JP2017021211A - Coating liquid for forming single layer type positive charge electrophotographic photoreceptor photosensitive layer, electrophotographic photoreceptor, electrophotographic photoreceptor cartridge, and image forming apparatus - Google Patents

Coating liquid for forming single layer type positive charge electrophotographic photoreceptor photosensitive layer, electrophotographic photoreceptor, electrophotographic photoreceptor cartridge, and image forming apparatus Download PDF

Info

Publication number
JP2017021211A
JP2017021211A JP2015138952A JP2015138952A JP2017021211A JP 2017021211 A JP2017021211 A JP 2017021211A JP 2015138952 A JP2015138952 A JP 2015138952A JP 2015138952 A JP2015138952 A JP 2015138952A JP 2017021211 A JP2017021211 A JP 2017021211A
Authority
JP
Japan
Prior art keywords
photosensitive member
electrophotographic photosensitive
coating solution
layer
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015138952A
Other languages
Japanese (ja)
Inventor
光央 和田
Mitsuhisa Wada
光央 和田
宏恵 渕上
Hiroe Fuchigami
宏恵 渕上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2015138952A priority Critical patent/JP2017021211A/en
Priority to PCT/JP2015/081558 priority patent/WO2016076298A1/en
Priority to CN202110835782.0A priority patent/CN113625534B/en
Priority to CN201580060978.XA priority patent/CN107111256B/en
Publication of JP2017021211A publication Critical patent/JP2017021211A/en
Priority to US15/591,692 priority patent/US10197928B2/en
Priority to US16/210,378 priority patent/US10503088B2/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To further improve a pot life of a coating liquid for producing a photosensitive layer of a single layer type positive charge electrophotographic photoreceptor having high sensitivity from the viewpoint of cost reduction and environmental consideration.SOLUTION: There is provided a coating liquid for forming a single layer type positive charge electrophotographic photoreceptor photosensitive layer which contains a binder resin, a charge generating material, a hole transport material, an electron transport material and a solvent, where the photosensitive layer contains oxytitanium phthalocyanine showing a strong diffraction peak at 27.2° of the Bragg angle (2θ±0.2) in X-ray diffraction by CuKα rays as the charge generating material, and a change rate of a half exposure amount E1/2 as a photoreceptor when the coating liquid has been stored for 96 hours on conditions of a temperature of 55°C and a relative humidity of 10% is 75% or less.SELECTED DRAWING: None

Description

電子写真技術は、即時性、高品質の画像が得られること等から、複写機、各種プリンター等の分野で広く使われている。電子写真技術の中核となる電子写真感光体( 以下、単
に「感光体」ともいう。) については、無公害で成膜が容易、製造が容易である等の利
点を有する有機系の光導電物質を使用した感光体が使用されている。
有機系電子写真感光体においては、電荷の発生と移動の機能を別々の化合物に分担させる、いわゆる機能分離型の感光体が、材料選択の余地が大きく、感光体の特性の制御がし易いことから、開発の主流となっている。層構成の観点からは、電荷発生材料と電荷輸送材料を同一の層中に有する単層型の電子写真感光体(以下、単層型感光体という)と、電荷発生材料と電荷輸送材料を別々の層(電荷発生層と電荷輸送層)中に分離、積層する積層型の電子写真感光体(以下、積層型感光体という)とが知られている。
Electrophotographic technology is widely used in the fields of copiers and various printers because of its immediacy and high quality images. An electrophotographic photosensitive material (hereinafter also simply referred to as “photosensitive material”) that is the core of electrophotographic technology is an organic photoconductive material that has the advantages of being pollution-free, easy to form, and easy to manufacture. A photoconductor using is used.
In organic electrophotographic photoreceptors, so-called function-separated type photoreceptors that share the functions of charge generation and movement with separate compounds have a large room for material selection, and the characteristics of the photoreceptor can be easily controlled. Since then, it has become the mainstream of development. From the viewpoint of the layer structure, a single layer type electrophotographic photosensitive member (hereinafter referred to as a single layer type photosensitive member) having a charge generation material and a charge transport material in the same layer, and the charge generation material and the charge transport material are separated. There is known a laminated electrophotographic photoreceptor (hereinafter referred to as a laminated photoreceptor) that is separated and laminated in these layers (charge generation layer and charge transport layer).

このうち積層型感光体は、感光体設計上からは、層ごとに機能の最適化が図り易く、特性の制御も容易なことから、現行感光体の大部分はこのタイプになっている。このような積層型感光体は、負帯電方式に用いられることが多く、負のコロナ放電により感光体を帯電させる場合には、発生するオゾンが環境及び感光体特性に悪影響を及ぼすことがある。一方、単層型の正帯電感光体の場合には、前述のオゾン発生が低減できる。このようなオゾン発生に対する効果以外にも、塗布工程が少なくなる、半導体レーザー光に対する干渉縞が生じ難い、等の利点がある。   Of these, the laminated type photoreceptors are of this type because most of the current photoreceptors are of this type because the functions are easily optimized for each layer and the characteristics can be easily controlled from the viewpoint of the photoreceptor design. Such a multilayer photoreceptor is often used in a negative charging system, and when the photoreceptor is charged by negative corona discharge, the generated ozone may adversely affect the environment and photoreceptor characteristics. On the other hand, in the case of a single-layer type positively charged photoreceptor, the aforementioned ozone generation can be reduced. In addition to the effect on the generation of ozone, there are advantages that the coating process is reduced and interference fringes with respect to the semiconductor laser light are hardly generated.

そのような単層型正帯電感光体として、チタニルフタロシアニン(別称オキシチタニウムフタロシアニン)顔料、中でもCuKα特性X線による粉末X線回折スペクトルにおいて、ブラッグ角(2θ±0.2°)27.3°に最大回折ピークを示すチタニルフタロシアニン(通称Y型あるいはD型チタニルフタロシアニン)顔料を使用した感光体が、高感度であることが知られている(特許文献1)。しかしながら、D型チタニルフタロシアニンは、溶液中での分散液の状態での結晶状態を維持しにくく、特にバインダー樹脂を含有しない分散液中、あるいは水酸基のような顔料への吸着能の大きい極性基を有さないバインダー樹脂を用いた分散液中では、溶媒の影響により結晶が経時的に安定型のβ型(A型)に転移しやすく、塗布液として経時的に感度が低下する問題が有った。   As such a single-layer type positively charged photoconductor, a titanyl phthalocyanine (also known as oxytitanium phthalocyanine) pigment, particularly a powder X-ray diffraction spectrum by CuKα characteristic X-ray, has a Bragg angle (2θ ± 0.2 °) of 27.3 °. It is known that a photoreceptor using a titanyl phthalocyanine (commonly called Y-type or D-type titanyl phthalocyanine) pigment exhibiting the maximum diffraction peak has high sensitivity (Patent Document 1). However, D-type titanyl phthalocyanine is difficult to maintain a crystalline state in a dispersion state in a solution, and in particular, a polar group having a high adsorbing ability to a pigment such as a hydroxyl group in a dispersion solution not containing a binder resin. In the dispersion using the binder resin that does not have, there is a problem that the crystal is likely to transfer to the stable β type (A type) over time due to the influence of the solvent, and the sensitivity of the coating solution decreases over time. It was.

この問題に対し、特定の反応溶媒を使用して製造したチタニルフタロシアニンを、低誘電率の有機溶媒中で分散して調整した塗布液とすることにより、長期にわたって顕著なD型結晶並びに電気特性安定化効果を示すことが知られている(特許文献2)。   In response to this problem, a titanyl phthalocyanine produced using a specific reaction solvent is dispersed in an organic solvent having a low dielectric constant to prepare a coating solution that is prominent over a long period of time. It is known to show the effect of crystallization (Patent Document 2).

特開2001−33996号公報JP 2001-33996 A 特開2011−7873号公報JP 2011-7873 A

しかしながら、特許文献2に記載の技術による単層型正帯電電子写真感光体の感光層製造用塗布液は、短期的に少量製造される感光体としての不具合はないが、塗布液を大量に製造し、長期的に製造される感光体については感度が製品規格から外れてしまう問題があった。その塗布液の保管期限は常温常圧に換算すると120日程度と未だ短寿命であり、短期的な生産計画に依存した適正量しか生産できない。即ち、本発明の目的は、コストダ
ウン及び環境配慮の観点から、高感度の単層型正帯電電子写真感光体の感光層製造用塗布液のポットライフをさらに向上させることにある。
However, the coating solution for producing a photosensitive layer of a single-layer type positively charged electrophotographic photosensitive member according to the technique described in Patent Document 2 has no problem as a photosensitive member that is produced in a small amount in the short term, but produces a large amount of coating solution. However, there is a problem that the sensitivity of the photoconductor manufactured for a long time deviates from the product standard. The storage period of the coating solution is about 120 days when converted to normal temperature and normal pressure, and still has a short life, and only an appropriate amount depending on a short-term production plan can be produced. That is, an object of the present invention is to further improve the pot life of a coating solution for producing a photosensitive layer of a highly sensitive single-layer type positively charged electrophotographic photosensitive member from the viewpoint of cost reduction and environmental consideration.

また、特許文献2の背景技術においては、「電荷発生層と電荷輸送層が積層された積層型感光体の電荷発生層用塗布液でよく用いられるポリビニルアルコール、ポリビニルブチラール系樹脂のような樹脂を使用すれば、顔料粒子を被覆して溶媒による結晶転移から保護する機能を果たせる。しかし、そのような極性基を多数有する樹脂は1μm以下のごく薄い膜厚では電気特性への影響は小さいが、10μm以上の実用的な膜厚では電気特性が顕著に劣化して使用することができない。」と記載されている。このように、ポリビニルアルコール、ポリビニルブチラール系樹脂を用いて、高感度である単層型正帯電電子写真感光体の感光層製造用塗布液のポットライフを長寿命化することは困難であった。   Further, in the background art of Patent Document 2, “a resin such as polyvinyl alcohol or polyvinyl butyral resin often used in a coating solution for a charge generation layer of a laminated photoreceptor in which a charge generation layer and a charge transport layer are laminated” is used. If used, the pigment particles can be coated and protected from the crystal transition caused by the solvent, but the resin having a large number of polar groups has little influence on the electrical characteristics at a very thin film thickness of 1 μm or less. “A practical film thickness of 10 μm or more cannot be used because the electrical characteristics are significantly degraded.” As described above, it has been difficult to extend the pot life of the coating solution for producing a photosensitive layer of a single-layer positively charged electrophotographic photosensitive member having high sensitivity by using polyvinyl alcohol or polyvinyl butyral resin.

本発明者は、鋭意検討を行った結果、結着樹脂、電荷発生材料、正孔輸送材料、電子輸送材料、及び溶媒を含有する正帯電用単層型電子写真感光体感光層形成用塗布液において、特定結晶構造のオキシチタニウムフタロシアニンを含有し、塗布液を加熱環境下に置く前後で、該塗布液を用いて作成した電子写真感光体の半減露光量変化率を特定の範囲とすることにより、極めて高感度の正帯電用電子写真感光体の生産性を向上できることを見出し、以下の本発明の完成に至った。本発明の要旨は下記の<1>〜<12>に存する。   As a result of intensive studies, the present inventor has found that a coating solution for forming a positively chargeable single-layer type electrophotographic photosensitive member containing a binder resin, a charge generating material, a hole transporting material, an electron transporting material, and a solvent. In the above, by containing the oxytitanium phthalocyanine having a specific crystal structure and before and after placing the coating solution in a heating environment, the half-exposure change rate of the electrophotographic photosensitive member prepared by using the coating solution is set within a specific range. The inventors have found that the productivity of an electrophotographic photosensitive member for positive charging with extremely high sensitivity can be improved, and the present invention has been completed as follows. The gist of the present invention resides in the following <1> to <12>.

<1>結着樹脂、電荷発生材料、正孔輸送材料、電子輸送材料、及び溶媒を含有する正帯電用単層型電子写真感光体感光層形成用塗布液において、前記電荷発生材料としてCuKα線によるX線回折においてブラッグ角(2θ±0.2)が27.2゜に強い回折ピークを示すオキシチタニウムフタロシアニンを含有し、該塗布液を温度55℃、相対湿度10%の条件下96時間保管したときの、感光体としての半減露光量E1/2の変化率が75%以下であることを特徴とする正帯電用単層型電子写真感光体感光層形成用塗布液。 <1> In a positively charging single-layer type electrophotographic photosensitive member-forming coating solution containing a binder resin, a charge generation material, a hole transport material, an electron transport material, and a solvent, CuKα rays are used as the charge generation material. Containing oxytitanium phthalocyanine showing a strong diffraction peak at a Bragg angle (2θ ± 0.2) of 27.2 ° in the X-ray diffraction by X-ray diffraction, and storing the coating solution for 96 hours under conditions of a temperature of 55 ° C. and a relative humidity of 10% A coating solution for forming a positively chargeable single-layer type electrophotographic photosensitive member, wherein the change rate of the half-exposure amount E1 / 2 of the photosensitive member is 75% or less.

<2>前記溶媒が、有機溶媒であり、前記有機溶媒のうち、少なくとも一つがテトラヒドロフランであることを特徴とする、<1>に記載の正帯電用単層型電子写真感光体感光層形成用塗布液。 <2> The positively charging single-layer type electrophotographic photosensitive member for forming a photosensitive layer according to <1>, wherein the solvent is an organic solvent, and at least one of the organic solvents is tetrahydrofuran. Coating liquid.

<3>前記電子輸送材料が、下記式(1)で表される化合物であることを特徴とする、<1>又は<2>に記載の正帯電用単層型電子写真感光体感光層形成用塗布液。 <3> The positively charging single-layer type electrophotographic photosensitive member formation layer according to <1> or <2>, wherein the electron transport material is a compound represented by the following formula (1): Coating liquid.

Figure 2017021211
Figure 2017021211

[式(1)中、R〜Rはそれぞれ独立して、水素原子、置換基を有していてもよい炭
素数1〜20のアルキル基、又は置換基を有していてもよい炭素数1〜20のアルケニル基を表し、RとR同士、またはRとR同士は互いに結合して環状構造を形成してもよい。Xは分子量120以上250以下の有機残基を表す。]
[In Formula (1), R 1 to R 4 are each independently a hydrogen atom, an optionally substituted alkyl group having 1 to 20 carbon atoms, or an optionally substituted carbon atom. It represents an alkenyl group of formula 1 to 20, and R 1 and R 2 or R 3 and R 4 may be bonded to each other to form a cyclic structure. X represents an organic residue having a molecular weight of 120 or more and 250 or less. ]

<4>前記式(1)中、Xが下記式(2)〜(5)で表されるいずれかの有機残基であることを特徴とする、<1>〜<3>のいずれか1つに記載の正帯電用単層型電子写真感光
体感光層形成用塗布液。
<4> In the formula (1), X is any one of organic residues represented by the following formulas (2) to (5), wherein any one of <1> to <3> A coating solution for forming a positively charged single-layer type electrophotographic photosensitive member as described in 1.

Figure 2017021211
Figure 2017021211

(式(2)中、R〜Rはそれぞれ独立して水素原子、炭素数1〜6のアルキル基を表す。) (In Formula (2), R 5 to R 7 each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.)

Figure 2017021211
Figure 2017021211

(式(3)中、R〜R11はそれぞれ独立して水素原子、ハロゲン原子、炭素数1〜6のアルキル基を表す。) (In the formula (3), R 8 to R 11 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms.)

