JP2017023943A - Anaerobic fermentation method of waste water, microorganism carrier for anaerobic fermentation, and anaerobic fermentation treatment apparatus - Google Patents

Anaerobic fermentation method of waste water, microorganism carrier for anaerobic fermentation, and anaerobic fermentation treatment apparatus Download PDF

Info

Publication number
JP2017023943A
JP2017023943A JP2015145279A JP2015145279A JP2017023943A JP 2017023943 A JP2017023943 A JP 2017023943A JP 2015145279 A JP2015145279 A JP 2015145279A JP 2015145279 A JP2015145279 A JP 2015145279A JP 2017023943 A JP2017023943 A JP 2017023943A
Authority
JP
Japan
Prior art keywords
anaerobic fermentation
sludge
reaction tank
waste water
filter bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015145279A
Other languages
Japanese (ja)
Other versions
JP6460935B2 (en
Inventor
創 生田
So Ikuta
創 生田
穣 森田
Minoru Morita
穣 森田
小林 茂樹
Shigeki Kobayashi
茂樹 小林
一洋 美川
Kazuhiro Mikawa
一洋 美川
直樹 安部
Naoki Abe
直樹 安部
正広 後藤
Masahiro Goto
正広 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2015145279A priority Critical patent/JP6460935B2/en
Publication of JP2017023943A publication Critical patent/JP2017023943A/en
Application granted granted Critical
Publication of JP6460935B2 publication Critical patent/JP6460935B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an anaerobic fermentation method of waste water, a microorganism carrier for the anaerobic fermentation, and an anaerobic fermentation treatment apparatus, enabling excellent water quality to be obtained only by the anaerobic fermentation.SOLUTION: The anaerobic fermentation method of waste water is provided in which waste water 14 is supplied from a position of a reaction tank 12 lower than a fixed filter bed 22 disposed inside the reaction tank 12 and treated water 18 is discharged from an upper portion of the reaction tank 12 while treating the waste water 14 by anaerobic fermentation with a sludge composed of microorganism in the reaction tank 12. In the anaerobic fermentation method of waste water, the treated water 18 is solid-liquid separated to recover the sludge and the sludge is solidified to form a microorganism carrier 46, followed by disposing the microorganism carrier 46 on an upper portion of the fixed filter bed (fixed filter bed 22a).SELECTED DRAWING: Figure 1

Description

本発明は、排水の嫌気発酵処理方法、嫌気発酵処理用の微生物担体、及び嫌気発酵処理装置に関する。   The present invention relates to a wastewater anaerobic fermentation treatment method, a microorganism carrier for anaerobic fermentation treatment, and an anaerobic fermentation treatment apparatus.

嫌気発酵処理は、好気処理のような曝気が不要で低コストな水処理技術である(特許文献1参照)。この嫌気発酵処理は、高有機物濃度の排水の処理には有効であるが、中低有機物濃度の排水に対してはその効果は限定的である。このため、良好な処理水質を得るためには嫌気発酵処理の後段に好気処理が必要であった。   Anaerobic fermentation is a low-cost water treatment technique that does not require aeration like aerobic treatment (see Patent Document 1). This anaerobic fermentation treatment is effective for the treatment of wastewater with a high organic matter concentration, but its effect is limited for wastewater with a medium to low organic matter concentration. For this reason, an aerobic treatment was necessary after the anaerobic fermentation treatment in order to obtain good treated water quality.

特開2013−240768号公報JP2013-240768A

しかし、電力事情が良好でない地域では、恒常的に好気処理を行うための電力を得ることが困難であり、嫌気発酵処理にのみにより良好な処理水質にすることが求められている。   However, in an area where the power situation is not good, it is difficult to obtain power for constantly performing an aerobic treatment, and it is required to have a better treated water quality only by anaerobic fermentation treatment.

そこで、本発明は、嫌気発酵処理のみで良好な処理水質を得ることが可能な排水の嫌気発酵処理方法、嫌気発酵処理用の微生物担体、及び嫌気発酵処理装置を提供することを目的とする。   Then, an object of this invention is to provide the anaerobic fermentation processing method of the waste_water | drain which can obtain a favorable treated water quality only by anaerobic fermentation processing, the microorganism carrier for anaerobic fermentation processing, and an anaerobic fermentation processing apparatus.

上記目的を達成するため、本発明に係る排水の嫌気発酵処理方法は、第1には、反応槽内部に配置された固定ろ床よりも低くなる前記反応槽の位置から排水を供給し、前記反応槽内の微生物からなる汚泥により前記排水を嫌気発酵処理しつつ前記反応槽上部から処理水を排出する排水の嫌気発酵処理方法において、前記処理水を固液分離して前記汚泥を回収するとともに前記汚泥を固めて微生物担体を形成して前記固定ろ床の上部に配置することを特徴とする。   In order to achieve the above object, the method for anaerobic fermentation of wastewater according to the present invention firstly supplies wastewater from the position of the reaction tank that is lower than the fixed filter bed disposed inside the reaction tank, In the anaerobic fermentation treatment method for wastewater, in which the treated water is discharged from the upper part of the reaction tank while the wastewater is subjected to anaerobic fermentation treatment with sludge composed of microorganisms in the reaction tank, the treated water is separated into solid and liquid and the sludge is recovered. The sludge is solidified to form a microbial carrier and is disposed on the fixed filter bed.

上記方法において、固定ろ床よりも上の領域にある排水を有効に嫌気発酵処理する微生物はその領域に多く存在する。しかし、その微生物からなる汚泥は処理水とともに排出されてしまう。   In the above-described method, there are many microorganisms that effectively perform anaerobic fermentation of wastewater in the region above the fixed filter bed. However, the sludge composed of the microorganisms is discharged together with the treated water.

しかし、上記方法によれば、処理水から固液分離して回収した汚泥を原料とした微生物担体の見かけの比重を排水よりも高くすることができる。これにより、当該微生物担体を固定ろ床の上部に配置しても、微生物担体が処理水とともに排出されなくなり、固定ろ床よりも上の領域にある排水の嫌気発酵処理を有効に行う微生物の漏出を防止して、排水の嫌気発酵処理を効率的かつ安定的に行うことができる。   However, according to the above method, the apparent specific gravity of the microorganism carrier using the sludge collected by solid-liquid separation from the treated water as a raw material can be made higher than that of the waste water. As a result, even if the microbial carrier is arranged on the upper part of the fixed filter bed, the microbial carrier is not discharged together with the treated water, and the microbial leakage that effectively performs the anaerobic fermentation treatment of the waste water in the region above the fixed filter bed. And anaerobic fermentation treatment of waste water can be performed efficiently and stably.

