JP2017024814A - Optical fiber winding method and optical fiber - Google Patents

Optical fiber winding method and optical fiber Download PDF

Info

Publication number
JP2017024814A
JP2017024814A JP2015141943A JP2015141943A JP2017024814A JP 2017024814 A JP2017024814 A JP 2017024814A JP 2015141943 A JP2015141943 A JP 2015141943A JP 2015141943 A JP2015141943 A JP 2015141943A JP 2017024814 A JP2017024814 A JP 2017024814A
Authority
JP
Japan
Prior art keywords
optical fiber
winding
wound
radius
bobbin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015141943A
Other languages
Japanese (ja)
Other versions
JP6593001B2 (en
Inventor
森田 圭省
Keisho Morita
圭省 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2015141943A priority Critical patent/JP6593001B2/en
Publication of JP2017024814A publication Critical patent/JP2017024814A/en
Application granted granted Critical
Publication of JP6593001B2 publication Critical patent/JP6593001B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Tension Adjustment In Filamentary Materials (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical fiber winding method in which tension control is facilitated, winding collapse hardly occurs in optical fiber transport, and increase of transmission loss can be suppressed.SOLUTION: A winding method of an optical fiber 10 is a method for winding the optical fiber 10 which is mainly formed of quartz glass to a bobbin 20, in which a winding tension of the optical fiber 10 is constant and in a range of 30 g or higher and 70 g or lower, and a ratio V/S of an actual volume V of the optical fiber 10 determined based on a cross section and length of the wound optical fiber 10, with respect to a volume S on a wound part 11 of the optical fiber 10 determined based on a winding radius t of the optical fiber 10 wound to a trunk 20a of the bobbin 20 and a radius r and a width w of the trunk 20a, becomes 58% or higher and 79% or lower, by setting a winding condition.SELECTED DRAWING: Figure 1

Description

本発明は、光ファイバの巻取り方法および光ファイバに関するものである。   The present invention relates to an optical fiber winding method and an optical fiber.

特許文献1は、プラスチック光ファイバの巻取方法に関する発明であって、プラスチック光ファイバに発生するひずみにより透光性能が劣化することを防止するための好ましい巻取り張力や巻取りピッチの範囲が開示されている。
特許文献2は、光ファイバの巻取りにおける張力制御方法に関する発明であって、光ファイバの巻取りが進むにつれて巻取り張力を減少させる方法が開示されている。
特許文献3は、光ファイバの巻取り方法に関する発明であって、外径が略250μmの光ファイバをボビンに巻き取るときの巻取り張力をT(N)、トラバースピッチ(光ファイバをボビンに1周巻き付ける際のボビンまたはガイドローラの移動量)をP(mm)としたとき、T/P(N/mm)を所定の好適な範囲内とすることが開示されている。
Patent Document 1 is an invention relating to a method of winding a plastic optical fiber, and discloses a preferable winding tension and winding pitch range for preventing the light transmission performance from being deteriorated by strain generated in the plastic optical fiber. Has been.
Patent Document 2 is an invention relating to a tension control method for winding an optical fiber, and discloses a method for reducing the winding tension as the winding of the optical fiber proceeds.
Patent Document 3 is an invention relating to an optical fiber winding method, in which a winding tension when winding an optical fiber having an outer diameter of approximately 250 μm on a bobbin is T (N), and a traverse pitch (an optical fiber is 1 on a bobbin). It is disclosed that T / P 2 (N / mm 2 ) is within a predetermined preferable range, where P (mm) is the bobbin or guide roller movement amount during circumferential winding.

特開平1−321259号公報JP-A-1-321259 特開平5−273416号公報JP-A-5-273416 特開2014−97879号公報JP 2014-97879 A

特許文献1に記載の方法は、プラスチック光ファイバの巻取方法であって、ファイバ特性の異なる石英系の光ファイバには適用することができない。また、特許文献2に記載の方法では、巻取り張力を徐々に変化させたり、巻取るファイバの長さに応じて巻取り張力の減少方法を変えたりする必要があり、張力の制御が困難であった。さらに、特許文献3に記載されているような範囲において巻取り張力やトラバースピッチを設定し、光ファイバを巻き取った場合でも巻崩れが発生する場合があった。   The method described in Patent Document 1 is a method of winding a plastic optical fiber, and cannot be applied to silica-based optical fibers having different fiber characteristics. Further, in the method described in Patent Document 2, it is necessary to gradually change the winding tension, or to change the winding tension decreasing method according to the length of the fiber to be wound, and it is difficult to control the tension. there were. Further, even when the winding tension or traverse pitch is set within the range described in Patent Document 3 and the optical fiber is wound, the winding collapse may occur.

本発明は、張力制御が容易であるとともに、光ファイバ輸送中の巻崩れが発生しにくく、伝送損失の増加も抑制可能な光ファイバの巻取り方法および光ファイバを提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide an optical fiber winding method and an optical fiber that are easy to control tension, are less likely to collapse during transportation of an optical fiber, and can suppress an increase in transmission loss.

本発明に係る光ファイバの巻取り方法は、
石英ガラスを主成分とする光ファイバをボビンに巻取る巻取り方法であって、
前記光ファイバの巻取り張力が一定であって、30g以上70g以下の範囲であり、
前記ボビンの胴部に巻取られる前記光ファイバの巻き半径と前記胴部の半径および幅とから求められる前記光ファイバの巻取り部分の体積Sに対する、巻取られた前記光ファイバの断面積と長さから求められる前記光ファイバの実体積Vの割合V/Sが58%以上79%以下となるように、巻取り条件を設定して巻取る。
An optical fiber winding method according to the present invention includes:
A winding method for winding an optical fiber mainly composed of quartz glass on a bobbin,
The winding tension of the optical fiber is constant and is in the range of 30 g to 70 g;
The cross-sectional area of the wound optical fiber with respect to the volume S of the winding portion of the optical fiber obtained from the winding radius of the optical fiber wound on the bobbin barrel and the radius and width of the barrel. Winding is performed with the winding conditions set so that the ratio V / S of the actual volume V of the optical fiber determined from the length is 58% or more and 79% or less.

本発明に係る光ファイバは、
ボビンに巻取られた石英ガラスを主成分とする光ファイバであって、
前記ボビンの胴部に巻取られた前記光ファイバの巻き半径と前記胴部の半径および幅とから求められた前記光ファイバの巻取り部分の体積Sに対する、巻取られた前記光ファイバの断面積と長さから求められた前記光ファイバの実体積Vの割合V/Sが58%以上79%以下であり、
前記光ファイバの前記巻き半径と前記胴部の前記半径との差から求められた前記光ファイバの巻き厚さが15mm以上であり、
巻取られたことによる前記光ファイバの伝送損失の増加が0.01dB/km以下である。
The optical fiber according to the present invention is
An optical fiber mainly composed of quartz glass wound around a bobbin,
Breaking of the wound optical fiber with respect to the volume S of the winding portion of the optical fiber determined from the winding radius of the optical fiber wound on the bobbin barrel and the radius and width of the barrel. The ratio V / S of the actual volume V of the optical fiber obtained from the area and length is 58% or more and 79% or less,
The winding thickness of the optical fiber determined from the difference between the winding radius of the optical fiber and the radius of the body portion is 15 mm or more,
The increase in transmission loss of the optical fiber due to being wound is 0.01 dB / km or less.

