JP2017019422A - Multi-layer molding block for ship and production method thereof - Google Patents

Multi-layer molding block for ship and production method thereof Download PDF

Info

Publication number
JP2017019422A
JP2017019422A JP2015139358A JP2015139358A JP2017019422A JP 2017019422 A JP2017019422 A JP 2017019422A JP 2015139358 A JP2015139358 A JP 2015139358A JP 2015139358 A JP2015139358 A JP 2015139358A JP 2017019422 A JP2017019422 A JP 2017019422A
Authority
JP
Japan
Prior art keywords
foam
layer
core layer
molding
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015139358A
Other languages
Japanese (ja)
Other versions
JP6422030B2 (en
Inventor
大山 勉
Tsutomu Oyama
勉 大山
山本 和久
Kazuhisa Yamamoto
和久 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Km Mat Co Ltd
KM MATERIAL CO Ltd
Trust Inc
Original Assignee
Km Mat Co Ltd
KM MATERIAL CO Ltd
Trust Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Km Mat Co Ltd, KM MATERIAL CO Ltd, Trust Inc filed Critical Km Mat Co Ltd
Priority to JP2015139358A priority Critical patent/JP6422030B2/en
Publication of JP2017019422A publication Critical patent/JP2017019422A/en
Application granted granted Critical
Publication of JP6422030B2 publication Critical patent/JP6422030B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a multi-layer molding block for a ship which has a small load deformation amount with respect to a large ship and hardly causes a crack, and a production method thereof.SOLUTION: There are provided multi-layer molding blocks 1, 2 formed of a core layer 3 and a shell layer 4 for covering a surface of the core layer. The core layer 3 is formed of a resin expanded material having high or intermediate expansion ratio. The shell layer 4 is formed of a resin non-expansion material or a low-expansion material. The blocks have compression strength of equal to or more than 0.9 kN/cm2, and satisfy conditions that, a crack does not occur at a load of 2000 kN, compression strain at 1000 kN load breakage is 120 mm or lower, and a total area ratio occupied by the high or intermediate expanded material on a vertical cross section is 15-60%.SELECTED DRAWING: Figure 1

Description

本発明は、入渠した船舶の船底に設置して船底を支持するための樹脂製盤木に関し、より詳細には大型船舶に対しても荷重変形量が小さくクラックが発生し難い船舶用多層成形盤木及びその製造方法に関する。   TECHNICAL FIELD The present invention relates to a resin board for installing on a ship's bottom and supporting the ship's bottom, and more specifically, a multi-layer molding machine for a ship which is small in load deformation and hardly cracks even on a large ship. The present invention relates to a tree and a manufacturing method thereof.

従来、船舶用盤木は、造船時や船舶の修繕時に入渠した船舶の船底に設置して船舶を支持するために必要不可欠な部材であって、通常、コンクリート台盤上に木製盤木を積み重ねたもの、樹脂製盤木を積み重ねたもの、或いはコンクリート台盤上に木製盤木と樹脂製盤木を積み重ねたもの等がある。前記樹脂製盤木は本出願人であるケーエムマテリアル株式会社が初めて実用化したものであり、大手造船会社を中心に使用されている。また、木製盤木にあっては、樫等の硬い木製盤木と松等の柔らかい木製盤木を組み合わせて使用するのが一般的である。すなわち、盤木には柔らかい松のクッション性と樫の剛性の両方の性質がバランスよく備わっていることが要求される。   Conventionally, a ship board is an indispensable member for supporting a ship by installing it on the bottom of a ship that was entered during shipbuilding or ship repair, and usually a wooden board is stacked on a concrete bed. And the like, and those obtained by stacking a resin board and a wooden board on a concrete base board. The resin board is first put to practical use by the applicant, CM Material Co., Ltd., and is used mainly by major shipbuilding companies. Moreover, in the case of a wooden board, it is common to use a combination of a hard wooden board such as firewood and a soft wooden board such as pine. In other words, the board is required to have a good balance between the soft pine cushioning and the rigidity of the heel.

近年、省エネ型船舶は、船底部分が流動抵抗を軽減するため、スリム化、エッジ化(先鋭化)したデザインが採用されるに伴い船底を支える盤木に過大な負荷がかかり、木製盤木、樹脂製盤木ともに材料破壊を起こすものがある。また、木製盤木の材料となる海外からの輸入木材は資源保護のために原木輸出禁止措置がとられ、製材品も輸入価格が大きく値上がりし年々入手が困難になってきている。一方、現行の樹脂製盤木は、荷重50〜100トンクラスでは省エネ船用でも材料破壊はしづらいが、歪み変形量が大きい。そこで、荷重200トンクラスに耐える高性能な船舶用樹脂製盤木の開発が強く求められている。   In recent years, energy-saving boats have been subjected to excessive loads on the wood planks that support the bottom of the boat as a result of the adoption of slimmer and edged (sharpened) designs to reduce the flow resistance at the bottom. Some of the resin board blocks cause material destruction. Imported timber from overseas, which is used as a material for wooden board, has been banned from export of raw wood to protect resources, and the price of sawn timber products has risen significantly, making it difficult to obtain every year. On the other hand, the current resin board has a large strain deformation amount, although it is difficult to destroy the material even for an energy saving ship with a load of 50 to 100 tons. Therefore, there is a strong demand for the development of high-performance marine resin board that can withstand a load of 200 tons.

また、特許文献1には、船腹に当接する支持体を、船体を支持できる硬度を有し、変形可能な十分な厚さを有する弾性体で構成したことを特徴とする自動盤木装置が開示されている。そして、支持体内に中空部を形成し、その中に気体や液体、粒状体等の流体を圧入した構造が記載されている。また、支持体をゴム、合成樹脂等の弾性体製とし、その弾性体中に織布、不織布等の拘束材を積層埋設した複合構造が記載されている。   Further, Patent Document 1 discloses an automatic rock board device characterized in that a support body that comes into contact with the ship's hull is composed of an elastic body that has a hardness that can support the hull and has a sufficient thickness that can be deformed. Has been. And the structure which formed the hollow part in the support body and press-fit fluids, such as gas, a liquid, a granular material, is described in it. Further, a composite structure is described in which the support is made of an elastic body such as rubber or synthetic resin, and a restraining material such as a woven fabric or a non-woven fabric is laminated and embedded in the elastic body.

