別関数を用いる従来のパターン認識の問題点(言語モデルによる知識処理などの他の分野との相性の悪さ)を改善することができる。その結果、本実施形態に係る基本機能では、システム全体の性能を向上することができる。   As described above, in the basic function according to the present embodiment, the input pattern is recognized based on the posterior probability P (i) (d), and an inappropriate recognition result is discarded. As a result, the basic function according to the present embodiment solves the problems of conventional pattern recognition that uses a discriminant function that does not have a probabilistic meaning (incompatibility with other fields such as knowledge processing using a language model). Can be improved. As a result, the basic function according to the present embodiment can improve the performance of the entire system.

《学習機能》
尤度変換パラメータ更新部17は、事後確率P(i)(d)を計算する際に用いる尤度変換パラメータ(q(i),w(i))を更新する。尤度変換パラメータ更新部17は、予め用意しておいたパターン学習のデータ(以下「学習データ」という)に対して、

Figure 2017027622
で計算された事後確率の値L(X)を評価する。なお、ynはn番目の学習データが属するカテゴリであり、dnはn番目の識別関数値である。 《Learning function》
The likelihood conversion parameter updating unit 17 updates the likelihood conversion parameters (q (i), w (i)) used when calculating the posterior probabilities P (i) (d). The likelihood conversion parameter updating unit 17 performs pattern learning data (hereinafter referred to as “learning data”) prepared in advance.
Figure 2017027622
The value L (X) of the posterior probability calculated in (1) is evaluated. Here, yn is the category to which the nth learning data belongs, and dn is the nth discriminant function value.

尤度変換パラメータ更新部17は、評価結果に基づき、事後確率の値L(X)が増大するように、尤度変換パラメータ(q(i),w(i))を更新する。このとき尤度変換パラメータ更新部17は、尤度変換パラメータ保持部92にアクセスし、所定の記憶領域に保持された値(q(i),w(i))を、事後確率の値L(X)が増大するような値に更新する。   The likelihood conversion parameter updating unit 17 updates the likelihood conversion parameters (q (i), w (i)) so that the value L (X) of the posterior probability increases based on the evaluation result. At this time, the likelihood conversion parameter updating unit 17 accesses the likelihood conversion parameter holding unit 92 and uses the values (q (i), w (i)) held in a predetermined storage area as the posterior probability values L ( X) is updated to a value that increases.

また、尤度変換パラメータ更新部17は、事後確率の値L(X)を尤度変換パラメータ(q(i),w(i))の関数とみなし、対数を取り、勾配法による

Figure 2017027622
Figure 2017027622
により、更新値を計算する。なお、δiynは
Figure 2017027622
で定義されるクロネッカーのデルタ記号であり、βは予め定められたパターン学習用の正の係数(以下「学習係数」という)である。また、尤度変換パラメータ(q(i),w(i))は、更新を繰り返すことで最適値に収束することから、初期値を無作為に定めてもよい。 The likelihood conversion parameter update unit 17 regards the value L (X) of the posterior probability as a function of the likelihood conversion parameters (q (i), w (i)), takes the logarithm, and uses the gradient method.
Figure 2017027622
Figure 2017027622
The update value is calculated by Δiyn is
Figure 2017027622
Is a Kronecker delta symbol defined by ## EQU1 ## where β is a predetermined positive coefficient for pattern learning (hereinafter referred to as “learning coefficient”). In addition, since the likelihood conversion parameters (q (i), w (i)) converge to the optimum values by repeating the update, the initial values may be determined randomly.

辞書更新部18は、認識対象の各カテゴリに対する識別関数のパラメータが登録されている認識辞書を更新する。辞書更新部18は、予め用意しておいた学習データに対して、認識辞書の値r(i)を評価する。辞書更新部18は、評価結果に基づき、事後確率の値L(X)が増大するように、認識辞書の値r(i)を更新する。このとき辞書更新部18は、認識辞書保持部93にアクセスし、所定の記憶領域に保持された値r(i)を、事後確率の値L(X)が増大するような値に更新する。このとき辞書更新部18は、例えば、カテゴリごとのプロトタイプ数1の最近傍決定法による場合、

Figure 2017027622
により、更新値を計算する。 The dictionary update unit 18 updates the recognition dictionary in which the identification function parameters for each category to be recognized are registered. The dictionary update unit 18 evaluates the value r (i) of the recognition dictionary with respect to learning data prepared in advance. The dictionary updating unit 18 updates the value r (i) of the recognition dictionary so that the posterior probability value L (X) increases based on the evaluation result. At this time, the dictionary updating unit 18 accesses the recognition dictionary holding unit 93 and updates the value r (i) held in the predetermined storage area to a value that increases the value L (X) of the posterior probability. At this time, the dictionary update unit 18 is, for example, in the case of using the nearest neighbor determination method with one prototype per category,
Figure 2017027622
The update value is calculated by

このように、本実施形態に係る学習機能では、事後確率P(i)(d)によって学習指標を与え、初期値に依存せず収束を保証するパターン学習を逐次行う。その結果、本実施形態に係る学習機能では、パターン学習にかかる時間を軽減することができる。   As described above, in the learning function according to the present embodiment, a learning index is given by the posterior probability P (i) (d), and pattern learning that guarantees convergence is sequentially performed without depending on the initial value. As a result, the learning function according to the present embodiment can reduce the time required for pattern learning.