本発明によれば、張力制御が容易であるとともに、光ファイバ輸送中の巻崩れが発生しにくく、伝送損失の増加も抑制可能な光ファイバの巻取り方法および光ファイバを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, while being able to control tension | tensile_strength, it is hard to generate | occur | produce winding collapse during optical fiber transport, and the winding method and optical fiber of an optical fiber which can suppress the increase in transmission loss can be provided.

本発明の一実施形態に係る光ファイバの巻取り方法を実行するための巻取り装置を示す平面図である。It is a top view which shows the winding apparatus for performing the winding method of the optical fiber which concerns on one Embodiment of this invention. 光ファイバの巻取りピッチと巻密度との関係を示すグラフである。It is a graph which shows the relationship between the winding pitch of an optical fiber, and a winding density. 光ファイバの巻取り張力と巻密度との関係を示すグラフである。It is a graph which shows the relationship between the winding tension | tensile_strength of an optical fiber, and a winding density. 光ファイバの巻密度と巻崩れ発生率との関係を示すグラフである。It is a graph which shows the relationship between the winding density of an optical fiber, and unwinding incidence.

<本発明の実施形態の概要>
最初に本発明の実施形態の概要を説明する。
本発明の実施形態にかかる光ファイバの巻取り方法は、
(1)石英ガラスを主成分とする光ファイバをボビンに巻取る巻取り方法であって、
前記光ファイバの巻取り張力が一定であって、30g以上70g以下の範囲であり、
前記ボビンの胴部に巻取られる前記光ファイバの巻き半径と前記胴部の半径および幅とから求められる前記光ファイバの巻取り部分の体積Sに対する、巻取られた前記光ファイバの断面積と長さから求められる前記光ファイバの実体積Vの割合V/Sが58%以上79%以下となるように、巻取り条件を設定して巻取る。
この構成によれば、張力制御が容易であるとともに、光ファイバ輸送中の巻崩れが発生しにくく、伝送損失の増加も抑制可能な光ファイバの巻取り方法を提供することができる。
<Outline of Embodiment of the Present Invention>
First, an outline of an embodiment of the present invention will be described.
An optical fiber winding method according to an embodiment of the present invention includes:
(1) A winding method for winding an optical fiber mainly composed of quartz glass around a bobbin,
The winding tension of the optical fiber is constant and is in the range of 30 g to 70 g;
The cross-sectional area of the wound optical fiber with respect to the volume S of the winding portion of the optical fiber obtained from the winding radius of the optical fiber wound on the bobbin barrel and the radius and width of the barrel. Winding is performed with the winding conditions set so that the ratio V / S of the actual volume V of the optical fiber determined from the length is 58% or more and 79% or less.
According to this configuration, it is possible to provide an optical fiber winding method that is easy to control tension, is less likely to collapse during transportation of the optical fiber, and can suppress an increase in transmission loss.

(2)前記光ファイバの伝送損失の増加の許容値を設定し、前記許容値を満たすように前記光ファイバの巻取り張力を算出し、前記巻取り張力に基づき前記巻取り部分の体積Sと前記光ファイバの実体積Vとの前記割合V/Sが最大となるように前記光ファイバの巻取りピッチを算出し、算出された前記巻取り張力と前記巻取りピッチとに基づいて巻取り条件を設定することが好ましい。
この構成によれば、光ファイバの巻取り張力や巻取りピッチに基づいて、巻崩れやロス増のない巻取り条件を容易に設定することができる。
(2) An allowable value for increasing the transmission loss of the optical fiber is set, a winding tension of the optical fiber is calculated so as to satisfy the allowable value, and the volume S of the winding portion is calculated based on the winding tension. The winding pitch of the optical fiber is calculated so that the ratio V / S with the actual volume V of the optical fiber is maximized, and the winding condition is based on the calculated winding tension and the winding pitch. Is preferably set.
According to this configuration, it is possible to easily set a winding condition that does not collapse or increase loss based on the winding tension or winding pitch of the optical fiber.

前記光ファイバの巻取り方法においては、
(3)前記光ファイバの前記巻き半径と前記胴部の前記半径との差から求められる前記光ファイバの巻き厚さが15mm以上であることが好ましい。
光ファイバの巻き厚さが上記範囲以上であると巻崩れが発生しやすいため、本発明に係る巻取り方法を適用するのが好適である。
In the winding method of the optical fiber,
(3) It is preferable that the winding thickness of the optical fiber obtained from the difference between the winding radius of the optical fiber and the radius of the body portion is 15 mm or more.
If the winding thickness of the optical fiber is greater than or equal to the above range, the winding method is likely to occur. Therefore, it is preferable to apply the winding method according to the present invention.

前記光ファイバの巻取り方法においては、
(4)前記光ファイバの有効断面積Aeffが70μm以上であることが好ましい。
Aeffが大きい光ファイバは側圧によって伝送損失が増加しやすいため、本発明に係る巻取り方法を適用するのが好適である。
In the winding method of the optical fiber,
(4) It is preferable that the effective area Aeff of the optical fiber is 70 μm 2 or more.
Since an optical fiber having a large Aeff tends to increase transmission loss due to side pressure, it is preferable to apply the winding method according to the present invention.

本発明の実施形態にかかる光ファイバは、
(5)ボビンに巻取られた石英ガラスを主成分とする光ファイバであって、
前記ボビンの胴部に巻取られた前記光ファイバの巻き半径と前記胴部の半径および幅とから求められた前記光ファイバの巻取り部分の体積Sに対する、巻取られた前記光ファイバの断面積と長さから求められた前記光ファイバの実体積Vの割合V/Sが58%以上79%以下であり、
前記光ファイバの前記巻き半径と前記胴部の前記半径との差から求められた前記光ファイバの巻き厚さが15mm以上であり、
巻取られたことによる前記光ファイバの伝送損失の増加が0.01dB/km以下である。
この構成によれば、輸送中の巻崩れが発生しにくく、伝送損失の増加も抑制可能な光ファイバを提供することができる。
An optical fiber according to an embodiment of the present invention is:
(5) An optical fiber mainly composed of quartz glass wound around a bobbin,
Breaking of the wound optical fiber with respect to the volume S of the winding portion of the optical fiber determined from the winding radius of the optical fiber wound on the bobbin barrel and the radius and width of the barrel. The ratio V / S of the actual volume V of the optical fiber obtained from the area and length is 58% or more and 79% or less,
The winding thickness of the optical fiber determined from the difference between the winding radius of the optical fiber and the radius of the body portion is 15 mm or more,
The increase in transmission loss of the optical fiber due to being wound is 0.01 dB / km or less.
According to this configuration, it is possible to provide an optical fiber that is less likely to collapse during transportation and can suppress an increase in transmission loss.

