JP2017015313A - Thermal acoustic cooling device - Google Patents

Thermal acoustic cooling device Download PDF

Info

Publication number
JP2017015313A
JP2017015313A JP2015131627A JP2015131627A JP2017015313A JP 2017015313 A JP2017015313 A JP 2017015313A JP 2015131627 A JP2015131627 A JP 2015131627A JP 2015131627 A JP2015131627 A JP 2015131627A JP 2017015313 A JP2017015313 A JP 2017015313A
Authority
JP
Japan
Prior art keywords
heat exchanger
temperature side
side heat
high temperature
low temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015131627A
Other languages
Japanese (ja)
Inventor
大野 宏
Hiroshi Ono
宏 大野
誠 平石
Makoto Hiraishi
平石  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niigata Prefecture
Original Assignee
Niigata Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata Prefecture filed Critical Niigata Prefecture
Priority to JP2015131627A priority Critical patent/JP2017015313A/en
Publication of JP2017015313A publication Critical patent/JP2017015313A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To reduce a melting amount of snow stored in a snow chamber.SOLUTION: This invention utilizes a thermal acoustic cooling machine 1 in which there are provided a first stuck 3A held by a first high temperature side heat exchanger 4 and a first low temperature side heat exchanger 5 and a second stuck 3B held by a second high temperature side heat exchanger 6 and a second low temperature side heat exchanger 7 installed inside a loop pipe 2, a standing wave and a progressive wave caused by self excitation under heating of the first high temperature side heat exchanger 4 are generated and the second low temperature side heat exchanger 7 is cooled. The first high temperature side heat exchanger 4 is heated by solar heat and a snow chamber 31 is cooled by the second low temperature side heat exchanger 7, so that when the first high temperature side heat exchanger 4 is heated by the solar heat, the snow chamber 31 is cooled by the second low temperature side heat exchanger 7. In this case, the higher the solar heat for heating the first high temperature heat exchanger 4, the higher the cooling power, the cooling power is also increased as the sun shines strong and a melting amount of snow is high and this is suitable for utilization at the snow chamber 31.SELECTED DRAWING: Figure 1

Description

本発明は、雪室を冷却する熱音響冷却装置に関する。   The present invention relates to a thermoacoustic cooling device for cooling a snow chamber.

近年、今まで使われていなかったエネルギーを利用することへの関心が高まっている。例えば、豪雪地帯では冬の雪を貯蔵して夏季の冷房に利用している(例えば特許文献1)。また、冬の雪を用いた野菜,米や酒などの低温貯蔵庫としての需要も高まっている。   In recent years, there has been an increasing interest in using energy that has not been used so far. For example, in heavy snow areas, winter snow is stored and used for cooling in summer (for example, Patent Document 1). There is also an increasing demand for low-temperature storage of vegetables, rice and liquor using winter snow.

そして、冷房に用いる場合の課題は、導入コストが高価なことである。雪室の建築コストが半分を占めており、残りの半分が送風管と送風器である。また、3月末に貯めた雪を7月末から9月初めにかけて冷房冷熱源として使うためには、雪が解ける量を見込んで多く貯めなければならない。   And the subject in the case of using for cooling is that introduction cost is expensive. The construction cost of the snow room occupies half, and the other half is the air duct and the blower. Also, in order to use the snow stored at the end of March as a cooling / heating source from the end of July to the beginning of September, it is necessary to store a large amount in anticipation of the amount of snow that can be melted.

ところで、熱音響効果を利用して対象物を冷却しうる熱音響装置として、ループ管の内部に、第一高温側熱交換器と第一低温側熱交換器に挟まれた第一のスタックと、第二高温側熱交換器と第二低温側熱交換器に挟まれた第二のスタックとを具備してなり、前記第一高温側熱交換器を加熱することによって自励による定在波及び進行波を発生させ、この定在波及び進行波によって前記第二低温側熱交換器が冷却され、又は/及び、前記第一低温側熱交換器を冷却することによって定在波及び進行波を発生させ、この定在波及び進行波によって前記第二高温側熱交換器が加熱される熱音響装置(例えば特許文献2)が知られているが、一般には広く普及していない。   By the way, as a thermoacoustic apparatus that can cool an object using a thermoacoustic effect, a first stack sandwiched between a first high temperature side heat exchanger and a first low temperature side heat exchanger, And a second stack sandwiched between the second high temperature side heat exchanger and the second low temperature side heat exchanger, and the self-excited standing wave by heating the first high temperature side heat exchanger And a traveling wave is generated, and the second low temperature side heat exchanger is cooled by the standing wave and the traveling wave, and / or the standing wave and the traveling wave are cooled by cooling the first low temperature side heat exchanger. There is known a thermoacoustic apparatus (for example, Patent Document 2) in which the second high temperature side heat exchanger is heated by the standing wave and the traveling wave, but is not widely used in general.