このような本実施形態に係るパターン認識機能は、パターン認識装置100において、パターン認識プログラムが実行され、上記各機能部が連携動作することで実現される。   Such a pattern recognition function according to the present embodiment is realized by executing a pattern recognition program in the pattern recognition apparatus 100 and performing the above-described functional units in cooperation with each other.

本実施形態に係るパターン認識プログラムは、実行環境であるパターン認識装置100(コンピュータ)が読み取り可能な外部記憶装置104に、インストール可能な形式又は実行可能な形式のファイルで記録され提供される。パターン認識プログラムは、上記各機能部を含むモジュール構成となっており、CPU101が外部記憶装置104からプログラムを読み出し実行することで、RAM103上に各機能部が生成される。なお、パターン認識プログラムの提供方法は、この限りでない。例えば、パターン認識プログラムを、インターネットなどに接続された機器に格納し、通信IF107を介して、ネットワーク経由でダウンロードする方法であってもよい。また、パターン認識プログラムを、ROM102などに予め組み込んで提供する方法であってもよい。   The pattern recognition program according to the present embodiment is recorded and provided in a file in an installable format or an executable format in an external storage device 104 readable by the pattern recognition device 100 (computer) as an execution environment. The pattern recognition program has a module configuration including the above functional units, and the functional units are generated on the RAM 103 when the CPU 101 reads and executes the program from the external storage device 104. The method for providing the pattern recognition program is not limited to this. For example, the pattern recognition program may be stored in a device connected to the Internet or the like and downloaded via the network via the communication IF 107. Alternatively, a method of providing a pattern recognition program by incorporating it in the ROM 102 or the like in advance may be used.

なお、上記には、本実施形態に係るパターン認識機能が、パターン認識プログラム(ソフトウェア)の実行により実現される例を説明したが、この限りでない。例えば、上記各機能部の一部又は全部を、ハードウェアロジック(回路など)の実装により実現してもよい。   In addition, although the example which implement | achieved the pattern recognition function based on this embodiment by execution of a pattern recognition program (software) was demonstrated above, it is not this limitation. For example, a part or all of the above functional units may be realized by mounting hardware logic (circuit or the like).

以下に、本実施形態に係るパターン認識プログラム実行時の処理(各機能部の連携動作)について、フローチャートを用いて説明する。   In the following, processing at the time of executing the pattern recognition program according to the present embodiment (cooperation operation of each functional unit) will be described using a flowchart.

図3は、本実施形態に係るパターン認識時の処理手順例を示すフローチャートである。図3に示すように、本実施形態に係るパターン認識装置100では、上記各機能部が以下のような処理手順により連携動作する。   FIG. 3 is a flowchart illustrating an example of a processing procedure during pattern recognition according to the present embodiment. As shown in FIG. 3, in the pattern recognition apparatus 100 according to the present embodiment, each of the functional units operates in a cooperative manner according to the following processing procedure.

信号入力部11は、認証対象である入力パターンの入力信号を受け付ける(ステップS101)。   The signal input unit 11 receives an input signal of an input pattern to be authenticated (step S101).

これを受けて特徴抽出部12は、入力パターンの入力信号から特徴ベクトルxを抽出する(ステップS102)。このとき特徴抽出部12は、まず、信号入力部11からの入力信号に対して、長さや量子化レベルを正規化するなどの前処理を実行し、前処理後の信号値を得る。次に特徴抽出部12は、前処理後の信号値に対して、ガウシアンフィルタなどのフィルタ処理やフーリエ変換などの変換処理を実行し、フィルタ/変換処理後の信号値を得る。その結果、特徴抽出部12は、前処理後の信号値やフィルタ/変換処理後の信号値を成分とするベクトルを出力することで、特徴ベクトルxを抽出する。   In response to this, the feature extraction unit 12 extracts a feature vector x from the input signal of the input pattern (step S102). At this time, the feature extraction unit 12 first performs pre-processing such as normalizing the length and quantization level on the input signal from the signal input unit 11 to obtain a pre-processed signal value. Next, the feature extraction unit 12 performs a filter process such as a Gaussian filter or a conversion process such as a Fourier transform on the pre-processed signal value to obtain a signal value after the filter / conversion process. As a result, the feature extraction unit 12 extracts a feature vector x by outputting a vector whose component is a signal value after preprocessing or a signal value after filtering / conversion processing.

これを受けて識別関数計算部13は、特徴ベクトルxに対する識別関数値f(i)(x)を計算する(ステップS103)。このとき識別関数計算部13は、最近傍決定法、部分空間法及び複合類似度法、相互部分空間法、カーネル部分空間法などのいずれかの識別関数を用いて、特徴抽出部12により抽出された特徴ベクトルxのカテゴリiに対する識別関数値f(i)(x)を計算する。識別関数計算部13は、認識辞書保持部93にアクセスし、認識辞書保持部93が保持する識別関数のパラメータを用いて、識別関数値f(i)(x)を計算する。   In response to this, the discriminant function calculator 13 calculates discriminant function values f (i) (x) for the feature vector x (step S103). At this time, the discriminant function calculation unit 13 is extracted by the feature extraction unit 12 using any discriminant function such as nearest neighbor determination method, subspace method and composite similarity method, mutual subspace method, and kernel subspace method. The discriminant function value f (i) (x) for the category i of the feature vector x is calculated. The discrimination function calculation unit 13 accesses the recognition dictionary holding unit 93 and calculates the discrimination function value f (i) (x) using the parameters of the discrimination function held by the recognition dictionary holding unit 93.