Figure 2017021211
Figure 2017021211

(式(4)中、R12は水素原子、炭素数1〜6のアルキル基、ハロゲン原子を表す。) (In the formula (4), R 12 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a halogen atom.)

Figure 2017021211
Figure 2017021211

(式(5)中、R13及びR14はそれぞれ独立して水素原子、炭素数1〜6のアルキル基、炭素原子6〜12のアリール基を表す。) (In Formula (5), R 13 and R 14 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms.)

<5>前記結着樹脂が、ポリカーボネート樹脂又はポリアリレート樹脂であることを特徴とする、<1>〜<4>のいずれか1つに記載の正帯電用単層型電子写真感光体感光層形成用塗布液。 <5> The positively charging single-layer electrophotographic photosensitive member according to any one of <1> to <4>, wherein the binder resin is a polycarbonate resin or a polyarylate resin. Coating liquid for forming.

<6>フィラーを含有することを特徴とする、<1>〜<5>のいずれか1つに記載の正
帯電用単層型電子写真感光体感光層形成用塗布液。
<6> The coating solution for forming a positively chargeable single-layer electrophotographic photosensitive member photosensitive layer according to any one of <1> to <5>, which contains a filler.

<7>ポリビニルアセタール樹脂を含有することを特徴とする、<1>〜<6>のいずれか1つに記載の正帯電用単層型電子写真感光体感光層形成用塗布液。 <7> The coating solution for forming a positively chargeable single-layer electrophotographic photosensitive member according to any one of <1> to <6>, comprising a polyvinyl acetal resin.

<8>前記正孔輸送材料の密度汎関数計算B3LYP/6−31G(d,p)による構造
最適化計算の結果得られたHOMOのエネルギーレベルE_homoが下記式(A)を満たすことを特徴とする、<1>〜<7>のいずれか1つに記載の正帯電用単層型電子写真感光体感光層形成用塗布液。
式(A)
E_homo > −4.67 (eV)
<8> The HOMO energy level E_homo obtained as a result of the structural optimization calculation by density functional calculation B3LYP / 6-31G (d, p) of the hole transport material satisfies the following formula (A): The coating solution for forming a positively chargeable single-layer electrophotographic photosensitive member according to any one of <1> to <7>.
Formula (A)
E_homo> −4.67 (eV)

<9><1>〜<8>のいずれか1つに記載の正帯電用単層型電子写真感光体感光層形成用塗布液を用いて感光層が形成されることを特徴とする、電子写真感光体。 <9> A photosensitive layer is formed using the positively charging single-layer type electrophotographic photosensitive member photosensitive layer forming coating solution according to any one of <9> and <1> to <8>. Photoconductor.

<10><9>に記載の電子写真感光体、並びに、該電子写真感光体を帯電させる帯電装置、該帯電された電子写真感光体を露光させて静電潜像を形成する露光装置、及び、該電子写真感光体上に形成された静電潜像を現像する現像装置からなる群から選ばれる少なくとも1つを備えることを特徴とする、電子写真感光体カートリッジ。 <10> The electrophotographic photosensitive member according to <9>, a charging device that charges the electrophotographic photosensitive member, an exposure device that exposes the charged electrophotographic photosensitive member to form an electrostatic latent image, and An electrophotographic photosensitive member cartridge comprising at least one selected from the group consisting of developing devices for developing an electrostatic latent image formed on the electrophotographic photosensitive member.

<11><9>に記載の電子写真感光体、並びに、該電子写真感光体を帯電させる帯電装置と、該帯電された電子写真感光体を露光させて静電潜像を形成する露光装置、および、該電子写真感光体上に形成された静電潜像を現像する現像装置を備えたことを特徴とする画像形成装置。 <11> <9> The electrophotographic photosensitive member, a charging device that charges the electrophotographic photosensitive member, and an exposure device that exposes the charged electrophotographic photosensitive member to form an electrostatic latent image, An image forming apparatus comprising: a developing device that develops an electrostatic latent image formed on the electrophotographic photosensitive member.

<12>除電光を有さないことを特徴とする<11>に記載の画像形成装置。 <12> The image forming apparatus according to <11>, wherein the image forming apparatus does not have static elimination light.

本発明は、CuKα特性X線による粉末X線回折スペクトルにおいて、ブラッグ角(2θ±0.2°)27.2°に最大回折ピークを示すオキシチタニウムフタロシアニンを含むような高感度の単層型正帯電電子写真感光体の感光層製造用塗布液のポットライフをさらに長寿命化させ、感光体の生産性を向上できる。   In the powder X-ray diffraction spectrum by CuKα characteristic X-ray, the present invention is a high-sensitivity single-layer positive positive electrode containing oxytitanium phthalocyanine having a maximum diffraction peak at a Bragg angle (2θ ± 0.2 °) of 27.2 °. The pot life of the coating solution for producing the photosensitive layer of the charged electrophotographic photosensitive member can be further extended, and the productivity of the photosensitive member can be improved.

本発明の画像形成装置の一実施態様の要部構成を示す概略図である。1 is a schematic diagram illustrating a main configuration of an embodiment of an image forming apparatus of the present invention. 実施例で用いたD型オキシチタニウムフタロシアニンのCuKα特性X線による回折スペクトルを示す図である。It is a figure which shows the diffraction spectrum by CuK (alpha) characteristic X-ray of D-type oxytitanium phthalocyanine used in the Example.

以下、本発明の実施の形態につき詳細に説明するが、以下に記載する構成要件の説明は本発明の実施形態の代表例であって、本発明の趣旨を逸脱しない範囲において適宜変形して実施することができる。   Hereinafter, embodiments of the present invention will be described in detail. However, the description of the constituent elements described below is a representative example of the embodiments of the present invention, and is appropriately modified and implemented without departing from the spirit of the present invention. can do.

<感光層形成用塗布液>
本発明の塗布液は、正帯電用単層型電子写真感光体に用いられる塗布液である。前記塗布液は、結着樹脂、電荷発生材料、正孔輸送材料、電子輸送材料、及び溶媒を含有する。また、前記塗布液は、前記電荷発生材料として、CuKα線によるX線回折においてブラッグ角(2θ±0.2)が27.2゜に強い回折ピークを示すオキシチタニウムフタロシアニン(D型)を含有する。前記塗布液を温度55℃、相対湿度10%の条件下96時間保管したときの、感光体としての半減露光量E1/2の変化率は75%以下である。感光
体の生産効率の観点からは、50%以下が好ましく、25%以下がより好ましく、10%以下が更に好ましい。前記変化率を満たすためには、例えば、塗布液中にD型オキシチタニウムフタロシアニンと共にフィラー及びポリビニルアセタール樹脂を含有する、D型オキシチタニウムフタロシアニンをポリビニルアセタール樹脂に分散した塗布液と他の材料を含む塗布液とを混合する等の手法を用いる。前記塗布液を導電性支持体上に塗布して感光層を形成することにより正帯電用電子写真感光体とすることができる。尚、前記塗布液は導電性支持体上の下引き層上に塗布されてもよいし、電荷輸送層上に塗布されてもよい。
<Coating solution for forming photosensitive layer>
The coating solution of the present invention is a coating solution used for a positively charging single layer type electrophotographic photosensitive member. The coating liquid contains a binder resin, a charge generation material, a hole transport material, an electron transport material, and a solvent. In addition, the coating solution contains oxytitanium phthalocyanine (D type) having a strong diffraction peak at a Bragg angle (2θ ± 0.2) of 27.2 ° in X-ray diffraction using CuKα rays as the charge generation material. . When the coating solution is stored for 96 hours under conditions of a temperature of 55 ° C. and a relative humidity of 10%, the change rate of the half-exposure dose E1 / 2 as a photoreceptor is 75% or less. From the viewpoint of the production efficiency of the photoreceptor, it is preferably 50% or less, more preferably 25% or less, and still more preferably 10% or less. In order to satisfy the rate of change, for example, the coating liquid contains a coating liquid containing D-type oxytitanium phthalocyanine together with a filler and polyvinyl acetal resin, in which D-type oxytitanium phthalocyanine is dispersed in polyvinyl acetal resin, and other materials A technique such as mixing with a coating solution is used. By applying the coating solution onto a conductive support to form a photosensitive layer, a positively charged electrophotographic photoreceptor can be obtained. The coating solution may be applied on the undercoat layer on the conductive support or may be applied on the charge transport layer.

[結着樹脂]
結着樹脂としては、ポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニル等のビニル重合体、およびその共重合体、ポリカーボネート、ポリアリレート、ポリエステル、ポリエステルポリカーボネート、ポリスルホン、フェノキシ、エポキシ、シリコーン樹脂等の熱可塑性樹脂や種々の熱硬化性樹脂などが挙げられる。これら樹脂の中でも感光体としての光減衰特性、機械強度の面から、ポリカーボネート樹脂またはポリアリレート樹脂が好ましい。具体的な構造としては、電気特性、分散性の観点から、下記式(P)で表される単位構造を有する樹脂が用いられることが好ましい。
[Binder resin]
As the binder resin, vinyl polymers such as polymethyl methacrylate, polystyrene, polyvinyl chloride, and copolymers thereof, thermoplastic resins such as polycarbonate, polyarylate, polyester, polyester polycarbonate, polysulfone, phenoxy, epoxy, silicone resin, etc. And various thermosetting resins. Among these resins, polycarbonate resin or polyarylate resin is preferable from the viewpoint of light attenuation characteristics as a photoreceptor and mechanical strength. As a specific structure, it is preferable to use a resin having a unit structure represented by the following formula (P) from the viewpoint of electrical characteristics and dispersibility.

Figure 2017021211
Figure 2017021211

(式(P)中、Xは単結合、又は連結基を示し、Y〜Yは各々独立に水素原子、又はアルキル基を示す。)
式(P)中、Xは単結合又は以下の構造で表される基であることが好ましい。「単結合」とは、「X」なる原子がなく、式(P)中の左右2つのベンゼン環を、単に単結合で結合した状態をいう。
(In formula (P), X represents a single bond or a linking group, and Y 1 to Y 8 each independently represent a hydrogen atom or an alkyl group.)
In formula (P), X is preferably a single bond or a group represented by the following structure. “Single bond” refers to a state in which there is no “X” atom and the two benzene rings on the left and right in formula (P) are simply bonded by a single bond.

前記構造中、Ra及びRbは、それぞれ独立に、水素原子、炭素数1〜20のアルキル基、アリール基を示し、Ra及びRbは互いに結合して炭素数5〜12の環状アルキル構造を形成しても良い。アルキル基としては、メチル基、エチル基、n−プロピル基、n−ブチル基、n−ヘキシル基、n−オクチル基等の直鎖状アルキル基、イソプロピル基、エチルヘキシル基、ターシャリーブチル基等の分岐状アルキル基、シクロヘキシル基等の環状アルキル基が挙げられる。この中でも、電気特性の観点から、メチル基又はエチル基であることが好ましい。アリール基としては、フェニル基、ナフチル基、ビフェニル基、アントリル基、フェナントリル基、トリル基、アニシル基等が挙げられる。Y〜Yのアルキル基としては、Ra及びRbとして挙げたものが適用できる。 In the structure, Ra and Rb each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an aryl group, and Ra and Rb are bonded to each other to form a cyclic alkyl structure having 5 to 12 carbon atoms. May be. Examples of the alkyl group include a straight chain alkyl group such as a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-hexyl group, and an n-octyl group, an isopropyl group, an ethylhexyl group, and a tertiary butyl group. Examples thereof include cyclic alkyl groups such as branched alkyl groups and cyclohexyl groups. Among these, a methyl group or an ethyl group is preferable from the viewpoint of electrical characteristics. Examples of the aryl group include a phenyl group, a naphthyl group, a biphenyl group, an anthryl group, a phenanthryl group, a tolyl group, and an anisyl group. As the alkyl group for Y 1 to Y 8 , those exemplified as Ra and Rb can be applied.

前記結着樹脂に好適な繰り返し構造単位の具体例を以下に示す。これら具体例は例示のために示したものであり、本発明の趣旨に反しない限りはいかなる公知の結着樹脂を混合して用いてもよい。   Specific examples of the repeating structural unit suitable for the binder resin are shown below. These specific examples are shown for illustration, and any known binder resin may be mixed and used as long as it does not contradict the gist of the present invention.

Figure 2017021211
Figure 2017021211

結着樹脂の粘度平均分子量は、機械的強度の観点から、通常20,000以上、好ましくは30,000以上、より好ましくは40,000以上、更に好ましくは50,000以上、また、感光層形成のための塗布液作成の観点から、通常150,000以下、好ましくは120,000以下、より好ましくは100,000以下である。
D型オキシチタニウムフタロシアニンの結晶型を維持し、低残留電位を保つ観点から、前記結着樹脂とポリビニルアセタール樹脂を併用することが好ましい。ポリビニルアセタール樹脂としては、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、ブチラールの一部がホルマールや、アセタール等で変性された部分アセタール化ポリビニルブチラール樹脂等が挙げられるが、分散性の観点から、下記構造式で表される構造単位を含むことが好ましい。
The viscosity average molecular weight of the binder resin is usually 20,000 or more, preferably 30,000 or more, more preferably 40,000 or more, further preferably 50,000 or more, and photosensitive layer formation from the viewpoint of mechanical strength. From the viewpoint of preparing a coating solution for the above, it is usually 150,000 or less, preferably 120,000 or less, more preferably 100,000 or less.
From the viewpoint of maintaining the crystal form of D-type oxytitanium phthalocyanine and maintaining a low residual potential, it is preferable to use the binder resin and the polyvinyl acetal resin in combination. Examples of the polyvinyl acetal resin include a polyvinyl butyral resin, a polyvinyl formal resin, and a partially acetalized polyvinyl butyral resin in which a part of the butyral is modified with formal or acetal. It is preferable that the structural unit represented is included.

Figure 2017021211
Figure 2017021211

Rは、水素原子、アルキル基、又は置換基を有していてもよいアリール基を表す。アリール基としては、フェニル基、ナフチル基等が挙げられ、アルキル基としては、メチル基、エチル基、プロピル基等の直鎖のアルキル基、イソプロピル基、tert−ブチル基、イソブチル基等の分岐のアルキル基、シクロヘキシル基、シクロペンチル基等の環状アルキル基、クロロメチル基、フッ化メチル基等のハロゲン化アルキル基等が挙げられる。機械的特性と感光層形成用塗布液に対する溶解性を勘案すれば、アルキル基が好ましい。アルキル基としては、炭素数1〜10が好ましく、炭素数1〜8がより好ましく、炭素数1〜4
が更に好ましい。この中でも合成の観点から、直鎖のアルキル基が好ましく、メチル基又はエチル基がより好ましい。置換基を有していてもよいアリール基の置換基としては、アルキル基、アルコキシ基、アミノ基等が挙げられる。
R represents a hydrogen atom, an alkyl group, or an aryl group which may have a substituent. Examples of the aryl group include a phenyl group and a naphthyl group, and examples of the alkyl group include a linear alkyl group such as a methyl group, an ethyl group, and a propyl group, and a branched group such as an isopropyl group, a tert-butyl group, and an isobutyl group. Examples thereof include cyclic alkyl groups such as alkyl groups, cyclohexyl groups and cyclopentyl groups, and halogenated alkyl groups such as chloromethyl groups and methyl fluoride groups. In consideration of mechanical properties and solubility in a coating solution for forming a photosensitive layer, an alkyl group is preferable. As an alkyl group, C1-C10 is preferable, C1-C8 is more preferable, C1-C4
Is more preferable. Among these, from the viewpoint of synthesis, a linear alkyl group is preferable, and a methyl group or an ethyl group is more preferable. Examples of the substituent of the aryl group that may have a substituent include an alkyl group, an alkoxy group, and an amino group.