特開2006−64321号公報JP 2006-64321 A 特開2005−274101号公報JP-A-2005-274101

解決しようとする問題点は、雪室に貯蔵した雪の解ける量を減らすことができる雪室の熱音響冷却装置を提供することを目的とする。   The problem to be solved is to provide a thermoacoustic cooling device for a snow room that can reduce the amount of snow stored in the snow room.

請求項1の発明は、ループ管の内部に、第一高温側熱交換器と第一低温側熱交換器に挟まれた第一のスタックと、第二高温側熱交換器と第二低温側熱交換器に挟まれた第二のスタックとを具備してなり、前記第一高温側熱交換器を加熱することによって自励による定在波及び進行波を発生させ、この定在波及び進行波によって前記第二低温側熱交換器が冷却される熱音響冷却機を用い、太陽熱により前記第一高温側熱交換器を加熱し、雪室を前記第二低温側熱交換器により冷却することを特徴とする。   The invention of claim 1 includes a first stack sandwiched between a first high temperature side heat exchanger and a first low temperature side heat exchanger, a second high temperature side heat exchanger, and a second low temperature side inside the loop pipe. A second stack sandwiched between the heat exchangers, and by generating the standing wave and traveling wave by self-excitation by heating the first high-temperature side heat exchanger, the standing wave and traveling wave Using a thermoacoustic cooler in which the second low temperature side heat exchanger is cooled by waves, heating the first high temperature side heat exchanger by solar heat, and cooling the snow chamber by the second low temperature side heat exchanger It is characterized by.

請求項2の発明は、前記太陽熱を集熱する集熱手段と、この集熱手段により集めた熱を前記第一高温側熱交換器に輸送する熱輸送手段とを備えることを特徴とする。   The invention of claim 2 is characterized by comprising heat collecting means for collecting the solar heat and heat transport means for transporting the heat collected by the heat collecting means to the first high temperature side heat exchanger.

請求項3の発明は、前記集熱手段は前記太陽熱により加熱媒体を蒸発させ、この蒸発した加熱媒体を前記熱輸送手段により前記第一高温側熱交換器に輸送することを特徴とする。   The invention of claim 3 is characterized in that the heat collecting means evaporates a heating medium by the solar heat and transports the evaporated heating medium to the first high temperature side heat exchanger by the heat transporting means.

請求項4の発明は、前記第一高温側熱交換器には、前記ループ管の内部に、前記蒸発した加熱媒体が通る複数の通路を設けたことを特徴とする。   The invention of claim 4 is characterized in that the first high temperature side heat exchanger is provided with a plurality of passages through which the evaporated heating medium passes inside the loop pipe.

請求項1の構成によれば、太陽熱により第一高温側熱交換器を加熱すると、第二低温側熱交換器により雪室が冷却される。この場合、第一高温側熱交換器を加熱する太陽熱が大きいほど冷却能力が高くなるから、日差しが強く雪の解ける量が多い時ほど冷却能力も高くなるため、雪室での利用に適する。このようにして雪が解ける量を減らせるから、雪の貯蔵量を減らすことができ、雪室も小さくて済むため、建築コスト低減により導入コストを削減することができる。   According to the configuration of the first aspect, when the first high temperature side heat exchanger is heated by solar heat, the snow chamber is cooled by the second low temperature side heat exchanger. In this case, the greater the solar heat that heats the first high-temperature side heat exchanger, the higher the cooling capacity. Therefore, the higher the sunlight and the greater the amount of snow that can be melted, the higher the cooling capacity, which is suitable for use in a snow room. Since the amount of snow that can be melted can be reduced in this way, the amount of stored snow can be reduced, and the size of the snow compartment can be reduced, so that the introduction cost can be reduced by reducing the construction cost.