第2には、前記固定ろ床よりも上となる領域における前記排水の有機物濃度は、TOC濃度で1mg/L以上100mg/L以下であることを特徴とする。
上記方法により、当該有機物濃度において有効に嫌気発酵処理する微生物は排水の固定ろ床よりも上となる領域において高密度に存在するため、これを回収して微生物担体として元に戻すことにより排水の嫌気発酵処理を効率的に行うことができる。
2ndly, the organic substance density | concentration of the said waste_water | drain in the area | region above the said fixed filter bed is 1 mg / L or more and 100 mg / L or less by a TOC density | concentration, It is characterized by the above-mentioned.
By the above method, microorganisms that are effectively anaerobically fermented at the organic matter concentration are present in a high density in the region above the fixed filter bed of the wastewater. An anaerobic fermentation process can be performed efficiently.

第3には、前記処理水を沈殿槽に導入して前記汚泥を前記沈殿槽に沈殿させることにより前記固液分離を行うことを特徴とする。
上記方法により、電力を必要とせず、簡易な方法で汚泥を回収することができる。
Third, the solid-liquid separation is performed by introducing the treated water into a sedimentation tank and allowing the sludge to settle into the sedimentation tank.
By the above method, sludge can be recovered by a simple method without requiring electric power.

本発明に係る嫌気発酵処理用の微生物担体は、第1には、反応槽内部に配置された固定ろ床よりも低くなる前記反応槽の位置から排水を供給し、前記反応槽内の微生物からなる汚泥により前記排水を嫌気発酵処理しつつ前記反応槽上部から処理水を排出し、前記処理水を固液分離して前記汚泥を回収するとともに前記汚泥を固めて形成したことを特徴とする。   The microorganism carrier for anaerobic fermentation treatment according to the present invention firstly supplies waste water from the position of the reaction tank that is lower than the fixed filter bed disposed inside the reaction tank, and from microorganisms in the reaction tank. The treated water is discharged from the upper part of the reaction tank while the wastewater is subjected to anaerobic fermentation treatment with the sludge, and the treated water is separated into solid and liquid to collect the sludge and the sludge is solidified.

上記構成により、処理水から固液分離して回収した汚泥を原料とした微生物担体の見かけの比重を排水よりも高くすることができる。これにより、当該微生物担体を固定ろ床の上部に配置しても、微生物担体が処理水とともに排出されなくなり、固定ろ床よりも上の領域にある排水の嫌気発酵処理を有効に行う微生物の漏出を防止して、排水の嫌気発酵処理を効率的かつ安定的に行うことができる。   By the said structure, the apparent specific gravity of the microorganisms carrier made from the sludge collect | recovered by solid-liquid separation from a treated water can be made higher than a waste_water | drain. As a result, even if the microbial carrier is arranged on the upper part of the fixed filter bed, the microbial carrier is not discharged together with the treated water, and the microbial leakage that effectively performs the anaerobic fermentation treatment of the waste water in the region above the fixed filter bed. And anaerobic fermentation treatment of waste water can be performed efficiently and stably.

第2には、前記固液分離により得られた前記汚泥が代謝を維持可能な最小気質濃度は、TOC濃度で1mg/L以上100mg/L以下であることを特徴とする。
上記構成により、当該有機物濃度において有効に嫌気発酵処理する微生物は排水の固定ろ床よりも上となる領域において高密度に存在するため、これを回収して微生物担体として元に戻すことにより排水の嫌気発酵処理を効率的に行うことができる。
Second, the minimum air quality concentration at which the sludge obtained by the solid-liquid separation can maintain metabolism is TOC concentration of 1 mg / L or more and 100 mg / L or less.
With the above configuration, microorganisms that are effectively anaerobically fermented at the organic substance concentration are present in a high density in the region above the fixed filter bed of the wastewater. An anaerobic fermentation process can be performed efficiently.

本発明に係る嫌気発酵処理装置は、前述の嫌気発酵処理用の微生物担体を用いた嫌気発酵処理装置であって、前記固定ろ床が配置されるとともに排水を貯留し、微生物からなる汚泥により前記排水を嫌気発酵処理する反応槽と、前記反応槽の前記固定ろ床よりも低い位置に新たな排水を導入して前記反応槽の上部から処理水を排出させる導入管と、を有し、前記処理水から前記汚泥を固液分離する分離手段が設けられ、前記固定ろ床の上部には、前記汚泥を固めた前記微生物担体が配置可能となっていることを特徴とする。   The anaerobic fermentation treatment apparatus according to the present invention is an anaerobic fermentation treatment apparatus using the above-described microbial carrier for anaerobic fermentation treatment, wherein the fixed filter bed is disposed and waste water is stored, and the sludge composed of microorganisms A reaction tank for anaerobic fermentation of waste water, and an introduction pipe for introducing new waste water to a position lower than the fixed filter bed of the reaction tank and discharging treated water from the upper part of the reaction tank, Separation means for solid-liquid separation of the sludge from treated water is provided, and the microbial carrier solidified with the sludge can be disposed on the fixed filter bed.

上記構成により、処理水から固液分離して回収した汚泥を原料として微生物担体を形成することができるが、その見かけの比重を排水よりも高くすることができる。これにより、当該微生物担体を固定ろ床の上部に配置しても、微生物担体が処理水とともに排出されなくなり、固定ろ床よりも上の領域にある排水の嫌気発酵処理を有効に行う微生物の漏出を防止して、排水の嫌気発酵処理を効率的かつ安定的に行うことが可能な嫌気発酵処理装置となる。   Although the microorganism carrier can be formed by using the sludge collected by solid-liquid separation from the treated water as a raw material, the apparent specific gravity can be made higher than that of the wastewater. As a result, even if the microbial carrier is arranged on the upper part of the fixed filter bed, the microbial carrier is not discharged together with the treated water, and the microbial leakage that effectively performs the anaerobic fermentation treatment of the waste water in the region above the fixed filter bed. Therefore, an anaerobic fermentation treatment apparatus capable of efficiently and stably performing anaerobic fermentation treatment of waste water is provided.