ポリビニルアセタール樹脂は、前記フタロシアニンの分散性を考慮して、水酸基を含有することが好ましい。水酸基の含有量は、50mol%以下が好ましく、40mol%以下がより好ましく、30mol%以下がさらに好ましい。
ポリビニルアセタール樹脂の数平均分子量は、結着樹脂との相溶性の観点から、150,000以下が好ましく、100,000以下がより好ましく、50,000以下が更に好ましく、30,000以下が特に好ましい。結晶安定性や分散性の観点から、3,000以上が好ましく、5,000以上がより好ましく、7,000以上が更に好ましい。
The polyvinyl acetal resin preferably contains a hydroxyl group in consideration of the dispersibility of the phthalocyanine. The hydroxyl group content is preferably 50 mol% or less, more preferably 40 mol% or less, and even more preferably 30 mol% or less.
From the viewpoint of compatibility with the binder resin, the number average molecular weight of the polyvinyl acetal resin is preferably 150,000 or less, more preferably 100,000 or less, still more preferably 50,000 or less, and particularly preferably 30,000 or less. . From the viewpoint of crystal stability and dispersibility, it is preferably 3,000 or more, more preferably 5,000 or more, and still more preferably 7,000 or more.

前記ポリビニルアセタール樹脂と前記全電荷発生材料との配合割合は、結晶安定性や分散性の観点から、全電荷発生材料100質量部に対して、ポリビニルアセタール樹脂を10質量部以上含有することが好ましく、30質量部以上含有することがより好ましい。一方、電気特性の観点から、全電荷発生材料100質量部に対して、前記ポリビニルアセタール樹脂を400質量部以下含有することが好ましく、300質量部以下含有することがより好ましく、更に好ましくは250質量部以下である。   The blending ratio of the polyvinyl acetal resin and the total charge generation material is preferably 10 parts by mass or more of the polyvinyl acetal resin with respect to 100 parts by mass of the total charge generation material from the viewpoint of crystal stability and dispersibility. It is more preferable to contain 30 parts by mass or more. On the other hand, from the viewpoint of electrical characteristics, the polyvinyl acetal resin is preferably contained in an amount of 400 parts by mass or less, more preferably 300 parts by mass or less, and still more preferably 250 parts by mass with respect to 100 parts by mass of the total charge generating material. Or less.

[電荷発生材料]
電荷発生材料としては、CuKα特性X線による粉末X線回折スペクトルにおいて、ブラッグ角(2θ±0.2°)27.2°に最大回折ピークを示すオキシチタニウムフタロシアニンを用いる。置換基を有するチタニルフタロシアニンなどの、各種チタニルフタロシアニン誘導体を含有する組成物であってもよい。該オキシチタニウムフタロシアニンは、CuKα特性X線による粉末X線回折スペクトルにおいて、ブラッグ角(2θ±0.2°)9.0°〜9.7°に、明瞭な回折ピークを有することが好ましく、電子写真感光体特性に面から、9.6°、24.1°、27.2°、又は9.5°、9.7°、24.1°、27.2°に主たる回折ピークを有することが好ましく、分散時の安定性の面からは26.2°付近にはピークを有さないことが好ましい。上述したオキシチタニウムフタロシアニンのなかでも、7.3°、9.6°、11.6°、14.2°、18.0°、24.1°及び27.2°、又は7.3°、9.5°、9.7°、11.6°、14.2°、18.0°、24.2°及び27.2°に主たる回折ピークを有することがより好ましい。
[Charge generation materials]
As the charge generation material, oxytitanium phthalocyanine having a maximum diffraction peak at a Bragg angle (2θ ± 0.2 °) of 27.2 ° in a powder X-ray diffraction spectrum by CuKα characteristic X-ray is used. The composition may contain various titanyl phthalocyanine derivatives such as titanyl phthalocyanine having a substituent. The oxytitanium phthalocyanine preferably has a clear diffraction peak at a Bragg angle (2θ ± 0.2 °) of 9.0 ° to 9.7 ° in a powder X-ray diffraction spectrum by CuKα characteristic X-ray. From the aspect of photographic photoreceptor characteristics, it has main diffraction peaks at 9.6 °, 24.1 °, 27.2 °, or 9.5 °, 9.7 °, 24.1 °, 27.2 °. From the viewpoint of stability at the time of dispersion, it is preferable that there is no peak in the vicinity of 26.2 °. Among the oxytitanium phthalocyanines mentioned above, 7.3 °, 9.6 °, 11.6 °, 14.2 °, 18.0 °, 24.1 ° and 27.2 °, or 7.3 °, More preferably, it has main diffraction peaks at 9.5 °, 9.7 °, 11.6 °, 14.2 °, 18.0 °, 24.2 ° and 27.2 °.

これらの結晶型は主として、アモルファス、又は低結晶性オキシチタニウムフタロシアニンから結晶変換することによって製造される。これらの結晶型は準安定型の結晶型であり、製造方法の違いにより様々な結晶型、粒子形状を示し、電荷発生能力、帯電性、暗減衰などの電子写真感光体としての特性も製造方法に依存していることが知られている。
結晶変換に用いることが出来る溶媒としては、水と相溶性のある溶媒、水と非相溶の溶媒のいずれでも可能である。水と相溶性のある溶媒の好適な例としてはテトラヒドロフラン、1,4−ジオキサン、1,3−ジオキソラン等の環状エーテルが挙げられる。また、水と非相溶の溶媒の好適な例としては、トルエン、ナフタレン、メチルナフタレン等の芳香族炭化水素系溶媒、クロロトルエン、o−ジクロロトルエン、ジクロロフルオロベンゼン、1,2−ジクロロエタン等のハロゲン系溶媒、ニトロベンゼン、1,2−メチレンジオキシベンゼン、アセトフェノン等の置換芳香族系溶媒が挙げられ、中でも環状エーテル、クロロトルエン、ハロゲン化炭化水素溶媒、芳香族炭化水素系溶媒が得られた結晶の電子写真特性が良好でありこの好ましく、テトラヒドロフラン、o−ジクロロベンゼン、1,2−ジクロロトルエン、ジクロロフルオロベンゼン、トルエン、ナフタレンが、得られた結晶の分散時の安定性という点でより好ましい。結晶変換後得られた結晶は、乾燥工程を行なうことになるが、乾燥方法は送風乾燥、加熱乾燥、真空乾燥、凍結乾燥等の公知の
方法で乾燥することが可能である。
These crystalline forms are mainly produced by crystal conversion from amorphous or low crystalline oxytitanium phthalocyanine. These crystal types are metastable crystal types, exhibit various crystal types and particle shapes depending on the manufacturing method, and have characteristics as an electrophotographic photosensitive member such as charge generation ability, charging property, and dark decay. It is known to depend on
As a solvent that can be used for crystal conversion, any of a solvent compatible with water and a solvent incompatible with water can be used. Preferable examples of the solvent compatible with water include cyclic ethers such as tetrahydrofuran, 1,4-dioxane, 1,3-dioxolane. In addition, preferable examples of solvents incompatible with water include aromatic hydrocarbon solvents such as toluene, naphthalene, and methylnaphthalene, chlorotoluene, o-dichlorotoluene, dichlorofluorobenzene, 1,2-dichloroethane, and the like. Examples include halogenated solvents, substituted aromatic solvents such as nitrobenzene, 1,2-methylenedioxybenzene, and acetophenone. Among them, cyclic ethers, chlorotoluene, halogenated hydrocarbon solvents, and aromatic hydrocarbon solvents were obtained. This is preferable because the electrophotographic characteristics of the crystal are good, and tetrahydrofuran, o-dichlorobenzene, 1,2-dichlorotoluene, dichlorofluorobenzene, toluene, and naphthalene are more preferable in terms of stability during dispersion of the obtained crystal. . The crystal obtained after the crystal conversion is subjected to a drying step, and the drying method can be dried by a known method such as blow drying, heat drying, vacuum drying, freeze drying or the like.

結着樹脂と前記オキシチタニウムフタロシアニンとの配合比(質量)は、電荷発生効率の観点から、感光層中の結着樹脂100質量部に対して前記オキシチタニウムフタロシアニンが通常0.1質量部以上、好ましくは1質量部以上、また、分散性の観点から、通常20質量部以下、好ましくは10質量部以下、より好ましくは5質量部以下の範囲である。前記オキシチタニウムフタロシアニンの粒子径は、通常1μm以下であり、分散性の観点から好ましくは0.5μm以下で使用される。   From the viewpoint of charge generation efficiency, the compounding ratio (mass) of the binder resin and the oxytitanium phthalocyanine is usually 0.1 parts by mass or more of the oxytitanium phthalocyanine with respect to 100 parts by mass of the binder resin in the photosensitive layer. It is preferably 1 part by mass or more, and from the viewpoint of dispersibility, it is usually 20 parts by mass or less, preferably 10 parts by mass or less, more preferably 5 parts by mass or less. The particle diameter of the oxytitanium phthalocyanine is usually 1 μm or less, and preferably 0.5 μm or less from the viewpoint of dispersibility.

[正孔輸送材料]
正孔輸送材料としては、電荷発生材料としてD型チタニルフタロシアニンを用いた場合に低残留電位を達成する観点から、正孔輸送材料のB3LYP/6−31G(d,p)を用いた構造最適化計算によるHOMOのエネルギーレベルE_homoは、E_homo>−4.67(eV)が好ましく、E_homo>−4.63(eV)がより好ましい。HOMOのエネルギーレベルが高いほど、露光後電位が低く優れた電子写真感光体が得られるためである。一方、E_homoが高すぎると、耐ガス性の低下、ゴーストの発生等の不具合が出るため、通常E_homo<−4.20(eV)であり、E_homo<−4.30(eV)が好ましい。B3LYP/6−31G(d,p)を用いた構造最適化計算
後に得られた安定構造におけるHF/6−31G(d,p)計算による分極率αの計算値
αcalは、αcal>80(Å)であることが好ましい。αcalの値が大きい電荷輸送物質を含む電荷輸送膜は高い電荷移動度を示し、該電荷輸送膜を用いることにより、帯電性、感度などに優れた電子写真感光体が得られるからである。一方、αcalが大きすぎると電荷輸送物質の溶解性が低下することから、通常αcal<200(Å)であり、αcal<150(Å)であることが好ましい。
[Hole transport material]
As a hole transport material, from the viewpoint of achieving a low residual potential when D-type titanyl phthalocyanine is used as a charge generation material, a structure optimization using B3LYP / 6-31G (d, p) as a hole transport material The calculated energy level E_homo of HOMO is preferably E_homo> −4.67 (eV), and more preferably E_homo> −4.63 (eV). This is because the higher the HOMO energy level, the lower the potential after exposure and the better the electrophotographic photosensitive member can be obtained. On the other hand, if E_homo is too high, problems such as a decrease in gas resistance and the occurrence of ghosts occur. Therefore, E_homo <−4.20 (eV) is usually satisfied, and E_homo <−4.30 (eV) is preferable. The calculated value αcal of the polarizability α by the HF / 6-31G (d, p) calculation in the stable structure obtained after the structure optimization calculation using B3LYP / 6-31G (d, p) is αcal> 80 (Å 3 ) is preferred. This is because a charge transport film containing a charge transport material having a large αcal value exhibits high charge mobility, and by using the charge transport film, an electrophotographic photoreceptor excellent in chargeability and sensitivity can be obtained. On the other hand, if αcal is too large, the solubility of the charge transport material is lowered. Therefore, it is usually preferable that αcal <200 (通常3 ) and αcal <150 ( 3 3 ).

正孔輸送材料の構造としては例えば、カルバゾール誘導体、インドール誘導体、イミダゾール誘導体、オキサゾール誘導体、ピラゾール誘導体、チアジアゾール誘導体、ベンゾフラン誘導体等の複素環化合物、アニリン誘導体、ヒドラゾン誘導体、芳香族アミン誘導体、アリールアミン誘導体、スチルベン誘導体、ブタジエン誘導体、エナミン誘導体及びこれらの化合物の複数種が結合したもの、あるいはこれらの化合物からなる基を主鎖、もしくは側鎖に有する重合体等の電子供与性物質等が挙げられる。これらの中でも、カルバゾール誘導体、芳香族アミン誘導体、アリールアミン誘導体、スチルベン誘導体、ブタジエン誘導体、エナミン誘導体及びこれらの化合物の複数種が結合したものが好ましい。正孔輸送材料として好適な構造の一般式の例を以下に示す。   Examples of the structure of the hole transport material include carbazole derivatives, indole derivatives, imidazole derivatives, oxazole derivatives, pyrazole derivatives, thiadiazole derivatives, benzofuran derivatives and other heterocyclic compounds, aniline derivatives, hydrazone derivatives, aromatic amine derivatives, arylamine derivatives. , Stilbene derivatives, butadiene derivatives, enamine derivatives and those obtained by bonding a plurality of these compounds, or electron donating substances such as polymers having groups composed of these compounds in the main chain or side chain. Among these, carbazole derivatives, aromatic amine derivatives, arylamine derivatives, stilbene derivatives, butadiene derivatives, enamine derivatives and those in which a plurality of these compounds are bonded are preferable. Examples of general formulas having a structure suitable as a hole transport material are shown below.

Figure 2017021211
Figure 2017021211

Figure 2017021211
Figure 2017021211

Figure 2017021211
Figure 2017021211

前記正孔輸送材料の中でも、残留電位の観点から、HTM34、35、36、37、39、40、41、42、43、44構造の化合物が好ましい。
感光層を構成する結着樹脂と前記正孔輸送材料との配合割合は任意であるが、通常は結着樹脂100質量部に対して正孔輸送材料を20質量部以上の比率で配合する。中でも、残留電位低減の観点からは、結着樹脂100質量部に対して正孔輸送材料を30質量部以上の割合で配合することが好ましく、繰り返し使用した際の安定性や電荷移動度の観点からは、正孔輸送材料を40質量部以上の割合で配合することがより好ましい。一方、感光層の熱安定性の観点からは、結着樹脂100質量部に対して正孔輸送材料を200質量部以下の割合で配合することが好ましく、正孔輸送材料と結着樹脂との相溶性の観点からは、正孔輸送材料を150質量部以下の割合で配合することがより好ましい。
Among the hole transport materials, compounds having a structure of HTM34, 35, 36, 37, 39, 40, 41, 42, 43, 44 are preferable from the viewpoint of residual potential.
The mixing ratio of the binder resin constituting the photosensitive layer and the hole transport material is arbitrary, but the hole transport material is usually blended at a ratio of 20 parts by mass or more with respect to 100 parts by mass of the binder resin. Among these, from the viewpoint of reducing the residual potential, it is preferable to blend the hole transport material at a ratio of 30 parts by mass or more with respect to 100 parts by mass of the binder resin, and from the viewpoint of stability and charge mobility when repeatedly used. Therefore, it is more preferable to mix the hole transport material in a proportion of 40 parts by mass or more. On the other hand, from the viewpoint of the thermal stability of the photosensitive layer, the hole transport material is preferably blended at a ratio of 200 parts by mass or less with respect to 100 parts by mass of the binder resin. From the viewpoint of compatibility, the hole transport material is more preferably blended at a ratio of 150 parts by mass or less.