これを受けて事後確率計算部14は、識別関数値f(i)(x)を事後確率に変換し、各カテゴリの事後確率P(i)(d)を計算する(ステップS104)。このとき事後確率計算部14は、尤度変換パラメータ(q(i),w(i))に基づき、識別関数計算部13により計算された識別関数値f(i)(x)をカテゴリごとの事後確率P(i)(d)に変換する。事後確率計算部14は、まず、尤度変換パラメータ(q(i),w(i))を用いた計算式により、対数尤度l(i)(d)を計算する。事後確率計算部14は、尤度変換パラメータ保持部92にアクセスし、尤度変換パラメータ保持部92が保持する尤度変換パラメータ(q(i),w(i))を用いて、対数尤度l(i)(d)を計算する。次に事後確率計算部14は、計算した対数尤度l(i)(d)を用いた計算式により、事後確率P(i)(d)を計算する。   In response to this, the posterior probability calculation unit 14 converts the discriminant function value f (i) (x) into the posterior probability, and calculates the posterior probability P (i) (d) of each category (step S104). At this time, the posterior probability calculation unit 14 calculates the discriminant function value f (i) (x) calculated by the discriminant function calculation unit 13 based on the likelihood conversion parameters (q (i), w (i)) for each category. The posterior probability P (i) (d) is converted. The posterior probability calculation unit 14 first calculates the log likelihood l (i) (d) by a calculation formula using the likelihood conversion parameters (q (i), w (i)). The posterior probability calculation unit 14 accesses the likelihood conversion parameter holding unit 92 and uses the likelihood conversion parameters (q (i), w (i)) held by the likelihood conversion parameter holding unit 92 to logarithmic likelihood. l (i) (d) is calculated. Next, the posterior probability calculation unit 14 calculates the posterior probability P (i) (d) by a calculation formula using the calculated log likelihood l (i) (d).

これを受けて認識部15は、事後確率P(i)(d)に基づき、入力パターンをカテゴリのいずれかに分類し、パターン認識する(ステップS105)。このとき認識部15は、事後確率計算部14により計算された事後確率P(i)(d)が最大となるカテゴリiに、入力パターンを分類する。その結果、認識部15は、入力パターンの分類を認識結果として、認識結果保持部91に格納する。   In response to this, the recognition unit 15 classifies the input pattern into one of the categories based on the posterior probabilities P (i) and (d), and recognizes the pattern (step S105). At this time, the recognizing unit 15 classifies the input patterns into the category i that maximizes the posterior probability P (i) (d) calculated by the posterior probability calculating unit 14. As a result, the recognition unit 15 stores the classification of the input pattern in the recognition result holding unit 91 as a recognition result.

これを受けて認識結果破棄部16は、事後確率P(i)(d)が最大となるカテゴリiが認識結果(入力パターンの分類先)として適切か否かを判定する(ステップS106)。このとき認識結果破棄部16は、不適切な認識結果を破棄するための破棄指標R(d)が閾値以上か否かを判定することで、認識結果が適切か否かを判定する。   In response to this, the recognition result discarding unit 16 determines whether or not the category i having the maximum posterior probability P (i) (d) is appropriate as the recognition result (the classification destination of the input pattern) (step S106). At this time, the recognition result discarding unit 16 determines whether or not the recognition result is appropriate by determining whether or not a discard index R (d) for discarding an inappropriate recognition result is equal to or greater than a threshold value.

その結果、認識結果破棄部16は、破棄指標R(d)が閾値以上で、適切な認識結果でない(不適切な認識結果)と判定した場合(ステップS106:NO)、認識結果保持部91にアクセスし、該当データを消去することで、不適切な認識結果を破棄する(ステップS107)。このように、本実施形態に係るパターン認識装置100は、事後確率P(i)(d)によって入力パターンを認識し、不適切な認識結果を破棄する。   As a result, when the recognition result discarding unit 16 determines that the discard index R (d) is equal to or greater than the threshold and is not an appropriate recognition result (an inappropriate recognition result) (step S106: NO), the recognition result holding unit 91 By accessing and erasing the corresponding data, an inappropriate recognition result is discarded (step S107). As described above, the pattern recognition apparatus 100 according to the present embodiment recognizes an input pattern based on the posterior probabilities P (i) and (d), and discards an inappropriate recognition result.

一方、認識結果破棄部16が、破棄指標R(d)が閾値未満で、適切な認識結果と判定した場合(ステップS106:YES)、認識結果は破棄されない。   On the other hand, when the recognition result discarding unit 16 determines that the discard index R (d) is less than the threshold and is an appropriate recognition result (step S106: YES), the recognition result is not discarded.

これを受けて尤度変換パラメータ更新部17は、事後確率P(i)(d)を計算する際に用いる尤度変換パラメータ(q(i),w(i))を更新する(ステップS108)。このとき尤度変換パラメータ更新部17は、まず、予め用意しておいた学習データに対して、所定の計算式により計算された事後確率の値L(X)を評価する。次に尤度変換パラメータ更新部17は、評価結果に基づき、事後確率の値L(X)が増大するように、尤度変換パラメータ(q(i),w(i))を更新する。具体的には、尤度変換パラメータ更新部17は、尤度変換パラメータ保持部92にアクセスし、尤度変換パラメータ保持部92が保持する値(q(i),w(i))を、事後確率の値L(X)が増大するような値に更新する。   In response to this, the likelihood conversion parameter updating unit 17 updates the likelihood conversion parameters (q (i), w (i)) used when calculating the posterior probabilities P (i) (d) (step S108). . At this time, the likelihood conversion parameter updating unit 17 first evaluates the posterior probability value L (X) calculated by a predetermined calculation formula with respect to the learning data prepared in advance. Next, the likelihood conversion parameter updating unit 17 updates the likelihood conversion parameters (q (i), w (i)) so that the value L (X) of the posterior probability increases based on the evaluation result. Specifically, the likelihood conversion parameter updating unit 17 accesses the likelihood conversion parameter holding unit 92 and uses the values (q (i), w (i)) held by the likelihood conversion parameter holding unit 92 after the fact. The probability value L (X) is updated to a value that increases.