本発明に係る排水の嫌気発酵処理方法、嫌気発酵処理用の微生物担体、及び嫌気発酵処理装置によれば、処理水から固液分離して回収した汚泥を原料とした微生物担体の見かけの比重を排水よりも高くすることができる。これにより、当該微生物担体を固定ろ床の上部に配置しても、微生物担体が処理水とともに排出されなくなり、固定ろ床よりも上の領域にある排水の嫌気発酵処理を有効に行う微生物の漏出を防止して、排水の嫌気発酵処理を効率的かつ安定的に行うことができる。   According to the method for anaerobic fermentation of waste water, the microbial carrier for anaerobic fermentation, and the anaerobic fermentation treatment apparatus according to the present invention, the apparent specific gravity of the microbial carrier made from sludge recovered by solid-liquid separation from the treated water is used. Can be higher than drainage. As a result, even if the microbial carrier is arranged on the upper part of the fixed filter bed, the microbial carrier is not discharged together with the treated water, and the microbial leakage that effectively performs the anaerobic fermentation treatment of the waste water in the region above the fixed filter bed. And anaerobic fermentation treatment of waste water can be performed efficiently and stably.

第1実施形態の嫌気発酵処理装置の模式図である。It is a schematic diagram of the anaerobic fermentation processing apparatus of 1st Embodiment. 第2実施形態の嫌気発酵処理装置の模式図である。It is a schematic diagram of the anaerobic fermentation processing apparatus of 2nd Embodiment. 反応槽の各位置にある汚泥の気質濃度の違いによる比気質消費速度の関係を示す図である。It is a figure which shows the relationship of the specific air quality consumption rate by the difference in the air quality density | concentration of the sludge in each position of a reaction tank.

以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載される構成要素、種類、組み合わせ、形状、その相対配置などは特定的な記載がない限り、この発明の範囲をそれのみに限定する主旨ではなく単なる説明例に過ぎない。   Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings. However, the components, types, combinations, shapes, relative arrangements, and the like described in this embodiment are merely illustrative examples and not intended to limit the scope of the present invention only unless otherwise specified. .

図1に、第1実施形態の嫌気発酵処理装置の模式図を示す。本実施形態の嫌気発酵装置10は、反応槽12、分離手段34を有する。反応槽12は、実質的に外気に遮断された円筒形の容器となっており、その内部に排水14が蓄えられ、さらに排水14を嫌気発酵処理する汚泥(微生物)(不図示)が混ぜられている。反応槽12の下部は下に行くほど径が小さくなるテーパー形状になっており、その最下部から堆積汚泥20(微生物)を取り出すことができる。   In FIG. 1, the schematic diagram of the anaerobic fermentation processing apparatus of 1st Embodiment is shown. The anaerobic fermentation apparatus 10 according to this embodiment includes a reaction tank 12 and a separation unit 34. The reaction tank 12 is a cylindrical container substantially blocked by the outside air, in which the drainage 14 is stored, and sludge (microorganisms) (not shown) for anaerobic fermentation of the drainage 14 is mixed. ing. The lower part of the reaction tank 12 has a tapered shape with a diameter decreasing toward the bottom, and the accumulated sludge 20 (microorganisms) can be taken out from the lowermost part.

反応槽12内において、反応槽12の下部よりも上となる位置には多数(多段)の固定ろ床22が配置されている。固定ろ床22は、円形の板材であって、ワイヤー24等により支持され高さ方向に一定の間隔で並ぶように配置されている。上部(最上段)にある固定ろ床22aは、ほぼ同一の高さ位置に配置されているが、それより下に配置された固定ろ床22であって、互いに隣接するワイヤー24の一方に取り付けられた固定ろ床22と、他方に取り付けられた固定ろ床22は、高さ方向で千鳥配置となるように配置されている。なお、固定ろ床22,22aは、嫌気発酵処理により発生したメタンと当該メタンに取り込まれた汚泥とを分離するものであるが、後述のように嫌気発酵処理する微生物担体46を配置することができる。   In the reaction tank 12, many (multistage) fixed filter beds 22 are arranged at positions above the lower part of the reaction tank 12. The fixed filter bed 22 is a circular plate material, and is arranged so as to be supported by wires 24 or the like and arranged in the height direction at regular intervals. The fixed filter bed 22a in the upper part (the uppermost stage) is arranged at substantially the same height position, but is a fixed filter bed 22 arranged below it and attached to one of the wires 24 adjacent to each other. The fixed filter bed 22 and the fixed filter bed 22 attached to the other are arranged in a staggered arrangement in the height direction. In addition, although the fixed filter beds 22 and 22a separate the methane generated by the anaerobic fermentation treatment and the sludge taken in the methane, a microbial carrier 46 for anaerobic fermentation treatment can be disposed as described later. it can.

反応槽12の上部には、反応槽12の側壁よりも内側に外壁を有する排出部26が形成され、排出部26の上端からあふれ出るように処理水18が排出される。   A discharge part 26 having an outer wall inside the side wall of the reaction tank 12 is formed in the upper part of the reaction tank 12, and the treated water 18 is discharged so as to overflow from the upper end of the discharge part 26.

反応槽12の中心には導入管28が配置され、導入管28は、反応槽の上部を封止する上蓋30を貫通して排出部26から挿通し、反応槽12内部の下部(固定ろ床22の下部よりも低くなる位置)において開口部を有している。そして、導入管28は、排水14(生活排水、工業排水等)を導入し、開口部から排水14を供給する。   An introduction pipe 28 is disposed in the center of the reaction tank 12, and the introduction pipe 28 passes through an upper lid 30 that seals the upper part of the reaction tank and is inserted from the discharge unit 26, and is formed in a lower part (fixed filter bed) inside the reaction tank 12. 22 at a position lower than the lower portion of 22). And the introduction pipe | tube 28 introduces the waste_water | drain 14 (life drainage, industrial waste_water | drain, etc.), and supplies the waste_water | drain 14 from an opening part.