[電子輸送材料]
感光層には電子輸送材料として下記式(1)で表される化合物を含有することが好ましい。
[Electron transport materials]
The photosensitive layer preferably contains a compound represented by the following formula (1) as an electron transport material.

Figure 2017021211
Figure 2017021211

(式(1)中、R〜Rはそれぞれ独立して、水素原子、置換基を有していてもよい炭
素数1〜20のアルキル基、置換基を有していてもよい炭素数1〜20のアルケニル基表し、RとR同士、またはRとR同士は互いに結合して環状構造を形成してもよい。Xは分子量120以上250以下の有機残基を表す。)
〜Rはそれぞれ独立して水素原子、置換基を有していてもよい炭素数1〜20のアルキル基、炭素数1〜20のアルケニル基を表す。置換基を有していてもよい炭素数1〜20のアルキル基の例としては、メチル基、エチル基、ヘキシル基等の直鎖アルキル基、iso−プロピル基、tert−ブチル基、tert−アミル基等の分岐アルキル基、シクロヘキシル基、シクロペンチル基等の環状アルキル基が挙げられる。これらの中でも原料の汎用性の面から炭素数1〜15のアルキル基が好ましく、製造時の取り扱い性からは、炭素数1〜10のアルキル基がより好ましく、炭素数1〜5のアルキル基が更に好ましい。また、電子輸送能力の面から直鎖アルキル基、分岐アルキル基が好ましく、中でもメチル基、tert−ブチル基、tert−アミル基がより好ましく、塗布液に用いる有機溶剤への溶解性の面から、tert−ブチル基、tert−アミル基が更に好ましい。
(In formula (1), R 1 to R 4 are each independently a hydrogen atom, an optionally substituted alkyl group having 1 to 20 carbon atoms, or an optionally substituted carbon number. R 1 and R 2 or R 3 and R 4 may be bonded to each other to form a cyclic structure, and X represents an organic residue having a molecular weight of 120 or more and 250 or less. )
R 1 to R 4 each independently represents a hydrogen atom, an optionally substituted alkyl group having 1 to 20 carbon atoms, or an alkenyl group having 1 to 20 carbon atoms. Examples of the alkyl group having 1 to 20 carbon atoms which may have a substituent include a linear alkyl group such as a methyl group, an ethyl group and a hexyl group, an iso-propyl group, a tert-butyl group, and a tert-amyl group. And a branched alkyl group such as a group, and a cyclic alkyl group such as a cyclohexyl group and a cyclopentyl group. Among these, an alkyl group having 1 to 15 carbon atoms is preferable from the viewpoint of versatility of raw materials, and an alkyl group having 1 to 10 carbon atoms is more preferable, and an alkyl group having 1 to 5 carbon atoms is more preferable from the viewpoint of handling during production. Further preferred. In addition, a straight chain alkyl group and a branched alkyl group are preferable from the viewpoint of electron transport capability, and among them, a methyl group, a tert-butyl group, and a tert-amyl group are more preferable, and from the viewpoint of solubility in an organic solvent used for a coating solution, A tert-butyl group and a tert-amyl group are more preferable.

置換基を有していてもよい炭素数1〜20のアルケニル基の例としては、エテニル基等の直鎖アルケニル基、2−メチル−1−プロペニル基等の分岐アルケニル基、シクロヘキセニル基等の環状アルケニル基等が挙げられる。これらの中でも、感光体の光減衰特性の面から、炭素数1〜10の直鎖アルケニル基が好ましい。
前記置換基R〜Rは、RとR同士、またはRとR同士は互いに結合して環状構造を形成してもよい。電子移動度の観点から、RとRが共にアルケニル基である場合、お互いに結合して芳香環を形成することが好ましく、RとRが共にエテニル基で、お互いに結合し、ベンゼン環構造を有することがより好ましい。
Examples of the alkenyl group having 1 to 20 carbon atoms that may have a substituent include a straight-chain alkenyl group such as an ethenyl group, a branched alkenyl group such as a 2-methyl-1-propenyl group, and a cyclohexenyl group. And cyclic alkenyl groups. Among these, a linear alkenyl group having 1 to 10 carbon atoms is preferable from the viewpoint of light attenuation characteristics of the photoreceptor.
In the substituents R 1 to R 4 , R 1 and R 2 or R 3 and R 4 may be bonded to each other to form a cyclic structure. From the viewpoint of electron mobility, when R 1 and R 2 are both alkenyl groups, they are preferably bonded to each other to form an aromatic ring, and R 1 and R 2 are both ethenyl groups and bonded to each other, More preferably, it has a benzene ring structure.

前記式(1)中、Xは分子量120以上250以下の有機残基を表し、感光体の光減衰特性の観点から、Xが下記式(2)〜(5)で表されるいずれかの有機残基であることが好ましい。   In the formula (1), X represents an organic residue having a molecular weight of 120 or more and 250 or less, and X is any one of the organic compounds represented by the following formulas (2) to (5) from the viewpoint of light attenuation characteristics of the photoreceptor. It is preferably a residue.

Figure 2017021211
Figure 2017021211

(式(2)中、R〜Rはそれぞれ独立して水素原子、炭素数1〜6のアルキル基を表す。) (In Formula (2), R 5 to R 7 each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.)

Figure 2017021211
Figure 2017021211

式(3)中、R〜R11はそれぞれ独立して水素原子、ハロゲン原子、炭素数1〜6
のアルキル基を表す。)
In formula (3), R 8 to R 11 are each independently a hydrogen atom, a halogen atom, or a carbon number of 1 to 6.
Represents an alkyl group. )

Figure 2017021211
Figure 2017021211

(式(4)中、R12は水素原子、炭素数1〜6のアルキル基、ハロゲン原子を表す。) (In the formula (4), R 12 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a halogen atom.)

Figure 2017021211
Figure 2017021211

(式(5)中、R13及びR14はそれぞれ独立して水素原子、炭素数1〜6のアルキル基、炭素原子6〜12のアリール基を表す。)
〜R14における、炭素数1〜6のアルキル基としては、メチル基、エチル基、ヘキシル基等の直鎖アルキル基、iso−プロピル基、tert−ブチル基、tert−アミル基等の分岐アルキル基、シクロヘキシル基等の環状アルキル基が挙げられる。電子輸送能力の面から、メチル基、tert−ブチル基、tert−アミル基がより好ましい。ハロゲン原子としては、フッ素、塩素、臭素、ヨウ素が挙げられ、電子輸送能力の面から、塩素が好ましい。炭素原子6〜12のアリール基としては、フェニル基、ナフチル基、等が挙げられ、感光層の膜物性の観点から、フェニル基、ナフチル基好ましく、より好ましくはフェニル基である。Xは、前記式(2)〜(5)の中でも、繰り返し画像形成した際の画質安定性の観点から、式(2)又は式(3)であることが好ましく、式(2)であることがより好ましい。
(In Formula (5), R 13 and R 14 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms.)
Examples of the alkyl group having 1 to 6 carbon atoms in R 5 to R 14 include branched alkyl groups such as a methyl group, an ethyl group, and a hexyl group, an iso-propyl group, a tert-butyl group, and a tert-amyl group. Examples thereof include cyclic alkyl groups such as an alkyl group and a cyclohexyl group. From the viewpoint of electron transport capability, a methyl group, a tert-butyl group, and a tert-amyl group are more preferable. Examples of the halogen atom include fluorine, chlorine, bromine and iodine, and chlorine is preferred from the viewpoint of electron transport capability. Examples of the aryl group having 6 to 12 carbon atoms include a phenyl group and a naphthyl group. From the viewpoint of film properties of the photosensitive layer, a phenyl group and a naphthyl group are preferable, and a phenyl group is more preferable. Among the formulas (2) to (5), X is preferably the formula (2) or the formula (3) from the viewpoint of image quality stability upon repeated image formation, and is the formula (2). Is more preferable.

また、式(1)で表される化合物を単独で用いてもよいし、構造の異なる式(1)で表される化合物を併用してもよく、その他の電子輸送材料と併用することもできる。
以下に本発明に好適な電子輸送材料の構造を例示する。以下の構造は本発明をより具体的にするために例示するものであり、本発明の概念を逸脱しない限りは下記構造に限定されるものではない。
Moreover, the compound represented by Formula (1) may be used independently, the compound represented by Formula (1) from which a structure differs may be used together, and can also be used together with another electron transport material. .
Examples of the structure of an electron transport material suitable for the present invention are shown below. The following structures are illustrated to make the present invention more concrete, and are not limited to the following structures unless departing from the concept of the present invention.

Figure 2017021211
Figure 2017021211

感光層中の結着樹脂と電子輸送材料との割合は、結着樹脂100質量部に対して、電子輸送材料を通常5質量部以上で使用する。残留電位低減の観点から10質量部以上が好ましく、繰り返し使用した際の安定性や電荷移動度の観点から20質量部以上がより好ましい。一方、感光層の熱安定性の観点から、電荷輸送材料を通常100質量部以下で使用する。電子輸送材料と結着樹脂との相溶性の観点から、80質量部以下が好ましく、より好ましくは60重量部以下であり、更に好ましくは50重量部以下である。   The ratio of the binder resin and the electron transport material in the photosensitive layer is usually 5 parts by mass or more of the electron transport material with respect to 100 parts by mass of the binder resin. 10 parts by mass or more is preferable from the viewpoint of residual potential reduction, and 20 parts by mass or more is more preferable from the viewpoint of stability and charge mobility when repeatedly used. On the other hand, from the viewpoint of thermal stability of the photosensitive layer, the charge transport material is usually used at 100 parts by mass or less. From the viewpoint of compatibility between the electron transport material and the binder resin, the amount is preferably 80 parts by weight or less, more preferably 60 parts by weight or less, and still more preferably 50 parts by weight or less.

感光層を構成する結着樹脂と上記電荷輸送材料(電子輸送材料及び/ 又は正孔輸送材
料)との配合割合は任意であるが、通常は結着樹脂100質量部に対して電荷輸送材料を20質量部以上の比率で配合する。中でも、残留電位低減の観点からは、結着樹脂100質量部に対して電荷輸送材料を30質量部以上の割合で配合することが好ましく、更に繰り返し使用した際の安定性や電荷移動度の観点からは、電荷輸送材料を40質量部以上の割合で配合することがより好ましい。一方、感光層の熱安定性の観点からは、結着樹脂100質量部に対して電荷輸送材料を200質量部以下の割合で配合することが好ましく、更に電荷輸送材料と結着樹脂との相溶性の観点からは、電荷輸送材料を150質量部以下の割合で配合することがより好ましく、更に好ましくは125質量部以下、特に好ましくは100質量部以下である。なお、複数の電荷輸送材料を用いる場合は、それらの電荷輸送材料の合計が上記範囲内になるようにする。
The blending ratio of the binder resin constituting the photosensitive layer and the charge transport material (electron transport material and / or hole transport material) is arbitrary, but usually the charge transport material is added to 100 parts by weight of the binder resin. It mix | blends in the ratio of 20 mass parts or more. Among these, from the viewpoint of reducing the residual potential, it is preferable to blend the charge transport material at a ratio of 30 parts by mass or more with respect to 100 parts by mass of the binder resin, and further, from the viewpoint of stability and charge mobility when repeatedly used. Therefore, it is more preferable to mix the charge transport material in a proportion of 40 parts by mass or more. On the other hand, from the viewpoint of the thermal stability of the photosensitive layer, the charge transport material is preferably blended at a ratio of 200 parts by mass or less with respect to 100 parts by mass of the binder resin, and further the phase of the charge transport material and the binder resin. From the viewpoint of solubility, the charge transport material is more preferably blended at a ratio of 150 parts by mass or less, more preferably 125 parts by mass or less, and particularly preferably 100 parts by mass or less. In addition, when using several charge transport material, it is made for the sum total of those charge transport materials to be in the said range.

[導電性支持体]
導電性支持体について特に制限は無いが、例えばアルミニウム、アルミニウム合金、ステンレス鋼、銅、ニッケル等の金属材料や、金属、カーボン、酸化錫などの導電性粉体を添加して導電性を付与した樹脂材料や、アルミニウム、ニッケル、ITO(酸化インジウム酸化錫)等の導電性材料をその表面に蒸着又は塗布した樹脂、ガラス、紙等が主として使用される。これらは1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。導電性支持体の形態としては、ドラム状、シート状、ベルト状などのものが用いられる。更には、金属材料の導電性支持体の上に、導電性・表面性などの制御や欠陥被覆のために、適当な抵抗値を有する導電性材料を塗布したものを用いても良い。
[Conductive support]
There is no particular limitation on the conductive support, but for example, metal materials such as aluminum, aluminum alloy, stainless steel, copper, and nickel, and conductive powder such as metal, carbon, and tin oxide are added to impart conductivity. A resin material, a resin, glass, paper, or the like on which a conductive material such as aluminum, nickel, or ITO (indium tin oxide) is deposited or applied on the surface is mainly used. These may be used alone or in combination of two or more in any combination and ratio. As a form of the conductive support, a drum form, a sheet form, a belt form or the like is used. Further, a conductive material having an appropriate resistance value may be used on a conductive support made of a metal material in order to control conductivity and surface properties and to cover defects.

また、導電性支持体としてアルミニウム合金等の金属材料を用いた場合、陽極酸化被膜を施してから用いても良い。陽極酸化被膜を施した場合には、公知の方法により封孔処理を施すのが望ましい。支持体表面は、平滑であっても良いし、特別な切削方法を用いたり、粗面化処理を施したりすることにより、粗面化されていても良い。また、支持体を構成する材料に適当な粒径の粒子を混合することによって、粗面化されたものでも良い。また、安価化のためには、切削処理を施さず、引き抜き管をそのまま使用することも可能であ
る。
Moreover, when using metal materials, such as an aluminum alloy, as an electroconductive support body, you may use, after giving an anodic oxide film. When an anodized film is applied, it is desirable to perform a sealing treatment by a known method. The surface of the support may be smooth, or may be roughened by using a special cutting method or by performing a roughening treatment. Further, it may be roughened by mixing particles having an appropriate particle diameter with the material constituting the support. In order to reduce the cost, it is possible to use the drawing tube as it is without performing the cutting process.