これを受けて辞書更新部18は、予め定めておいた設定値に基づき、パターン学習を実行するか否かを判定する(ステップS109)。   In response to this, the dictionary updating unit 18 determines whether or not to perform pattern learning based on a preset setting value (step S109).

その結果、辞書更新部18は、実行する旨の設定に従い、パターン学習を実行すると判定した場合(ステップS109:YES)、認識辞書を更新する(ステップS110)。このとき辞書更新部18は、予め用意しておいた学習データに対して、認識辞書の値r(i)を評価する。次に辞書更新部18は、評価結果に基づき、事後確率の値L(X)が増大するように、認識辞書の値r(i)を更新する。具体的には、辞書更新部18は、認識辞書保持部93にアクセスし、認識辞書保持部93が保持する値r(i)を、事後確率の値L(X)が増大するような値に更新する。このように、本実施形態に係るパターン認識装置100は、事後確率P(i)(d)によって学習指標を与え、初期値に依存せず収束を保証するパターン学習を逐次行う。   As a result, the dictionary updating unit 18 updates the recognition dictionary (step S110) when it is determined that the pattern learning is to be executed in accordance with the setting to execute (step S109: YES). At this time, the dictionary update unit 18 evaluates the value r (i) of the recognition dictionary with respect to the learning data prepared in advance. Next, the dictionary update unit 18 updates the value r (i) of the recognition dictionary based on the evaluation result so that the value L (X) of the posterior probability increases. Specifically, the dictionary updating unit 18 accesses the recognition dictionary holding unit 93 and changes the value r (i) held by the recognition dictionary holding unit 93 to a value that increases the value L (X) of the posterior probability. Update. As described above, the pattern recognition apparatus 100 according to the present embodiment sequentially gives the learning index by the posterior probabilities P (i) and (d), and sequentially performs pattern learning that guarantees convergence without depending on the initial value.

なお、辞書更新部18が、実行しない旨の設定で、パターン学習を実行しないと判定した場合(ステップS109:NO)、認識辞書は更新されない。   Note that if the dictionary update unit 18 determines that pattern learning is not to be executed with the setting that it is not to be executed (step S109: NO), the recognition dictionary is not updated.

<まとめ>
以上のように、本実施形態に係るパターン認識装置100によれば、特徴抽出部12が、入力パターンから特徴ベクトルxを抽出する。次に識別関数計算部13が、特徴ベクトルxに対する識別関数値f(i)(x)を計算する。次に事後確率計算部14が、尤度変換パラメータ(q(i),w(i))に基づき、識別関数値f(i)(x)を事後確率に変換し、カテゴリごとの事後確率P(i)(d)を計算する。次に認識部15が、事後確率P(i)(d)に基づき、入力パターンをカテゴリのいずれかに分類する。
<Summary>
As described above, according to the pattern recognition apparatus 100 according to the present embodiment, the feature extraction unit 12 extracts the feature vector x from the input pattern. Next, the discriminant function calculator 13 calculates discriminant function values f (i) (x) for the feature vector x. Next, the posterior probability calculation unit 14 converts the discriminant function value f (i) (x) into the posterior probability based on the likelihood conversion parameters (q (i), w (i)), and the posterior probability P for each category. (I) Calculate (d). Next, the recognition unit 15 classifies the input pattern into one of the categories based on the posterior probabilities P (i) and (d).

これによって、本実施形態に係るパターン認識装置100では、事後確率P(i)(d)によって入力パターンが認識され、不適切な認識結果が破棄される。これにより、本実施形態に係るパターン認識装置100は、確率的な意味を有していない識別関数を用いる従来のパターン認識の問題点(他の分野との相性の悪さ)を改善することができる。具体的には、本実施形態に係るパターン認識装置100は、確率的な意味を有する事後確率P(i)(d)を用いてパターン認識を行うことで、複数認識の統合や統合学習が容易となり、認識精度の高精度化が期待でき、システム全体の性能を向上することができる。   Thereby, in the pattern recognition apparatus 100 according to the present embodiment, the input pattern is recognized by the posterior probability P (i) (d), and an inappropriate recognition result is discarded. As a result, the pattern recognition apparatus 100 according to the present embodiment can improve the problems of conventional pattern recognition that uses a discriminant function that does not have a probabilistic meaning (incompatibility with other fields). . Specifically, the pattern recognition apparatus 100 according to the present embodiment performs pattern recognition using the posterior probabilities P (i) and (d) having probabilistic meanings, so that integration of multiple recognitions and integrated learning is easy. Thus, the recognition accuracy can be improved and the performance of the entire system can be improved.