上記構成において、反応槽12内には排水14を機械的に撹拌する装置は有していない。よって、排水14は、固定ろ床22よりも下となる部分で高有機物濃度領域を形成し、それより上方に移動するにつれ有機物濃度が減少し、最上段の固定ろ床22a付近では中低有機物濃度領域を形成する。   In the above configuration, the reaction tank 12 does not have a device for mechanically stirring the drainage 14. Accordingly, the drainage 14 forms a high organic matter concentration region in a portion below the fixed filter bed 22, and the organic matter concentration decreases as it moves upward, and the medium and low organic matter is near the uppermost fixed filter bed 22a. A density region is formed.

この状態で導入管28から新たな排水14を導入すると新たな排水14を導入した体積分、この新たな排水14に押し出される形で排出部26から処理水18(排水14の上澄み)が排出される。新たな排水14は高有機物濃度領域において良好な嫌気発酵処理ができる汚泥(微生物)により嫌気発酵処理がなされ、すでに高有機物濃度領域にあった排水14は新たな排水14により固定ろ床22が配置された領域に押し上げられる。   In this state, when a new drainage 14 is introduced from the introduction pipe 28, the treated water 18 (the supernatant of the drainage 14) is discharged from the discharge portion 26 in a form where the new drainage 14 is introduced and the new drainage 14 is pushed out. The The new wastewater 14 is subjected to anaerobic fermentation by sludge (microorganisms) that can be subjected to favorable anaerobic fermentation treatment in the high organic matter concentration region, and the fixed filter bed 22 is disposed by the new wastewater 14 in the wastewater 14 that has already been in the high organic matter concentration region. Pushed up to the marked area.

固定ろ床22が配置された領域では、汚泥(微生物)の嫌気発酵処理により発生するメタンが汚泥を取り込み、取り込まれた汚泥がメタンによる浮力により上昇して固定ろ床22(固定ろ床22a)の下面に当接する。そして固定ろ床22の端面にメタンが到達するとメタンは自ら取り込んだ汚泥から分離して上昇し、汚泥は下降する。このように固定ろ床22が配置された領域では、汚泥は上昇と下降を繰り返し、排水14は例えば図中に示す流路32に従って上昇する。   In the area where the fixed filter bed 22 is arranged, methane generated by anaerobic fermentation of sludge (microorganisms) takes in the sludge, and the incorporated sludge rises due to buoyancy by the methane and the fixed filter bed 22 (fixed filter bed 22a). It contacts the lower surface of the. And when methane reaches | attains the end surface of the fixed filter bed 22, methane will isolate | separate and raise from the sludge taken in by itself, and sludge will fall. In the region where the fixed filter bed 22 is arranged in this way, the sludge repeatedly rises and falls, and the drainage 14 rises, for example, according to the flow path 32 shown in the figure.

しかし、固定ろ床22aより上の領域(中低有機物濃度領域)にある汚泥はメタンに取りつかれるとそのまま排水14の水面まで上昇してしまい、排出部26から排出されてしまう。すなわち、当該汚泥は、中低有機物濃度領域において有効に嫌気発酵処理できるものであるが、その役割を十分に果たす前に処理水18に混ざって排出されてしまうことになる。そこで、本実施形態では、処理水18に混入して漏れ出た汚泥を分離手段34により回収し、この汚泥から微生物担体46を形成して反応槽12に投入することを特徴としている。   However, if the sludge in the area above the fixed filter bed 22a (medium / low organic substance concentration area) is attached to methane, it rises as it is to the water surface of the drainage 14 and is discharged from the discharge part 26. In other words, the sludge can be effectively anaerobically fermented in the medium and low organic matter concentration region, but will be discharged into the treated water 18 before sufficiently fulfilling its role. Therefore, the present embodiment is characterized in that the sludge mixed and leaked into the treated water 18 is collected by the separation means 34, and the microorganism carrier 46 is formed from this sludge and is introduced into the reaction tank 12.

分離手段34は、反応槽12に接続され排出部26から排出された処理水18が導入される主配管36と、主配管36に並列に接続された分岐配管38と、分岐配管38に取り付けられ、処理水18から汚泥を固液分離する分離膜42と、を有している。また分岐配管38にはバルブ40が取り付けられ、分離膜42には固液分離した汚泥を排出する汚泥排出ライン44が取り付けられている。分離膜42には一定の圧力で処理水18が導入され、分離膜42を透過して外部に排出される透過水と、分離膜42を透過することなく汚泥が残った濃縮水に分離される。そして濃縮水は汚泥排出ライン44を通じて分離膜42から取り出されるが、濃縮水から得られる汚泥が微生物担体46の原料となる。   The separation means 34 is attached to the main pipe 36 to which the treated water 18 connected to the reaction tank 12 and discharged from the discharge section 26 is introduced, the branch pipe 38 connected in parallel to the main pipe 36, and the branch pipe 38. And a separation membrane 42 for solid-liquid separation of sludge from the treated water 18. A valve 40 is attached to the branch pipe 38, and a sludge discharge line 44 for discharging the sludge separated into solid and liquid is attached to the separation membrane 42. The treated water 18 is introduced into the separation membrane 42 at a constant pressure, and is separated into permeated water that passes through the separation membrane 42 and is discharged to the outside, and concentrated water in which sludge remains without passing through the separation membrane 42. . The concentrated water is taken out from the separation membrane 42 through the sludge discharge line 44, and the sludge obtained from the concentrated water becomes the raw material of the microorganism carrier 46.

微生物担体46は、分離手段34により処理水18から固液分離された汚泥をゲル(高分子材料)により直径1mm〜2mm程度の大きさに固めたものである。ゲルの材料は、水を通すものであって汚泥中の微生物を死滅させないものであれば、どのような材料でも適用できる。また、微生物担体46は、排出部26(排水14の水面)から投入され、固定ろ床22a(及び固定ろ床22)に配置される。   The microorganism carrier 46 is obtained by solidifying the sludge solid-liquid separated from the treated water 18 by the separating means 34 into a size of about 1 mm to 2 mm in diameter with a gel (polymer material). Any material can be applied as long as it allows water to pass through and does not kill microorganisms in the sludge. Further, the microbial carrier 46 is introduced from the discharge unit 26 (the water surface of the drainage 14) and is disposed on the fixed filter bed 22a (and the fixed filter bed 22).