[下引き層]
導電性支持体と感光層との間には、接着性・ブロッキング性等の改善のため、下引き層を設けても良い。下引き層としては、樹脂単独、あるいは、樹脂に金属酸化物等の粒子や有機顔料等を分散したもの等が用いられる。下引き層に用いる金属酸化物粒子の例としては、酸化チタン、酸化アルミニウム、酸化珪素、酸化ジルコニウム、酸化亜鉛、酸化鉄等の1 種の金属元素を含む金属酸化物粒子、チタン酸カルシウム、チタン酸ストロンチウ
ム、チタン酸バリウム等の複数の金属元素を含む金属酸化物粒子が挙げられる。このように、一種類の粒子のみを用いても良いし複数の種類の粒子を混合して用いても良い。これらの金属酸化物粒子の中で、酸化チタン及び酸化アルミニウムが好ましく、特に酸化チタンが好ましい。酸化チタン粒子は、その表面に、酸化錫、酸化アルミニウム、酸化アンチモン、酸化ジルコニウム、酸化珪素等の無機物、又はステアリン酸、ポリオール、シリコーン等の有機物による処理が施されていても良い。酸化チタン粒子の結晶型としては、ルチル、アナターゼ、ブルッカイト、アモルファスのいずれも用いることができる。複数の結晶状態のものが含まれていても良い。
[Underlayer]
An undercoat layer may be provided between the conductive support and the photosensitive layer in order to improve adhesion and blocking properties. As the undercoat layer, a resin alone, or a resin in which particles such as metal oxides or organic pigments are dispersed in the resin, or the like is used. Examples of metal oxide particles used for the undercoat layer include metal oxide particles containing one metal element such as titanium oxide, aluminum oxide, silicon oxide, zirconium oxide, zinc oxide, iron oxide, calcium titanate, titanium Examples thereof include metal oxide particles containing a plurality of metal elements such as strontium acid and barium titanate. In this way, only one type of particle may be used, or a plurality of types of particles may be mixed and used. Among these metal oxide particles, titanium oxide and aluminum oxide are preferable, and titanium oxide is particularly preferable. The surface of the titanium oxide particles may be treated with an inorganic substance such as tin oxide, aluminum oxide, antimony oxide, zirconium oxide, or silicon oxide, or an organic substance such as stearic acid, polyol, or silicone. As the crystal form of the titanium oxide particles, any of rutile, anatase, brookite, and amorphous can be used. A thing of a several crystalline state may be contained.

また、金属酸化物粒子の粒径としては、種々のものが利用できるが、中でも特性及び液の安定性の面から、平均一次粒径として1nm以上100nm以下が好ましく、特に好ましくは、10nm以上50nm以下である。
下引き層は、金属酸化物粒子を結着樹脂に分散した形で形成するのが望ましい。下引き層に用いられる結着樹脂としては、フェノキシ、エポキシ、ポリビニルピロリドン、ポリビニルアルコール、カゼイン、ポリアクリル酸、セルロース類、ゼラチン、デンプン、ポリウレタン、ポリイミド、ポリアミド等が単独あるいは硬化剤とともに硬化した形で使用できるが、中でも、アルコール可溶性の共重合ポリアミド、変性ポリアミド等は、良好な分散性、塗布性を示すので好ましい。
In addition, various particle diameters of the metal oxide particles can be used. Among these, from the viewpoint of characteristics and liquid stability, the average primary particle diameter is preferably 1 nm to 100 nm, particularly preferably 10 nm to 50 nm. It is as follows.
The undercoat layer is preferably formed in a form in which metal oxide particles are dispersed in a binder resin. The binder resin used for the undercoat layer is a form in which phenoxy, epoxy, polyvinylpyrrolidone, polyvinyl alcohol, casein, polyacrylic acid, celluloses, gelatin, starch, polyurethane, polyimide, polyamide, etc. are cured alone or with a curing agent. Among them, alcohol-soluble copolymerized polyamides, modified polyamides and the like are preferable because they exhibit good dispersibility and coating properties.

また、積層型感光体を構成する電荷発生層に相当する層を単層型感光体の下引き層とすることもできる。この場合は、フタロシアニン顔料、アゾ顔料やペリレン顔料を結着樹脂中に分散して塗布したもの等が好適に用いられる。この場合、接着性や電気特性が優れる。結着樹脂としては、ポリビニルアセタール樹脂類が好ましく用いられ、電気特性の観点から、ポリビニルブチラール樹脂が特に好ましい。   In addition, a layer corresponding to the charge generation layer constituting the multilayer photoreceptor can be used as an undercoat layer of the single-layer photoreceptor. In this case, a phthalocyanine pigment, an azo pigment or a perylene pigment dispersed in a binder resin is preferably used. In this case, adhesiveness and electrical characteristics are excellent. As the binder resin, polyvinyl acetal resins are preferably used, and polyvinyl butyral resin is particularly preferable from the viewpoint of electrical characteristics.

結着樹脂に対する粒子や顔料等の分散剤の添加比は任意に選べるが、10質量%以上、500質量% 以下の範囲で使用することが、分散液の安定性、塗布性の面で好ましい。
下引き層の膜厚は、任意に選ぶことができるが、感光体特性及び塗布性から0.1μmから25μmが好ましい。また下引き層には、公知の酸化防止剤等を添加しても良い。下引き層として、構成の異なる層をいくつか設けることも可能である。
The addition ratio of the dispersing agent such as particles and pigment to the binder resin can be arbitrarily selected, but it is preferably used in the range of 10% by mass or more and 500% by mass or less in terms of the stability of the dispersion and the coating property.
The thickness of the undercoat layer can be arbitrarily selected, but is preferably 0.1 μm to 25 μm from the viewpoint of photoreceptor characteristics and coatability. Moreover, you may add a well-known antioxidant etc. to an undercoat layer. It is possible to provide several layers having different configurations as the undercoat layer.

[その他の添加物]
感光層又を構成する各層には、成膜性、可撓性、塗布性、耐汚染性、耐ガス性、耐光性等を向上させる目的で、ヒンダードアミン、ヒンダードフェノール等の酸化防止剤、ターフェニル、ベンジルナフチルエーテル等の可塑剤、紫外線吸収剤、シアノ化合物等の電子吸引性化合物、シリコーンオイル等のレベリング剤、アゾ化合物等の可視光遮光剤等の添加物を含有させても良い。また、感光体表面の摩擦抵抗や、摩耗を低減、トナーの感光体から転写ベルト、紙への転写効率を高める等の目的で、フッ素系樹脂、シリコーン樹脂、ポリエチレン樹脂等からなる粒子や、フィラーを含有させることができる。
[Other additives]
Each layer constituting the photosensitive layer or the like is provided with an antioxidant, a hindered amine, a hindered phenol or the like for the purpose of improving film forming property, flexibility, coating property, stain resistance, gas resistance, light resistance, etc. Additives such as plasticizers such as phenyl and benzyl naphthyl ether, ultraviolet absorbers, electron-withdrawing compounds such as cyano compounds, leveling agents such as silicone oil, and visible light shading agents such as azo compounds may be added. Also, particles and fillers made of fluororesin, silicone resin, polyethylene resin, etc. for the purpose of reducing the frictional resistance and wear on the surface of the photoreceptor and increasing the transfer efficiency of the toner from the photoreceptor to the transfer belt and paper. Can be contained.

この中でも、フィラーを含有することにより、電荷発生材料の分散を良好に保つことができる。フィラーとしては、シリカ、アルミナ、酸化チタン、チタン酸バリウム、酸化亜
鉛、酸化鉛、酸化インジウムのような金属酸化物粒子が挙げられ、これらの中でも、電子写真感光体の感光層とした時の電気特性の観点から、シリカ又はアルミナであることが好ましく、分散性の観点から、シリカであることが好ましい。フィラーの平均一次粒子径は、通常0.001μm以上であり、凝集抑制の観点からの観点から、0.003μm以上が好ましく、0.005μm以上がより好ましい。また、通常1μm以下、塗布液安定性の観点から、0.5μm以下が好ましく、0.1μm以下がより好ましい。
Among these, by containing the filler, the dispersion of the charge generating material can be kept good. Examples of the filler include metal oxide particles such as silica, alumina, titanium oxide, barium titanate, zinc oxide, lead oxide, and indium oxide. Among these, the electrical properties when used as a photosensitive layer of an electrophotographic photosensitive member are mentioned. Silica or alumina is preferable from the viewpoint of characteristics, and silica is preferable from the viewpoint of dispersibility. The average primary particle diameter of the filler is usually 0.001 μm or more, preferably 0.003 μm or more, and more preferably 0.005 μm or more from the viewpoint of suppressing aggregation. Further, it is usually 1 μm or less, preferably 0.5 μm or less, more preferably 0.1 μm or less from the viewpoint of coating solution stability.

フィラーの含有量は、結着樹脂100質量部に対して、通常0.5質量部以上であり、分散安定性の観点から、1.0質量部以上であることが好ましい。一方、電気特性の観点から、通常15質量部以下であり、10質量部以下が好ましい。
シリカとしては、その表面に、酸化錫、酸化アルミニウム、酸化アンチモン、酸化ジルコニウム、酸化珪素等の無機物、又はステアリン酸、ポリオール、シリコン等の有機物による処理を施されていても良い。表面処理を施す場合、シラン処理剤、シランカップリング剤で処理を施すことが好ましく、その中でもシラン処理剤での処理が好ましい。シラン処理剤、シランカップリング剤の例[シラン処理剤]としては、ジメチルシリル[ジメチルジクロロシラン]、トリメチルシリル[ヘキサメチルジシラザン]、ジメチルポリシロキ
サン[反応性ジメチルシリコーンオイル]、ジメチルシロキサン、アルキリシリル、メタ
クリルシリル、アルキルシリル、ビニルシラン、スチリルシラン、エポキシシラン、アクリルシラン、イソシアヌレートシラン、メルカプトシラン、スルフィドシラン、イソシアネートシラン等が挙げられる。
The content of the filler is usually 0.5 parts by mass or more with respect to 100 parts by mass of the binder resin, and is preferably 1.0 part by mass or more from the viewpoint of dispersion stability. On the other hand, from the viewpoint of electrical characteristics, it is usually 15 parts by mass or less, and preferably 10 parts by mass or less.
As the silica, the surface thereof may be treated with an inorganic substance such as tin oxide, aluminum oxide, antimony oxide, zirconium oxide, or silicon oxide, or an organic substance such as stearic acid, polyol, or silicon. When the surface treatment is performed, it is preferable to perform the treatment with a silane treatment agent or a silane coupling agent, and among them, the treatment with the silane treatment agent is preferable. Examples of silane treatment agents and silane coupling agents [silane treatment agents] include dimethylsilyl [dimethyldichlorosilane], trimethylsilyl [hexamethyldisilazane], dimethylpolysiloxane [reactive dimethylsilicone oil], dimethylsiloxane, alkylylsilyl, Examples include methacryl silyl, alkyl silyl, vinyl silane, styryl silane, epoxy silane, acrylic silane, isocyanurate silane, mercapto silane, sulfide silane, isocyanate silane and the like.

シリカの平均一次粒子径[d]は、BET法により測定した比表面積、及び粒子を構成
する物質の密度(真比重)を用い、下記式(I)に従い算出する。
d=6/ρs[ρ:密度(真比重) s:BET法により比表面積]・・・(I)
例えばBET法により測定された比表面積が110m/gであるシリカ粒子の場合、シリカの構成成分である二酸化珪素の真比重=2.2g/cmを用いて計算し、平均一次粒子径は24.8nmとなる。前記計算式により算出された粒子の平均一次粒子径は通常200nm以下であるが、感光層形成時の塗布性の観点から、好ましくは100nm以下であり、電子写真感光体の光減衰特性の観点から、より好ましくは50nm以下であり、更に好ましくは40nm以下である。また、通常1nm以上であるが、凝集抑制の観点から、好ましくは3nm以上であり、電子写真感光体の光減衰特性の観点から、より好ましくは5nm以上である。
The average primary particle diameter [d] of silica is calculated according to the following formula (I) using the specific surface area measured by the BET method and the density (true specific gravity) of substances constituting the particles.
d = 6 / ρs [ρ: density (true specific gravity) s: specific surface area by BET method] (I)
For example, in the case of silica particles having a specific surface area measured by the BET method of 110 m 2 / g, calculation is performed using the true specific gravity of silicon dioxide, which is a component of silica = 2.2 g / cm 3 , and the average primary particle diameter is It becomes 24.8 nm. The average primary particle diameter of the particles calculated by the above formula is usually 200 nm or less, but from the viewpoint of applicability at the time of forming the photosensitive layer, it is preferably 100 nm or less, from the viewpoint of the light attenuation characteristics of the electrophotographic photosensitive member. More preferably, it is 50 nm or less, More preferably, it is 40 nm or less. The thickness is usually 1 nm or more, but preferably 3 nm or more from the viewpoint of suppressing aggregation, and more preferably 5 nm or more from the viewpoint of light attenuation characteristics of the electrophotographic photosensitive member.

[溶媒]
塗布液の作製に用いられる溶媒又は分散媒に特に制限は無いが、分散性や用いる材料の溶解性の観点から有機溶媒が好ましい。具体例としては、メタノール、エタノール、プロパノール、2−メトキシエタノール等のアルコール類、テトラヒドロフラン、1,4−ジオキサン、ジメトキシエタン等のエーテル類、ギ酸メチル、酢酸エチル等のエステル類、アセトン、メチルエチルケトン、シクロヘキサノン、4−メトキシ−4−メチル−2−ペンタノン等のケトン類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、ジクロロメタン、クロロホルム、1,2−ジクロロエタン、1,1,2−トリクロロエタン、1,1,1−トリクロロエタン、テトラクロロエタン、1,2−ジクロロプロパン、トリクロロエチレン等の塩素化炭化水素類、n−ブチルアミン、イソプロパノールアミン、ジエチルアミン、トリエタノールアミン、エチレンジアミン、トリエチレンジアミン等の含窒素化合物類、アセトニトリル、N−メチルピロリドン、N,N−ジメチルホルムアミド、ジメチルスルホキシド等の非プロトン性極性溶剤類等が挙げられる。また、これらは1種を単独で用いてもよいし、2種以上を任意の組み合わせ及び種類で併用してもよい。分散性、保存性の観点からテトラヒドロフランを含有することが好ましい。その場合のテトラヒドロフランの含有量は、溶媒全体100質量部に対して通常10質量部以上であり、分散性の観点から30質量部以上が好ましく、70質量部以上がより好ましい。塗布性の観点
からは、90質量部以下が好ましい。
[solvent]
Although there is no restriction | limiting in particular in the solvent or dispersion medium used for preparation of a coating liquid, An organic solvent is preferable from a dispersibility or a soluble viewpoint of the material to be used. Specific examples include alcohols such as methanol, ethanol, propanol and 2-methoxyethanol, ethers such as tetrahydrofuran, 1,4-dioxane and dimethoxyethane, esters such as methyl formate and ethyl acetate, acetone, methyl ethyl ketone and cyclohexanone. , Ketones such as 4-methoxy-4-methyl-2-pentanone, aromatic hydrocarbons such as benzene, toluene, xylene, dichloromethane, chloroform, 1,2-dichloroethane, 1,1,2-trichloroethane, 1, Chlorinated hydrocarbons such as 1,1-trichloroethane, tetrachloroethane, 1,2-dichloropropane, trichloroethylene, n-butylamine, isopropanolamine, diethylamine, triethanolamine, ethylenediamine, triethylene Nitrogen-containing compounds such as amine, acetonitrile, N- methylpyrrolidone, N, N- dimethylformamide, aprotic polar solvents such as dimethyl sulfoxide and the like. Moreover, these may be used individually by 1 type and may use 2 or more types together by arbitrary combinations and kinds. From the viewpoint of dispersibility and storage stability, it is preferable to contain tetrahydrofuran. In that case, the content of tetrahydrofuran is usually 10 parts by mass or more with respect to 100 parts by mass of the whole solvent, preferably 30 parts by mass or more, and more preferably 70 parts by mass or more from the viewpoint of dispersibility. 90 mass parts or less are preferable from a viewpoint of applicability | paintability.