前記光ファイバは、
(6)有効断面積Aeffが70μm以上であることが好ましい。
Aeffが大きい光ファイバについては、上記(5)のように巻取られることが好適である。
The optical fiber is
(6) The effective area Aeff is preferably 70 μm 2 or more.
An optical fiber having a large Aeff is preferably wound as described in (5) above.

<本発明の実施形態の詳細>
以下、本発明に係る実施の形態の例を、図面を参照して説明する。
<Details of Embodiment of the Present Invention>
Hereinafter, an example of an embodiment according to the present invention will be described with reference to the drawings.

図1に示すように、光ファイバ10は、例えば、石英ガラスを主成分とし、コアとクラッドとからなる例えば外径125μmのガラスファイバの外周を樹脂で被覆したものである。光ファイバ10の外径は例えば250μmである。この光ファイバ10は、例えば、光通信等に用いるために、束ねられて光ケーブルとされる。光ファイバ10としては、例えば、有効断面積Aeffが70μm以上であるものが用いられる。Aeffが大きい光ファイバは、側圧に弱く、曲げが生じたときに内部を導光される光が外部に逃げやすくなり伝送損失が増加してしまうため、巻取り張力は比較的低い値に抑える必要がある。 As shown in FIG. 1, the optical fiber 10 is made of, for example, quartz glass as a main component, and the outer periphery of a glass fiber having an outer diameter of 125 μm, for example, made of a core and a clad is coated with a resin. The outer diameter of the optical fiber 10 is, for example, 250 μm. The optical fiber 10 is bundled into an optical cable for use in optical communication, for example. As the optical fiber 10, for example, an optical fiber having an effective area Aeff of 70 μm 2 or more is used. An optical fiber with a large Aeff is weak in lateral pressure, and when the bending occurs, the light guided inside tends to escape to the outside and the transmission loss increases, so the winding tension needs to be kept at a relatively low value. There is.

この光ファイバ10を巻取るボビン20は、例えば、プラスチック等の合成樹脂から形成されたもので、光ファイバ10が巻き付けられる円筒状の胴部(巻取り部)20aと、この胴部20aの両端に設けられた円板状の一対の鍔部20b,20cとを有している。本実施形態においては、胴部20aの半径rは、例えば50mm〜100mmであり、一対の鍔部20b,20cの各半径Rは、例えば100mm〜200mmである。また、胴部20aの幅wは、例えば100mm〜300mmである。   The bobbin 20 that winds up the optical fiber 10 is made of a synthetic resin such as plastic, for example, and has a cylindrical body (winding part) 20a around which the optical fiber 10 is wound, and both ends of the body 20a. And a pair of disc-shaped flanges 20b, 20c provided on the surface. In this embodiment, the radius r of the trunk | drum 20a is 50 mm-100 mm, for example, and each radius R of a pair of collar parts 20b and 20c is 100 mm-200 mm, for example. Moreover, the width | variety w of the trunk | drum 20a is 100 mm-300 mm, for example.

光ファイバ10がボビン20に巻取られる際には、光ファイバ10がボビン20の胴部20a上において均一に巻取られるようにする必要がある。そのため、図1に示すような巻取り装置21が用いられる。巻取り装置21は、回転駆動される駆動軸(駆動部)22を備え、駆動軸22には、ボビン20が装着される。ボビン20は駆動軸22に固定され、例えば図1の右側から見て時計方向に回転される。   When the optical fiber 10 is wound around the bobbin 20, the optical fiber 10 needs to be wound evenly on the body 20a of the bobbin 20. Therefore, a winding device 21 as shown in FIG. 1 is used. The winding device 21 includes a drive shaft (drive unit) 22 that is rotationally driven, and the bobbin 20 is attached to the drive shaft 22. The bobbin 20 is fixed to the drive shaft 22 and rotated, for example, clockwise as viewed from the right side of FIG.

駆動軸22によって回転されるボビン20に対して、光ファイバ10を案内するローラ19は、ボビン20の回転軸方向(図1の矢印A)へ往復移動される。これにより、光ファイバ10が、ボビン20の軸方向へ往復移動されながらボビン20の胴部20aに巻取られる。つまり、この巻取り装置21は、ボビン20の回転軸方向の位置を固定し、光ファイバ10を往復移動させる方式(ローラトラバース方式)で光ファイバ10をボビン20の胴部20aに巻取らせる。   The roller 19 that guides the optical fiber 10 is reciprocated in the direction of the rotation axis of the bobbin 20 (arrow A in FIG. 1) with respect to the bobbin 20 that is rotated by the drive shaft 22. As a result, the optical fiber 10 is wound around the body 20 a of the bobbin 20 while being reciprocated in the axial direction of the bobbin 20. That is, the winding device 21 fixes the position of the bobbin 20 in the rotation axis direction and winds the optical fiber 10 around the body 20a of the bobbin 20 by a method of reciprocating the optical fiber 10 (roller traverse method).

本実施形態においては、光ファイバ10の巻取り張力が一定のまま、光ファイバ10はボビン20に巻取られる。巻取り張力が一定であると、巻取り条件の設定が容易であり、巻取り途中で光ファイバ10が断線してしまったような場合であっても、巻取り条件を再設定することなく別のボビンへの巻き付けを再開することができる。   In the present embodiment, the optical fiber 10 is wound around the bobbin 20 while the winding tension of the optical fiber 10 remains constant. If the winding tension is constant, it is easy to set the winding condition. Even if the optical fiber 10 is broken during winding, it is possible to set the winding condition again without resetting the winding condition. Can be resumed around the bobbin.

光ファイバ10の巻取り張力は、具体的には、30g以上70g以下、好ましくは40g以上50g以下の範囲である。巻取り張力が30gより小さいと、巻取り張力が低すぎて巻取り張力が安定せず、所望の巻取りピッチで光ファイバ10をボビン20に巻き付けることができない。一方、巻取り張力が70gを超えると、光ファイバ10に側圧がかかり、光ファイバ10の伝送損失が高くなってしまう。   Specifically, the winding tension of the optical fiber 10 is in the range of 30 g to 70 g, preferably 40 g to 50 g. If the winding tension is less than 30 g, the winding tension is too low to stabilize the winding tension, and the optical fiber 10 cannot be wound around the bobbin 20 at a desired winding pitch. On the other hand, when the winding tension exceeds 70 g, a side pressure is applied to the optical fiber 10 and the transmission loss of the optical fiber 10 becomes high.

また、本実施形態においては、光ファイバ10を巻取ることで増加する光ファイバ10の巻取り部11の体積と巻き取られた光ファイバ10の実際の体積との割合を「巻密度」と定義し、巻密度の好適な範囲を以下の通り設定している。   In the present embodiment, the ratio between the volume of the winding portion 11 of the optical fiber 10 that increases by winding the optical fiber 10 and the actual volume of the wound optical fiber 10 is defined as “winding density”. The preferred range of the winding density is set as follows.