ところで、排水14の固定ろ床22より上の領域における有機物濃度は、後述のように、TOC(Tortal Organic Carbon)濃度で1mg/L以上100mg/L以下となっている。そして、有機物濃度において有効に嫌気発酵処理する汚泥は前述の領域において高密度に存在するため、これを回収して微生物担体46として元に戻すことにより排水14の嫌気発酵処理を効率的に行うことができる。   By the way, the organic substance concentration in the region above the fixed filter bed 22 of the waste water 14 is 1 mg / L or more and 100 mg / L or less in the TOC (Total Organic Carbon) concentration as described later. And since the sludge which carries out the anaerobic fermentation effectively in organic substance density | concentration exists in the above-mentioned area | region in high density, the anaerobic fermentation treatment of the waste_water | drain 14 is efficiently performed by collect | recovering and returning this as the microorganism carrier 46. Can do.

そして、本実施形態では、微生物担体46の直径を1mm〜2mm程度の大きさにしているため、処理水18から固液分離して回収した汚泥を原料とした微生物担体46の見かけの比重を排水14よりも高くすることができる。これにより、当該微生物担体46を固定ろ床22aの上部に配置しても、微生物担体46が処理水18とともに排出されなくなり、固定ろ床22aよりも上の領域にある排水14の嫌気発酵処理を有効に行う微生物の漏出を防止して、排水14の嫌気発酵処理を効率的かつ安定的に行うことができる。   In the present embodiment, since the diameter of the microbial carrier 46 is about 1 mm to 2 mm, the apparent specific gravity of the microbial carrier 46 using the sludge collected by solid-liquid separation from the treated water 18 as a raw material is drained. It can be higher than 14. Thereby, even if the microbial carrier 46 is arranged on the upper part of the fixed filter bed 22a, the microbial carrier 46 is not discharged together with the treated water 18, and the anaerobic fermentation treatment of the waste water 14 in the region above the fixed filter bed 22a is performed. It is possible to effectively and stably perform the anaerobic fermentation treatment of the waste water 14 while preventing the leakage of microorganisms that is effectively performed.

本実施形態の嫌気発酵処理装置10では、初めのうちは、一定の有機物濃度の処理水18が排出されるが、前述の微生物担体46を導入していくことにより有機物濃度は低下していくことになる。そして、有機物濃度が一定の濃度以下になったときには、バルブ40を閉めて汚泥の回収を省略することができる。   In the anaerobic fermentation treatment apparatus 10 of the present embodiment, the treated water 18 having a constant organic matter concentration is discharged at first, but the organic matter concentration is lowered by introducing the microbial carrier 46 described above. become. When the organic matter concentration becomes a certain concentration or less, the valve 40 can be closed to omit the sludge recovery.

図2に、第2実施形態の嫌気発酵処理装置の模式図を示す。第2実施形態の嫌気発酵処理装置10Aは、分離手段34が沈殿槽48になっている点で第1実施形態の嫌気発酵処理装置10と相違する。   In FIG. 2, the schematic diagram of the anaerobic fermentation processing apparatus of 2nd Embodiment is shown. The anaerobic fermentation treatment apparatus 10 </ b> A of the second embodiment is different from the anaerobic fermentation treatment apparatus 10 of the first embodiment in that the separation means 34 is a precipitation tank 48.

沈殿槽48は、排出部26から排出された処理水18を蓄えるとともにその上澄みを排出するものである。沈殿槽48の底部は傾斜面48aになっており、その最下部に汚泥排出ライン44が設けられている。よって、沈殿槽48に導入された処理水18中の汚泥50は、前述のメタンの浮力を受けないので、徐々に沈降して底部に到達し、傾斜面48aを伝って汚泥排出ライン44に到達する。   The sedimentation tank 48 stores the treated water 18 discharged from the discharge unit 26 and discharges the supernatant. The bottom of the sedimentation tank 48 is an inclined surface 48a, and a sludge discharge line 44 is provided at the bottom thereof. Therefore, the sludge 50 in the treated water 18 introduced into the settling tank 48 does not receive the above-described methane buoyancy, so it gradually settles and reaches the bottom, and reaches the sludge discharge line 44 along the inclined surface 48a. To do.

第1実施形態の分離膜42では、分離膜42に一定の圧力で処理水18を印加するポンプ(不図示)、及びポンプを駆動させる電力が必要となる場合がある。また、時間経過とともに分離膜42に目詰まりが発生する。しかし、第2実施形態の沈殿槽48では、沈殿により処理水18から汚泥を分離するためポンプや電力は不要であり、また常時汚泥排出ライン44から汚泥(汚泥を高濃度に有する排水)を取り出すことにより、前述の目詰まりの問題は生じない。なお、他の分離手段34として、水平に延びる樋(不図示)を適用し、処理水18をこの樋に流し、樋の底面に堆積した汚泥を回収するようにしてもよい。   In the separation membrane 42 of the first embodiment, a pump (not shown) that applies the treated water 18 to the separation membrane 42 at a constant pressure and electric power for driving the pump may be required. Further, the separation membrane 42 is clogged with time. However, in the sedimentation tank 48 of the second embodiment, since the sludge is separated from the treated water 18 by sedimentation, no pump or electric power is required, and sludge (drainage having a high concentration of sludge) is always taken out from the sludge discharge line 44. Therefore, the above-mentioned clogging problem does not occur. As another separation means 34, a horizontally extending ridge (not shown) may be applied, and the treated water 18 may be poured into the basin to collect sludge accumulated on the bottom surface of the ridge.

図3に、反応槽の各位置にある汚泥の気質濃度の違いによる比気質消費速度の関係を示す。本願発明者は、排水中の気質濃度(有機物濃度)を変化させた場合の反応槽12の各位置における汚泥(微生物)の比気質消費速度について調査した。   In FIG. 3, the relationship of the specific air quality consumption rate by the difference in the air quality density | concentration of the sludge in each position of a reaction tank is shown. The inventor of the present application investigated the specific air quality consumption rate of sludge (microorganisms) at each position of the reaction tank 12 when the air quality concentration (organic matter concentration) in the waste water was changed.