また、本実施形態に係るパターン認識装置100では、事後確率P(i)(d)によって学習指標が与えられ、初期値に依存せず収束が保証されたパターン学習が逐次行われる。これにより、本実施形態に係るパターン認識装置100は、パターン学習にかかる時間を軽減することができる。   In the pattern recognition apparatus 100 according to the present embodiment, a learning index is given by the posterior probabilities P (i) and (d), and pattern learning with guaranteed convergence is sequentially performed without depending on the initial value. Thereby, the pattern recognition apparatus 100 according to the present embodiment can reduce the time required for pattern learning.

なお、上記実施形態では、パターン認識装置100が備える記憶装置の所定の記憶領域が、認識結果保持部91、尤度変換パラメータ保持部92、及び認識辞書保持部93などに相当する構成例を示したが、この限りでない。認識結果、尤度変換パラメータ、及び認識辞書などは、例えば、記録媒体などのような、パターン認識装置100が読み取り可能な外部記憶装置104の所定の記憶領域に保持されていてもよい。   In the above embodiment, a configuration example in which the predetermined storage area of the storage device included in the pattern recognition device 100 corresponds to the recognition result holding unit 91, the likelihood conversion parameter holding unit 92, the recognition dictionary holding unit 93, and the like. However, this is not the case. The recognition result, likelihood conversion parameter, recognition dictionary, and the like may be held in a predetermined storage area of the external storage device 104 that can be read by the pattern recognition device 100, such as a recording medium.

また、上記実施形態では、パターン認識装置100が、尤度変換パラメータ更新部17と辞書更新部18などの学習機能を有する構成例を示したが、この限りでない。学習機能は、パターン認識装置100と異なる機器が実現してもよい。具体的には、パターン認識装置100と異なる機器が、尤度変換パラメータ更新部17と辞書更新部18などを有する構成であってもよい。この場合、パターン認識装置100は、通信IF107を介して、尤度変換パラメータ更新部17と辞書更新部18などを有する機器とデータ通信を行う。これにより、パターン認識装置100が実現する基本機能とパターン認識装置100と異なる機器が実現する学習機能とを連携動作させ、本実施形態に係るパターン認識機能を実現できる。   Moreover, although the pattern recognition apparatus 100 showed the structural example which has learning functions, such as the likelihood conversion parameter update part 17 and the dictionary update part 18, in the said embodiment, it is not this limitation. The learning function may be realized by a device different from the pattern recognition device 100. Specifically, the device different from the pattern recognition device 100 may include a likelihood conversion parameter update unit 17 and a dictionary update unit 18. In this case, the pattern recognition apparatus 100 performs data communication with a device including the likelihood conversion parameter update unit 17 and the dictionary update unit 18 via the communication IF 107. As a result, the basic function realized by the pattern recognition apparatus 100 and the learning function realized by a device different from the pattern recognition apparatus 100 can be linked to realize the pattern recognition function according to the present embodiment.

最後に、本発明の実施形態を説明したが、上記実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。上記新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。上記実施形態やその変形は、発明の範囲や要旨に含まれるとともに、請求の範囲に記載された発明とその均等の範囲に含まれる。   Finally, although the embodiment of the present invention has been described, the above embodiment is presented as an example, and is not intended to limit the scope of the invention. The novel embodiment can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. The above-described embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalent scope thereof.

11 信号入力部
12 特徴抽出部
13 識別関数計算部
14 事後確率計算部
15 認識部
16 認識結果破棄部
17 尤度変換パラメータ更新部
18 辞書更新部
91 認識結果保持部
92 尤度変換パラメータ保持部
93 認識辞書保持部
DESCRIPTION OF SYMBOLS 11 Signal input part 12 Feature extraction part 13 Discriminant function calculation part 14 A posteriori probability calculation part 15 Recognition part 16 Recognition result discard part 17 Likelihood conversion parameter update part 18 Dictionary update part 91 Recognition result holding part 92 Likelihood conversion parameter holding part 93 Recognition dictionary storage

Claims (11)