具体的には、光ファイバ10の巻き半径(巻取り部11の半径)tと胴部20aの半径rおよび幅wとから求められる光ファイバ10の巻取り部11の体積Sに対する、巻取られた光ファイバ10の断面積と長さから求められる光ファイバ19の実体積Vの割合V/Sが58%以上79%以下となるように、巻取り条件を設定している。すなわち、光ファイバ10の巻取り部11の体積Sは、次式(1)から求められる。
S=(πtw)−(πrw) …(1)
Specifically, the winding is performed with respect to the volume S of the winding portion 11 of the optical fiber 10 obtained from the winding radius (radius of the winding portion 11) t of the optical fiber 10 and the radius r and width w of the body portion 20a. The winding conditions are set so that the ratio V / S of the actual volume V of the optical fiber 19 obtained from the cross-sectional area and length of the optical fiber 10 is 58% or more and 79% or less. That is, the volume S of the winding part 11 of the optical fiber 10 is obtained from the following equation (1).
S = (πt 2 w) − (πr 2 w) (1)

光ファイバ10がボビン20の鍔部20b,20cの外径ぎりぎりまで巻取られるとすると、光ファイバ10の巻き半径tは、ボビン20の鍔部20b,20cの半径Rにより算出することができる。また、光ファイバ10の巻取り部11の巻き厚さをTとすると、当該巻き厚さTは、光ファイバ10の巻き半径tと胴部20aの半径rとの差t−rにより決定され、光ファイバ10がボビン20の鍔部20b,20cの外径ぎりぎりまで巻取られる場合には、巻き厚さTは、鍔部20b,20cの半径Rと胴部20aの半径rとの差R−rにより算出することができる。
また、巻取られた光ファイバ10の実体積Vは、巻取られた光ファイバ10の断面積と長さとの積により算出される。
If the optical fiber 10 is wound up to the limit of the outer diameter of the flanges 20b and 20c of the bobbin 20, the winding radius t of the optical fiber 10 can be calculated by the radius R of the flanges 20b and 20c of the bobbin 20. Further, when the winding thickness of the winding portion 11 of the optical fiber 10 is T, the winding thickness T is determined by the difference tr between the winding radius t of the optical fiber 10 and the radius r of the body portion 20a. When the optical fiber 10 is wound up to the outer diameter of the flanges 20b and 20c of the bobbin 20, the winding thickness T is the difference R− between the radius R of the flanges 20b and 20c and the radius r of the body 20a. It can be calculated by r.
The actual volume V of the wound optical fiber 10 is calculated by the product of the cross-sectional area and the length of the wound optical fiber 10.

巻密度が高いと、ボビン20に巻き取られた光ファイバ10間に生じる隙間が小さいことに対応し、光ファイバ10が輸送中に動く空間が小さくなるため、輸送中の振動・衝撃・温度変化による巻崩れが発生しにくくなる。したがって、巻密度は高い方が好ましく、光ファイバ10が最も隙間が小さく緻密に巻き取られたとすると、理論上は79%に相当する。巻密度は、この上限値に近いほど好ましいが、実際には巻取り装置の位置精度、巻取り中の光ファイバ10の振動等が原因で光ファイバ10間の隙間が増加するため、70%程度が実際の上限となる。   When the winding density is high, the gap generated between the optical fibers 10 wound around the bobbin 20 is small, and the space in which the optical fiber 10 moves during transportation becomes small. Therefore, vibration, shock, and temperature change during transportation It is difficult for the material to collapse. Therefore, it is preferable that the winding density is high. If the optical fiber 10 is wound with the smallest gap and is densely wound, it is theoretically equivalent to 79%. The winding density is preferably as close as possible to the upper limit value. However, in practice, the gap between the optical fibers 10 increases due to the positional accuracy of the winding device, the vibration of the optical fiber 10 during winding, and the like. Is the actual upper limit.

本実施形態においては、以下の手順にしたがって、光ファイバ10の巻取り条件を設定する。
一般に、光ファイバの巻取り張力を上げていくと伝送損失が増加する。そのため、最初に、光ファイバ10の伝送損失の増加が許容値以下となるように巻取り張力を設定する。次に、設定された巻取り張力に基づき、巻密度である光ファイバ10の巻取り部11の体積Sに対する巻き取られた光ファイバ10の実体積Vの割合V/Sが最大となるように、光ファイバ10の巻取りピッチを算出する。巻取りピッチによりボビン20に巻取られた光ファイバ10同士の隙間が変化するため、巻取りピッチの変化に応じて巻密度も変化する。最後に、算出された巻取り張力と巻取りピッチとに基づいて巻取り条件を設定する。
In the present embodiment, the winding condition of the optical fiber 10 is set according to the following procedure.
Generally, transmission loss increases as the winding tension of the optical fiber is increased. Therefore, first, the winding tension is set so that the increase in the transmission loss of the optical fiber 10 is less than the allowable value. Next, based on the set winding tension, the ratio V / S of the actual volume V of the wound optical fiber 10 to the volume S of the wound portion 11 of the optical fiber 10 that is the winding density is maximized. Then, the winding pitch of the optical fiber 10 is calculated. Since the gap between the optical fibers 10 wound around the bobbin 20 changes depending on the winding pitch, the winding density also changes according to the change in the winding pitch. Finally, winding conditions are set based on the calculated winding tension and winding pitch.

すなわち、光ファイバ10の巻取りピッチおよび巻取り張力と巻密度との関係を調べておき、好適な範囲内での巻取り張力および巻取りピッチに基づいて巻取り条件を設定し、ボビン20に巻き付けられる光ファイバ10の巻密度が最適な範囲となるように調整する。上記の巻取り条件によりボビン20に巻取られた光ファイバ10は、巻取られたことによる伝送損失の増加が0.01dB/km以下となる。ボビン20に巻取られた後の光ファイバ10の伝送損失の増加が0.01dB/km以下であれば、十分に許容できる範囲である。   That is, the relationship between the winding pitch and winding tension of the optical fiber 10 and the winding density is examined, winding conditions are set based on the winding tension and winding pitch within a suitable range, and the bobbin 20 The winding density of the optical fiber 10 to be wound is adjusted so as to be in an optimum range. In the optical fiber 10 wound around the bobbin 20 under the above-described winding conditions, an increase in transmission loss due to being wound becomes 0.01 dB / km or less. If the increase in transmission loss of the optical fiber 10 after being wound around the bobbin 20 is 0.01 dB / km or less, it is a sufficiently acceptable range.

なお、上記のようにボビン20に巻取られる光ファイバ10については、ボビン20に巻取られた光ファイバ10の巻取り部11の巻き厚さT(図1参照)が大きくなるほど巻崩れが発生しやすい。光ファイバ10の巻き厚さTが15mm以上であると巻崩れ発生率が上がる。   In addition, about the optical fiber 10 wound up by the bobbin 20 as mentioned above, winding collapse | disintegration generate | occur | produced, so that the winding thickness T (refer FIG. 1) of the winding part 11 of the optical fiber 10 wound around the bobbin 20 becomes large. It's easy to do. If the winding thickness T of the optical fiber 10 is 15 mm or more, the rate of occurrence of winding collapse increases.

