JP2017021457A - Transformer input smoothing circuit - Google Patents

Transformer input smoothing circuit Download PDF

Info

Publication number
JP2017021457A
JP2017021457A JP2015136646A JP2015136646A JP2017021457A JP 2017021457 A JP2017021457 A JP 2017021457A JP 2015136646 A JP2015136646 A JP 2015136646A JP 2015136646 A JP2015136646 A JP 2015136646A JP 2017021457 A JP2017021457 A JP 2017021457A
Authority
JP
Japan
Prior art keywords
voltage
charging
power supply
discharging
ripple
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015136646A
Other languages
Japanese (ja)
Inventor
雄二 上條
Yuji Kamijo
雄二 上條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2015136646A priority Critical patent/JP2017021457A/en
Publication of JP2017021457A publication Critical patent/JP2017021457A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Electrical Variables (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve a problem that a voltage is dropping at a discharging time of a smoothing capacitor having passed a maximum value of ripple charging of a rectified voltage, and a discharging power for a load current increase/decrease followed by a voice signal is also dropping, and a speaker driving force of an amplifier becomes unstable, and even at the discharging time not including such a charging time, a charging operation is obtained, and a high sound quality is obtained by an improvement of the speaker driving force of the amplifier.SOLUTION: A transformer input smoothing circuit is provided, in which even when the charging of a smoothing capacitor at the ripple maximum value interval is stopped, a ripple due to a load turns a L1 ripple current generated by C1 and C2 circuits into a connection 2 that becomes a ripple current reversed to L2 so that a voltage generated in a power supply voltage +L2 is charged to C2, and the voltage generated in the C2 charged voltage +L2 is discharged, and the charging and the discharging are increased, and a transformer input smoothing circuit for increasing the power supply to the load is provided.SELECTED DRAWING: Figure 1

Description

本発明は、オーディオ機器の電源平滑回路に関する。   The present invention relates to a power supply smoothing circuit for audio equipment.

一般のオーディオ機器における平滑回路はコンデンサーインプット型が主流であり、平滑コンデンサーが用いられる   The smoothing circuit in general audio equipment is mainly a capacitor input type, and a smoothing capacitor is used.

交流を整流してからのリップル(脈流)を平滑コンデンサーによって一定の直流電圧を得るが、電力消費が無いときは平滑コンデンサーの放電がなく電圧最大値が充電され、最大値持続によってリップルは生じないものであるが、負荷が増すほどコンデンサーの充電時と放電時の電位差を増しリップルが大きくなる。   Ripple (pulsating flow) after rectifying AC is obtained by a smoothing capacitor, but when there is no power consumption, the smoothing capacitor is not discharged and the maximum voltage is charged, and ripple occurs due to the continuation of the maximum value. Although it is not, as the load increases, the potential difference between charging and discharging of the capacitor increases and the ripple increases.

整流電圧のリップル最大値から最低値において、最大値はコンデンサーの充電時が過ぎ、放電時の電圧下降中であり、充電時より放電力が低下しつつ電力供給されるアンプが、音声信号を増幅およびスピーカーを駆動することが不安定となり、歪み音の要因となる。   From the maximum value to the minimum value of the ripple of the rectified voltage, the maximum value has passed when the capacitor has been charged, and the voltage during discharging has been decreasing. And driving the speaker becomes unstable, which causes distortion sound.

そのような放電時も、充電作用を求め、放電力を高めることによって、アンプのスピーカー駆動力改善による高音質化を課題とする。   Even in such a discharge, the problem is to improve the sound quality by improving the speaker driving force of the amplifier by obtaining a charging effect and increasing the discharging power.

平滑コンデンサーの充電休止中でも、負荷によるリップルの電流変化に反応して、充電、放電を高めるためのトランス入力平滑回路を設ける。
100V電源トランスを利用でき、変圧比100:3〜100:10または二次コイルの3:3程度によって可能である。
A transformer input smoothing circuit is provided to increase charging and discharging in response to a ripple current change caused by a load even during the charging pause of the smoothing capacitor.
A 100V power transformer can be used, and a transformation ratio of 100: 3 to 100: 10 or a secondary coil of about 3: 3 is possible.