請求項2の構成によれば、集熱手段により太陽熱を集め、この集熱手段により集めた熱を熱輸送手段により輸送して第一高温側熱交換器を加熱することができる。   According to the configuration of the second aspect, solar heat can be collected by the heat collecting means, and the heat collected by the heat collecting means can be transported by the heat transport means to heat the first high temperature side heat exchanger.

請求項3の構成によれば、蒸発した加熱媒体により第一高温側熱交換器を加熱することができる。   According to the configuration of the third aspect, the first high temperature side heat exchanger can be heated by the evaporated heating medium.

請求項4の構成によれば、複数の通路を加熱媒体が通ることにより熱交換が効率よく行われ、第一高温側熱交換器を効果的に加熱することができる。   According to the structure of Claim 4, heat exchange is efficiently performed when a heating medium passes through a some channel | path, and a 1st high temperature side heat exchanger can be heated effectively.

本発明の実施例1を示す熱音響冷却機の概略説明図である。It is a schematic explanatory drawing of the thermoacoustic cooler which shows Example 1 of this invention. 同上、熱音響冷却装置の概略説明図である。It is a schematic explanatory drawing of a thermoacoustic cooling device same as the above. 同上、熱交換器の要部の斜視図である。It is a perspective view of the principal part of a heat exchanger same as the above. 同上、他の熱交換器の要部の斜視図である。It is a perspective view of the principal part of another heat exchanger same as the above. 同上、熱音響効果を説明する説明図である。It is explanatory drawing explaining a thermoacoustic effect same as the above.

本発明における好適な実施の形態について、添付図面を参照して説明する。尚、以下に説明する実施の形態は、特許請求の範囲に記載された本発明の内容を限定するものではない。また、以下に説明される構成の全てが、本発明の必須要件であるとは限らない。   Preferred embodiments of the present invention will be described with reference to the accompanying drawings. The embodiments described below do not limit the contents of the present invention described in the claims. In addition, all of the configurations described below are not necessarily essential requirements of the present invention.

以下、本発明の実施例1について、図1〜図5に基づいて説明する。熱音響冷却装置は、熱音響冷却機1を備え、この熱音響冷却機1は、全体として略長方形状に構成されたループ管2の内部に、第一高温側熱交換器4及び第一低温側熱交換器5に挟まれた第一のスタック3Aと、第二高温側熱交換器6及び第二低温側熱交換器7に挟まれた第二のスタック3Bとを具備してなるもので、第一のスタック3A側の第一高温側熱交換器4を加熱することによって自励による定在波及び進行波を発生させ、この定在波及び進行波を第二のスタック3B側へ伝搬して第二のスタック3B側に設けられた第二低温側熱交換器7を冷却させるようにしたものである。   Hereinafter, Example 1 of the present invention will be described with reference to FIGS. The thermoacoustic cooling device includes a thermoacoustic cooler 1, and the thermoacoustic cooler 1 includes a first high temperature side heat exchanger 4 and a first low temperature inside a loop pipe 2 configured in a substantially rectangular shape as a whole. The first stack 3A sandwiched between the side heat exchangers 5 and the second stack 3B sandwiched between the second high temperature side heat exchanger 6 and the second low temperature side heat exchanger 7 are provided. The first high temperature side heat exchanger 4 on the first stack 3A side is heated to generate a self-excited standing wave and traveling wave, and the standing wave and traveling wave are propagated to the second stack 3B side. Thus, the second low temperature side heat exchanger 7 provided on the second stack 3B side is cooled.