一般に、光ファイバ10は、ボビン20に巻かれた状態で梱包箱(図示省略)等に収容されて出荷され、トラック、船もしくは飛行機などで搬送される。
ボビン20に巻かれた光ファイバ10を搬送する際に、光ファイバ10をボビン20へ巻取る際の巻取り張力が低いと、光ファイバ10を搬送する際の振動などにより光ファイバ10の巻き崩れが生じる場合がある。このような光ファイバ10の巻き崩れは、光ファイバ10をボビン20から引き出して光ケーブルを製造する際の断線の要因となるため、光ファイバ10を巻き直す作業が必要となり、作業性が悪くなってしまう。
また、光ファイバ10の巻き崩れを防止すべく巻取り張力を大きくすると、隣り合う光ファイバ10が接触し、この光ファイバ10同士の接触による側圧の影響で光ファイバ10の伝送損失が高くなってしまう。
また、特許文献3に記載のように、光ファイバの巻取り張力をTとし、トラバースピッチをPとしたときにT/Pを所定の範囲に設定しても、巻崩れが発生する場合がある。
Generally, the optical fiber 10 is housed in a packing box (not shown) or the like while being wound around the bobbin 20 and shipped, and is conveyed by a truck, a ship, an airplane, or the like.
When the optical fiber 10 wound around the bobbin 20 is transported, if the winding tension when the optical fiber 10 is wound around the bobbin 20 is low, the optical fiber 10 is collapsed due to vibration or the like when transporting the optical fiber 10. May occur. Such unwinding of the optical fiber 10 causes disconnection when the optical fiber 10 is pulled out from the bobbin 20 to manufacture an optical cable. Therefore, the work of rewinding the optical fiber 10 is required, and workability is deteriorated. End up.
Further, when the winding tension is increased to prevent the optical fiber 10 from collapsing, the adjacent optical fibers 10 come into contact with each other, and the transmission loss of the optical fiber 10 increases due to the influence of the side pressure due to the contact between the optical fibers 10. End up.
Further, as described in Patent Document 3, even when T / P 2 is set within a predetermined range when the winding tension of the optical fiber is T and the traverse pitch is P, collapse may occur. is there.

このような課題を鑑み、本実施形態においては、発明者が光ファイバの巻崩れの原因について調査したところ、同じ巻取り張力やトラバースピッチで巻き取っても、緻密に巻かれている場合とそうでない場合があることに気づき、巻取り張力やトラバースピッチではなく、光ファイバ10が緻密に巻き取られているかを示す「巻密度」を指標とすることが光ファイバ10の輸送中の巻崩れを発生しにくくすることに有効であることを見出した。巻密度を指標とすることで巻取り張力を必要以上に増加させることなく巻崩れが起きない巻取り条件を設定することができる。巻密度が有効であることの理由としては、同じ巻取り張力やトラバースピッチであっても、設備の違いにより張力制御の精度やトラバース位置の精度に違いがあることや、ボビンに巻き取られる光ファイバの振動の影響が挙げられる。特に、光ファイバの振動が大きい場合は、光ファイバが直前に巻き取られた隣接ファイバの上に乗り上げることがあり、緻密に巻かれない場合があった。   In view of such problems, in the present embodiment, the inventor investigated the cause of the collapse of the optical fiber. As a result, even when wound at the same winding tension or traverse pitch, the case where it is wound closely In some cases, the “winding density” indicating whether the optical fiber 10 is densely wound, rather than the winding tension or traverse pitch, may be used as an index. It was found that it is effective in making it difficult to occur. By using the winding density as an index, it is possible to set a winding condition in which no winding collapse occurs without increasing the winding tension more than necessary. The reason why the winding density is effective is that, even with the same winding tension and traverse pitch, there are differences in the accuracy of tension control and traverse position due to differences in equipment, and the light that is wound around the bobbin. The effect of fiber vibration can be mentioned. In particular, when the vibration of the optical fiber is large, the optical fiber may run on the adjacent fiber wound immediately before, and may not be wound precisely.

本実施形態に係る光ファイバ10の巻取り方法によれば、光ファイバ10の巻取り張力が一定であって、30g以上70g以下の範囲であり、ボビン20の胴部20aに巻き付けられる光ファイバ10の厚みを示す光ファイバ10の巻き半径tと胴部20aの半径rおよび幅wとから求められる光ファイバ10の巻取り部11の体積Sに対する、巻取られた光ファイバ10の断面積と長さから求められる光ファイバ10の実体積Vの割合V/Sが58%以上79%以下となるように、巻取り条件を設定して巻取る。すなわち、光ファイバ10の巻取り部11の体積Sに対する巻取られた光ファイバ10の実体積Vの割合V/Sが適切な値となるように条件設定して、光ファイバ10をボビン20に巻取っている。この条件によれば、光ファイバ10の巻取り張力を、一定で且つ好適な範囲内に設定しているため、巻取り張力の調整が容易であり、伝送損失の増加も防止することができる。また、光ファイバ10の巻取り部11の体積Sに対する巻取られた光ファイバ10の実体積Vの割合V/Sから求められる「巻密度」という指標を採用することで、光ファイバ10の巻取り条件の設定が容易となる。   According to the winding method of the optical fiber 10 according to the present embodiment, the winding tension of the optical fiber 10 is constant and is in a range of 30 g or more and 70 g or less, and the optical fiber 10 wound around the body portion 20 a of the bobbin 20. The cross-sectional area and the length of the wound optical fiber 10 with respect to the volume S of the winding portion 11 of the optical fiber 10 obtained from the winding radius t of the optical fiber 10 and the radius r and width w of the body portion 20a. Winding is performed by setting the winding conditions so that the ratio V / S of the actual volume V of the optical fiber 10 obtained from this is 58% or more and 79% or less. That is, the condition is set so that the ratio V / S of the actual volume V of the wound optical fiber 10 to the volume S of the winding portion 11 of the optical fiber 10 becomes an appropriate value, and the optical fiber 10 is attached to the bobbin 20. Winding up. According to this condition, the winding tension of the optical fiber 10 is set within a constant and suitable range, so that the winding tension can be easily adjusted and an increase in transmission loss can be prevented. Further, by adopting an index “winding density” obtained from the ratio V / S of the actual volume V of the wound optical fiber 10 with respect to the volume S of the wound portion 11 of the optical fiber 10, the winding of the optical fiber 10 is performed. It is easy to set the removal conditions.

さらに、「巻密度」に基づく条件設定を行うことで、光ファイバ10の伝送損失の増加を極力抑えつつ、光ファイバ10が巻かれたボビン20を輸送する際に光ファイバ10が巻き崩れることを防止できる。これにより、搬送後の光ファイバ10の巻き崩れに伴う光ファイバ10の断線を抑制することができるとともに、光ファイバ10の巻き直しが不要となり、作業性を向上させることができる。   Further, by setting the condition based on the “winding density”, it is possible to prevent the optical fiber 10 from being collapsed when transporting the bobbin 20 around which the optical fiber 10 is wound while suppressing an increase in transmission loss of the optical fiber 10 as much as possible. Can be prevented. Thereby, the disconnection of the optical fiber 10 accompanying the collapse of the optical fiber 10 after the conveyance can be suppressed, and the rewinding of the optical fiber 10 becomes unnecessary, so that the workability can be improved.