複巻きトランス双方のコイルに、それぞれコンデンサー+側と直列接続とする。
このとき、電源+にコイル、電源−にコンデンサーが接続される。
コイルに電流を発生し易くするために、片方のコイルにコンデンサーを並列接続し、これを一次コイルとする。
二次コイル電流方向に対し一次コイル電流方向が逆になるように結線する。
そのように、双方のコイルにそれぞれ直列接続するコンデンサーの充電、放電の電流を双方のコイルに通過させる。
片方のコイル巻き数が多い場合、多い方のコイルにコンデンサーを並列接続し、これを一次コイルとし、少ない巻き数が二次コイルとする。
双方のコイルの過渡的電流によるノイズ防止のための小容量のコンデンサーを並列接続する。
Each coil of the multi-winding transformer is connected in series with the capacitor + side.
At this time, a coil is connected to the power source + and a capacitor is connected to the power source −.
In order to easily generate a current in the coil, a capacitor is connected in parallel to one of the coils, and this is used as a primary coil.
Connect the wires so that the primary coil current direction is opposite to the secondary coil current direction.
As such, charging and discharging currents of capacitors connected in series to both coils are passed through both coils.
When the number of coil turns on one side is large, a capacitor is connected in parallel to the coil on the larger side, which is used as the primary coil, and the number of turns is the secondary coil.
A small-capacitance capacitor is connected in parallel to prevent noise caused by transient currents in both coils.

リップルがない時、コイルに直列のコンデンサー電圧は、電源電圧に等しい。
この状態で、リップルが生じると、コンデンサー電流の流入、流出による一次コイルおよび二次コイルに交流電圧が生じる。
コンデンサーとコイルは直列であり、コンデンサーに蓄えられている直流電圧にコイルの電圧変化が直列に加わわる。
When there is no ripple, the capacitor voltage in series with the coil is equal to the power supply voltage.
In this state, when a ripple occurs, an AC voltage is generated in the primary coil and the secondary coil due to the inflow and outflow of the capacitor current.
The capacitor and the coil are in series, and the voltage change of the coil is added to the DC voltage stored in the capacitor in series.

二次コイル電流に対し一次コイル電流が逆方向となる結線によって、電源のプラス側に対し、二次コイルの電圧は反転され、充電時にマイナス電圧、放電時はプラス電圧となることによって、(電源電圧+コイル電圧)が充電され、(充電電圧+コイル電圧)が放電されることによって、充電、放電が増加され、負荷への電流供給が増加できる。
整流のリップル最大値間隔の充電休止中であっても、一次コイルに生じるリップル電圧が二次コイルに反転された電圧が加わり、充電と放電が増加される。
Due to the connection in which the primary coil current is opposite to the secondary coil current, the secondary coil voltage is reversed with respect to the positive side of the power supply, resulting in a negative voltage during charging and a positive voltage during discharging. When (voltage + coil voltage) is charged and (charge voltage + coil voltage) is discharged, charging and discharging are increased, and current supply to the load can be increased.
Even during charging suspension at the interval of the rectification ripple maximum value, a voltage obtained by inverting the ripple voltage generated in the primary coil to the secondary coil is added, and charging and discharging are increased.

電源の整流によるリップルと負荷電流変動に伴うリップルが生じるとき、トランス入力平滑回路が電源に並列接続することによって、二次コイルと直列のコンデンサーに充電時は(電源電圧+コイル電圧)が充電され、放電時は(充電電圧+コイル電圧)が放電され、コイル±電圧分が加わることによって、負荷の電流減の時、充電増加、負荷の電流増の時、放電増加となり、音声信号の電流増減のタイミングで電力供給を一層高めることが可能であり、アンプのスピーカー制動力の向上や歪み感低減としてスピカー再生音に反映されやすい。   When ripple due to power supply rectification and ripple due to load current fluctuation occur, the transformer input smoothing circuit is connected in parallel with the power supply, and when charging the capacitor in series with the secondary coil, (power supply voltage + coil voltage) is charged. When discharging, (charging voltage + coil voltage) is discharged, and by adding a coil ± voltage, when the load current decreases, the charge increases, when the load current increases, the discharge increases, and the current of the audio signal increases and decreases It is possible to further increase the power supply at this timing, and this is easily reflected in the speaker playback sound as an improvement in the speaker braking power of the amplifier and a reduction in distortion.