入力パターンから特徴ベクトルを抽出する抽出部と、
前記特徴ベクトルに対する識別関数値を計算する第1計算部と、
前記識別関数値から、所定の変換パラメータを用いた第1演算により対数尤度を計算し、得られた対数尤度を用いた第2演算により、前記入力パターンの分類先に相当する認識分類ごとの事後確率を計算する第2計算部と、
前記事後確率に基づき、前記入力パターンを前記認識分類のいずれかに分類する認識部と、
を備えることを特徴とするパターン認識装置。
An extractor for extracting feature vectors from the input pattern;
A first calculation unit for calculating a discriminant function value for the feature vector;
For each recognition class corresponding to the classification destination of the input pattern, a logarithmic likelihood is calculated from the discriminant function value by a first calculation using a predetermined transformation parameter, and a second calculation using the obtained log likelihood is used. A second calculation unit for calculating the posterior probability of
A recognition unit that classifies the input pattern into one of the recognition classifications based on the posterior probability;
A pattern recognition apparatus comprising:
入力パターンから特徴ベクトルを抽出する抽出部と、
前記特徴ベクトルに対する識別関数値を計算する第1計算部と、
前記識別関数値から、前記入力パターンの分類先に相当する認識分類ごとの事後確率を計算する第2計算部と、
前記事後確率に基づき、前記入力パターンを前記認識分類のいずれかに分類する認識部と、
予め用意しておいたパターン学習の学習データに対して計算された前記事後確率を、前記第2計算部による前記識別関数値から前記事後確率への変換時に用いる変換パラメータの関数とみなし、対数を取り、勾配法による第3演算により、前記変換パラメータの更新値を計算して、前記事後確率が増大するように前記変換パラメータを更新する第1更新部と、
を備えることを特徴とするパターン認識装置。
An extractor for extracting feature vectors from the input pattern;
A first calculation unit for calculating a discriminant function value for the feature vector;
A second calculation unit that calculates a posterior probability for each recognition classification corresponding to a classification destination of the input pattern from the identification function value;
A recognition unit that classifies the input pattern into one of the recognition classifications based on the posterior probability;
The posterior probability calculated for the learning data of pattern learning prepared in advance is regarded as a function of a conversion parameter used when converting the discriminant function value to the posterior probability by the second calculation unit, A first update unit that takes a logarithm, calculates an update value of the conversion parameter by a third calculation by a gradient method, and updates the conversion parameter so that the posterior probability increases;
A pattern recognition apparatus comprising:
入力パターンから特徴ベクトルを抽出する抽出部と、
前記特徴ベクトルに対する識別関数値を計算する第1計算部と、
前記識別関数値から、前記入力パターンの分類先に相当する認識分類ごとの事後確率を計算する第2計算部と、
前記事後確率に基づき、前記入力パターンを前記認識分類のいずれかに分類する認識部と、
予め用意しておいたパターン学習の学習データに対して計算された前記事後確率を評価し、評価結果に基づき、前記事後確率が増大するように、最近傍決定法による第4演算により前記第1計算部による前記識別関数値の計算に用いるパラメータが登録されている認識辞書の値の更新値を計算して、前記認識辞書を更新する第2更新部と、
を備えることを特徴とするパターン認識装置。
An extractor for extracting feature vectors from the input pattern;
A first calculation unit for calculating a discriminant function value for the feature vector;
A second calculation unit that calculates a posterior probability for each recognition classification corresponding to a classification destination of the input pattern from the identification function value;
A recognition unit that classifies the input pattern into one of the recognition classifications based on the posterior probability;
The posterior probability calculated for the learning data of the pattern learning prepared in advance is evaluated, and the posterior probability is increased based on the evaluation result, so that the posterior probability is increased by the fourth calculation by the nearest neighbor determination method. A second update unit that calculates an update value of a value of a recognition dictionary in which parameters used for calculation of the identification function value by the first calculation unit are registered, and updates the recognition dictionary;
A pattern recognition apparatus comprising:
前記入力パターンを、前記事後確率が最大となる前記認識分類に分類した前記認識部の認識結果が、適切か否かを検証し、検証結果に基づき、不適切な前記認識結果を破棄する破棄部を、
さらに備えることを特徴とする請求項1乃至3のいずれか一項に記載のパターン認識装置。
Discards the recognition result of the recognition unit that classifies the input pattern into the recognition classification that maximizes the posterior probability and discards the inappropriate recognition result based on the verification result. Part
The pattern recognition apparatus according to claim 1, further comprising:
前記破棄部は、
不適切な前記認識結果を破棄するための破棄指標が、予め定められた閾値以上か否かを判定し、前記破棄指標が前記閾値以上の場合、前記認識結果を破棄することを特徴とする請求項4に記載のパターン認識装置。
The discarding unit
It is determined whether or not a discard index for discarding the inappropriate recognition result is equal to or greater than a predetermined threshold, and when the discard index is equal to or greater than the threshold, the recognition result is discarded. Item 5. The pattern recognition device according to Item 4.
入力パターンから特徴ベクトルを抽出する抽出工程と、
前記特徴ベクトルに対する識別関数値を計算する第1計算工程と、
前記識別関数値から、所定の変換パラメータを用いた第1演算により対数尤度を計算し、得られた対数尤度を用いた第2演算により、前記入力パターンの分類先に相当する認識分類ごとの事後確率を計算する第2計算工程と、
前記事後確率に基づき、前記入力パターンを前記認識分類のいずれかに分類する認識工程と、
を含むことを特徴とするパターン認識方法。
An extraction process for extracting feature vectors from the input pattern;
A first calculation step of calculating a discriminant function value for the feature vector;
For each recognition class corresponding to the classification destination of the input pattern, a logarithmic likelihood is calculated from the discriminant function value by a first calculation using a predetermined transformation parameter, and a second calculation using the obtained log likelihood is used. A second calculation step of calculating the posterior probability of
A recognition step of classifying the input pattern into one of the recognition classifications based on the posterior probability;
A pattern recognition method comprising:
入力パターンから特徴ベクトルを抽出する抽出工程と、
前記特徴ベクトルに対する識別関数値を計算する第1計算工程と、
前記識別関数値から、前記入力パターンの分類先に相当する認識分類ごとの事後確率を計算する第2計算工程と、
前記事後確率に基づき、前記入力パターンを前記認識分類のいずれかに分類する認識工程と、
予め用意しておいたパターン学習の学習データに対して計算された前記事後確率を、前記第2計算工程による前記識別関数値から前記事後確率への変換時に用いる変換パラメータの関数とみなし、対数を取り、勾配法による第3演算により、前記変換パラメータの更新値を計算して、前記事後確率が増大するように前記変換パラメータを更新する第1更新工程と、
を含むことを特徴とするパターン認識方法。
An extraction process for extracting feature vectors from the input pattern;
A first calculation step of calculating a discriminant function value for the feature vector;
A second calculation step of calculating a posterior probability for each recognition classification corresponding to the classification destination of the input pattern from the identification function value;
A recognition step of classifying the input pattern into one of the recognition classifications based on the posterior probability;