本願発明者は、排水14の水面近傍(A)(中低有機物濃度領域)に浮遊する汚泥Aと、固定ろ床22aの周辺(B)(中低有機物濃度領域)に浮遊する汚泥Bと、固定ろ床22の下部(最下段)周辺(C)(高有機物濃度領域)に浮遊する汚泥Cと、反応槽12の下部(D)(高有機物濃度領域)に堆積した汚泥Dと、を採取した。そして、それぞれ気質濃度が500mgTOC/Lの排水に投入して、有機物濃度の減少速度、すなわち比気質消費速度[gTOC/gMLVSS(Mixied Liquor Volatile Suspended Solid)−day]を算出した。   The inventor of the present application has sludge A floating in the vicinity of the water surface (A) of the drainage 14 (medium / low organic matter concentration region), and sludge B floating in the vicinity (B) (medium / low organic matter concentration region) of the fixed filter bed 22a, Collect sludge C floating in the lower part (bottom) of fixed filter bed 22 (C) (high organic matter concentration region) and sludge D deposited in the lower part (D) of reaction tank 12 (high organic matter concentration region). did. Then, each was introduced into wastewater having a temperament concentration of 500 mg TOC / L, and the rate of decrease in the organic substance concentration, that is, the specific temperament consumption rate [gTOC / gMLVSS (Mixed Liquid Volatile Suspended Solid) -day] was calculated.

初期状態、すなわち気質濃度が500mgTOC/Lでは、汚泥Dが最も比気質消費速度が速く、次いで汚泥C、汚泥B、汚泥Aの順に比気質消費速度は遅くなっている。しかし、汚泥Dは、気質濃度が低下するについて比気質消費速度が急激に減少し、気質濃度が200mgTOC/Lのところでゼロとなっている。すなわち、汚泥Dは、気質濃度が200mgTOC/L以下の排水中では活動が停止し、それ以上の汚泥の浄化は不可能となることを示している。同様に、汚泥Cは、気質濃度が150mgTOC/L以下の排水中では活動が停止し、それ以上の汚泥の浄化は不可能となる。   In the initial state, that is, the air quality concentration is 500 mg TOC / L, the sludge D has the fastest specific air quality consumption rate, and then the specific air quality consumption rate becomes slow in the order of sludge C, sludge B, and sludge A. However, as for the sludge D, the specific air quality consumption rate rapidly decreases as the air quality concentration decreases, and becomes zero when the air quality concentration is 200 mg TOC / L. That is, the sludge D shows that the activity is stopped in the wastewater having a temperament concentration of 200 mg TOC / L or less, and further purification of the sludge becomes impossible. Similarly, the activity of the sludge C is stopped in the waste water having a temperament concentration of 150 mg TOC / L or less, and further purification of the sludge becomes impossible.

一方、汚泥Bは、気質濃度が200mgTOC/Lにおいても比気質消費速度が1.5gTOC/gMLVSS−day程度あり、気質濃度が100mgTOC/Lになるまで排水を浄化することができる。さらに、汚泥Aは、気質濃度が200mgTOC/Lにおいても比気質消費速度が1.7gTOC/gMLVSS−day程度あり、気質濃度が1mgTOC/Lになるまで排水を浄化することができる。よって、汚泥A,Bは、生活排水相当の気質濃度200mgTOC/Lにおいて、生活排水を十分に浄化可能な比気質消費速度1.5gTOC/gMLVSS−dayを有しているため、排水を浄化するために有効な汚泥である。そして、このことから、反応槽12の高さ方向において、水面近傍(A)と固定ろ床22a近傍(B)の間(中低有機物濃度領域)の有機物濃度は1mgTOC/L〜100mgTOC/Lであり、この領域に1mgTOC/L〜100mgTOC/Lを最低気質濃度(微生物が代謝を維持する有機物濃度)とする汚泥(微生物)が多数存在することがわかる。   On the other hand, sludge B has a specific air quality consumption rate of about 1.5 gTOC / gMLVSS-day even when the air quality concentration is 200 mg TOC / L, and can purify the waste water until the air quality concentration reaches 100 mg TOC / L. Furthermore, the sludge A has a specific air quality consumption rate of about 1.7 gTOC / gMLVSS-day even when the air quality concentration is 200 mg TOC / L, and the waste water can be purified until the air quality concentration reaches 1 mg TOC / L. Therefore, in order to purify the waste water, the sludges A and B have a specific air quality consumption rate of 1.5 g TOC / g MLVSS-day that can sufficiently purify the domestic waste water at an air quality concentration equivalent to domestic waste water of 200 mg TOC / L. It is effective sludge. From this, in the height direction of the reaction tank 12, the organic substance concentration between the vicinity of the water surface (A) and the vicinity of the fixed filter bed 22a (B) (medium low organic substance concentration region) is 1 mg TOC / L to 100 mg TOC / L. There are many sludges (microorganisms) having a minimum air quality concentration (organic substance concentration at which microorganisms maintain metabolism) of 1 mg TOC / L to 100 mg TOC / L.

ここで、汚泥A,Bは、固定ろ床22aよりも上の領域で浮遊しているため、嫌気発酵処理により発生するメタンに取り込まれて上昇し排出部26から排出されてしまうが、本実施形態では、処理水18から固液分離して回収した汚泥(汚泥A,汚泥B)を原料とした直径が1mm〜2mmとなる微生物担体46を反固定ろ床22a(及び固定ろ床22)に配置している。   Here, since the sludges A and B are floating in the region above the fixed filter bed 22a, they are taken up by methane generated by the anaerobic fermentation process and are discharged from the discharge unit 26. In the embodiment, the microorganism carrier 46 having a diameter of 1 mm to 2 mm made of sludge (sludge A, sludge B) recovered by solid-liquid separation from the treated water 18 is used as the anti-fixed filter bed 22a (and fixed filter bed 22). It is arranged.

嫌気発酵処理のみで良好な処理水質を得ることが可能な排水の嫌気発酵処理方法、嫌気発酵処理用の微生物担体、及び嫌気発酵処理装置として利用できる。   It can be used as an anaerobic fermentation treatment method for waste water that can obtain good treated water quality only by anaerobic fermentation treatment, a microorganism carrier for anaerobic fermentation treatment, and an anaerobic fermentation treatment apparatus.