本発明の実施例を示すトランス入力平滑回路。3 is a transformer input smoothing circuit showing an embodiment of the present invention. 本発明の実施例を示す正負2電源に対応するトランス入力平滑回路。The transformer input smoothing circuit corresponding to the positive / negative 2 power supply which shows the Example of this invention.

コンデンサーで平滑された直流電源を基に、トランス入力平滑回路が充電、放電を増加させる。
直流電源はオーディオ機器の整流平滑回路の他、バッテリー、AC-DCアダプタでも可能で並列接続によって実施できる。
トランスの容量は、リップルによる交流電流に対応できれば良いため、電源定格電流の1/10程度でも可能である。
既存の100V用電源トランスを利用するので、電圧比で100:3〜100:12程度でも作用効果を得られるが、二次巻き数が少ない100:3の方がコイルにリップル電流を生じ易くできる。
一次コイルの巻き数も少ない方が、なお好ましいため、二次コイルのみを使い3V2回路(3:3)のものも選択できる。
コイルと直列コンデンサーの容量は、電源容量や実装コストに見合う可能な限り大きな容量を選択することは好ましく、逆に、都合により容量を下げても高音域の歪み感低減効果は確保されやすい。
A transformer input smoothing circuit increases charging and discharging based on a DC power source smoothed by a capacitor.
In addition to the rectifying and smoothing circuit of audio equipment, the DC power supply can be implemented with a battery or an AC-DC adapter, and can be implemented by parallel connection.
Since the transformer capacity only needs to be able to handle AC current due to ripple, it can be about 1/10 of the rated power supply current.
Since an existing 100V power transformer is used, the effect can be obtained even if the voltage ratio is about 100: 3 to 100: 12, but 100: 3 with a small number of secondary turns can easily generate ripple current in the coil. .
Since it is more preferable that the number of turns of the primary coil is smaller, a 3V2 circuit (3: 3) can be selected using only the secondary coil.
As for the capacity of the coil and the series capacitor, it is preferable to select a capacity as large as possible in accordance with the power supply capacity and the mounting cost. Conversely, even if the capacity is lowered for convenience, it is easy to ensure the effect of reducing the distortion in the high sound range.

一般のアンプ、CDプレーヤー、その他のオーディオ機器の直流電源に組み込むか、または配線接続によって、作用効果を得るトランス入力平滑回路の実施例を説明する。
図1の実施例で使用する既存の100V用トランスの規格は、二次定格電流0.33A, 3V(2回路)を使い、一次100Vは無くてもよいので開放である。
An embodiment of a transformer input smoothing circuit that obtains an operational effect by being incorporated in a DC power source of a general amplifier, a CD player, or other audio equipment, or by wiring connection will be described.
The standard of the existing 100V transformer used in the embodiment of FIG. 1 uses a secondary rated current of 0.33A, 3V (2 circuits), and the primary 100V is not necessary, so it is open.