また、本実施形態においては、光ファイバ10の伝送損失の増加の許容値を設定し、許容値を満たすように光ファイバ10の巻取り張力を算出し、巻取り張力に基づき光ファイバ10の巻取り部11の体積Sと光ファイバ10の実体積Vとの割合V/Sが最大となるように光ファイバ10の巻取りピッチを算出し、算出された巻取り張力と巻取りピッチとに基づいて巻取り条件を設定することが好ましい。これにより、巻崩れやロス増のない巻取り条件を容易に設定することができる。   In the present embodiment, an allowable value for increasing the transmission loss of the optical fiber 10 is set, the winding tension of the optical fiber 10 is calculated so as to satisfy the allowable value, and the winding of the optical fiber 10 is calculated based on the winding tension. The winding pitch of the optical fiber 10 is calculated so that the ratio V / S between the volume S of the winding portion 11 and the actual volume V of the optical fiber 10 is maximized, and based on the calculated winding tension and winding pitch. It is preferable to set the winding condition. This makes it possible to easily set a winding condition that does not collapse or increase loss.

また、本実施形態においては、光ファイバ10の巻き半径tとボビン20の胴部20aの半径rとの差から求められる光ファイバの巻き厚さTが15mm以上であることが好ましい。巻取られた光ファイバ10の巻き厚さTが15mm以上であると巻崩れが発生しやすいため、このような光ファイバ10には巻崩れの防止を実現できる本実施形態に係る巻取り方法を適用するのが好適であるためである。   In the present embodiment, it is preferable that the winding thickness T of the optical fiber obtained from the difference between the winding radius t of the optical fiber 10 and the radius r of the body 20a of the bobbin 20 is 15 mm or more. When the wound thickness T of the wound optical fiber 10 is equal to or greater than 15 mm, the winding is likely to be collapsed. Therefore, the winding method according to the present embodiment that can prevent the collapse of the optical fiber 10 is provided. This is because it is preferable to apply.

さらに本実施形態においては、光ファイバ10の有効断面積Aeffが70μm以上であることが好ましい。Aeffが70μm以上である光ファイバ10は側圧の影響により伝送損失が増加しやすいため、巻取り張力を増加させることなく巻崩れの防止を実現できる本実施形態に係る巻取り方法を適用するのが特に好適である。 Furthermore, in this embodiment, it is preferable that the effective area Aeff of the optical fiber 10 is 70 μm 2 or more. Since the optical fiber 10 having an Aeff of 70 μm 2 or more tends to increase the transmission loss due to the influence of the side pressure, the winding method according to this embodiment that can prevent the collapse without increasing the winding tension is applied. Is particularly preferred.

(巻崩れ発生率の評価)
光ファイバ10の巻崩れ発生率を評価するため、最初に、光ファイバ10の巻取りピッチおよび巻き張力と巻密度との関係について評価を行った。
図2は、巻取りピッチと巻密度との関係を示したグラフである。巻取りピッチと巻密度との関係を確認するため、光ファイバ10の伝送損失の増加の許容値に対する好適な巻取り張力として巻取り張力を例えば45gと設定し、巻取りピッチを0.40mm〜0.60mmの範囲で変化させて、それぞれの巻密度を測定した。その結果、図2に示すように、巻取りピッチ0.45mmで巻密度が最大となることが確認された。すなわち、このような巻取りピッチと巻密度との関係をあらかじめ調べておくことで、巻密度(割合V/S)が最大となるように光ファイバ10の巻取りピッチの好適な範囲を算出することができる。
(Evaluation of the rate of collapse)
In order to evaluate the rate of occurrence of collapse of the optical fiber 10, first, the relationship between the winding pitch and winding tension of the optical fiber 10 and the winding density was evaluated.
FIG. 2 is a graph showing the relationship between the winding pitch and the winding density. In order to confirm the relationship between the winding pitch and the winding density, the winding tension is set to 45 g, for example, as a suitable winding tension for the allowable increase in the transmission loss of the optical fiber 10, and the winding pitch is set to 0.40 mm to Each winding density was measured by changing the thickness within a range of 0.60 mm. As a result, as shown in FIG. 2, it was confirmed that the winding density was maximized at a winding pitch of 0.45 mm. That is, by examining the relationship between the winding pitch and the winding density in advance, a suitable range of the winding pitch of the optical fiber 10 is calculated so that the winding density (ratio V / S) is maximized. be able to.

なお、光ファイバ10の外径は0.25mmであるため、巻取りピッチが0.25mmに近づくにつれて巻密度が増加するはずであるが、巻取りピッチが0.45mmより小さくなったところで巻密度は減少する。これは、巻取り設備の精度や光ファイバの振動が影響するためである。巻取りピッチが小さくなると、直前に巻かれた光ファイバに乗り上げる頻度が増加し巻密度が低下する。よって、巻密度がピークとなる巻取りピッチは、設備、巻取り条件、ファイバの違い等により異なるが、本実施形態では巻密度を指標とすることで、最適な巻取り条件を得ることができる。   Since the outer diameter of the optical fiber 10 is 0.25 mm, the winding density should increase as the winding pitch approaches 0.25 mm. However, when the winding pitch becomes smaller than 0.45 mm, the winding density is increased. Decrease. This is because the accuracy of the winding equipment and the vibration of the optical fiber are affected. When the winding pitch is reduced, the frequency of riding on the optical fiber wound immediately before increases, and the winding density decreases. Therefore, the winding pitch at which the winding density reaches a peak differs depending on equipment, winding conditions, fiber differences, and the like, but in this embodiment, the winding density is used as an index to obtain the optimum winding conditions. .

図3は、巻取り張力と巻密度との関係について示したグラフである。巻取り張力と巻密度との関係を確認するため、巻密度が最大となる巻取りピッチ0.45mmで、巻取り張力を45g〜75gの範囲で変化させ、各巻取り張力での巻密度を測定した。その結果、いずれの巻取り張力の場合でも巻密度は58以上であり、さらに巻取り張力が高くなるほど巻密度が上がることが確認された。このような巻取り張力と巻密度との関係をあらかじめ調べておくことで、伝送損失が増加しない範囲で巻密度(割合V/S)が最大となるように光ファイバ10の巻取り張力の好適な範囲を算出することができる。   FIG. 3 is a graph showing the relationship between the winding tension and the winding density. In order to confirm the relationship between the winding tension and the winding density, the winding tension is varied in the range of 45 to 75 g at a winding pitch of 0.45 mm at which the winding density is maximum, and the winding density at each winding tension is measured. did. As a result, it was confirmed that the winding density was 58 or more at any winding tension, and that the winding density increased as the winding tension increased. By examining the relationship between the winding tension and the winding density in advance, it is preferable to adjust the winding tension of the optical fiber 10 so that the winding density (ratio V / S) is maximized within a range where transmission loss does not increase. Range can be calculated.