10………嫌気発酵処理装置、12………反応槽、14………排水、18………処理水、20………堆積汚泥、22………固定ろ床、22a………固定ろ床、24………ワイヤー、26………排出部、28………導入管、30………上蓋、32………流路、34………分離手段、36………主配管、38………分岐配管、40………バルブ、42………分離膜、44………汚泥排出ライン、46……微生物担体、48………沈殿槽、48a………傾斜面。 10 ......... Anaerobic fermentation treatment apparatus, 12 ......... Reaction tank, 14 ......... Drainage, 18 ......... Treatment water, 20 ...... Sediment sludge, 22 ...... Fixed filter bed, 22a ...... Fixed filter Floor, 24 ......... Wire, 26 ......... Discharge section, 28 ......... Introduction pipe, 30 ......... Top cover, 32 ......... Flow path, 34 ......... Separating means, 36 ......... Main pipe, 38 ......... Branch piping, 40 ......... Valve, 42 ......... Separation membrane, 44 ......... Sludge discharge line, 46 ... Microbial carrier, 48 ......... Settling tank, 48a ......... Inclined surface.

Claims (6)

反応槽内部に配置された固定ろ床よりも低くなる前記反応槽の位置から排水を供給し、前記反応槽内の微生物からなる汚泥により前記排水を嫌気発酵処理しつつ前記反応槽上部から処理水を排出する排水の嫌気発酵処理方法において、
前記処理水を固液分離して前記汚泥を回収するとともに前記汚泥を固めて微生物担体を形成して前記固定ろ床の上部に配置することを特徴とする排水の嫌気発酵処理方法。
Waste water is supplied from the position of the reaction tank that is lower than the fixed filter bed disposed inside the reaction tank, and the treated water is treated from the upper part of the reaction tank while the waste water is subjected to anaerobic fermentation treatment with sludge composed of microorganisms in the reaction tank. In the anaerobic fermentation treatment method of wastewater that discharges
A method for anaerobic fermentation treatment of waste water, wherein the treated water is separated into solid and liquid to collect the sludge, and the sludge is solidified to form a microorganism carrier and disposed on the fixed filter bed.
前記固定ろ床よりも上となる領域における前記排水の有機物濃度は、TOC濃度で1mg/L以上100mg/L以下であることを特徴とする請求項1に記載の排水の嫌気発酵処理方法。   The organic matter concentration of the waste water in the region above the fixed filter bed is 1 mg / L or more and 100 mg / L or less in terms of TOC concentration. 前記処理水を沈殿槽に導入して前記汚泥を前記沈殿槽に沈殿させることにより前記固液分離を行うことを特徴とする請求項1または2に記載の排水の嫌気発酵処理方法。   The method for anaerobic fermentation of waste water according to claim 1 or 2, wherein the solid-liquid separation is performed by introducing the treated water into a settling tank and precipitating the sludge in the settling tank. 反応槽内部に配置された固定ろ床よりも低くなる前記反応槽の位置から排水を供給し、前記反応槽内の微生物からなる汚泥により前記排水を嫌気発酵処理しつつ前記反応槽上部から処理水を排出し、前記処理水を固液分離して前記汚泥を回収するとともに前記汚泥を固めて形成したことを特徴とする嫌気発酵処理用の微生物担体。   Waste water is supplied from the position of the reaction tank that is lower than the fixed filter bed disposed inside the reaction tank, and the treated water is treated from the upper part of the reaction tank while the waste water is subjected to anaerobic fermentation treatment with sludge composed of microorganisms in the reaction tank. A microorganism carrier for anaerobic fermentation treatment, wherein the sludge is collected by solid-liquid separation of the treated water and the sludge is solidified. 前記固液分離により得られた前記汚泥が代謝を維持可能な最小気質濃度は、TOC濃度で1mg/L以上100mg/L以下であることを特徴とする請求項4に記載の嫌気発酵処理用の微生物担体。   The minimum air quality concentration at which the sludge obtained by the solid-liquid separation can maintain metabolism is 1 mg / L or more and 100 mg / L or less in terms of TOC concentration. Microbial carrier. 請求項4または5に記載の嫌気発酵処理用の微生物担体を用いた嫌気発酵処理装置であって、
前記固定ろ床が配置されるとともに排水を貯留し、微生物からなる汚泥により前記排水を嫌気発酵処理する反応槽と、
前記反応槽の前記固定ろ床よりも低い位置に新たな排水を導入して前記反応槽の上部から処理水を排出させる導入管と、
を有し、
前記処理水から前記汚泥を固液分離する分離手段が設けられ、
前記固定ろ床の上部には、前記汚泥を固めた前記微生物担体が配置可能となっていることを特徴とする嫌気発酵処理装置。
An anaerobic fermentation treatment apparatus using the microbial carrier for anaerobic fermentation treatment according to claim 4 or 5,
A reaction tank in which the fixed filter bed is disposed and waste water is stored, and the waste water is subjected to anaerobic fermentation treatment with sludge composed of microorganisms;
An introduction pipe for introducing new waste water to a position lower than the fixed filter bed of the reaction tank and discharging treated water from the upper part of the reaction tank;
Have
Separation means for solid-liquid separation of the sludge from the treated water is provided,
An anaerobic fermentation treatment apparatus, wherein the microbial carrier solidified with the sludge can be disposed on an upper part of the fixed filter bed.
JP2015145279A 2015-07-22 2015-07-22 Anaerobic fermentation treatment method for waste water, microbial carrier for anaerobic fermentation treatment, and anaerobic fermentation treatment apparatus Active JP6460935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015145279A JP6460935B2 (en) 2015-07-22 2015-07-22 Anaerobic fermentation treatment method for waste water, microbial carrier for anaerobic fermentation treatment, and anaerobic fermentation treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015145279A JP6460935B2 (en) 2015-07-22 2015-07-22 Anaerobic fermentation treatment method for waste water, microbial carrier for anaerobic fermentation treatment, and anaerobic fermentation treatment apparatus

Publications (2)

Publication Number Publication Date
JP2017023943A true JP2017023943A (en) 2017-02-02
JP6460935B2 JP6460935B2 (en) 2019-01-30