<各層の形成方法>
感光体を構成する各層は、含有させる物質を溶剤に溶解又は分散させて得られた塗布液を、導電性支持体上に浸漬塗布、スプレー塗布、ノズル塗布、バーコート、ロールコート、ブレード塗布等の公知の方法により、各層ごとに順次塗布・乾燥工程を繰り返すことにより形成される。
<Method for forming each layer>
Each layer constituting the photosensitive member is formed by immersing, coating, spraying, nozzle coating, bar coating, roll coating, blade coating, or the like on a conductive support, by applying a coating solution obtained by dissolving or dispersing a substance to be contained in a solvent. In this method, the coating and drying steps are sequentially repeated for each layer.

溶媒又は分散媒の使用量は特に制限されないが、各層の目的や選択した溶媒・分散媒の性質を考慮して、塗布液の固形分濃度や粘度等の物性が所望の範囲となるように適宜調整するのが好ましい。
塗布液の乾燥は、室温における指触乾燥後、通常30℃以上、200℃以下の温度範囲で、1分から2時間の間、静止又は送風下で加熱乾燥させることが好ましい。また、加熱温度は一定であってもよく、乾燥時に温度を変更させながら加熱を行っても良い。
The amount of the solvent or dispersion medium used is not particularly limited, but considering the purpose of each layer and the properties of the selected solvent / dispersion medium, it is appropriate so that the physical properties such as solid content concentration and viscosity of the coating liquid are within a desired range. It is preferable to adjust.
The coating solution is preferably dried by touching at room temperature, followed by heating or drying in a temperature range of usually 30 ° C. or more and 200 ° C. or less for 1 minute to 2 hours, while still or blowing. Further, the heating temperature may be constant, or heating may be performed while changing the temperature during drying.

<画像形成装置、カートリッジ>
次に、本発明の電子写真感光体を用いた画像形成装置(本発明の画像形成装置)の実施の形態について、装置の要部構成を示す図1を用いて説明する。但し、実施の形態は以下の説明に限定されるものではなく、本発明の要旨を逸脱しない限り任意に変形して実施することができる。
<Image forming apparatus, cartridge>
Next, an embodiment of an image forming apparatus using the electrophotographic photosensitive member of the present invention (an image forming apparatus of the present invention) will be described with reference to FIG. However, the embodiment is not limited to the following description, and can be arbitrarily modified without departing from the gist of the present invention.

電子写真感光体1は、上述した本発明の電子写真感光体であれば特に制限はないが、図1ではその一例として、円筒状の導電性支持体の表面に上述した感光層を形成したドラム状の感光体を示している。この電子写真感光体1の外周面に沿って、帯電装置2、露光装置3、現像装置4、転写装置5及びクリーニング装置6がそれぞれ配置されている。オゾン発生が低減できることから、帯電装置2は正に帯電させる装置であることが好ましい。   The electrophotographic photoreceptor 1 is not particularly limited as long as it is the above-described electrophotographic photoreceptor of the present invention, but in FIG. 1, as an example, a drum in which the above-described photosensitive layer is formed on the surface of a cylindrical conductive support. The photoconductor is shown. A charging device 2, an exposure device 3, a developing device 4, a transfer device 5, and a cleaning device 6 are arranged along the outer peripheral surface of the electrophotographic photoreceptor 1. Since the generation of ozone can be reduced, the charging device 2 is preferably a positively charging device.

なお、画像形成装置は、上述した構成に加え、例えば除電工程を行うことができる構成としても良い。除電工程は、電子写真感光体に露光を行うことで電子写真感光体の除電を行う工程であり、除電装置としては、蛍光灯、LED等が使用される。また除電工程で用いる光は、強度としては露光光の3倍以上の露光エネルギーを有する光である場合が多い。小型化、省エネの観点から除電工程を有さないことが好ましい。   In addition to the above-described configuration, the image forming apparatus may be configured to perform, for example, a static elimination process. The neutralization step is a step of neutralizing the electrophotographic photosensitive member by exposing the electrophotographic photosensitive member, and a fluorescent lamp, an LED, or the like is used as the neutralizing device. In addition, the light used in the static elimination process is often light having an exposure energy that is at least three times that of the exposure light. From the viewpoint of miniaturization and energy saving, it is preferable not to have a static elimination step.

また、画像形成装置は更に変形して構成してもよく、例えば、前露光工程、補助帯電工程等の工程を行うことができる構成としたり、オフセット印刷を行う構成としたり、更には複数種のトナーを用いたフルカラータンデム方式の構成としてもよい。
なお、電子写真感光体1を、帯電装置2、露光装置3、現像装置4、転写装置5、クリーニング装置6、及び定着装置7のうち1つ又は2つ以上と組み合わせて、一体型のカートリッジ(以下適宜「電子写真感光体カートリッジ」という)として構成し、この電子写真 感光体カートリッジを複写機やレーザービームプリンタ等の電子写真装置本体に対して着脱可能な構成にしてもよい。
The image forming apparatus may be further modified. For example, the image forming apparatus may be configured to perform a pre-exposure process, an auxiliary charging process, or the like, or may be configured to perform offset printing. A full-color tandem system configuration using toner may be used.
The electrophotographic photosensitive member 1 is combined with one or more of the charging device 2, the exposure device 3, the developing device 4, the transfer device 5, the cleaning device 6, and the fixing device 7 to form an integrated cartridge ( The electrophotographic photosensitive member cartridge may be configured to be detachable from the main body of an electrophotographic apparatus such as a copying machine or a laser beam printer.

以下、実施例を示して本発明の実施の形態を更に具体的に説明する。ただし、以下の実施例は本発明を詳細に説明するために示すものであり、本発明はその要旨を逸脱しない限り、以下に示した実施例に限定されるものではなく任意に変形して実施することができる。また、以下の実施例、及び比較例中の「部」の記載は、特に指定しない限り「質量部」を示す。   Hereinafter, the embodiment of the present invention will be described more specifically with reference to examples. However, the following examples are given in order to explain the present invention in detail, and the present invention is not limited to the examples shown below without departing from the gist thereof, and can be arbitrarily modified and implemented. can do. In addition, the description of “parts” in the following examples and comparative examples indicates “parts by mass” unless otherwise specified.

<樹脂の粘度平均分子量の測定方法>
まず、樹脂の粘度平均分子量の測定方法について説明する。測定対象である樹脂をジクロロメタンに溶解し、濃度Cが6.00g/Lの溶液を調製する。溶媒(ジクロロメタン)の流下時間t0が136.16秒のウベローデ型毛細管粘度計を用いて、20.0℃に設定した恒温水槽中で試料溶液の流下時間tを測定する。以下の式に従って粘度平均分子量Mvを算出する。
a=0.438×ηsp+1 ηsp=(t/t0)−1
b=100×ηsp/C C=6.00
η=b/a
Mv=3207×η1.205
<Measurement method of viscosity average molecular weight of resin>
First, a method for measuring the viscosity average molecular weight of the resin will be described. The resin to be measured is dissolved in dichloromethane to prepare a solution having a concentration C of 6.00 g / L. The flow time t of the sample solution is measured in a constant temperature water bath set at 20.0 ° C. using an Ubbelohde capillary viscometer with a flow time t0 of the solvent (dichloromethane) of 136.16 seconds. The viscosity average molecular weight Mv is calculated according to the following formula.
a = 0.438 × ηsp + 1 ηsp = (t / t0) −1
b = 100 × ηsp / C C = 6.00
η = b / a
Mv = 3207 × η1.205

<電子写真感光体の作成>
[実施例1]
CuKα線によるX線回折において、図2に示されるようなブラッグ角(2θ±0.2)が9.6°、24.1°、27.2゜に強い回折ピークを有するオキシチタニウムフタロシアニン(以下CGM−1とする)10重量部を1,2−ジメトキシエタン150重量部に加え、サンドグラインドミルにて粉砕分散処理を行ない顔料分散液を作製した。こうして得られた160重量部の顔料分散液を、ポリビニルブチラール(電気化学工業(株)製、商品名#6000C)の5重量%1,2−ジメトキシエタン溶液100重量部と適量の1,2−ジメトキシエタンに加え、最終的に固形分濃度4.0重量%の下引き用分散液を作製した。
<Creation of electrophotographic photoreceptor>
[Example 1]
In X-ray diffraction by CuKα rays, oxytitanium phthalocyanine (hereinafter referred to as “Bragg angles (2θ ± 0.2) as shown in FIG. 2) having strong diffraction peaks at 9.6 °, 24.1 °, and 27.2 °” 10 parts by weight (referred to as CGM-1) was added to 150 parts by weight of 1,2-dimethoxyethane, and pulverized and dispersed in a sand grind mill to prepare a pigment dispersion. 160 parts by weight of the pigment dispersion thus obtained was mixed with 100 parts by weight of a 5% 1,2-dimethoxyethane solution of polyvinyl butyral (trade name # 6000C, manufactured by Denki Kagaku Kogyo Co., Ltd.) and an appropriate amount of 1,2- In addition to dimethoxyethane, a final dispersion of a solid content concentration of 4.0% by weight was prepared.

この下引き用分散液に表面が切削された外径30mm、長さ244mm、肉厚0.75mmのアルミニウム合金よりなるシリンダーを浸漬塗布し、乾燥後の膜厚が0.4μmとなるように下引き層を形成した。
次に、前記オキシチタニウムフタロシアニン(CGM−1)をトルエンと共にサンドグラインドミルにより分散し、固形分濃度3.5質量%の分散液を得た。次にシリカ粒子[
日本アエロジル(株)製 商品名:AEROSIL R972 一次粒子径=16nm 比表面積=110m/g]をテトラヒドロフランと共に分散し、固形分濃度4.0質量%の分散液を得た。次に、ポリビニルアセタール樹脂[積水化学(株)商品名:エスレッ
ク KS−10(Mn:20,400、水酸基:25.3mol%、アセタール化度:74.1mol% アセチル基:0.6mol%以下)]をテトラヒドロフランに溶解し、固形分濃度10質量%溶解液を得た。
A cylinder made of an aluminum alloy having an outer diameter of 30 mm, a length of 244 mm, and a wall thickness of 0.75 mm is dip-applied to the subbing dispersion so that the film thickness after drying is 0.4 μm. A pulling layer was formed.
Next, the said oxytitanium phthalocyanine (CGM-1) was disperse | distributed with toluene by the sand grind mill, and the dispersion liquid with a solid content concentration of 3.5 mass% was obtained. Next, silica particles [
Nippon Aerosil Co., Ltd. product name: AEROSIL R972, primary particle size = 16 nm, specific surface area = 110 m 2 / g] was dispersed together with tetrahydrofuran to obtain a dispersion having a solid concentration of 4.0% by mass. Next, polyvinyl acetal resin [Sekisui Chemical Co., Ltd., trade name: ESREC KS-10 (Mn: 20,400, hydroxyl group: 25.3 mol%, acetalization degree: 74.1 mol%, acetyl group: 0.6 mol% or less) ] Was dissolved in tetrahydrofuran to obtain a 10% by mass solid solution.

一方、以下構造式(HTM−1)で示される正孔輸送材料と、以下構造式(ETM−1)で示される電子輸送材料、以下構造式(P−1)で示されるポリカーボネート樹脂[粘
度平均分子量:Mv=39,600]をテトラヒドロフランとトルエンの混合溶媒に溶解し、レベリング剤として結着樹脂100質量部に対して、0.05質量部を加え、この溶液に上記オキシチタニウムフタロシアニン分散液、シリカ粒子分散液、及びポリビニルアセタール樹脂溶解液をホモジナイザーにより均一になるように混合し、固形分濃度24%[テトラヒドロフラン/トルエン=8/2(質量比)]の正帯電単層型感光層用塗布液を
調整した。このように調製した正帯電単層型感光層用塗布液を、上述の下引き層上に、乾燥後の膜厚が30μmになるように塗布し、正帯電単層型の電子写真感光体A[経変前]
を得た。各材料の組成比は表−1に示す。
On the other hand, a hole transport material represented by the following structural formula (HTM-1), an electron transport material represented by the following structural formula (ETM-1), a polycarbonate resin represented by the following structural formula (P-1) [viscosity average Molecular weight: Mv = 39,600] is dissolved in a mixed solvent of tetrahydrofuran and toluene, 0.05 parts by mass is added as a leveling agent to 100 parts by mass of the binder resin, and the oxytitanium phthalocyanine dispersion is added to the solution. The silica particle dispersion and the polyvinyl acetal resin solution are mixed so as to be uniform by a homogenizer, and applied to a positively charged single layer type photosensitive layer having a solid content concentration of 24% [tetrahydrofuran / toluene = 8/2 (mass ratio)]. The liquid was adjusted. The positively charged single-layer type photosensitive layer coating solution thus prepared is applied onto the above-described undercoat layer so that the film thickness after drying becomes 30 μm. [Before change]
Got. The composition ratio of each material is shown in Table-1.

また、得られた正帯電単層型感光層用塗布液を、塗布液中の溶媒が揮発しないように密閉容器に入れ、温度55℃、相対湿度10%の条件下96時間保管し、正帯電単層型感光層用塗布液の経変処理を行った。そして得られた経変後の塗布液を用い、経変前の感光体作成した時と同じ操作を行うことにより、膜厚30μmの感光層を有する正帯電単層型の電子写真感光体A[経変後]を得た。   The obtained coating solution for positively charged single-layer type photosensitive layer is put in a sealed container so that the solvent in the coating solution does not volatilize, and stored for 96 hours under conditions of a temperature of 55 ° C. and a relative humidity of 10%. The transformation process of the coating solution for single layer type photosensitive layers was performed. Then, by using the obtained coating solution after the transformation, the same operation as that for producing the photoreceptor before the transformation is carried out, whereby a positively charged single layer type electrophotographic photoreceptor A having a photosensitive layer having a thickness of 30 μm [ After transformation] was obtained.

Figure 2017021211
Figure 2017021211

[実施例2、3]
実施例1と同様の材料を用い、表−1に記載の組成比で正帯電単層型感光層用塗布液を調整し、膜厚30μmの正帯電単層型感光体を得た。
[Examples 2 and 3]
Using the same material as in Example 1, a positively charged single layer type photosensitive layer coating solution was prepared at a composition ratio shown in Table 1, and a positively charged single layer type photoreceptor having a film thickness of 30 μm was obtained.

[実施例4]
実施例1で用いたポリビニルアセタール樹脂を異なるポリビニルアセタール樹脂[クラ
レ(株)製 商品名:Mowital B 14S(Mn:約11,400 水酸基:約23.6mol% アセタール化度:71.4mol% アセチル基:5.0mol%)]に変更した以外は、実施例1と同様の操作を行うことにより、表−1に記載の組成比で正帯電単層型感光層用塗布液を調整し、膜厚30μmの正帯電単層型感光体Dを得た。
[Example 4]
Polyvinyl acetal resin used in Example 1 is different from the polyvinyl acetal resin [trade name: Mowital B 14S (Mn: about 11,400 hydroxyl group: about 23.6 mol%) degree of acetalization: 71.4 mol% acetyl group : 5.0 mol%)], except that the coating solution for positively charged single layer type photosensitive layer was adjusted with the composition ratio shown in Table 1 by performing the same operation as in Example 1, and the film thickness A positively charged single layer type photoreceptor D having a thickness of 30 μm was obtained.