前記ループ管2は、地面に対して鉛直状に設けられた対向する左右一対の直線管部2A,2Aと、これら直線管部2A,2Aの上下を連結する上下の直線管部2Bを具備してなるもので、金属製のパイプなどによって構成される。なお、このループ管2の材質については金属などに限らず、透明なガラス、若しくは樹脂などによって構成することもでき、透明なガラスや樹脂などの材料で構成した場合は、実験等における第一のスタック3Aや第二のスタック3Bの位置の確認や管内の状況を容易に観察することができる。尚、ヘリウムなどのような音速が速く、プラントル数が小さく、比重も小さい作動流体をループ管2内に所定の圧力で封入しておき、例えば10気圧でヘリウムを封入する。   The loop tube 2 includes a pair of left and right straight tube portions 2A and 2A that are provided perpendicular to the ground, and upper and lower straight tube portions 2B that connect the upper and lower portions of the straight tube portions 2A and 2A. It consists of metal pipes. The material of the loop tube 2 is not limited to metal, but can be made of transparent glass, resin, or the like. When the loop tube 2 is made of material such as transparent glass or resin, The position of the stack 3A and the second stack 3B can be confirmed and the situation inside the tube can be easily observed. A working fluid such as helium having a high sound speed, a small Prandtl number, and a small specific gravity is sealed in the loop tube 2 at a predetermined pressure, and helium is sealed at, for example, 10 atm.

そして、ループ管2の内部には、第一高温側熱交換器4と第一低温側熱交換器5とに挟まれた第一のスタック3A及び、第二高温側熱交換器6と第二低温側熱交換器7とに挟まれた第二のスタック3Bが設けられる。また、第一のスタック3Aは上部の直線管部2Bに配置され、第二のスタック3Bは下部の直線管部2Bに配置されている。   In the loop pipe 2, the first stack 3 </ b> A sandwiched between the first high temperature side heat exchanger 4 and the first low temperature side heat exchanger 5, the second high temperature side heat exchanger 6, and the second A second stack 3B sandwiched between the low temperature side heat exchanger 7 is provided. The first stack 3A is disposed in the upper straight tube portion 2B, and the second stack 3B is disposed in the lower straight tube portion 2B.

第一のスタック3A及び第二のスタック3Bは、ループ管2の内壁に接するような円柱状に形成され、セラミクス、燒結金属、金網、金属製不織布などのように熱容量の大きい材質からなり、ループ管2の軸方向に貫通する多孔を有して構成される。   The first stack 3A and the second stack 3B are formed in a cylindrical shape so as to be in contact with the inner wall of the loop tube 2, and are made of a material having a large heat capacity such as ceramics, sintered metal, wire mesh, metal nonwoven fabric, etc. The tube 2 is configured to have a hole penetrating in the axial direction.

第二低温側熱交換器7は、薄い金属で構成され、その内側に定在波及び進行波を導通させるための貫通孔を設けて構成される。具体的には、図3に示すように、第二低温側熱交換器7は、熱伝導性に優れた金属製であって、筒体11と、この筒体11に内部に設けられた複数のフィン部12とを一体に備え、これらフィン部12は筒体11の直径と平行に形成され、フィン部12,12同士が平行であり、隣り合うフィン部12の間に貫通孔たる隙間13が設けられている。尚、筒体11の内周面とフィン部12との間にも隙間13が設けられている。また、フィン部12の長さ方向と直交する直径方向に貫通孔たる隙間13Aが形成され、フィン部12が二分割されている。尚、隙間13Aは加工を容易にするために設けたものであるから、フィン部12に隙間13Aを設けないように加工して、連続するフィン部12を形成してもよい。   The 2nd low temperature side heat exchanger 7 is comprised with a thin metal, and is provided with the through-hole for making a standing wave and a traveling wave conduct | electrically_connect inside it. Specifically, as shown in FIG. 3, the second low temperature side heat exchanger 7 is made of metal having excellent thermal conductivity, and includes a cylinder 11 and a plurality of cylinders 11 provided in the cylinder 11. These fin portions 12 are formed in parallel with the diameter of the cylinder 11, the fin portions 12, 12 are parallel to each other, and a gap 13 is formed as a through hole between adjacent fin portions 12. Is provided. A gap 13 is also provided between the inner peripheral surface of the cylinder 11 and the fin portion 12. Further, a gap 13A that is a through hole is formed in the diameter direction orthogonal to the length direction of the fin portion 12, and the fin portion 12 is divided into two. Since the gap 13A is provided to facilitate processing, the fin portion 12 may be processed so as not to provide the gap 13A to form the continuous fin portion 12.