The posterior probability calculated for the learning data of pattern learning prepared in advance is regarded as a function of a conversion parameter used at the time of conversion from the discriminant function value to the posterior probability by the second calculation step, A first update step of taking a logarithm, calculating an update value of the conversion parameter by a third operation by a gradient method, and updating the conversion parameter so as to increase the posterior probability;
A pattern recognition method comprising:
入力パターンから特徴ベクトルを抽出する抽出工程と、
前記特徴ベクトルに対する識別関数値を計算する第1計算工程と、
前記識別関数値から、前記入力パターンの分類先に相当する認識分類ごとの事後確率を計算する第2計算工程と、
前記事後確率に基づき、前記入力パターンを前記認識分類のいずれかに分類する認識工程と、
予め用意しておいたパターン学習の学習データに対して計算された前記事後確率を評価し、評価結果に基づき、前記事後確率が増大するように、最近傍決定法による第4演算により前記第1計算工程による前記識別関数値の計算に用いるパラメータが登録されている認識辞書の値の更新値を計算して、前記認識辞書を更新する第2更新工程と、
を含むことを特徴とするパターン認識方法。
An extraction process for extracting feature vectors from the input pattern;
A first calculation step of calculating a discriminant function value for the feature vector;
A second calculation step of calculating a posterior probability for each recognition classification corresponding to the classification destination of the input pattern from the identification function value;
A recognition step of classifying the input pattern into one of the recognition classifications based on the posterior probability;
The posterior probability calculated for the learning data of the pattern learning prepared in advance is evaluated, and the posterior probability is increased based on the evaluation result, so that the posterior probability is increased by the fourth calculation by the nearest neighbor determination method. A second update step of updating the recognition dictionary by calculating an update value of a recognition dictionary value in which a parameter used for calculation of the identification function value in the first calculation step is registered;
A pattern recognition method comprising:
コンピュータを、
入力パターンから特徴ベクトルを抽出する抽出部と、
前記特徴ベクトルに対する識別関数値を計算する第1計算部と、
前記識別関数値から、所定の変換パラメータを用いた第1演算により対数尤度を計算し、得られた対数尤度を用いた第2演算により、前記入力パターンの分類先に相当する認識分類ごとの事後確率を計算する第2計算部と、
前記事後確率に基づき、前記入力パターンを前記認識分類のいずれかに分類する認識部と、
して機能させるパターン認識プログラム。
Computer
An extractor for extracting feature vectors from the input pattern;
A first calculation unit for calculating a discriminant function value for the feature vector;
For each recognition class corresponding to the classification destination of the input pattern, a logarithmic likelihood is calculated from the discriminant function value by a first calculation using a predetermined transformation parameter, and a second calculation using the obtained log likelihood is used. A second calculation unit for calculating the posterior probability of
A recognition unit that classifies the input pattern into one of the recognition classifications based on the posterior probability;
Pattern recognition program to make it function.
コンピュータを、
入力パターンから特徴ベクトルを抽出する抽出部と、
前記特徴ベクトルに対する識別関数値を計算する第1計算部と、
前記識別関数値から、前記入力パターンの分類先に相当する認識分類ごとの事後確率を計算する第2計算部と、
前記事後確率に基づき、前記入力パターンを前記認識分類のいずれかに分類する認識部と、
予め用意しておいたパターン学習の学習データに対して計算された前記事後確率を、前記第2計算部による前記識別関数値から前記事後確率への変換時に用いる変換パラメータの関数とみなし、対数を取り、勾配法による第3演算により、前記変換パラメータの更新値を計算して、前記事後確率が増大するように前記変換パラメータを更新する第1更新部と、
して機能させるパターン認識プログラム。
Computer
An extractor for extracting feature vectors from the input pattern;
A first calculation unit for calculating a discriminant function value for the feature vector;
A second calculation unit that calculates a posterior probability for each recognition classification corresponding to a classification destination of the input pattern from the identification function value;
A recognition unit that classifies the input pattern into one of the recognition classifications based on the posterior probability;
The posterior probability calculated for the learning data of pattern learning prepared in advance is regarded as a function of a conversion parameter used when converting the discriminant function value to the posterior probability by the second calculation unit, A first update unit that takes a logarithm, calculates an update value of the conversion parameter by a third calculation by a gradient method, and updates the conversion parameter so that the posterior probability increases;
Pattern recognition program to make it function.
コンピュータを、
入力パターンから特徴ベクトルを抽出する抽出部と、
前記特徴ベクトルに対する識別関数値を計算する第1計算部と、
前記識別関数値から、前記入力パターンの分類先に相当する認識分類ごとの事後確率を計算する第2計算部と、
前記事後確率に基づき、前記入力パターンを前記認識分類のいずれかに分類する認識部と、
予め用意しておいたパターン学習の学習データに対して計算された前記事後確率を評価し、評価結果に基づき、前記事後確率が増大するように、最近傍決定法による第4演算により前記第1計算部による前記識別関数値の計算に用いるパラメータが登録されている認識辞書の値の更新値を計算して、前記認識辞書を更新する第2更新部と、
して機能させるパターン認識プログラム。
Computer
An extractor for extracting feature vectors from the input pattern;
A first calculation unit for calculating a discriminant function value for the feature vector;
A second calculation unit that calculates a posterior probability for each recognition classification corresponding to a classification destination of the input pattern from the identification function value;
A recognition unit that classifies the input pattern into one of the recognition classifications based on the posterior probability;
The posterior probability calculated for the learning data of the pattern learning prepared in advance is evaluated, and the posterior probability is increased based on the evaluation result, so that the posterior probability is increased by the fourth calculation by the nearest neighbor determination method. A second update unit that calculates an update value of a value of a recognition dictionary in which parameters used for calculation of the identification function value by the first calculation unit are registered, and updates the recognition dictionary;
Pattern recognition program to make it function.
JP2016208790A 2016-10-25 2016-10-25 Pattern recognition apparatus, pattern recognition method, and pattern recognition program Expired - Fee Related JP6282711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016208790A JP6282711B2 (en) 2016-10-25 2016-10-25 Pattern recognition apparatus, pattern recognition method, and pattern recognition program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016208790A JP6282711B2 (en) 2016-10-25 2016-10-25 Pattern recognition apparatus, pattern recognition method, and pattern recognition program