特開2002−249098号公報JP 2002-249098 A

しかし、前記の特許文献1に記載された自動盤木装置における支持体の役割は支持体に船舶の荷重がかかると支持体自体が変形し船腹の形状に対する支持体面の追従性が高まり、船腹に対する密着支持を確実とすることにある。これに対して、本願発明者は、樹脂製盤木の内部構造モデルとして多層・発泡構造とし、コア層とシェル層をそれぞれ発泡倍率の異なる発泡体で構成し、コア層の発泡倍率を高く且つ剛性を高めるとともにシェル層を非発泡乃至低発泡倍率とし、さらにエラストマー成分を添加することによって盤木が本来備えるべきクッション性と剛性のバランスを維持するとともにクラックの発生を防止することを知見して本発明に想到したものであり、本願発明の主たる目的は、高荷重における歪み変形量を小さくして高荷重に耐える高性能な船舶用多層成形盤木を提供することを目的とするものである。   However, the role of the support in the automatic board device described in the above-mentioned Patent Document 1 is that when a load is applied to the support, the support itself is deformed and the followability of the support surface with respect to the shape of the ship's hull increases, and It is to ensure close contact support. In contrast, the inventor of the present invention has a multilayer / foam structure as an internal structure model of a resin board, and the core layer and the shell layer are formed of foams having different foam ratios, and the core layer has a high foam ratio. Knowing that by increasing the rigidity and making the shell layer non-foamed to low foaming ratio and adding an elastomer component, the balance of cushioning and rigidity that the board should originally have is maintained and cracks are prevented. The present invention has been conceived, and the main object of the present invention is to provide a high-performance multilayer molded board for marine vessels that can withstand high loads by reducing the amount of strain deformation under high loads. .

前記の課題を解決するために、本発明は、コア層とその表面を被覆するシェル層からなる船舶用多層成形盤木において、
前記コア層は大発泡乃至中発泡の樹脂製発泡体から構成され、前記シェル層は樹脂製非発泡体又は低発泡体から構成され、
圧縮強さが0.9/cm2以上であって、2000kN荷重時にクラックが発生しないこと、1000kN荷重破壊時の圧縮歪みが120mm以下であること及び縦断面における大中発泡部の占めるトータル面積比率が15〜60%であることを特徴とする船舶用多層成形盤木とする。
In order to solve the above-mentioned problems, the present invention provides a marine multilayer molded board comprising a core layer and a shell layer covering the surface of the core layer.
The core layer is composed of large foam or medium foam resin foam, and the shell layer is composed of resin non-foam or low foam,
The compressive strength is 0.9 / cm 2 or more, no crack is generated at a load of 2000 kN, the compressive strain at a load failure of 1000 kN is 120 mm or less, and the total area ratio occupied by the large and medium foamed portions in the longitudinal section is It is set as the multilayer molded board for ships characterized by being 15 to 60%.

また、前記の課題を解決するために、本発明は、前記船舶用多層成形盤木を構成するコア層又はシェル層は、少なくともエチレン・酢酸ビニル共重合体が20〜60質量部、高密度ポリエチレンが10〜80質量部、ポリプロピレンが15〜35質量部及び熱可塑性エラストマーが3〜50質量部の中から選ばれる何れかの配合材をその質量部の範囲内において含有してなることを特徴とする前記の船舶用多層成形盤木とすることが好ましい。   In order to solve the above-mentioned problems, the present invention provides that the core layer or the shell layer constituting the marine multilayer molded board has at least 20 to 60 parts by mass of an ethylene / vinyl acetate copolymer, high-density polyethylene. 10 to 80 parts by mass, 15 to 35 parts by mass of polypropylene and 3 to 50 parts by mass of a thermoplastic elastomer are contained within the range of parts by mass. It is preferable to use the above-mentioned multilayer molded board for marine vessels.

また、前記の課題を解決するために、本発明は、発泡性溶融樹脂を金型に射出してコア層とシェル層からなる2層成形する1段成形工程と、前記1段成形法により得られたプレフォーム成形体をインサート成形用金型のキャビティに配置する工程と、前記成形用プレフォーム成形体が配置された金型を型締めし、コア層とシェル層を形成するための発泡性溶融樹脂を前記プレフォーム成形体が配置された金型に射出してインサート成形体を成形する2段成形工程と、前記2段成形工程を繰り返して多段・多層の発泡成形体を得ることを特徴とする船舶用多層成形盤木の製造方法とする。   In order to solve the above problems, the present invention provides a one-step molding process in which a foamable molten resin is injected into a mold to form a two-layer formed of a core layer and a shell layer, and the one-step molding method. Placing the molded preform in the cavity of the insert molding die, and foaming for forming a core layer and a shell layer by clamping the die on which the molding preform is placed A two-stage molding process in which molten resin is injected into a mold in which the preform molded body is disposed to mold an insert molded body, and a multi-stage / multi-layer foam molded body is obtained by repeating the two-stage molding process. It is set as the manufacturing method of the multilayer molded board for a ship.

本願発明に係る船舶用多層成形盤木は、前記のように樹脂製盤木の内部構造モデルとして多層・発泡構造とし、コア層とシェル層をそれぞれ発泡倍率の異なる発泡体で構成し、コア層の発泡倍率を高く且つ硬くして変形量を小さくするとともにシェル層を非発泡乃至低発泡倍率とし、さらにエラストマー成分を添加することによって強靱化してクラックの発生を防止する。さらに、インサート成形法等により、発泡体からなるコア層を構成するインサート成形用プレフォーム成形体を形成し、このプレフォーム成形体をキャビティーに配置してシェル層を形成し、順次繰り返して多層成形することによって、非発泡乃至低発泡倍率のシェル層を形成する。   As described above, a multilayer molded board for a ship according to the present invention has a multilayer / foam structure as an internal structure model of a resin board, and the core layer and the shell layer are formed of foams having different expansion ratios, respectively. The foaming ratio is increased and hardened to reduce the deformation amount, the shell layer is made non-foamed to low foaming ratio, and the elastomer component is added to strengthen and prevent the occurrence of cracks. Furthermore, a preform molded body for insert molding that constitutes a core layer made of a foam is formed by an insert molding method, etc., and this preform molded body is placed in a cavity to form a shell layer, which is sequentially repeated in multiple layers. By molding, a shell layer of non-foaming or low foaming ratio is formed.

(a)は、実施例に係る2段成形体からなる平盤木の説明図であり、Fはその試験の際に加えられる力の方向を表す。(b)は、実施例に係る2段成形体からなる矢盤木の説明図である。(A) is explanatory drawing of the flat board which consists of a two-stage molded object which concerns on an Example, F represents the direction of the force applied in the case of the test. (B) is explanatory drawing of the sheet pile wood which consists of a two-stage molded object which concerns on an Example.

圧縮強さと大中発泡部比率(%)の相関関係を表すグラフ図である。It is a graph showing the correlation between compressive strength and the ratio of large and medium foamed parts (%).

本願発明を実施するための形態(以下「実施の形態」と称する)について、以下に詳細に説明する。しかし、本願発明は、かかる実施の形態に限定されるものではない。   Modes for carrying out the present invention (hereinafter referred to as “embodiments”) will be described in detail below. However, the present invention is not limited to such an embodiment.

本願請求の範囲第1項の船舶用多層成形盤木は、コア層とその表面を被覆するシェル層からなる船舶用多層成形盤木において、前記コア層は樹脂製の大発泡部乃至中発泡部から構成され、前記シェル層は樹脂製の非発泡部又は低発泡部から構成され、前記コア層とシェル層がそれぞれ1層乃至複数層重ね合わせて構成される。そして、前記コア層とその表面を被覆するシェル層からなる船舶用多層成形盤木は、圧縮強さが0.9kN/cm2以上であって、2000kN荷重時にクラックが発生しないこと、1000kN荷重時の圧縮歪みが120mm以下であること、縦断面における大中発泡部の占めるトータル面積比率が15〜60%であることを特徴とする。前記の大中発泡部の占めるトータル面積比率は、1〜多段成形の樹脂製発泡体において、1段成形部乃至2段成形部のコア層における大発泡部と中発泡部の合計断面積の全断面積に対する比率を云う。ここで、縦断面における発泡セルの大きさが、大発泡部は1mm以上、中発泡部は0.5mm以上で1mm未満、低発泡部(小発泡部乃至微発泡部)は0.5mm未満の発泡部位を指す。発泡倍率ERで表すと、大発泡部は5以上、中発泡部は2以上で5未満、低発泡部(小発泡部乃至微発泡部)は2未満の発泡部位に相当する。発泡倍率ER(expantion ratio)は、ソリッドの密度をρ、発泡体のみかけ密度をρfとすると、ER=ρ/ρf で表される。   A marine multilayer molded board according to claim 1 of the present application is a marine multilayer molded board composed of a core layer and a shell layer covering the surface of the core layer. The shell layer is composed of a non-foamed portion or a low-foamed portion made of resin, and the core layer and the shell layer are each composed of one or more layers. Further, the marine multilayer molded board composed of the core layer and the shell layer covering the surface thereof has a compressive strength of 0.9 kN / cm2 or more, and no cracks are generated at a load of 2000 kN. The compressive strain is 120 mm or less, and the total area ratio of the large and medium foamed portions in the longitudinal section is 15 to 60%. The total area ratio occupied by the large and medium foamed portions is the total cross-sectional area of the large foamed portion and the middle foamed portion in the core layer of the first-stage molded portion or the second-stage molded portion in the resin foam of 1 to multi-stage molding. The ratio to the cross-sectional area. Here, the size of the foam cell in the longitudinal section is 1 mm or more for the large foam part, 0.5 mm or more and less than 1 mm for the medium foam part, and the low foam part (small foam part to fine foam part) is less than 0.5 mm. Refers to the foaming site. In terms of the expansion ratio ER, the large foamed part corresponds to a foaming part of 5 or more, the middle foaming part of 2 or more and less than 5, and the low foaming part (small foaming part to fine foaming part) corresponds to a foaming part of less than 2. The expansion ratio ER (expansion ratio) is represented by ER = ρ / ρf, where ρ is the solid density and ρf is the apparent density of the foam.

前記材料において、コア層乃至シェル層に用いられる樹脂としては、熱可塑性樹脂や熱硬化性樹脂のいずれでもよい。このような熱可塑性樹脂としては、高密度ポリエチレン(HDPE)、低密度ポリエチレン、直鎖状低密度ポリエチレン、ポリプロピレン(PP)、エチレン・酢酸ビニル共重合体(EVA)、塩化ビニル樹脂、塩化ビニル・酢酸ビニル共重合体、ポリスチレン、シンジオタクティックポリスチレン、アクリル樹脂、ABS樹脂、脂肪族ポリアミド樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリオキシメチレン、ポリカーボネート、ポリアリレート、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、セルロース系プラスチック等、あるいはこれらの共重合体、ブレンド物等が使用できる。   In the said material, as a resin used for a core layer thru | or a shell layer, either a thermoplastic resin or a thermosetting resin may be sufficient. Examples of such thermoplastic resins include high density polyethylene (HDPE), low density polyethylene, linear low density polyethylene, polypropylene (PP), ethylene / vinyl acetate copolymer (EVA), vinyl chloride resin, vinyl chloride / Vinyl acetate copolymer, polystyrene, syndiotactic polystyrene, acrylic resin, ABS resin, aliphatic polyamide resin, polyethylene terephthalate, polybutylene terephthalate, polyoxymethylene, polycarbonate, polyarylate, polysulfone, polyethersulfone, polyetheretherketone Polyphenylene sulfide, cellulosic plastic, etc., or copolymers or blends thereof can be used.

一方、熱硬化性樹脂としては、ポリウレタン樹脂、フェノール樹脂、不飽和ポリエステル、ジアリルフタレート樹脂、ビニルエステル樹脂、エポキシ樹脂、ウレア樹脂、メラミン樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、アクリル樹脂、天然ゴム、合成ゴム等が使用できる。また、反応前に液状、粉状、粒状又はペレット状等の樹脂であって発泡するものでもよい。これらのものは2つ以上組み合わせて使用してもよい。さらに、上記熱硬化性樹脂及び熱可塑性樹脂を組み合わせて使用することもできる。   On the other hand, as thermosetting resin, polyurethane resin, phenol resin, unsaturated polyester, diallyl phthalate resin, vinyl ester resin, epoxy resin, urea resin, melamine resin, polyimide resin, polyamideimide resin, acrylic resin, natural rubber, synthetic Rubber etc. can be used. Further, it may be a resin in the form of liquid, powder, granules or pellets before the reaction and foams. Two or more of these may be used in combination. Furthermore, the thermosetting resin and the thermoplastic resin can be used in combination.

エラストマーとしては、熱可塑性エラストマー(TPE)が好ましく、ガラス転移温度の高いポリマー連鎖(A)と低い連鎖(B)(Aとしてポリスチレン、Bとしてポリ(エチレン/プロピレン)(PE/P)、ポリ(エチレン/ブチレン)(PE/B)、ポリブタジエン(PB)又はポリイソプレン(PI)等)が、ABAなる形で連結したエラストマーが高温では熱可塑性樹脂として、常温ではエラストマーとしての性質を示すことから特に好ましい。スチレンブロック共重合ベースのTPEは、一般にTPSと呼ばれ、TPSは、SEBS、SBS、SEPS、SEPS−Vに分類され、スチレン末端ブロックがエチレン・ブチレン等の弾性ブロックと結合している。   As the elastomer, a thermoplastic elastomer (TPE) is preferable, and a polymer chain (A) having a high glass transition temperature and a low chain (B) (A as polystyrene, B as poly (ethylene / propylene) (PE / P), poly ( Elastomer / butylene (PE / B), polybutadiene (PB) or polyisoprene (PI), etc.) are connected to each other in the form of ABA. preferable. TPE based on styrene block copolymer is generally called TPS, and TPS is classified into SEBS, SBS, SEPS, and SEPS-V, and styrene end blocks are combined with elastic blocks such as ethylene butylene.

これらのスチレン系TPSは射出成型用材料等として使用される。また、本実施の形態においては、熱可塑性エラストマー(TPE)がエラストマーとして強靱性を発揮するのみでなく、エチレン・酢酸ビニル共重合体(EVA)、高密度ポリエチレン(HDPE)及びポリプロピレン(PP)をブレンドする場合の相溶化剤として作用して破断強度等の機械特性を向上するものと考えられる。さらに、前記樹脂とエラストマーの他に充填剤、発泡剤、安定剤、紫外線吸収剤、帯電防止剤、難燃剤、着色剤、粘度調整剤、加工助剤、補強材等を添加してもよい。   These styrene TPS are used as injection molding materials. In the present embodiment, not only the thermoplastic elastomer (TPE) exhibits toughness as an elastomer, but also an ethylene / vinyl acetate copolymer (EVA), high-density polyethylene (HDPE), and polypropylene (PP). It is considered that it acts as a compatibilizing agent for blending and improves mechanical properties such as breaking strength. Further, in addition to the resin and elastomer, fillers, foaming agents, stabilizers, ultraviolet absorbers, antistatic agents, flame retardants, colorants, viscosity modifiers, processing aids, reinforcing materials, and the like may be added.

次に、本実施の形態における船舶用多層成形盤木に用いる材料の基本的な配合について説明する。本実施の形態における船舶用多層成形盤木の製造方法は特に限定するものではないが、射出成形、押出成形及び注型成形などが好ましい。用いる材料としては係る成形に適する材料であれば特に限定されないが、ポリオレフィン系樹脂、エチレン系共重合体及びエラストマーの中の何れかの組みあわせに係る材料を含有してなることが好ましい。ポリオレフィン系樹脂としては、高密度ポリエチレン(HDPE)、低密度ポリエチレン、直鎖状低密度ポリエチレン、ポリプロピレン(PP)の何れか一種又は組みあわせて用いてもよい。エチレン系共重合体としては、エチレン・酢酸ビニル共重合体(EVA)が好ましく、エラストマーとしては、熱可塑性エラストマー(TPE)が好ましい。   Next, basic blending of materials used for the marine multilayer molded board in the present embodiment will be described. Although the manufacturing method of the multilayer molded board for ships in this Embodiment is not specifically limited, Injection molding, extrusion molding, cast molding, etc. are preferable. Although it will not specifically limit if it is a material suitable for the shaping | molding as a material to be used, It is preferable to contain the material which concerns on any combination in polyolefin resin, an ethylene-type copolymer, and an elastomer. As the polyolefin resin, any one or a combination of high density polyethylene (HDPE), low density polyethylene, linear low density polyethylene, and polypropylene (PP) may be used. The ethylene copolymer is preferably an ethylene / vinyl acetate copolymer (EVA), and the elastomer is preferably a thermoplastic elastomer (TPE).

コア層を構成する材料の配合比率としては、例えば、エチレン・酢酸ビニル共重合体(EVA)が40〜60質量部に対して高密度ポリエチレン(HDPE)が10〜30質量部、ポリプロピレン(PP)が15〜35質量部、熱可塑性エラストマー(TPE)が3〜50質量部が好ましい。さらに発泡倍率に応じて発泡剤を2〜10質量部加えるのが好ましい。発泡剤は有機系乃至無機系の化学発泡剤又はカプセル等の物理発泡剤の何れでもよい。発泡剤としては特に限定するものではないが、アゾ系発泡剤が好ましい。また、ウレタンフォームの場合は注型成形によりジオールとジイソシアナートを反応させてプレポリマーをつくり、このプレポリマーに水を架橋剤として網状構造を形成するときに炭酸ガスを発生し、この炭酸ガスが発泡剤の役割を果たして発泡体が形成される。前記材料は新規材料(バージン原料)はもちろんのこと品質を充分満足する限りにおいて発泡剤を含む再生品やB格品等のいわゆるオフグレード品を用いることも可能である。   As a compounding ratio of the material constituting the core layer, for example, ethylene / vinyl acetate copolymer (EVA) is 40 to 60 parts by mass, high density polyethylene (HDPE) is 10 to 30 parts by mass, and polypropylene (PP). 15 to 35 parts by mass and 3 to 50 parts by mass of the thermoplastic elastomer (TPE) are preferable. Furthermore, it is preferable to add 2 to 10 parts by mass of a foaming agent according to the expansion ratio. The foaming agent may be either an organic or inorganic chemical foaming agent or a physical foaming agent such as a capsule. Although it does not specifically limit as a foaming agent, An azo type foaming agent is preferable. In the case of urethane foam, a diol and diisocyanate are reacted by cast molding to form a prepolymer, and carbon dioxide is generated when forming a network structure with water as a crosslinking agent. Plays the role of a foaming agent to form a foam. As long as the material sufficiently satisfies the quality as well as a new material (virgin raw material), it is also possible to use a so-called off-grade product such as a regenerated product containing a foaming agent or a B-grade product.

前記シェル層を構成する材料の配合比率は、前記コア層を構成する材料の配合比率と同様もしくはコア層を構成する材料の中の少なくとも一種の共通の材料を含むことが好ましい。さらに、発泡剤を含まず或いは発泡剤の添加量を前記コア層の添加量よりも少なくすることが好ましい。しかし、発泡セルの大きさや発泡倍率は成形方法や成形条件(温度乃至時間)によって変化することから成形方法や成形条件に応じて発泡剤の添加量を適宜調整することが好ましい。   The blending ratio of the material constituting the shell layer is preferably the same as the blending ratio of the material constituting the core layer or includes at least one common material among the materials constituting the core layer. Furthermore, it is preferable that the foaming agent is not included or the amount of foaming agent added is smaller than the amount of core layer added. However, since the size of the foamed cell and the foaming ratio vary depending on the molding method and molding conditions (temperature to time), it is preferable to appropriately adjust the amount of the foaming agent added according to the molding method and molding conditions.

次に、前記の材料を用いてコア層とシェル層を形成する方法としては、ワンショット法による1段成形法で可能であり、該1段成形法で得られた2層成形体をインサート成形用プレフォーム成形体としてインサート成形用金型のキャビティに配置し、このプレフォーム成形体の外側に更に溶融樹脂を射出する2段成形により新たにコア層とシェル層が形成される。係るインサート成形法を繰り返し多段成形により多層多重の成形体を成形することが可能である。前記射出成形法によれば、成形用型に近い部分が先に冷却されて非発泡乃至低発泡のシェル層が形成され、その後に高温部が発泡して大中発泡部からなるコア層が形成される。このように大中発泡部からなるコア層と非発泡乃至低発泡からなるシェル層が重なり合い、或いは多層多重の成形体を形成することによって、より強靱で荷重200トンクラスに耐える高性能な船舶用樹脂製盤木が得られる。   Next, as a method of forming the core layer and the shell layer using the above materials, a one-step molding method using a one-shot method is possible, and a two-layer molding obtained by the one-step molding method is insert-molded. A core layer and a shell layer are newly formed by two-stage molding in which a molten resin is injected outside the preform molded body, which is disposed as a preform molded body for use in a cavity of an insert molding mold. It is possible to form a multi-layered molded body by repeating such insert molding method by multi-stage molding. According to the injection molding method, a portion close to the mold is first cooled to form a non-foamed or low-foamed shell layer, and then a high-temperature portion is foamed to form a core layer composed of large and medium foamed portions. Is done. In this way, the core layer consisting of large and medium foamed parts and the non-foamed or low-foamed shell layer overlap each other, or by forming a multi-layered molded body, it is more tough and capable of withstanding high loads of 200 tons. A resin board is obtained.

また、成形方法としては限定するものではないが前記射出成形の他に、注型成形及び押出成形等で成形可能である。射出成形は、金型キャビティー容積よりも少ない量の発泡性溶融樹脂を充填し、気泡の拡大によって充填を完了させるショートショット法、金型キャビティー容積と等しい量の発泡性溶融樹脂を充填し、固化収縮分を気泡の発生と拡大で補うフルショット法、或いはキャビティー容積が可変な金型を用い、発泡性溶融樹脂を充填する際はキャビティー容積を狭めておき充填中乃至充填後にキャビティー容積を徐々にゆっくりと広げていき気泡を発生させるコアバック法を応用することが可能である。本願発明に係る船舶用多層成形盤木には、発泡成形品のクッション性乃至剛性を高める前記コアバック法を応用する成形法が好ましい。   Moreover, although it does not limit as a shaping | molding method, it can shape | mold by cast molding, extrusion molding, etc. other than the said injection molding. Injection molding is a short shot method that fills the foamable molten resin in an amount smaller than the mold cavity volume and completes the filling by expanding the bubbles, and fills the foamable molten resin in an amount equal to the mold cavity volume. When filling with foamable molten resin using a full shot method that compensates for solidification shrinkage by the generation and expansion of bubbles, or a mold with variable cavity volume, the cavity volume is narrowed and the cavity is filled during or after filling. It is possible to apply a core back method that gradually expands the tea volume and generates bubbles. For the multilayer molded board for marine use according to the present invention, a molding method that applies the core back method for enhancing the cushioning property or rigidity of the foam molded product is preferable.

以下に実施例を挙げて本願発明について説明するが、本願発明はこれらの実施例によって何ら限定されるものではない。   Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples.

本実施例乃至比較例に用いる配合例としては、実施例1、実施例2、実施例3と比較例1、比較例2、比較例3、及び実施例5の2段成形に用いる配合を予め調合準備しておき、これらの配合を適宜組み合わせて、実施例1〜3、実施例5〜8及び比較例1〜3の各実験を行った。本配合では、エチレン・酢酸ビニル共重合体(EVA)、高密度ポリエチレン(HDPE)、ポリプロピレン(PP)、スチレン系熱可塑性エラストマー(TPE)及び発泡倍率に応じてアゾ系発泡剤を含有する材料をブレンダーで攪拌混合して配合材を作成した。前記各配合材を所定の射出成形機を用いて成形体を成形した。なお、前記EVAにはVA含有量19%の発泡・中空成形グレード品を、HDPEにはMFR0.36g/10min、密度0.956g/cm3の中空成形グレード品を、PPにはMFR11g/10min、密度0.90g/cm3の一般射出グレード品を、TPEには、オレフィン系熱可塑性エラストマー、スチレン系熱可塑性エラストマー乃至スチレン・ブタジエン系熱可塑性エラストマーを、それぞれ発泡剤込み再生品とその一部乃至全部を置き換えた配合材を用いた。   As examples of blending used in the present Examples to Comparative Examples, the blends used in the two-stage molding of Example 1, Example 2, Example 3, and Comparative Example 1, Comparative Example 2, Comparative Example 3, and Example 5 in advance are used. Preparation of preparation was carried out, and these experiments were combined as appropriate to carry out experiments of Examples 1 to 3, Examples 5 to 8, and Comparative Examples 1 to 3. In this formulation, an ethylene / vinyl acetate copolymer (EVA), high-density polyethylene (HDPE), polypropylene (PP), styrene-based thermoplastic elastomer (TPE), and a material containing an azo-based blowing agent depending on the expansion ratio are used. A blended material was prepared by stirring and mixing with a blender. A molded body was molded from each of the above blended materials using a predetermined injection molding machine. The EVA is a foam / hollow molding grade product with a VA content of 19%, the HDPE is a hollow molding grade product with an MFR of 0.36 g / 10 min and a density of 0.956 g / cm3, and the PP is an MFR of 11 g / 10 min with a density. 0.90 g / cm3 of general injection grade products, TPE includes olefin-based thermoplastic elastomers, styrene-based thermoplastic elastomers or styrene-butadiene-based thermoplastic elastomers, and foamed regenerated products and some or all of them. The replaced compound was used.

次に、成形方法は射出成形によって行い、インサート成形にあってはインサート成形用プレフォーム成形体をインサート成形用金型のキャビティに配置し、2段成形部を形成するための発泡性溶融樹脂を射出することによりインサート成形体を成形した。3段成形する場合は前記2段成形によるプレフォーム成形体をインサート成形用金型のキャビティに配置し、3段成形部を形成するための発泡性溶融樹脂を射出することによりインサート成形体を成形した。射出成形における成形条件は以下の表4のとおりである。それぞれ曲げ試験と圧縮試験を行い、曲げ強さ、圧縮歪み及び硬度等を測定した。その試験結果を表1〜表3に示す。表1には実施例1〜3、表2には実施例5〜8、表3には比較例1〜3をそれぞれ示す。   Next, the molding method is performed by injection molding. In insert molding, a preform molded body for insert molding is placed in the cavity of the mold for insert molding, and a foamable molten resin for forming a two-stage molded part is used. An insert molded body was formed by injection. In the case of three-stage molding, the preform formed by the above-mentioned two-stage molding is placed in the cavity of the mold for insert molding, and the insert molded body is molded by injecting foamable molten resin for forming the three-stage molded part. did. The molding conditions in injection molding are as shown in Table 4 below. A bending test and a compression test were performed to measure bending strength, compressive strain, hardness, and the like. The test results are shown in Tables 1 to 3. Table 1 shows Examples 1 to 3, Table 2 shows Examples 5 to 8, and Table 3 shows Comparative Examples 1 to 3, respectively.

なお、本実施例の圧縮試験と曲げ試験に用いた試験機、試験片及び試験条件は以下のとおりである。
試験機:10MN構造物圧縮曲げ試験機(使用レンジ:2000kN)を使用した。
試験片:400L×300W×200Tmmの射出成形体を使用した。
圧縮面:400L×300Wの面に対して垂直方向(図1(a)のF)に加圧した。
試験速度:2mm/min(曲げ試験)、5mm/min(圧縮試験)
曲げ試験において、供試体は上ベッドに取り付けた載荷用鋼板により加圧し、下ベッドに取り付けた載荷用鋼板には下治具として鋼板を2枚重ねたものを供試体中央部を挟んで250mm間隔を開けて設置した。以下に本実施例に係る2層成形体のコアサイズと盤木サイズを示す(表5)。
In addition, the testing machine, test piece, and test conditions used for the compression test and the bending test of the present example are as follows.
Test machine: A 10MN structure compression bending test machine (use range: 2000 kN) was used.
Test piece: An injection-molded body of 400 L × 300 W × 200 Tmm was used.
Compression surface: Pressurized in a direction perpendicular to the surface of 400 L × 300 W (F in FIG. 1A).
Test speed: 2 mm / min (bending test), 5 mm / min (compression test)
In the bending test, the specimen is pressed by the loading steel plate attached to the upper bed, and the loading steel plate attached to the lower bed is a stack of two steel plates as a lower jig, with an interval of 250 mm across the center of the specimen. Was opened and installed. The core size and board size of the two-layer molded body according to this example are shown below (Table 5).

Figure 2017019422
Figure 2017019422

Figure 2017019422
Figure 2017019422

Figure 2017019422
Figure 2017019422

Figure 2017019422
Figure 2017019422

Figure 2017019422
Figure 2017019422

表5より、平盤木の全体積をVal、コア体積をVco、シェル体積をVsh、
全体積に対するシェル層の占める体積をVspとすると、
Val= (W1)×(H1)× (L1) 、Vco= (W2)×(H2)×(L2)、Vsh=Val−Vco、Vsp=100×Vsh/Val となる。
同様に矢盤木の全体積はVal= (W3)×((h3)+(H3))×(L3)/2、
コア体積をVco= (W4)×(H4)×(L4)、Vsh=Val−Vco、
Vsp=100×Vsh/Val となる。
From Table 5, the total volume of flat wood is Val, the core volume is Vco, the shell volume is Vsh,
When the volume occupied by the shell layer relative to the total volume is Vsp,
Val = (W1) × (H1) × (L1), Vco = (W2) × (H2) × (L2), Vsh = Val−Vco, Vsp = 100 × Vsh / Val.
Similarly, the total volume of the sheet wood is Val = (W3) × ((h3) + (H3)) × (L3) / 2,
The core volume is Vco = (W4) × (H4) × (L4), Vsh = Val−Vco,
Vsp = 100 × Vsh / Val.

表1、表2及び表3より、圧縮強さが0.9kN/cm2以上が好ましい。0.9kN/cm2よりも小さいと強度不足となり大型船舶を支持することが困難となる可能性がある。また、1000kN荷重時の破壊時圧縮歪みが120mm以下が好ましい。圧縮歪みが120mmを越えた場合は船舶を確実に支持することが困難となる可能性がある。さらに、2000kN荷重時にクラックが発生しないことが好ましい。2000kN荷重時にクラックが発生すると強度不足となり大型船舶を支持することが困難となる可能性がある。   From Table 1, Table 2 and Table 3, the compressive strength is preferably 0.9 kN / cm 2 or more. If it is less than 0.9 kN / cm 2, the strength may be insufficient and it may be difficult to support a large vessel. Further, the compressive strain at breakage under a load of 1000 kN is preferably 120 mm or less. If the compressive strain exceeds 120 mm, it may be difficult to reliably support the ship. Furthermore, it is preferable that cracks do not occur at a load of 2000 kN. If a crack occurs at a load of 2000 kN, the strength is insufficient and it may be difficult to support a large ship.

また、図2は、実施例1〜3(表1)、実施例5〜8(表2)及び比較例1〜3(表3)の合計10件について、2種の変量即ちトータル発泡面積比率(%)と圧縮強さ(kN/cm2)をそれぞれ横軸(大中発泡部比率)と縦軸(圧縮強さ)としたグラフにそれぞれプロットし、相関関係の有無を直線で表すグラフ図である。このグラフ図から分かるように、圧縮強さと大中発泡部比率には相関性があり、比較例1〜3は大中発泡部比率が60%を越えると圧縮強さが限界値0.9kN/cm2よりも低下しクラック発生の原因となる。逆に、実施例7,8のように大中発泡部比率が20%前後の場合は圧縮強さも3kN/cm2と大きくなる。従って、クラック発生を抑えて圧縮強さを高めるためには大中発泡部比率を60%以下に抑制することが好ましい。また、1000kN荷重破壊時圧縮歪みに関しては、比較例1は120mmよりも大きく、一方、比較例2,3は120mm以内であるが圧縮強さを満たしていないこととなる。   In addition, FIG. 2 shows two variables, that is, the total foam area ratio, for a total of 10 cases of Examples 1 to 3 (Table 1), Examples 5 to 8 (Table 2), and Comparative Examples 1 to 3 (Table 3). (%) And compressive strength (kN / cm2) are respectively plotted on a graph with the horizontal axis (large / middle foam part ratio) and vertical axis (compressive strength), respectively, and a graph showing the presence or absence of a correlation with a straight line. is there. As can be seen from this graph, there is a correlation between the compressive strength and the ratio of the large and medium foamed parts. In Comparative Examples 1 to 3, when the ratio of the large and medium foamed parts exceeds 60%, the compressive strength becomes a limit value of 0.9 kN / It becomes lower than cm 2 and causes cracking. On the other hand, when the ratio of the large and medium foamed parts is around 20% as in Examples 7 and 8, the compressive strength is also increased to 3 kN / cm 2. Therefore, in order to suppress the generation of cracks and increase the compressive strength, it is preferable to suppress the ratio of the large and medium foamed portions to 60% or less. Moreover, regarding the compressive strain at the time of 1000 kN load failure, Comparative Example 1 is larger than 120 mm, while Comparative Examples 2 and 3 are within 120 mm, but do not satisfy the compressive strength.

本願発明に係る船舶用多層成形盤木は、高荷重における歪み変形量を小さくして高荷重に耐える高性能な船舶用多層成形盤木を提供し、森林や樹木等の自然保護に役立ち経済的にも有用である。   The multi-layer molded board for ships according to the present invention provides a high-performance multi-layer molded board for ships that can withstand high loads by reducing the amount of strain deformation under high loads, and is useful for the natural protection of forests and trees, etc. Also useful.