第一高温側熱交換器4,第一低温側熱交換器5及び第二高温側熱交換器6は、薄い金属で構成され、その内側に定在波及び進行波を導通させるための貫通孔を設けて構成される。具体的には、図4に示すように、第一高温側熱交換器4,第一低温側熱交換器5及び第二高温側熱交換器6は、熱伝導性に優れた金属製であって、筒体11と、この筒体11に内部に設けられた複数のフィン部12とを一体に備え、これらフィン部12は筒体11の直径と平行に形成され、隣り合うフィン部12の間に貫通孔たる隙間13が設けられている。また、好ましくは全てのフィン部12,12・・・内に、熱媒体が通る直線状の貫通孔14を複数穿設し、この貫通孔14の両端は筒体11の外周面に開口し、貫通孔14の一端が熱媒体の流入口14Aを構成し、貫通孔14の他端が熱媒体の流出口14Bを構成している。尚、貫通孔14は各フィン部12,12・・・において筒体11の長さ方向に間隔を置いて複数設けられている。そして、前記貫通孔14が通路である。   The 1st high temperature side heat exchanger 4, the 1st low temperature side heat exchanger 5 and the 2nd high temperature side heat exchanger 6 are comprised with a thin metal, and the through-hole for making a standing wave and a traveling wave conduct | electrically_connect inside it Is provided. Specifically, as shown in FIG. 4, the first high temperature side heat exchanger 4, the first low temperature side heat exchanger 5 and the second high temperature side heat exchanger 6 are made of metal having excellent heat conductivity. The cylindrical body 11 and a plurality of fin portions 12 provided inside the cylindrical body 11 are integrally provided, and these fin portions 12 are formed in parallel with the diameter of the cylindrical body 11, and the adjacent fin portions 12 A gap 13 serving as a through hole is provided therebetween. Further, preferably, a plurality of linear through holes 14 through which the heat medium passes are formed in all the fin portions 12, 12..., And both ends of the through holes 14 are opened on the outer peripheral surface of the cylindrical body 11, One end of the through hole 14 constitutes a heat medium inlet 14A, and the other end of the through hole 14 constitutes a heat medium outlet 14B. A plurality of through holes 14 are provided at intervals in the length direction of the cylindrical body 11 at each fin portion 12, 12. The through hole 14 is a passage.

第一高温側熱交換器4は太陽熱により加熱される。一方、第一低温側熱交換器5に水を循環させて相対的に第一高温側熱交換器4よりも低い温度となるように設定される。具体的には、冷却媒体たる水を前記貫通孔14に通して循環させている。また、第二高温側熱交換器6にも水を循環させる。   The first high temperature side heat exchanger 4 is heated by solar heat. On the other hand, the temperature is set to be relatively lower than that of the first high temperature side heat exchanger 4 by circulating water through the first low temperature side heat exchanger 5. Specifically, water as a cooling medium is circulated through the through hole 14. Further, water is also circulated through the second high temperature side heat exchanger 6.

熱音響冷却装置は、前記第一高温側熱交換器4を太陽熱により加熱するために、集熱手段21と熱輸送手段22とを備える。集熱手段21は、太陽の熱を集める集熱部と放熱部を内部に有し作動液を封入してなるヒートパイプの前記集熱部を透明体で形成された真空管内に収納すると共に前記放熱部において加熱媒体である水を加熱して加熱蒸気を発生させるものである。   The thermoacoustic cooling device includes a heat collecting means 21 and a heat transporting means 22 in order to heat the first high temperature side heat exchanger 4 by solar heat. The heat collecting means 21 accommodates the heat collecting portion of a heat pipe, which has a heat collecting portion and a heat radiating portion for collecting the heat of the sun inside, and enclosing a working fluid, in a vacuum tube formed of a transparent body, and Water that is a heating medium is heated in the heat radiating section to generate heated steam.

また、熱輸送手段22は、集熱手段21の排出口23と第一高温側熱交換器4とを加熱管路24により接続し、第一高温側熱交換器4と集熱手段の返送口25とを返送管路26により接続している。   The heat transporting means 22 connects the discharge port 23 of the heat collecting means 21 and the first high temperature side heat exchanger 4 via the heating pipe 24, and the first high temperature side heat exchanger 4 and the return port of the heat collecting means. 25 is connected by a return line 26.