トランスのL1 , L2にC1 , C2の+極がそれぞれ直列接続し、その両端に電源の直流電圧+V,−Vが入力するが、C1 , C2の充電、放電による, L2の電流方向に対し、L1の電流方向 を逆とする結線2である。
注意として、C1 , C2の位置を電源+側にすると、コイルへの電流方向が変わってしまうので不可である。
L1と並列のC3によって電流を増すが、ある程度の容量を超えると電流が減るので容量の上限を有する。
C4, C5はノイズ防止用であり、過渡的波形(方形波)を入力することによるノイズ低下を求められる値とした。
コンデンサーの容量は、実装スペースやコストに対する効果などを考慮し、C1は 2000μF 、 C2, C3は10000μとした。
C1, C2の耐電圧は電源電圧以上が必要であるが、C3, C4, C5はリップルに伴う小電圧のため5Vとした。
The positive and negative poles of C1 and C2 are connected in series to L1 and L2 of the transformer, respectively, and the DC voltage + V and -V of the power supply is input to both ends of the transformer, but due to the charging and discharging of C1 and C2, Connection 2 with the current direction of L1 reversed.
Note that if the position of C1 and C2 is set to the power supply + side, the direction of current to the coil changes, which is not possible.
The current is increased by C3 in parallel with L1, but since the current decreases when a certain capacity is exceeded, there is an upper limit of the capacity.
C4 and C5 are for noise prevention, and the values required to reduce noise by inputting a transient waveform (square wave).
The capacitance of the capacitor was set to 2000μF for C1 and 10000μ for C2 and C3 in consideration of the mounting space and effects on cost.
The withstand voltage of C1 and C2 must be higher than the power supply voltage, but C3, C4, and C5 are set to 5 V because of the small voltage associated with the ripple.

簡単な機能動作のテストとしては、電源として乾電池1,5V〜3Vを繋ぎ、L2+側にアナログテスターDC 0.1Vレンジにて、テスト棒+を繋ぎ、L2−側にテスト棒−を繋ぎ、電源間をコード0Ωで短絡接触した瞬間の放電時は針が+へ振れて戻り、放した瞬間の充電時は−へ振れる。
これによって、放電時は、C2電圧と順方向に生じるL2瞬間電圧が増加され、放した時は、電源電圧と順方向に生じるL2瞬間電圧が増加されて、C2に充電されることとして確認できる。
As a test of simple functional operation, connect dry batteries 1,5V to 3V as the power supply, connect the test bar + to the L2 + side in the analog tester DC 0.1V range, connect the test bar-to the L2− side, and between the power supplies When the battery is discharged at the moment of short-circuit contact with the 0Ω cord, the needle swings back to +, and when it is released, the needle swings to-.
As a result, when discharging, the C2 voltage and the L2 instantaneous voltage generated in the forward direction are increased, and when released, the power supply voltage and the L2 instantaneous voltage generated in the forward direction are increased, and it can be confirmed that C2 is charged. .

正負2電源にするには、もう一組たす方法もあるが、図4に示すようにすれば部品数を倍にしなくて良いものである。   There is another set of methods to make the power supply positive and negative, but if it is shown in FIG. 4, it is not necessary to double the number of parts.

1 複巻きトランス
2 逆電流にする結線
L1 一次コイル
L2 二次コイル
C1 一次直列電解コンデンサー
C2 二次直列電解コンデンサー
C3 L1並列電解コンデンサー
C4 L2のノイズ防止コンデンサー
C5 L1のノイズ防止コンデンサー
1μF〜10000μF コンデンサー容量を示す
3:3 100V用電源トランスにおける二次2回路の電圧比
100:3:3 100V用電源トランスの電圧比
+V 電源+接続部
−V 電源−接続部
0V 電源中点接続部
1 Compound winding transformer
2 Connection for reverse current
L1 primary coil
L2 secondary coil
C1 Primary series electrolytic capacitor
C2 Secondary series electrolytic capacitor
C3 L1 parallel electrolytic capacitor
C4 L2 noise prevention capacitor
C5 L1 noise prevention capacitor
1μF ~ 10000μF Indicates capacitor capacity
3: 3 Voltage ratio of secondary 2 circuit in 100V power transformer
100: 3: 3 100V power transformer voltage ratio + V power supply + connection-V power supply-connection
0V power supply midpoint connection

Claims (3)