[実施例5、6]
実施例4で用いた材料に以下構造式(AD−1)で示される芳香族化合物を追加で使用した以外は、実施例4と同様の操作を行うことにより、表−1に記載の組成比で正帯電単層型感光層用塗布液を調整し、膜厚30μmの正帯電単層型感光体を得た。
[Examples 5 and 6]
By performing the same operations as in Example 4 except that an aromatic compound represented by the structural formula (AD-1) was additionally used as the material used in Example 4, the composition ratios shown in Table-1 were obtained. Then, a positively charged single layer type photosensitive layer coating solution was prepared to obtain a positively charged single layer type photoreceptor having a film thickness of 30 μm.

Figure 2017021211
Figure 2017021211

[実施例7]
実施例4で用いた材料にシリカ粒子を用いなかった以外は、実施例4と同様の操作を行うことにより、表−1に記載の組成比で正帯電単層型感光層用塗布液を調整し、膜厚30μmの正帯電単層型感光体Gを得た。
[実施例8]
実施例4で用いたシリカ粒子を異なるシリカ粒子[日本アエロジル(株)製、商品名:
AEROSIL RY200 一次粒子径=16nm 比表面積=100m/g]に変更した以外は、実施例4と同様の操作を行うことにより、表−1に記載の組成比で正帯電単層型感光層用塗布液を調整し、膜厚30μmの正帯電単層型感光体Hを得た。
[Example 7]
A positively charged single layer type photosensitive layer coating solution was prepared at the composition ratio shown in Table 1 by performing the same operation as in Example 4 except that silica particles were not used as the material used in Example 4. Thus, a positively charged single layer type photoreceptor G having a thickness of 30 μm was obtained.
[Example 8]
Different silica particles used in Example 4 [Nippon Aerosil Co., Ltd., trade name:
AEROSIL RY200 Primary particle diameter = 16 nm Specific surface area = 100 m 2 / g] By performing the same operation as in Example 4, the composition ratio shown in Table-1 was used for a positively charged single layer type photosensitive layer. The coating solution was adjusted to obtain a positively charged single layer type photoreceptor H having a film thickness of 30 μm.

[実施例9]
実施例4で用いたシリカ粒子を異なるシリカ粒子[日本アエロジル(株)製、商品名:
AEROSIL RX300 一次粒子径=7nm 比表面積=210m/g]に変更した以外は実施例4と同様の操作を行うことにより、表−1に記載の組成比で正帯電単層型感光層用塗布液を調整し、膜厚30μmの正帯電単層型感光体Iを得た。
[Example 9]
Different silica particles used in Example 4 [Nippon Aerosil Co., Ltd., trade name:
AEROSIL RX300 Primary particle diameter = 7 nm Specific surface area = 210 m 2 / g] The same operation as in Example 4 was performed except that the coating ratio for the positively charged single layer type photosensitive layer was applied at the composition ratio shown in Table 1. The solution was adjusted to obtain a positively charged single layer type photoreceptor I having a film thickness of 30 μm.

[実施例10]
実施例6で用いた正孔輸送材料を以下構造式(HTM−2)で示される正孔輸送材料に変更した以外は、実施例6と同様の操作を行うことにより、表−1に記載の組成比で正帯電単層型感光層用塗布液を調整し、膜厚30μmの正帯電単層型感光体Jを得た。
[Example 10]
By performing the same operation as in Example 6 except that the hole transport material used in Example 6 was changed to the hole transport material represented by the structural formula (HTM-2) below, the operations described in Table 1 were performed. A positively charged single layer type photosensitive layer coating solution was prepared with a composition ratio to obtain a positively charged single layer type photosensitive member J having a thickness of 30 μm.

Figure 2017021211
Figure 2017021211

[実施例11]
実施例6で用いた正孔輸送材料を以下構造式(HTM−3)で示される正孔輸送材料に変更した以外は、実施例6と同様の操作を行うことにより、表−1に記載の組成比で正帯電単層型感光層用塗布液を調整し、膜厚30μmの正帯電単層型感光体Kを得た。
[Example 11]
By performing the same operations as in Example 6 except that the hole transport material used in Example 6 was changed to the hole transport material represented by the structural formula (HTM-3) below, the operations described in Table 1 were performed. The coating solution for positively charged single layer type photosensitive layer was adjusted with the composition ratio to obtain a positively charged single layer type photosensitive member K having a film thickness of 30 μm.

Figure 2017021211
Figure 2017021211

[実施例12]
実施例6で用いた正孔輸送材料を以下構造式(HTM−4)で示される正孔輸送材料変更した以外は、実施例6と同様の操作を行うことにより、表−1に記載の組成比で正帯電単層型感光層用塗布液を調整し、膜厚30μmの正帯電単層型感光体Lを得た。
[Example 12]
The composition described in Table 1 was obtained by performing the same operation as in Example 6 except that the hole transport material used in Example 6 was changed to the hole transport material represented by the structural formula (HTM-4) below. The coating solution for positively charged single layer type photosensitive layer was adjusted according to the ratio to obtain a positively charged single layer type photoreceptor L having a thickness of 30 μm.

Figure 2017021211
Figure 2017021211

[実施例13]
実施例6で用いた正孔輸送材料を以下構造式(HTM−5)で示される正孔輸送材料変更した以外は、実施例6と同様の操作を行うことにより、表−1に記載の組成比で正帯電単層型感光層用塗布液を調整し、膜厚30μmの正帯電単層型感光体Mを得た。
[Example 13]
The composition described in Table 1 was obtained by performing the same operation as in Example 6 except that the hole transport material used in Example 6 was changed to the hole transport material represented by the structural formula (HTM-5) below. The coating solution for the positively charged single layer type photosensitive layer was adjusted according to the ratio to obtain a positively charged single layer type photoreceptor M having a thickness of 30 μm.

Figure 2017021211
Figure 2017021211

[実施例14]
実施例11で用いた結着樹脂を以下構造式(P−2)で示されるポリカーボネート樹脂[粘度平均分子量:Mv=40,200 o/p=84.3/15.7(mol比)]に
変更した以外は、実施例11と同様の操作を行うことにより、表−1に記載の組成比で正帯電単層型感光層用塗布液を調整し、膜厚30μmの正帯電単層型感光体Nを得た。
[Example 14]
The binder resin used in Example 11 was changed to the polycarbonate resin [viscosity average molecular weight: Mv = 40, 200 o / p = 84.3 / 15.7 (mol ratio)] represented by the following structural formula (P-2). Except for the change, the same operation as in Example 11 was performed to adjust the positively charged single layer type photosensitive layer coating solution with the composition ratio shown in Table 1, and the positively charged single layer type photosensitive film having a film thickness of 30 μm. Body N was obtained.

Figure 2017021211
Figure 2017021211

[実施例15]
実施例11で用いた結着樹脂を以下構造式(P−3)で示されるポリカーボネート樹脂[粘度平均分子量:Mv=40,700 q/r=49/51(mol比)]に変更した
以外は、実施例11と同様の操作を行うことにより、表−1に記載の組成比で正帯電単層型感光層用塗布液を調整し、膜厚30μmの正帯電単層型感光体Oを得た。
[Example 15]
Except for changing the binder resin used in Example 11 to a polycarbonate resin [viscosity average molecular weight: Mv = 40,700 q / r = 49/51 (mol ratio)] represented by the following structural formula (P-3) By performing the same operation as in Example 11, a positively charged single layer type photosensitive layer coating solution was prepared with the composition ratio shown in Table 1, and a positively charged single layer type photosensitive member O having a film thickness of 30 μm was obtained. It was.

Figure 2017021211
Figure 2017021211

[実施例16]
実施例14で用いた電子輸送材料を前記式(ETM−1)と以下構造式(ETM−2)で示される電子輸送材料を混合使用することに変更した以外は、実施例14と同様の操作を行うことにより、表−1に記載の組成比で正帯電単層型感光層用塗布液を調整し、膜厚30μmの正帯電単層型感光体Pを得た。
[Example 16]
The same operation as in Example 14 except that the electron transport material used in Example 14 was changed to a mixture of the electron transport material represented by the above formula (ETM-1) and the following structural formula (ETM-2). Thus, a positively charged single layer type photosensitive layer coating solution was prepared at a composition ratio shown in Table 1 to obtain a positively charged single layer type photosensitive member P having a film thickness of 30 μm.

Figure 2017021211
Figure 2017021211

[比較例1]
実施例1で用いたポリビニルアセタール樹脂を用いない以外は実施例1と同様の操作を行うことにより、表−1に記載の組成比で正帯電単層型感光層用塗布液を調整し、膜厚30μmの正帯電単層型感光体RAを得た。
[Comparative Example 1]
By performing the same operation as in Example 1 except that the polyvinyl acetal resin used in Example 1 is not used, a positively charged single layer type photosensitive layer coating solution is prepared with the composition ratio shown in Table 1 to obtain a film. A positively charged single layer type photoreceptor RA having a thickness of 30 μm was obtained.

[比較例2]
実施例1で用いたポリビニルアセタール樹脂とシリカ粒子を用いない以外は実施例1と同様の操作を行うことにより、表−1に記載の組成比で正帯電単層型感光層用塗布液を調整し、膜厚30μmの正帯電単層型感光体RBを得た。
[Comparative Example 2]
A positively charged single layer type photosensitive layer coating solution was prepared at the composition ratio shown in Table 1 by performing the same operation as in Example 1 except that the polyvinyl acetal resin and silica particles used in Example 1 were not used. Thus, a positively charged single layer type photoreceptor RB having a film thickness of 30 μm was obtained.

[比較例3]
実施例1で用いたポリビニルアセタール樹脂とシリカ粒子を用いず、前記構造式(AD−1)で示される芳香族化合物を追加で使用した以外は、実施例1と同様の操作を行うことにより、表−1に記載の組成比で正帯電単層型感光層用塗布液を調整し、膜厚30μmの正帯電単層型感光体RCを得た。
[Comparative Example 3]
By using the same operation as in Example 1 except that the aromatic compound represented by the structural formula (AD-1) was additionally used without using the polyvinyl acetal resin and silica particles used in Example 1, A positively charged single layer type photosensitive layer coating solution was prepared with the composition ratio shown in Table 1 to obtain a positively charged single layer type photoreceptor RC having a film thickness of 30 μm.

[比較例4]
実施例1で用いたポリビニルアセタール樹脂を用いず前記構造式(AD−1)で示される芳香族化合物を追加で使用した以外は、実施例1と同様の操作を行うことにより、表−1に記載の組成比で正帯電単層型感光層用塗布液を調整し、膜厚30μmの正帯電単層型感光体RDを得た。
[Comparative Example 4]
By performing the same operation as in Example 1 except that the aromatic compound represented by the structural formula (AD-1) was additionally used without using the polyvinyl acetal resin used in Example 1, Table 1 A positively charged single layer type photosensitive layer coating solution was prepared with the composition ratio described above to obtain a positively charged single layer type photoreceptor RD having a thickness of 30 μm.

Figure 2017021211
Figure 2017021211

<電気特性試験>
電子写真学会測定標準に従って製造された電子写真特性評価装置(電子写真学会編、「続電子写真技術の基礎と応用」、コロナ社1996年発行、404頁〜405頁)を使用し、上記感光体ドラムを一定回転数100pmで回転させ、帯電、露光、電位測定、除電のサイクルによる電気特性評価試験を行なった。その際、温度25℃、湿度50%の条件下、感光体の初期表面電位が+700Vになるように帯電させ、ハロゲンランプの光を干渉フィルターで780nmの単色光としたものを露光し、表面電位が+350Vとなる時の照射エネルギー(半減露光エネルギー)を半減露光量E1/2として測定した(単位:μJ/cm)。そして、各実施例の調液直後の塗布液を用いた作成した感光体と、経変処理[温度55℃ 相対湿度10% 96時間保管]を施した後の塗布液を用いて作成し
た感光体を測定することにより得られるそれぞれの半減露光量E1/2の値を用い、下記式(B)で計算することにより、塗布液の経時変化に対する耐久性の評価を行い、その結果を表−2に示した。
<Electrical characteristics test>
Using the electrophotographic characteristic evaluation apparatus manufactured in accordance with the electrophotographic society measurement standard (Electrophotographic Society, edited by “Basic and Application of Electrophotographic Technology”, Corona 1996, pages 404 to 405) The drum was rotated at a constant rotational speed of 100 pm, and an electrical property evaluation test was performed by a cycle of charging, exposure, potential measurement, and static elimination. At that time, charging was performed so that the initial surface potential of the photoconductor was +700 V under conditions of a temperature of 25 ° C. and a humidity of 50%, and the halogen lamp light was exposed to a monochromatic light of 780 nm with an interference filter, and the surface potential was exposed. The irradiation energy (half-exposure energy) when V is +350 V was measured as the half-exposure dose E1 / 2 (unit: μJ / cm 2 ). The photosensitive member prepared using the coating solution immediately after the preparation of each example and the coating solution after undergoing a transformation process [temperature 55 ° C., relative humidity 10%, storage for 96 hours]. Using the values of the respective half-exposure amounts E1 / 2 obtained by measuring the values, the following formula (B) was used to evaluate the durability against changes with time of the coating solution. It was shown to.

半減露光量変化率(%)
=([E1/2(経変後)]/[E1/2(経変前)]−1)*100
・・・・・式(B)
Half-exposure change rate (%)
= ([E1 / 2 (after time change)] / [E1 / 2 (before time change)]-1) * 100
... Formula (B)

Figure 2017021211
Figure 2017021211

Claims (12)