次に、光ファイバ10の巻崩れ発生率を評価するため、光ファイバ10の巻取り部11の体積Sに対する巻取られた光ファイバ10の実体積Vの割合V/S(巻密度)を56〜62%の範囲で変化させて、そのときの光ファイバ10の巻崩れ発生率を確認した。その結果を図4に示す。
図4に示すように、巻密度が58%以上であると巻崩れ発生率は0%に抑えられるが、巻密度が58%よりも小さいと光ファイバ10の巻崩れが発生する確率が高くなることが確認された。
Next, in order to evaluate the rate of occurrence of the collapse of the optical fiber 10, the ratio V / S (winding density) of the actual volume V of the wound optical fiber 10 to the volume S of the winding portion 11 of the optical fiber 10 is 56. It was changed in a range of ˜62%, and the occurrence rate of collapse of the optical fiber 10 at that time was confirmed. The result is shown in FIG.
As shown in FIG. 4, when the winding density is 58% or more, the rate of occurrence of winding collapse is suppressed to 0%, but when the winding density is less than 58%, the probability that the optical fiber 10 will collapse is increased. It was confirmed.

以上から、巻密度が58%以上であれば、光ファイバ10の巻き崩れが発生しないことが確認できた。   From the above, it was confirmed that if the winding density was 58% or more, the optical fiber 10 did not collapse.

(繰り出し性およびロス増の評価)
光ファイバ10の繰り出し性やロス増についても以下の通り評価を行った。
有効断面積Aeffが70μm、ファイバ外径250μmのシングルモードファイバ(長さ50km)を、胴部の半径rが75mm、鍔部の半径Rが150mm、胴部の幅wが150mmのボビンに、巻取り張力を45gとし、巻取りピッチを0.45mmとして巻き取った。その結果、巻き半径は120.4mmとなった。巻取り部分の体積Sに対する巻き取られた光ファイバの実体積Vの割合V/Sは58.7%と計算された。このボビンに振動試験器で振動を与えた後、光ファイバを繰り出せるか確認したところ、問題なく繰り出すことができた。また、この状態で光ファイバのロスを測定したところ、ロス増は0.003dB/kmと良好であった。なお、ロス増は、ボビンの上口から5km繰り出して束(たば)状態にすることで側圧がかからないようして測定したロスと比較することで求めた。
(Evaluation of payout and loss increase)
The pay-out property and loss increase of the optical fiber 10 were also evaluated as follows.
A single mode fiber (length 50 km) having an effective area Aeff of 70 μm 2 and a fiber outer diameter of 250 μm is formed into a bobbin having a trunk radius r of 75 mm, a flange radius R of 150 mm, and a trunk width w of 150 mm. The winding tension was 45 g and the winding pitch was 0.45 mm. As a result, the winding radius was 120.4 mm. The ratio V / S of the actual volume V of the wound optical fiber to the volume S of the wound portion was calculated to be 58.7%. After applying vibration to the bobbin with a vibration tester, it was confirmed that the optical fiber could be drawn out. Moreover, when the loss of the optical fiber was measured in this state, the loss increase was as good as 0.003 dB / km. The increase in loss was obtained by comparing with a loss measured by applying 5 km from the upper opening of the bobbin and putting it into a bundle (cigarette) so that no side pressure is applied.

以上、本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。また、上記説明した構成部材の数、位置、形状等は上記実施の形態に限定されず、本発明を実施する上で好適な数、位置、形状等に変更することができる。   While the invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. In addition, the number, position, shape, and the like of the constituent members described above are not limited to the above-described embodiments, and can be changed to a number, position, shape, and the like that are suitable for carrying out the present invention.

10:光ファイバ
11:光ファイバの巻取り部
20:ボビン
20a:胴部
20b,20c:鍔部
21:巻取り装置
22:駆動軸
r:胴部の半径
w:胴部の幅
R:鍔部の半径
t:光ファイバの巻き半径
T:光ファイバの巻き厚さ
S:光ファイバの巻取り部の体積
V:光ファイバの実体積
DESCRIPTION OF SYMBOLS 10: Optical fiber 11: Winding part of optical fiber 20: Bobbin 20a: Trunk part 20b, 20c: Ridge part 21: Winding device 22: Drive shaft r: Radius of trunk | drum w: Width of trunk | drum R: Ridge part T: optical fiber winding radius T: optical fiber winding thickness S: volume of optical fiber winding V: actual optical fiber volume

Claims (6)

石英ガラスを主成分とする光ファイバをボビンに巻取る巻取り方法であって、
前記光ファイバの巻取り張力が一定であって、30g以上70g以下の範囲であり、
前記ボビンの胴部に巻取られる前記光ファイバの巻き半径と前記胴部の半径および幅とから求められる前記光ファイバの巻取り部分の体積Sに対する、巻取られた前記光ファイバの断面積と長さから求められる前記光ファイバの実体積Vの割合V/Sが58%以上79%以下となるように、巻取り条件を設定して巻取る、光ファイバの巻取り方法。
A winding method for winding an optical fiber mainly composed of quartz glass on a bobbin,
The winding tension of the optical fiber is constant and is in the range of 30 g to 70 g;
The cross-sectional area of the wound optical fiber with respect to the volume S of the winding portion of the optical fiber obtained from the winding radius of the optical fiber wound on the bobbin barrel and the radius and width of the barrel. An optical fiber winding method in which winding conditions are set so that the ratio V / S of the actual volume V of the optical fiber determined from the length is 58% or more and 79% or less.
前記光ファイバの伝送損失の増加の許容値を設定し、前記許容値を満たすように前記光ファイバの巻取り張力を算出し、前記巻取り張力に基づき前記巻取り部分の体積Sと前記光ファイバの実体積Vとの前記割合V/Sが最大となるように前記光ファイバの巻取りピッチを算出し、算出された前記巻取り張力と前記巻取りピッチとに基づいて巻取り条件を設定する、請求項1に記載の光ファイバの巻取り方法。   An allowable value for increasing the transmission loss of the optical fiber is set, a winding tension of the optical fiber is calculated so as to satisfy the allowable value, and the volume S of the winding portion and the optical fiber are calculated based on the winding tension. The winding pitch of the optical fiber is calculated so that the ratio V / S with respect to the actual volume V is maximized, and the winding condition is set based on the calculated winding tension and the winding pitch. The method for winding an optical fiber according to claim 1. 前記光ファイバの前記巻き半径と前記胴部の前記半径との差から求められる前記光ファイバの巻き厚さが15mm以上である、請求項1または請求項2に記載の光ファイバの巻取り方法。   The winding method of the optical fiber of Claim 1 or Claim 2 whose winding thickness of the said optical fiber calculated | required from the difference of the said winding radius of the said optical fiber and the said radius of the said trunk | drum is 15 mm or more. 前記光ファイバの有効断面積Aeffが70μm以上である、請求項1から請求項3のいずれか一項に記載の光ファイバの巻取り方法。 The winding method of the optical fiber as described in any one of Claims 1-3 whose effective cross-sectional area Aeff of the said optical fiber is 70 micrometers- 2 or more. ボビンに巻取られた石英ガラスを主成分とする光ファイバであって、
前記ボビンの胴部に巻取られた前記光ファイバの巻き半径と前記胴部の半径および幅とから求められた前記光ファイバの巻取り部分の体積Sに対する、巻取られた前記光ファイバの断面積と長さから求められた前記光ファイバの実体積Vの割合V/Sが58%以上79%以下であり、
前記光ファイバの前記巻き半径と前記胴部の前記半径との差から求められた前記光ファイバの巻き厚さが15mm以上であり、
巻取られたことによる前記光ファイバの伝送損失の増加が0.01dB/km以下である、光ファイバ。
An optical fiber mainly composed of quartz glass wound around a bobbin,
Breaking of the wound optical fiber with respect to the volume S of the winding portion of the optical fiber determined from the winding radius of the optical fiber wound on the bobbin barrel and the radius and width of the barrel. The ratio V / S of the actual volume V of the optical fiber obtained from the area and length is 58% or more and 79% or less,
The winding thickness of the optical fiber determined from the difference between the winding radius of the optical fiber and the radius of the body portion is 15 mm or more,
An optical fiber, wherein an increase in transmission loss of the optical fiber due to being wound is 0.01 dB / km or less.
有効断面積Aeffが70μm以上である、請求項5に記載の光ファイバ。 The optical fiber according to claim 5, wherein the effective area Aeff is 70 μm 2 or more.
JP2015141943A 2015-07-16 2015-07-16 Optical fiber winding method and optical fiber Active JP6593001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015141943A JP6593001B2 (en) 2015-07-16 2015-07-16 Optical fiber winding method and optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015141943A JP6593001B2 (en) 2015-07-16 2015-07-16 Optical fiber winding method and optical fiber

Publications (2)

Publication Number Publication Date
JP2017024814A true JP2017024814A (en) 2017-02-02
JP6593001B2 JP6593001B2 (en) 2019-10-23

Family

ID=57945229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015141943A Active JP6593001B2 (en) 2015-07-16 2015-07-16 Optical fiber winding method and optical fiber

Country Status (1)

Country Link
JP (1) JP6593001B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109384384A (en) * 2017-08-09 2019-02-26 株式会社藤仓 The manufacturing method and optical fiber wire of optical fiber wire
CN109384383A (en) * 2017-08-09 2019-02-26 株式会社藤仓 The manufacturing method and optical fiber wire of optical fiber wire
JP2019124121A (en) * 2019-04-25 2019-07-25 株式会社日本パーキングシステムズ Elevating parking apparatus with charging function

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61295973A (en) * 1985-06-25 1986-12-26 Furukawa Electric Co Ltd:The Winding method for optical fiber line
JPH09100064A (en) * 1995-10-05 1997-04-15 Fujikura Ltd Bobbin for optical fiber and method of winding thereon
JP2002333555A (en) * 2001-05-07 2002-11-22 Sumitomo Electric Ind Ltd Optical fiber, optical fiber coil, optical fiber coil unit, optical fiber transmission line and method for producing optical fiber
JP2003004995A (en) * 2001-06-26 2003-01-08 Fujikura Ltd Dispersion-compensated optical fiber and dispersion- compensated optical fiber module
JP2006264997A (en) * 2005-03-22 2006-10-05 Furukawa Electric Co Ltd:The Method for producing optical fiber with fine structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61295973A (en) * 1985-06-25 1986-12-26 Furukawa Electric Co Ltd:The Winding method for optical fiber line
JPH09100064A (en) * 1995-10-05 1997-04-15 Fujikura Ltd Bobbin for optical fiber and method of winding thereon
JP2002333555A (en) * 2001-05-07 2002-11-22 Sumitomo Electric Ind Ltd Optical fiber, optical fiber coil, optical fiber coil unit, optical fiber transmission line and method for producing optical fiber
JP2003004995A (en) * 2001-06-26 2003-01-08 Fujikura Ltd Dispersion-compensated optical fiber and dispersion- compensated optical fiber module
JP2006264997A (en) * 2005-03-22 2006-10-05 Furukawa Electric Co Ltd:The Method for producing optical fiber with fine structure

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109384384A (en) * 2017-08-09 2019-02-26 株式会社藤仓 The manufacturing method and optical fiber wire of optical fiber wire
CN109384383A (en) * 2017-08-09 2019-02-26 株式会社藤仓 The manufacturing method and optical fiber wire of optical fiber wire
JP2019031422A (en) * 2017-08-09 2019-02-28 株式会社フジクラ Method for manufacturing primary coated optical fiber and primary coated optical fiber
US10895706B2 (en) 2017-08-09 2021-01-19 Fujikura Ltd. Method of manufacturing optical fiber and optical fiber
US10913225B2 (en) 2017-08-09 2021-02-09 Fujikura Ltd. Method of manufacturing optical fiber and optical fiber
CN109384384B (en) * 2017-08-09 2021-09-14 株式会社藤仓 Method for manufacturing optical fiber and optical fiber
CN109384383B (en) * 2017-08-09 2021-09-28 株式会社藤仓 Method for manufacturing optical fiber and optical fiber
JP2019124121A (en) * 2019-04-25 2019-07-25 株式会社日本パーキングシステムズ Elevating parking apparatus with charging function

Also Published As

Publication number Publication date
JP6593001B2 (en) 2019-10-23

Similar Documents

Publication Publication Date Title
JP6593001B2 (en) Optical fiber winding method and optical fiber
US9964697B2 (en) Optical fiber
JP3031522B2 (en) Manufacturing method of optical fiber cable
JPWO2016163190A1 (en) Loose tube, loose tube type optical fiber cable, loose tube optical fiber tape single fiber separation method, loose tube manufacturing method, and multiple optical fiber concentrating method
US10913225B2 (en) Method of manufacturing optical fiber and optical fiber
JP2012168310A (en) Optical fiber wire, and method and apparatus for manufacturing the same
JP2014097879A (en) Optical fiber winding method, optical fiber wound around bobbin and optical fiber transportation method
JP5948136B2 (en) Optical fiber and manufacturing method thereof
JP3952949B2 (en) Optical fiber and manufacturing method thereof
EP3686639A1 (en) Optical fiber cable
JPH08327831A (en) Optical fiber winding bobbin, optical fiber winding method and optical fiber winding package
JP2012027392A (en) Manufacturing method of optical fiber ribbon and manufacturing apparatus
Amma et al. Dependence of cladding diameter on inter-core crosstalk in heterogeneous multi-core fibers
JP6523383B2 (en) Method of manufacturing optical fiber and optical fiber
JP2010122666A (en) Method and apparatus for producing optical fiber
JP2017214202A (en) Take-up bobbin for optical fiber, and method of manufacturing optical fiber
US10613287B1 (en) Methods for forming fiber optic cables and fiber optic cables having helical buffer tubes
JP2002362833A (en) Pulley for optical fiber
JP2002220158A (en) Device and method for winding optical fiber
WO2022254557A1 (en) Optical fiber test method and optical fiber winding device
JPH11208998A (en) Optical fiber winding method
FI114344B (en) Methods and devices for processing an active optical fiber
JP2009204801A (en) Optical fiber cable and method of manufacturing the same
JP2021189234A (en) Method and apparatus for manufacturing optical fiber assembly
JP2022189187A (en) Method for winding wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190305

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190909

R150 Certificate of patent or registration of utility model

Ref document number: 6593001

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250