電源+極が繋がる複巻きトランス双方のコイルL1, L2に、それぞれコンデンサーC1, C2の+極が直列接続し、コンデンサーC1, C2の−極に電源−極が繋がることにおいて、コイルL2に対しL1 の電流方向が逆となる結線2とし、L1に並列接続するコンデンサーC3を設けるトランス入力平滑回路。   When the positive poles of capacitors C1 and C2 are connected in series to the coils L1 and L2 of the double-winding transformer to which the power supply and the pole are connected, respectively, Transformer input smoothing circuit with capacitor C3 connected in parallel to L1 with connection 2 in which the current direction is reversed. コイルL1, L2に並列接続するノイズ防止用コンデンサーC4, C5を設けた請求項1記載のトランス入力平滑回路。   2. The transformer input smoothing circuit according to claim 1, further comprising noise preventing capacitors C4 and C5 connected in parallel to the coils L1 and L2. 電源電圧に等しい電圧が、コンデンサーC1, C2に充電されると共に、充電、放電によるコイルL1の電流方向が、コイルL2と逆向きとなる結線により、コンデンサーC2充電時は、コイルL2の電源+側に−が生じ、コンデンサーC2放電時は、コイルL2の電源+側に+が生じることにより、充電時は(電源電圧+L1電圧)がコンデンサーC2に充電され、放電時は(C2電圧+L2電圧)が電源に放電する結果、充電が増加され放電が増加されることによって負荷への電力供給増加を得る請求項1記載のトランス入力平滑回路。   A voltage equal to the power supply voltage is charged in the capacitors C1 and C2, and the current direction of the coil L1 due to charging and discharging is opposite to that of the coil L2. When the capacitor C2 is discharged, + is generated on the power supply + side of the coil L2, so that (power supply voltage + L1 voltage) is charged to the capacitor C2 during charging, and (C2 voltage + L2 voltage) is discharged during charging. The transformer input smoothing circuit according to claim 1, wherein as a result of discharging to the power source, charging is increased and discharging is increased, thereby obtaining an increase in power supply to the load.
JP2015136646A 2015-07-08 2015-07-08 Transformer input smoothing circuit Pending JP2017021457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015136646A JP2017021457A (en) 2015-07-08 2015-07-08 Transformer input smoothing circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015136646A JP2017021457A (en) 2015-07-08 2015-07-08 Transformer input smoothing circuit

Publications (1)

Publication Number Publication Date
JP2017021457A true JP2017021457A (en) 2017-01-26

Family

ID=57888064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015136646A Pending JP2017021457A (en) 2015-07-08 2015-07-08 Transformer input smoothing circuit

Country Status (1)

Country Link
JP (1) JP2017021457A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112017007015T5 (en) 2017-02-08 2019-10-24 Denso Corporation heater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112017007015T5 (en) 2017-02-08 2019-10-24 Denso Corporation heater

Similar Documents

Publication Publication Date Title
US10003261B2 (en) High efficiency switching charger with reduced input voltage ripple
JP6070263B2 (en) DC-AC converter and control circuit
US9899910B2 (en) Bridgeless PFC power converter with reduced EMI noise
TWI332746B (en) Low cost, low power loss ups device
JP6255577B2 (en) DC power supply circuit
US10432097B2 (en) Selection control for transformer winding input in a power converter
CN103155714A (en) Led driving chip and circuit with power compensation
US20210070190A1 (en) Power Converter Controlled Capacitor Circuits and Methods
TW201644159A (en) Power supply apparatus with extending hold up time function
EP3797466A1 (en) Multilevel switched-capacitor ac-dc rectifier for wireless charging with power regulation
US9118185B2 (en) Systems and methods for high power factor charging
JP2017021457A (en) Transformer input smoothing circuit
JP2013236453A (en) Switching power supply device
US10056831B2 (en) Filter and method for direct rectification grid-powered power supplies
CN207009368U (en) A kind of new resistance-capacitance depressurization and relay drive circuit
US20170070136A1 (en) Mains Power Converter, a Controller Therefor, and Methods of Operating the same
JP2013110785A (en) Three-phase rectification device
CN203387423U (en) Intermediate-frequency high-voltage dual-output direct-current power supply system
US10224806B1 (en) Power converter with selective transformer winding input
JP2008043096A (en) Power conversion device
JP6825696B2 (en) Power circuit and sound system
JP2017063568A (en) DC-DC converter
CN203563187U (en) Multimedia active speaker box power supply circuit
JP6229117B2 (en) DC power supply compensation circuit and its module body
JP2015109782A (en) Dc-dc converter including pfc circuit