Family

ID=57945424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015145279A Active JP6460935B2 (en) 2015-07-22 2015-07-22 Anaerobic fermentation treatment method for waste water, microbial carrier for anaerobic fermentation treatment, and anaerobic fermentation treatment apparatus

Country Status (1)

Country Link
JP (1) JP6460935B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112897707A (en) * 2021-01-15 2021-06-04 四川渔光物联技术有限公司 Tail water treatment device
CN117069254A (en) * 2023-08-24 2023-11-17 问泉环保技术(上海)有限公司 Novel anaerobic reaction equipment

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58153595A (en) * 1982-03-10 1983-09-12 Hideken Sekkei Jimusho:Kk Treatment of waste water
US4561974A (en) * 1983-02-03 1985-12-31 Degremont Apparatus for the anaerobic filtration of waste water
JPS61158786A (en) * 1984-12-28 1986-07-18 Susumu Hashimoto Preparation of immobilized microorganism embedded in carrier and group of immobilized microorganism embedded in carrier
JPS61171600A (en) * 1985-01-25 1986-08-02 Kurita Water Ind Ltd Treatment of high concentration organic waste liquid such as sludge
JP2005125203A (en) * 2003-10-22 2005-05-19 Sumitomo Heavy Ind Ltd Organic waste water treatment apparatus
JP2006167548A (en) * 2004-12-14 2006-06-29 National Institute Of Advanced Industrial & Technology Method for treating organic waste
JP2006247623A (en) * 2005-03-14 2006-09-21 Hitachi Plant Technologies Ltd Ammonia-containing water treatment method
JP2008068233A (en) * 2006-09-15 2008-03-27 Hitachi Plant Technologies Ltd Nitrogen elimination measure and nitrogen removing apparatus
JP2012210585A (en) * 2011-03-31 2012-11-01 Kurita Water Ind Ltd Method and apparatus for anaerobic treatment of kraft pulp wastewater
JP2014180594A (en) * 2013-03-18 2014-09-29 Kurita Water Ind Ltd Kraft pulp wastewater treatment method and apparatus

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58153595A (en) * 1982-03-10 1983-09-12 Hideken Sekkei Jimusho:Kk Treatment of waste water
US4561974A (en) * 1983-02-03 1985-12-31 Degremont Apparatus for the anaerobic filtration of waste water
JPS61158786A (en) * 1984-12-28 1986-07-18 Susumu Hashimoto Preparation of immobilized microorganism embedded in carrier and group of immobilized microorganism embedded in carrier
JPS61171600A (en) * 1985-01-25 1986-08-02 Kurita Water Ind Ltd Treatment of high concentration organic waste liquid such as sludge
JP2005125203A (en) * 2003-10-22 2005-05-19 Sumitomo Heavy Ind Ltd Organic waste water treatment apparatus
JP2006167548A (en) * 2004-12-14 2006-06-29 National Institute Of Advanced Industrial & Technology Method for treating organic waste
JP2006247623A (en) * 2005-03-14 2006-09-21 Hitachi Plant Technologies Ltd Ammonia-containing water treatment method
JP2008068233A (en) * 2006-09-15 2008-03-27 Hitachi Plant Technologies Ltd Nitrogen elimination measure and nitrogen removing apparatus
JP2012210585A (en) * 2011-03-31 2012-11-01 Kurita Water Ind Ltd Method and apparatus for anaerobic treatment of kraft pulp wastewater
JP2014180594A (en) * 2013-03-18 2014-09-29 Kurita Water Ind Ltd Kraft pulp wastewater treatment method and apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112897707A (en) * 2021-01-15 2021-06-04 四川渔光物联技术有限公司 Tail water treatment device
CN112897707B (en) * 2021-01-15 2023-03-28 四川渔光物联技术有限公司 Tail water treatment device
CN117069254A (en) * 2023-08-24 2023-11-17 问泉环保技术(上海)有限公司 Novel anaerobic reaction equipment
CN117069254B (en) * 2023-08-24 2024-05-10 问泉环保技术(上海)有限公司 Anaerobic reaction equipment

Also Published As

Publication number Publication date
JP6460935B2 (en) 2019-01-30

Similar Documents

Publication Publication Date Title
US9120038B2 (en) Wastewater treatment system design
CN203866160U (en) Municipal wastewater treatment system
JP2008012465A (en) Water treatment apparatus
JP6460935B2 (en) Anaerobic fermentation treatment method for waste water, microbial carrier for anaerobic fermentation treatment, and anaerobic fermentation treatment apparatus
CN104230104A (en) Biochemical filtration treatment all-in-one machine
CN102180566A (en) Process method for combining physical-chemical treatment and biochemical treatment for reinjection water with oil-field produced water
KR101037888B1 (en) Hybrid wastewater treatment equipment with sedimentation, biological degradation, filtration, phosphorus removal and uv disinfection system in a reactor
KR101048673B1 (en) External circulating anaerobic digester
CN108947137A (en) A kind of kitchen garbage percolation liquid treatment method
KR101393533B1 (en) Purification method by system with string biomedia using multi air diffuser and draft tube
US20190308898A1 (en) Sewage treatment system using multistage long-fiber filtering device, and treatment method thereof
CN104891705B (en) A kind of method that materialization cooperates with processing sewage with ultrafiltration
KR101543548B1 (en) Filtering apparatus and the use of total phosphorus filtering method
CN203545843U (en) Composite type oil removing equipment
KR102009674B1 (en) Eco-friendly living sewage treatment system
JP5926663B2 (en) In-pipe purification equipment
CN207619098U (en) A kind of Air flotation biological filter tank
CN202346821U (en) Macroporous filter material biological aerated filter
KR101071113B1 (en) Electrolysis apparatus
CN203960010U (en) The organic brine waste treatment system of a kind of high density
CN212174645U (en) Printing ink box cleaning wastewater treatment system
CN201634545U (en) Novel membrane bioreactor
CN111517465B (en) Advanced treatment integrated equipment and treatment method for aged leachate
CN209853914U (en) Pig farm effluent disposal system
JP2005193165A (en) Method and apparatus for treating organic sewage by using aerobic filter bed

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170302

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170306

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181225

R150 Certificate of patent or registration of utility model

Ref document number: 6460935

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250