結着樹脂、電荷発生材料、正孔輸送材料、電子輸送材料、及び溶媒を含有する正帯電用単層型電子写真感光体感光層形成用塗布液において、前記電荷発生材料としてCuKα線によるX線回折においてブラッグ角(2θ±0.2)が27.2゜に強い回折ピークを示すオキシチタニウムフタロシアニンを含有し、該塗布液を温度55℃、相対湿度10%の条件下96時間保管したときの、感光体としての半減露光量E1/2の変化率が75%以下であることを特徴とする正帯電用単層型電子写真感光体感光層形成用塗布液。   In a coating solution for forming a positively chargeable single-layer type electrophotographic photosensitive member containing a binder resin, a charge generating material, a hole transporting material, an electron transporting material, and a solvent, X-rays using CuKα rays as the charge generating material Oxytitanium phthalocyanine having a diffraction peak with a Bragg angle (2θ ± 0.2) of 27.2 ° in diffraction is contained, and the coating solution is stored for 96 hours under conditions of a temperature of 55 ° C. and a relative humidity of 10%. A coating solution for forming a positively charged single-layer type electrophotographic photosensitive member photosensitive layer, wherein the change rate of the half-exposure amount E1 / 2 of the photosensitive member is 75% or less. 前記溶媒が、有機溶媒であり、前記有機溶媒のうち、少なくとも一つがテトラヒドロフランであることを特徴とする、請求項1に記載の正帯電用単層型電子写真感光体感光層形成用塗布液。   2. The coating solution for forming a positively chargeable single-layer electrophotographic photosensitive member according to claim 1, wherein the solvent is an organic solvent, and at least one of the organic solvents is tetrahydrofuran. 前記電子輸送材料が、下記式(1)で表される化合物であることを特徴とする、請求項1又は2に記載の正帯電用単層型電子写真感光体感光層形成用塗布液。
Figure 2017021211
[式(1)中、R〜Rはそれぞれ独立して、水素原子、置換基を有していてもよい炭
素数1〜20のアルキル基、又は置換基を有していてもよい炭素数1〜20のアルケニル基を表し、RとR同士、またはRとR同士は互いに結合して環状構造を形成してもよい。Xは分子量120以上250以下の有機残基を表す。]
The coating solution for forming a positively chargeable single-layer electrophotographic photosensitive member according to claim 1, wherein the electron transport material is a compound represented by the following formula (1).
Figure 2017021211
[In Formula (1), R 1 to R 4 are each independently a hydrogen atom, an optionally substituted alkyl group having 1 to 20 carbon atoms, or an optionally substituted carbon atom. It represents an alkenyl group of formula 1 to 20, and R 1 and R 2 or R 3 and R 4 may be bonded to each other to form a cyclic structure. X represents an organic residue having a molecular weight of 120 or more and 250 or less. ]
前記式(1)中、Xが下記式(2)〜(5)で表されるいずれかの有機残基であることを特徴とする、請求項1〜3のいずれか1項に記載の正帯電用単層型電子写真感光体感光層形成用塗布液。
Figure 2017021211
(式(2)中、R〜Rはそれぞれ独立して水素原子、炭素数1〜6のアルキル基を表す。)
Figure 2017021211
(式(3)中、R〜R11はそれぞれ独立して水素原子、ハロゲン原子、炭素数1〜6
のアルキル基を表す。)
Figure 2017021211
(式(4)中、R12は水素原子、炭素数1〜6のアルキル基、ハロゲン原子を表す。)
Figure 2017021211
(式(5)中、R13及びR14はそれぞれ独立して水素原子、炭素数1〜6のアルキル基、炭素原子6〜12のアリール基を表す。)
The positive electrode according to any one of claims 1 to 3, wherein in the formula (1), X is any organic residue represented by the following formulas (2) to (5). Coating solution for forming a single layer type electrophotographic photosensitive member photosensitive layer for charging.
Figure 2017021211
(In Formula (2), R 5 to R 7 each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.)
Figure 2017021211
(In the formula (3), R 8 ~R 11 are each independently a hydrogen atom, a halogen atom, having 1 to 6 carbon atoms
Represents an alkyl group. )
Figure 2017021211
(In the formula (4), R 12 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a halogen atom.)
Figure 2017021211
(In Formula (5), R 13 and R 14 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms.)
前記結着樹脂が、ポリカーボネート樹脂又はポリアリレート樹脂であることを特徴とする、請求項1〜4のいずれか1項に記載の正帯電用単層型電子写真感光体感光層形成用塗布液。   The coating solution for forming a positively chargeable single-layer type electrophotographic photosensitive member according to any one of claims 1 to 4, wherein the binder resin is a polycarbonate resin or a polyarylate resin. フィラーを含有することを特徴とする、請求項1〜5のいずれか1項に記載の正帯電用単層型電子写真感光体感光層形成用塗布液。   The coating solution for forming a positively chargeable single-layer type electrophotographic photosensitive member according to claim 1, comprising a filler. ポリビニルアセタール樹脂を含有することを特徴とする、請求項1〜6のいずれか1項に記載の正帯電用単層型電子写真感光体感光層形成用塗布液。   The coating solution for forming a positively chargeable monolayer type electrophotographic photosensitive member according to claim 1, comprising a polyvinyl acetal resin. 前記正孔輸送材料の密度汎関数計算B3LYP/6−31G(d,p)による構造最適化計算の結果得られたHOMOのエネルギーレベルE_homoが下記式(A)を満たすことを特徴とする、請求項1〜7のいずれか1項に記載の正帯電用単層型電子写真感光体感光層形成用塗布液。
式(A)
E_homo>−4.67 (eV)
The energy level E_homo of HOMO obtained as a result of structural optimization calculation by density functional calculation B3LYP / 6-31G (d, p) of the hole transport material satisfies the following formula (A): Item 8. The coating solution for forming a positively chargeable single-layer type electrophotographic photosensitive member photosensitive layer according to any one of Items 1 to 7.
Formula (A)
E_homo> -4.67 (eV)
請求項1〜8のいずれか1項に記載の正帯電用単層型電子写真感光体感光層形成用塗布液を用いて感光層が形成されることを特徴とする、電子写真感光体。   An electrophotographic photosensitive member, wherein a photosensitive layer is formed using the coating solution for forming a positively chargeable single-layer type electrophotographic photosensitive member according to claim 1. 請求項9に記載の電子写真感光体、並びに、該電子写真感光体を帯電させる帯電装置、該帯電された電子写真感光体を露光させて静電潜像を形成する露光装置、及び、該電子写真感光体上に形成された静電潜像を現像する現像装置からなる群から選ばれる少なくとも1つを備えることを特徴とする、電子写真感光体カートリッジ。   The electrophotographic photosensitive member according to claim 9, a charging device for charging the electrophotographic photosensitive member, an exposure device for exposing the charged electrophotographic photosensitive member to form an electrostatic latent image, and the electron An electrophotographic photosensitive member cartridge comprising at least one selected from the group consisting of developing devices for developing an electrostatic latent image formed on a photographic photosensitive member. 請求項9に記載の電子写真感光体、並びに、該電子写真感光体を帯電させる帯電装置と、該帯電された電子写真感光体を露光させて静電潜像を形成する露光装置、および、該電子写真感光体上に形成された静電潜像を現像する現像装置を備えたことを特徴とする画像形成装置。   The electrophotographic photosensitive member according to claim 9, a charging device that charges the electrophotographic photosensitive member, an exposure device that exposes the charged electrophotographic photosensitive member to form an electrostatic latent image, and An image forming apparatus comprising a developing device for developing an electrostatic latent image formed on an electrophotographic photosensitive member. 除電光を有さないことを特徴とする請求項11に記載の画像形成装置。   The image forming apparatus according to claim 11, wherein the image forming apparatus has no static elimination light.
JP2015138952A 2014-11-10 2015-07-10 Coating liquid for forming single layer type positive charge electrophotographic photoreceptor photosensitive layer, electrophotographic photoreceptor, electrophotographic photoreceptor cartridge, and image forming apparatus Pending JP2017021211A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2015138952A JP2017021211A (en) 2015-07-10 2015-07-10 Coating liquid for forming single layer type positive charge electrophotographic photoreceptor photosensitive layer, electrophotographic photoreceptor, electrophotographic photoreceptor cartridge, and image forming apparatus
PCT/JP2015/081558 WO2016076298A1 (en) 2014-11-10 2015-11-10 Electrophotographic photoreceptor, image formation device, and coating fluid for forming photosensitive layer
CN202110835782.0A CN113625534B (en) 2014-11-10 2015-11-10 Electrophotographic photoreceptor, image forming apparatus, and coating liquid for forming photosensitive layer
CN201580060978.XA CN107111256B (en) 2014-11-10 2015-11-10 Electrophotographic photoreceptor, image forming apparatus, and coating liquid for forming photosensitive layer
US15/591,692 US10197928B2 (en) 2014-11-10 2017-05-10 Electrophotographic photoreceptor, image forming apparatus, and coating liquid for forming photosensitive layer
US16/210,378 US10503088B2 (en) 2014-11-10 2018-12-05 Electrophotographic photoreceptor, image forming apparatus, and coating liquid for forming photosensitive layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015138952A JP2017021211A (en) 2015-07-10 2015-07-10 Coating liquid for forming single layer type positive charge electrophotographic photoreceptor photosensitive layer, electrophotographic photoreceptor, electrophotographic photoreceptor cartridge, and image forming apparatus

Publications (1)

Publication Number Publication Date
JP2017021211A true JP2017021211A (en) 2017-01-26

Family

ID=57889557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015138952A Pending JP2017021211A (en) 2014-11-10 2015-07-10 Coating liquid for forming single layer type positive charge electrophotographic photoreceptor photosensitive layer, electrophotographic photoreceptor, electrophotographic photoreceptor cartridge, and image forming apparatus

Country Status (1)

Country Link
JP (1) JP2017021211A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017026909A (en) * 2015-07-24 2017-02-02 三菱化学株式会社 Electrophotographic photoreceptor, electrophotographic photoreceptor cartridge, and image forming apparatus
JP2019132964A (en) * 2018-01-31 2019-08-08 京セラドキュメントソリューションズ株式会社 Electrophotographic photoreceptor, process cartridge, and image forming apparatus
JP2019132965A (en) * 2018-01-31 2019-08-08 京セラドキュメントソリューションズ株式会社 Electrophotographic photoreceptor, process cartridge, and image forming apparatus
JP2019132963A (en) * 2018-01-31 2019-08-08 京セラドキュメントソリューションズ株式会社 Electrophotographic photoreceptor, process cartridge, and image forming apparatus
JP2021021756A (en) * 2019-07-24 2021-02-18 富士電機株式会社 Photoreceptor for electrophotography, manufacturing method therefor, and electrophotographic device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0836270A (en) * 1994-03-25 1996-02-06 Hewlett Packard Co <Hp> Single-layer positively-charged organic photoconductor and method for supplying specified functional group to conductorthereof
JP2003280233A (en) * 2002-01-16 2003-10-02 Kyocera Mita Corp Electrophotographic photoreceptor and image forming device
JP2003280252A (en) * 2002-03-22 2003-10-02 Kao Corp Toner
JP2004045991A (en) * 2002-07-15 2004-02-12 Fuji Denki Gazo Device Kk Method for preparing photosensitive layer coating solution and monolayer electrophotographic photoreceptor
WO2007078006A1 (en) * 2006-01-06 2007-07-12 Mitsubishi Chemical Corporation Electrophotographic photosensitive member, image forming device using same, and electrophotographic photosensitive member cartridge
JP2010151968A (en) * 2008-12-24 2010-07-08 Fuji Xerox Co Ltd Electrophotographic photoreceptor, process cartridge, and image forming apparatus
JP2014130236A (en) * 2012-12-28 2014-07-10 Kyocera Document Solutions Inc Positively-charged single-layer type electrophotographic photoreceptor and image forming apparatus
JP2014146005A (en) * 2013-01-30 2014-08-14 Kyocera Document Solutions Inc Positively-charged electrophotographic photoreceptor, and image forming apparatus
JP2014235251A (en) * 2013-05-31 2014-12-15 京セラドキュメントソリューションズ株式会社 Electrophotographic photoreceptor and image forming apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0836270A (en) * 1994-03-25 1996-02-06 Hewlett Packard Co <Hp> Single-layer positively-charged organic photoconductor and method for supplying specified functional group to conductorthereof
JP2003280233A (en) * 2002-01-16 2003-10-02 Kyocera Mita Corp Electrophotographic photoreceptor and image forming device
JP2003280252A (en) * 2002-03-22 2003-10-02 Kao Corp Toner
JP2004045991A (en) * 2002-07-15 2004-02-12 Fuji Denki Gazo Device Kk Method for preparing photosensitive layer coating solution and monolayer electrophotographic photoreceptor
WO2007078006A1 (en) * 2006-01-06 2007-07-12 Mitsubishi Chemical Corporation Electrophotographic photosensitive member, image forming device using same, and electrophotographic photosensitive member cartridge
JP2010151968A (en) * 2008-12-24 2010-07-08 Fuji Xerox Co Ltd Electrophotographic photoreceptor, process cartridge, and image forming apparatus
JP2014130236A (en) * 2012-12-28 2014-07-10 Kyocera Document Solutions Inc Positively-charged single-layer type electrophotographic photoreceptor and image forming apparatus
JP2014146005A (en) * 2013-01-30 2014-08-14 Kyocera Document Solutions Inc Positively-charged electrophotographic photoreceptor, and image forming apparatus
JP2014235251A (en) * 2013-05-31 2014-12-15 京セラドキュメントソリューションズ株式会社 Electrophotographic photoreceptor and image forming apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017026909A (en) * 2015-07-24 2017-02-02 三菱化学株式会社 Electrophotographic photoreceptor, electrophotographic photoreceptor cartridge, and image forming apparatus
JP2019132964A (en) * 2018-01-31 2019-08-08 京セラドキュメントソリューションズ株式会社 Electrophotographic photoreceptor, process cartridge, and image forming apparatus
JP2019132965A (en) * 2018-01-31 2019-08-08 京セラドキュメントソリューションズ株式会社 Electrophotographic photoreceptor, process cartridge, and image forming apparatus
JP2019132963A (en) * 2018-01-31 2019-08-08 京セラドキュメントソリューションズ株式会社 Electrophotographic photoreceptor, process cartridge, and image forming apparatus
JP2021021756A (en) * 2019-07-24 2021-02-18 富士電機株式会社 Photoreceptor for electrophotography, manufacturing method therefor, and electrophotographic device
JP7346974B2 (en) 2019-07-24 2023-09-20 富士電機株式会社 Electrophotographic photoreceptor, its manufacturing method, and electrophotographic device equipped with the same

Similar Documents

Publication Publication Date Title
US10503088B2 (en) Electrophotographic photoreceptor, image forming apparatus, and coating liquid for forming photosensitive layer
JP2017021211A (en) Coating liquid for forming single layer type positive charge electrophotographic photoreceptor photosensitive layer, electrophotographic photoreceptor, electrophotographic photoreceptor cartridge, and image forming apparatus
JP2016095513A (en) Electrophotographic photoreceptor and image forming apparatus
JP2016014873A (en) Electrophotographic photoreceptor, coating liquid for manufacturing electrophotographic photoreceptor, and image forming apparatus
JP6662111B2 (en) Single-layer type electrophotographic photosensitive member for positive charging, electrophotographic photosensitive member cartridge, and image forming apparatus
JP4735421B2 (en) Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP4419873B2 (en) Photoconductive material, and electrophotographic photosensitive member, electrophotographic photosensitive member cartridge and image forming apparatus using the same
JP6361218B2 (en) Electrophotographic photosensitive member, electrophotographic photosensitive member cartridge, and image forming apparatus
JP6551004B2 (en) Electrophotographic photosensitive member, electrophotographic photosensitive member cartridge, and image forming apparatus
JP6300590B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP5659455B2 (en) Electrophotographic photosensitive member, electrophotographic photosensitive member cartridge, and image forming apparatus
JP2015176139A5 (en)
JP4010725B2 (en) Electrophotographic photoreceptor
JP2012022256A (en) Image forming apparatus and electrophotographic photoreceptor
JP6264084B2 (en) Electrophotographic photosensitive member, cartridge, and image forming apparatus
JP5309465B2 (en) Electrophotographic photosensitive member and image forming apparatus
JP2016173401A (en) Electrophotographic photoreceptor, electrophotographic photoreceptor cartridge and image forming apparatus
JP4497035B2 (en) Method for manufacturing electrophotographic photosensitive member, electrophotographic photosensitive member, electrophotographic photosensitive member cartridge, and image forming apparatus
JP2014123114A (en) Electrophotographic photoreceptor, electrophotographic photoreceptor cartridge, and image forming apparatus
JP6357853B2 (en) Electrophotographic photosensitive member, cartridge, and image forming apparatus
JP2014209222A (en) Electrophotographic photoreceptor, electrophotographic photoreceptor cartridge, and image forming apparatus
JP5509885B2 (en) Electrophotographic photosensitive member, electrophotographic cartridge using the same, and image forming apparatus
JP5772264B2 (en) Electrophotographic photosensitive member, electrophotographic cartridge, and image forming apparatus
JP4466486B2 (en) Electrophotographic photosensitive member, electrophotographic photosensitive member cartridge, and image forming apparatus
JP2016118783A (en) Electrophotographic photoreceptor, electrophotographic cartridge, and image forming apparatus

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190820