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013020611A Division JP6062273B2 (en) 2013-02-05 2013-02-05 Pattern recognition apparatus, pattern recognition method, and pattern recognition program

Publications (2)

Publication Number Publication Date
JP2017027622A true JP2017027622A (en) 2017-02-02
JP6282711B2 JP6282711B2 (en) 2018-02-21

Family

ID=57949851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016208790A Expired - Fee Related JP6282711B2 (en) 2016-10-25 2016-10-25 Pattern recognition apparatus, pattern recognition method, and pattern recognition program

Country Status (1)

Country Link
JP (1) JP6282711B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200137772A (en) * 2019-05-31 2020-12-09 에스케이텔레콤 주식회사 Apparatus, method for generating classifier and classifying apparatus generated thereby

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002251592A (en) * 2001-02-22 2002-09-06 Toshiba Corp Learning method for pattern recognition dictionary
JP2009129253A (en) * 2007-11-26 2009-06-11 Toshiba Corp Pattern recognition apparatus, pattern recognition program and pattern recognition method
JP2011028682A (en) * 2009-07-29 2011-02-10 Denso Corp Image identification device
JP2012150681A (en) * 2011-01-20 2012-08-09 Hitachi Computer Peripherals Co Ltd Pattern recognition device and pattern recognition method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002251592A (en) * 2001-02-22 2002-09-06 Toshiba Corp Learning method for pattern recognition dictionary
JP2009129253A (en) * 2007-11-26 2009-06-11 Toshiba Corp Pattern recognition apparatus, pattern recognition program and pattern recognition method
JP2011028682A (en) * 2009-07-29 2011-02-10 Denso Corp Image identification device
JP2012150681A (en) * 2011-01-20 2012-08-09 Hitachi Computer Peripherals Co Ltd Pattern recognition device and pattern recognition method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
熊木慶介, 外2名: ""分離型格子HMMの構造を用いた隠れ条件付確率場に基づく顔画像認識"", 電子情報通信学会技術研究報告, vol. 第111巻, 第317号, JPN6017038859, 17 November 2011 (2011-11-17), JP, pages 131 - 136, ISSN: 0003659573 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200137772A (en) * 2019-05-31 2020-12-09 에스케이텔레콤 주식회사 Apparatus, method for generating classifier and classifying apparatus generated thereby
KR102240882B1 (en) * 2019-05-31 2021-04-15 에스케이텔레콤 주식회사 Apparatus, method for generating classifier and classifying apparatus generated thereby

Also Published As

Publication number Publication date
JP6282711B2 (en) 2018-02-21

Similar Documents

Publication Publication Date Title
JP6928371B2 (en) Classifier, learning method of classifier, classification method in classifier
JP6781415B2 (en) Neural network learning device, method, program, and pattern recognition device
CN109993201B (en) Image processing method, device and readable storage medium
US10796098B2 (en) Instruction understanding system and instruction understanding method
US11152013B2 (en) Systems and methods for a triplet network with attention for speaker diartzation
Walia et al. Secure multimodal biometric system based on diffused graphs and optimal score fusion
CA3153146A1 (en) Adversarial network for transforming handwritten text
US20200065573A1 (en) Generating variations of a known shred
US20100290700A1 (en) Information processing device and method, learning device and method, programs, and information processing system
US20170076152A1 (en) Determining a text string based on visual features of a shred
KR20170016231A (en) Multi-modal fusion method for user authentification and user authentification method
JP7024515B2 (en) Learning programs, learning methods and learning devices
US9606984B2 (en) Unsupervised clustering of dialogs extracted from released application logs
CN113220839B (en) Intention identification method, electronic equipment and computer readable storage medium
US10373028B2 (en) Pattern recognition device, pattern recognition method, and computer program product
JP6062273B2 (en) Pattern recognition apparatus, pattern recognition method, and pattern recognition program
CN111353514A (en) Model training method, image recognition method, device and terminal equipment
KR102213177B1 (en) Apparatus and method for recognizing speech in robot
CN110717407A (en) Human face recognition method, device and storage medium based on lip language password
JP6282711B2 (en) Pattern recognition apparatus, pattern recognition method, and pattern recognition program
US20100239168A1 (en) Semi-tied covariance modelling for handwriting recognition
CN107533672A (en) Pattern recognition device, mode identification method and program
CN111783088A (en) Malicious code family clustering method and device and computer equipment
Palazón-González et al. On hidden Markov models and cyclic strings for shape recognition
WO2022074840A1 (en) Domain feature extractor learning device, domain prediction device, learning method, learning device, class identification device, and program

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180124

R150 Certificate of patent or registration of utility model

Ref document number: 6282711

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees