JP2017018999A - Ferritic stainless steel pipe excellent in bending workability - Google Patents

Ferritic stainless steel pipe excellent in bending workability Download PDF

Info

Publication number
JP2017018999A
JP2017018999A JP2015140088A JP2015140088A JP2017018999A JP 2017018999 A JP2017018999 A JP 2017018999A JP 2015140088 A JP2015140088 A JP 2015140088A JP 2015140088 A JP2015140088 A JP 2015140088A JP 2017018999 A JP2017018999 A JP 2017018999A
Authority
JP
Japan
Prior art keywords
bending
stainless steel
ferritic stainless
value
axis direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015140088A
Other languages
Japanese (ja)
Inventor
彰啓 安藤
Akihiro Ando
彰啓 安藤
進之助 西島
Shinnosuke Nishijima
進之助 西島
冨村 宏紀
Hiroki Tomimura
宏紀 冨村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2015140088A priority Critical patent/JP2017018999A/en
Publication of JP2017018999A publication Critical patent/JP2017018999A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To restrain plate thickness reduction on the bending outside in bending processing.SOLUTION: A ferritic stainless steel pipe being 2r+r≥4 in the relationship between an r value (r) in the pipe axis direction and an r value (r) in the direction of forming 45° with the pipe axis direction, is formed of a raw material of bending processing, and a crack on the bending outside or remarkable plate thickness reduction such as not satisfying a use purpose of a finished article is restrained. The ferritic stainless steel pipe made so that an r value (r) in the pipe axis direction of the ferritic stainless steel pipe is 1.5 or more and the pipe axis direction is orthogonal to the rolling direction of the ferritic stainless steel pipe being a pipe raw material, is desirable.SELECTED DRAWING: None

Description

本発明は、曲げ加工性に優れたフェライト系ステンレス鋼管に関する。 The present invention relates to a ferritic stainless steel pipe excellent in bending workability.

自動車や空調機器、電気機器、各種プラント等の配管として、各種金属管が用いられている。これらの配管は、曲げ加工して使用される場合も多い。金属管の曲げ加工においては、曲げの中立軸を境界として、曲げ外側では中立軸よりも弧長が長いため軸方向に伸ばされ、加工後の板厚が加工前の板厚よりも薄くなる。一方、曲げ内側では中立軸よりも弧長が短いため軸方向に圧縮され、加工後の板厚が加工前の板厚よりも厚くなる。
その結果、曲げ外側では割れもしくは加工品の使用目的を満足しないような板厚減少が発生しやすく、曲げ内側では座屈が発生しやすくなる。更に、曲げ加工後に断面の楕円化も発生しやすい。
Various metal pipes are used as pipes for automobiles, air conditioners, electrical equipment, various plants, and the like. These pipes are often used after being bent. In bending of a metal tube, with the bending neutral axis as a boundary, the arc length is longer than the neutral axis on the outer side of the bending, so that it is extended in the axial direction, and the plate thickness after processing becomes thinner than the plate thickness before processing. On the other hand, the inner side of the bend is compressed in the axial direction because the arc length is shorter than that of the neutral shaft, and the thickness after processing becomes thicker than the thickness before processing.
As a result, cracks are likely to occur on the outer side of the bend, or a reduction in plate thickness that does not satisfy the intended use of the processed product, and buckling tends to occur on the inner side of the bend. Furthermore, the cross section is likely to be elliptical after bending.

このような各種配管の素材として、銅管やアルミ管、あるいは特に耐食性や耐熱性を要求される用途ではオーステナイト系ステンレス鋼管が使用されることも多いが、コスト面から、フェライト系ステンレス鋼管が使用される例が増えてきている。
フェライト系ステンレス鋼は、伸び等の点でオーステナイト系ステンレスに比べ加工性に劣る場合もあるが、曲げ加工に対する要求は厳しさを増すばかりである。例えば曲げの中立軸における曲げ半径が管直径の1.2倍以下であるような厳しい加工に対しても、曲げ外側の板厚減少や割れ、曲げ内側の座屈、断面の楕円化等を抑制できる曲げ加工技術および素材に対する要求が高まっている。
As a material for such various pipes, copper pipes and aluminum pipes, or austenitic stainless steel pipes are often used for applications that require corrosion resistance and heat resistance, but in terms of cost, ferritic stainless steel pipes are used. There are an increasing number of examples.
Ferritic stainless steel may be inferior in workability compared to austenitic stainless steel in terms of elongation or the like, but the demand for bending is only increasing. For example, even for severe machining where the bending radius at the neutral axis of the bending is 1.2 times the pipe diameter or less, thickness reduction and cracking on the outer side of the bend, buckling on the inner side of the bend, and ovalization of the cross section are suppressed. There is an increasing demand for bending technology and materials that can be used.

本発明は、金属管の曲げ加工における、曲げ外側の板厚減少を抑制するために案出されたものであり、特に、金属管の板厚が薄い場合や曲げ半径が小さい場合に、曲げ外側の割れ及び板厚減少を抑制できるフェライト系ステンレス鋼管を提供することを目的とする。 The present invention has been devised in order to suppress a decrease in the thickness of the outer side of the bending of the metal tube, particularly when the thickness of the metal tube is thin or the bending radius is small. An object of the present invention is to provide a ferritic stainless steel pipe that can suppress cracking and thickness reduction.

本発明者等は、フェライト系ステンレス鋼管の曲げ加工において、曲げ外側の板厚減少に及ぼす素材の材料特性の影響について鋭意検討を重ねた結果、素材の塑性異方性(r値)、特に管軸方向のr値(rφ)と管軸方向と45°をなす方向のr値(r)が大きいほど曲げ外側の板厚減少が小さく、一方、管軸方向と90°をなす方向のr値(rθ)は曲げ外側の板厚減少に及ぼす影響が小さいという知見を得た。 As a result of intensive studies on the influence of the material properties of the material on the decrease in the thickness of the outer side of the bending in the bending process of the ferritic stainless steel pipe, the present inventors have determined that the plastic anisotropy (r value) of the material, particularly the pipe, The larger the r value (r i ) in the direction forming 45 ° with the axial r value (r φ ) and the tube axis direction, the smaller the decrease in the plate thickness outside the bend, while the 90 ° direction with the tube axis direction. It was found that the r value (r θ ) has a small effect on the decrease in thickness outside the bend.

本発明は、このような知見に基づいて開発されたものであり、管軸方向のr値(rφ)と管軸方向と45°をなす方向のr値(r)との関係を
2rφ+r≧4
とすることにより、曲げ加工における曲げ外側で割れもしくは加工品の使用目的を満足しないような著しい板厚減少を抑制できる、フェライト系ステンレス鋼管に関する。
The present invention has been developed on the basis of such knowledge, and the relationship between the r value (r φ ) in the tube axis direction and the r value (r i ) in the direction forming 45 ° with the tube axis direction is expressed as 2r. φ + r i ≧ 4
By doing so, the present invention relates to a ferritic stainless steel pipe that can suppress a significant decrease in the plate thickness that does not satisfy the purpose of use of the processed product or a crack on the outside of the bending.

r値は、鋼管の素材となる鋼板から、圧延方向と平行な方向、圧延方向と45°をなす方向、及び圧延方向と90°をなす方向のそれぞれに沿って切り出した3種類のJIS13B号試験片を用意し、伸び率15%の歪量で評価して、3方向のr値を求めた。そして、これら3方向のr値について、鋼板の圧延方向と平行な方向のr値をr、圧延方向と45°をなす方向のr値をr45、圧延方向と90°をなす方向のr値をr90とする。
例えば、ロールフォーミングで造管する場合は、鋼板の圧延方向が管軸方向と平行であるため、rφ=r、r=r45となる。
板巻きで造管する場合、鋼板の圧延方向が管軸方向と平行となるように造管する場合にはロールフォーミングの場合と同様に、rφ=r、r=r45となる。一方、鋼板の圧延方向が管軸方向と直交するように造管する場合には、rφ=r90、r=r45となる。
The r value is three types of JIS13B test cut out from a steel plate material along the direction parallel to the rolling direction, 45 ° to the rolling direction, and 90 ° to the rolling direction. A piece was prepared and evaluated with an amount of strain of 15% elongation to obtain an r value in three directions. And these the three directions of r values, the r value in the rolling direction parallel to the direction of the steel plate r 0, the direction of the r values forming the rolling direction and 45 ° in the direction forming r 45, the rolling direction and 90 ° r Let r 90 be the value.
For example, in the case of pipe forming by roll forming, since the rolling direction of the steel sheet is parallel to the tube axis direction, r φ = r 0 and r i = r 45 .
In the case of pipe forming by sheet winding, r φ = r 0 and r i = r 45 as in the case of roll forming when the steel sheet is formed so that the rolling direction of the steel sheet is parallel to the tube axis direction. On the other hand, when the pipe is formed so that the rolling direction of the steel sheet is orthogonal to the pipe axis direction, r φ = r 90 and r i = r 45 .

本発明によれば、曲げ加工において、曲げ外側の割れ及び板厚減少を抑制できるフェライト系ステンレス鋼管を提供できる。 ADVANTAGE OF THE INVENTION According to this invention, the ferritic stainless steel pipe which can suppress the crack of a bending outer side and plate | board thickness reduction | decrease can be provided in a bending process.

以下、本発明の実施例について説明するが、本発明は、以下の実施例に限定されるものではない。 Examples of the present invention will be described below, but the present invention is not limited to the following examples.

14Cr−Si−Mn−Nb系の化学成分を有するフェライト系ステンレス鋼板の中から、管軸方向のr値(rφ)の2倍と管軸方向と45°をなす方向のr値(r)との和(2rφ+r)が4以上であるような、外径D40mm、板厚T1.2mmのフェライト系ステンレス鋼管をロールフォーミングにより造管した。これらを曲げ加工の素材として、曲げの中立軸の曲率半径(曲げ半径)Rが48mm(曲げ半径R=1.2D)となるように、回転引き曲げ法による曲げ加工を実施した。回転引き曲げ法による曲げ加工にあたっては、曲げ加工部に材料を供給し割れや板厚減少を抑制するためのサイドブースター及びバックブースターと、座屈や断面楕円化を抑制するための芯金とを使用した。曲げ外側の板厚減少最大位置の板厚減少率を評価した。結果を表1に示す。 Among ferritic stainless steel sheets having a 14Cr—Si—Mn—Nb chemical component, the r value (r i ) in the direction of twice the r value (r φ ) in the tube axis direction and 45 ° with the tube axis direction. ) the sum of the (2r φ + r i) is such that four or more, outer diameter D40mm, a ferritic stainless steel having a thickness of T1.2mm to pipe-making by roll forming. Using these as materials for bending, bending by the rotational pulling method was performed so that the radius of curvature (bending radius) R of the neutral axis of bending was 48 mm (bending radius R = 1.2D). In bending using the rotary pulling method, side boosters and back boosters are provided to supply materials to the bent parts and suppress cracks and reductions in plate thickness, and cores to suppress buckling and cross-sectional ovalization. used. The thickness reduction rate at the maximum thickness reduction position outside the bend was evaluated. The results are shown in Table 1.

Figure 2017018999
Figure 2017018999

曲げ加工の素材であるフェライト系ステンレス鋼管の、管軸方向のr値の2倍と管軸方向と45°をなす方向のr値との和(2rφ+r)を4以上とすることで、曲げ外側の最大板厚減少率は約25%以下の良好な値となる。好ましくは、管軸方向のr値の2倍と管軸方向と45°をなす方向のr値との和(2rφ+r)を5以上とすることで、曲げ外側の最大板厚減少率は約20%以下と、より良好となる。また、管軸方向のr値の2倍と管軸方向と45°をなす方向のr値との和(2rφ+r)が4以上であり、かつ管軸方向のr値(rφ)が1.5以上であることが好ましい。 By bending as a processing material ferritic stainless steel, the sum of twice the axial direction of the tube and r value in a direction which forms a 45 ° of r value of the tube axis direction (2r φ + r i) 4 or more The maximum thickness reduction rate outside the bend is a good value of about 25% or less. Preferably, twice the axial direction of the tube and the sum of the r values in the direction forming an 45 ° a (2r φ + r i) by 5 or more, the bending maximum thickness reduction rate of the outer r value in the tube axis direction Is better at about 20% or less. Further, the sum of twice the axial direction of the tube and r value in a direction which forms a 45 ° of r values in the tube axis direction (2r φ + r i) is at least 4, and the tube axis direction of the r value (r phi) Is preferably 1.5 or more.

3方向のr値が、(r,r45,r90)=(1.2,1.0,1.7)及び(1.5,0.9,1.8)である鋼板を素材として、鋼板の圧延方向が管軸方向と平行、及び直交するように、外径D40mm、板厚T1.2mmのフェライト系ステンレス鋼管を板巻き加工により造管した。これらを曲げ加工の素材として、曲げの中立軸の曲率半径(曲げ半径)Rが48mm(曲げ半径R=1.2D)となるように、回転引き曲げ法による曲げ加工を実施した。回転引き曲げ法による曲げ加工の条件は、実施例1と同様とした。曲げ外側の板厚減少最大位置の板厚減少率を評価した。結果を表2に示す。 A steel plate whose r values in three directions are (r 0 , r 45 , r 90 ) = (1.2, 1.0, 1.7) and (1.5, 0.9, 1.8) As described above, a ferritic stainless steel pipe having an outer diameter of D40 mm and a thickness of T1.2 mm was formed by sheet winding so that the rolling direction of the steel sheet was parallel and orthogonal to the pipe axis direction. Using these as materials for bending, bending by the rotational pulling method was performed so that the radius of curvature (bending radius) R of the neutral axis of bending was 48 mm (bending radius R = 1.2D). The conditions for bending by the rotational pulling method were the same as in Example 1. The thickness reduction rate at the maximum thickness reduction position outside the bend was evaluated. The results are shown in Table 2.

Figure 2017018999
Figure 2017018999

板巻き造管での材料取り方向を変えて、曲げ加工の素材であるフェライト系ステンレス鋼管の、管軸方向のr値の2倍と管軸方向と45°をなす方向のr値との和(2rφ+r)を4以上とすることで、曲げの中立軸における曲げ半径が管直径の1.2倍以下であるような厳しい加工に対しても、曲げ外側の最大板厚減少率は約25%以下の良好な値となる。 By changing the material taking direction in the plate-rolled pipe, the sum of the r value in the direction of 45 ° to the pipe axis direction and twice the r value in the pipe axis direction of the ferritic stainless steel pipe that is the material of the bending process with (2r φ + r i) four or more, even for a radius of severe working such that following 1.2 times the tube diameter bend in the neutral axis of bending, the maximum thickness reduction rate of the bending outer Good value of about 25% or less.

3方向のr値が、(r,r45,r90)=(1.2,1.0,1.7)及び(1.5,0.9,1.8)である鋼板を素材として、鋼板の圧延方向が管軸方向と平行、及び直交するように、外径D40mm、板厚T1.2mmのフェライト系ステンレス鋼管を板巻き加工により造管した。これらを曲げ加工の素材として、曲げの中立軸の曲率半径(曲げ半径)Rが60mm(曲げ半径R=1.5D)となるように、回転引き曲げ法による曲げ加工を実施した。回転引き曲げ法による曲げ加工の条件は、実施例1と同様とした。曲げ外側の板厚減少最大位置の板厚減少率を評価した。結果を表3に示す。 A steel plate whose r values in three directions are (r 0 , r 45 , r 90 ) = (1.2, 1.0, 1.7) and (1.5, 0.9, 1.8) As described above, a ferritic stainless steel pipe having an outer diameter of D40 mm and a thickness of T1.2 mm was formed by sheet winding so that the rolling direction of the steel sheet was parallel and orthogonal to the pipe axis direction. Using these as materials for bending, bending by the rotary pulling method was performed so that the radius of curvature (bending radius) R of the neutral axis of bending was 60 mm (bending radius R = 1.5D). The conditions for bending by the rotational pulling method were the same as in Example 1. The thickness reduction rate at the maximum thickness reduction position outside the bend was evaluated. The results are shown in Table 3.

Figure 2017018999
Figure 2017018999

曲げの中立軸の曲率半径(曲げ半径)Rが60mm(曲げ半径R=1.5D)の場合、管軸方向のr値の2倍と管軸方向と45°をなす方向のr値との和(2rφ+r)が4より小さくても曲げ外側の最大板厚減少率は約25%で良好な値となる。しかしながら、本発明である管軸方向のr値の2倍と管軸方向と45°をなす方向のr値との和(2rφ+r)が4以上である方が曲げ外側の最大板厚減少率は小さく、板厚減少しにくいことがわかる。したがって、本発明は曲げ外側の板厚減少を抑制するのに有効であり、特に曲げの中立軸における曲げ半径が管直径の1.2倍以下であるような厳しい加工において、本発明の有用性が顕著となる。 When the radius of curvature (bending radius) R of the neutral axis of bending is 60 mm (bending radius R = 1.5D), there are twice the r value in the tube axis direction and the r value in the direction of 45 ° with the tube axis direction. sum (2r φ + r i) is the maximum thickness reduction rate of the outer bend be less than 4 becomes a good value at about 25%. However, the sum (2r φ + r i) is the maximum thickness it is bent outside of the 4 or more of the r values in the direction forming twice the axial direction of the tube and 45 ° of r values in the tube axis direction is the invention It can be seen that the reduction rate is small and it is difficult to reduce the thickness. Therefore, the present invention is effective in suppressing the decrease in the thickness of the outer side of the bend, and the utility of the present invention is particularly useful in severe processing where the bend radius at the neutral axis of the bend is 1.2 times or less the tube diameter. Becomes prominent.

Claims (3)

管軸方向のr値(rφ)と管軸方向と45°をなす方向のr値(r)との関係が
2rφ+r≧4
であることを特徴とする、
曲げ加工性に優れたフェライト系ステンレス鋼管。
The relationship between the r value (r φ ) in the tube axis direction and the r value (r i ) in the direction forming 45 ° with the tube axis direction is 2r φ + r i ≧ 4
It is characterized by
Ferritic stainless steel pipe with excellent bending workability.
管軸方向のr値(rφ)が1.5以上であることを特徴とする、
請求項1に記載の曲げ加工性に優れたフェライト系ステンレス鋼管。
The r value ( ) in the tube axis direction is 1.5 or more,
The ferritic stainless steel pipe | tube excellent in the bending workability of Claim 1.
管素材であるフェライト系ステンレス鋼板の圧延方向が管軸方向と直交するように造管されたことを特徴とする、
請求項1または2に記載の曲げ加工性に優れたフェライト系ステンレス鋼管。
It is characterized in that the rolling direction of the ferritic stainless steel sheet, which is a pipe material, is piped so that it is perpendicular to the pipe axis direction.
The ferritic stainless steel pipe excellent in bending workability according to claim 1 or 2.
JP2015140088A 2015-07-13 2015-07-13 Ferritic stainless steel pipe excellent in bending workability Pending JP2017018999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015140088A JP2017018999A (en) 2015-07-13 2015-07-13 Ferritic stainless steel pipe excellent in bending workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015140088A JP2017018999A (en) 2015-07-13 2015-07-13 Ferritic stainless steel pipe excellent in bending workability

Publications (1)

Publication Number Publication Date
JP2017018999A true JP2017018999A (en) 2017-01-26

Family

ID=57889162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015140088A Pending JP2017018999A (en) 2015-07-13 2015-07-13 Ferritic stainless steel pipe excellent in bending workability

Country Status (1)

Country Link
JP (1) JP2017018999A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006274419A (en) * 2005-03-30 2006-10-12 Nisshin Steel Co Ltd Stainless steel tube for high tube expansion and its production method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006274419A (en) * 2005-03-30 2006-10-12 Nisshin Steel Co Ltd Stainless steel tube for high tube expansion and its production method

Similar Documents

Publication Publication Date Title
JP5012304B2 (en) Cold drawn plug and metal tube manufacturing method
JP6431548B2 (en) Rifle tube manufacturing method
JP2006274436A (en) Ferritic stainless sheet sheet and steel tube for bent tube having sectional shape for components
JPWO2012111307A1 (en) Pipe end straightening method for seamless pipe made of high Cr stainless steel
KR102426526B1 (en) Process for producing a high-grade steel tube and high-grade steel tube
AU2013310286A1 (en) Dual phase stainless steel pipe and manufacturing method thereof
JPWO2019176979A1 (en) Method for manufacturing square steel pipe and square steel pipe
JP2019502021A (en) Austenitic stainless steel pipe with excellent wrinkle resistance
CN105382499A (en) Precise stainless steel bright annealing pipe production technology
JP2017018999A (en) Ferritic stainless steel pipe excellent in bending workability
JP2009287082A (en) Galvanized steel sheet, cutting processing method of the same, and die for cutting processing
JP6409838B2 (en) Galvanized steel pipe
KR101380091B1 (en) Stainless steel flexible pipe
JP2010051971A (en) Method of bending steel pipe
JP2016089217A (en) Tube with internal groove for heat exchanger and manufacturing method therefor
WO2018155414A1 (en) Mandrel, curved pipe, and method and device for manufacturing same
JP2008307594A (en) Uoe steel tube for line pipe excellent in deformability
JP4752619B2 (en) Ferritic stainless steel sheet for bellows tube
CN203343205U (en) Thick-wall titanium welded pipe forming machine
JP2006272451A (en) Metal bend having sectional shape for component, and its manufacturing method
JP6007777B2 (en) ERW steel pipe manufacturing method
JP5673493B2 (en) Cold drawing apparatus and metal tube manufacturing method
JP4964933B2 (en) Neck-in forming method for steel cans
JP2011104597A (en) Method of manufacturing uoe steel pipe
JP2007016306A5 (en) Ferritic stainless steel sheet for bellows tube and bellows tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190328

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191008