1 盤木(平盤木)
2 盤木(矢盤木)
3 コア層
4 シェル層
1 board (flat board)
2 Woodcut (Yabaki)
3 Core layer 4 Shell layer

Claims (3)

コア層とその表面を被覆するシェル層からなる船舶用多層成形盤木において、
前記コア層は大発泡乃至中発泡の樹脂製発泡体から構成され、前記シェル層は樹脂製非発泡体又は低発泡体から構成され、
圧縮強さが0.9/cm2以上であって、2000kN荷重時にクラックが発生しないこと、1000kN荷重破壊時の圧縮歪みが120mm以下であること及び縦断面における大中発泡部の占めるトータル面積比率が15〜60%であることを特徴とする船舶用多層成形盤木。
In a marine multilayer molded board composed of a core layer and a shell layer covering the surface,
The core layer is composed of large foam or medium foam resin foam, and the shell layer is composed of resin non-foam or low foam,
The compressive strength is 0.9 / cm 2 or more, no crack is generated at a load of 2000 kN, the compressive strain at a load failure of 1000 kN is 120 mm or less, and the total area ratio occupied by the large and medium foamed portions in the longitudinal section is A multilayer molded board for ships, characterized by being 15 to 60%.
前記船舶用多層成形盤木を構成するコア層又はシェル層は、少なくともエチレン・酢酸ビニル共重合体が20〜60質量部、高密度ポリエチレンが10〜80質量部、ポリプロピレンが15〜35質量部及び熱可塑性エラストマーが3〜50質量部の中から選ばれる何れかの配合材をその質量部の範囲内において含有してなることを特徴とする請求項1記載の船舶用多層成形盤木。   The core layer or shell layer constituting the marine multilayer molded board is at least 20 to 60 parts by mass of ethylene / vinyl acetate copolymer, 10 to 80 parts by mass of high density polyethylene, 15 to 35 parts by mass of polypropylene, and The marine multilayer molded board according to claim 1, wherein the thermoplastic elastomer contains any compounding material selected from 3 to 50 parts by mass within the range of the parts by mass. 発泡性溶融樹脂を金型に射出してコア層とシェル層からなる2層成形する1段成形工程と、前記1段成形法により得られたプレフォーム成形体をインサート成形用金型のキャビティに配置する工程と、前記成形用プレフォーム成形体が配置された金型を型締めし、コア層とシェル層を形成するための発泡性溶融樹脂を前記プレフォーム成形体が配置された金型に射出してインサート成形体を成形する2段成形工程と、前記2段成形工程を繰り返して多段・多層の発泡成形体を得ることを特徴とする船舶用多層成形盤木の製造方法。   A one-stage molding process in which a foamable molten resin is injected into a mold to form a two-layered structure including a core layer and a shell layer, and a preform formed by the one-stage molding method is used as a cavity of an insert molding mold. A step of arranging, and a mold on which the preform for molding is arranged is clamped, and a foamable molten resin for forming a core layer and a shell layer is attached to the mold on which the preform is arranged A method for manufacturing a marine multilayer molded board, comprising: a two-stage molding step of injection molding to form an insert molded body, and a multi-stage / multi-layer foam molded body obtained by repeating the two-stage molding step.
JP2015139358A 2015-07-13 2015-07-13 Multi-layer molded board for ship and manufacturing method thereof Active JP6422030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015139358A JP6422030B2 (en) 2015-07-13 2015-07-13 Multi-layer molded board for ship and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015139358A JP6422030B2 (en) 2015-07-13 2015-07-13 Multi-layer molded board for ship and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2017019422A true JP2017019422A (en) 2017-01-26
JP6422030B2 JP6422030B2 (en) 2018-11-14

Family

ID=57887436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015139358A Active JP6422030B2 (en) 2015-07-13 2015-07-13 Multi-layer molded board for ship and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6422030B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001239205A (en) * 2000-03-02 2001-09-04 Mitsui Eng & Shipbuild Co Ltd Coated surface protecting method and releasable sheet
JP2002249098A (en) * 2001-02-22 2002-09-03 Shibata Ind Co Ltd Automatic block device
JP2015093457A (en) * 2013-11-13 2015-05-18 株式会社ジェイエスピー Composite molding and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001239205A (en) * 2000-03-02 2001-09-04 Mitsui Eng & Shipbuild Co Ltd Coated surface protecting method and releasable sheet
JP2002249098A (en) * 2001-02-22 2002-09-03 Shibata Ind Co Ltd Automatic block device
JP2015093457A (en) * 2013-11-13 2015-05-18 株式会社ジェイエスピー Composite molding and method for producing the same

Also Published As

Publication number Publication date
JP6422030B2 (en) 2018-11-14

Similar Documents

Publication Publication Date Title
JP5727089B2 (en) Foam molded body, buoyancy material including the same, and building material
CN108289528B (en) Sole member and shoe
GB2448468A (en) Composite laminated articles having foam core
JP6161563B2 (en) Fiber reinforced composite
US8048347B2 (en) Method of manufacture of a foamed core class “A” article
EP3835025B1 (en) Laminated article
CN111674137A (en) Full-water-based foamed polyurethane board and preparation method thereof
JP6422030B2 (en) Multi-layer molded board for ship and manufacturing method thereof
Tissandier et al. Microcellular agave fibre-high density polyethylene composites produced by injection molding
JP5479772B2 (en) Foam molded body and method for producing the same
KR101447616B1 (en) Foam products, buoyanct structure and construction material having the same
Kozlowski Lightweight plastic materials
CN111251681A (en) Cryogenic heat-preservation composite sandwich board and preparation method thereof
EP3154762B1 (en) Low temperature process for integrating a polymeric foam with a polymeric body
JP2003268145A (en) Polyolefin resin composition for injection foam molding and injection-molded foam
JPH1158534A (en) Manufacture of fiber reinforced urethane resin multi-layer foam
JP6231313B2 (en) Composite molded body
CN114672076B (en) Modified natural rubber and preparation method thereof, and high-bearing-capacity rubber bridge damping device and preparation method thereof
CN117396546A (en) Polypropylene resin foam particle molded article and method for producing same
JP2001088183A (en) Lighweight resin tray containing fiber and its production
JPS59152829A (en) Polyurethane integral skin foam composite body
CN117377719A (en) Polypropylene resin expanded beads, process for producing the same, and molded article of polypropylene resin expanded beads
CN117402434A (en) Thermoplastic resin expanded beads and molded article of thermoplastic resin expanded beads
CN110023387A (en) Manufacture the method with the foams of internal structure
JPH0328312B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181004

R150 Certificate of patent or registration of utility model

Ref document number: 6422030

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250