集熱手段21は、前記第一高温側熱交換器4の下方で、前後方向一側に設けられており、前記排出口23が前記返送口25より上に位置し、前後方向において前記排出口23が前記返送口25より第一高温側熱交換器4に近い位置になるように集熱手段21が配置されている。また、前記加熱管路24は、前記排出口23と前記返送口25と結んだ線と同様に傾斜すると共に、排出口23に接続された傾斜管部24Aと、この傾斜管部24Aと第一高温側熱交換器4の流入口14Aとを接続する横方向の横管部24Bとを備える。尚、第一高温側熱交換器4において、その貫通孔14は、流出口14Bの高さ位置が流入口14Aの高さ位置より低くなるように、斜めに配置されている。   The heat collecting means 21 is provided on one side in the front-rear direction below the first high-temperature side heat exchanger 4, the discharge port 23 is located above the return port 25, and the discharge port in the front-rear direction The heat collecting means 21 is arranged so that 23 is closer to the first high temperature side heat exchanger 4 than the return port 25. Further, the heating pipe line 24 is inclined in the same manner as the line connecting the discharge port 23 and the return port 25, and the inclined pipe portion 24A connected to the discharge port 23, the inclined pipe portion 24A and the first pipe A horizontal side tube portion 24B connecting the inlet 14A of the high temperature side heat exchanger 4 is provided. In the first high temperature side heat exchanger 4, the through hole 14 is disposed obliquely so that the height position of the outlet 14B is lower than the height position of the inlet 14A.

前記返送管路26は、前記第一高温側熱交換器4の下方で、前後方向他側に設けられた縦方向の縦管部26Aと、この縦管部26Aの下端と前記返送口25とを接続する横方向の下管部26Bとを備える。前記縦管部26Aの上部に、第一高温側熱交換器4の流出口14Bに接続する傾斜管部26Cが設けられている。また、図2に示すように、横管部24Bの端部と複数の流入口14Aとの間には、横管部24Bから流出する加熱媒体(蒸気)を複数の流入口14Aに案内する上流案内部27が設けられ、この上流案内部27により横管部24Bの加熱媒体が傾斜管部26Cに直接流れることを防止している。さらに、図2に示すように、複数の流出口14Bと傾斜管部26Cとの間には、流出口14Bから流れ出た加熱媒体を傾斜管部26Cに案内する加熱案内部28が設けられている。   The return pipe 26 includes a vertical pipe portion 26A provided on the other side in the front-rear direction below the first high temperature side heat exchanger 4, a lower end of the vertical pipe portion 26A, and the return port 25. And a lower pipe portion 26B in the horizontal direction. An inclined pipe part 26C connected to the outlet 14B of the first high temperature side heat exchanger 4 is provided on the upper part of the vertical pipe part 26A. Further, as shown in FIG. 2, between the end of the horizontal tube portion 24B and the plurality of inflow ports 14A, an upstream for guiding the heating medium (steam) flowing out from the horizontal tube portion 24B to the plurality of inflow ports 14A. A guide portion 27 is provided, and the upstream guide portion 27 prevents the heating medium in the horizontal tube portion 24B from flowing directly to the inclined tube portion 26C. Further, as shown in FIG. 2, a heating guide portion 28 is provided between the plurality of outlets 14B and the inclined pipe portion 26C to guide the heating medium flowing out from the outlet 14B to the inclined pipe portion 26C. .

雪室31は、冬期などに氷又は雪を蓄えたり、あるいは人工造雪機又は製氷機で製造した氷雪を蓄えたりするものであり、それらを蓄える内部空間32を有する人工又は自然構造物である。この例では、雪室31の上面33に前記一対の直線管部2A,2Aを挿通する挿通部33A,33Aを設け、下部の直線管部2Bを雪室31内に配置し、第二高温側熱交換器6,第二低温側熱交換器7及び第二のスタック3Bが雪室31内に位置する。また、前記下管部26Bは雪室31の屋根たる上面33の上に固定されている。   The snow chamber 31 is a man-made or natural structure having an internal space 32 for storing ice or snow in winter or for storing ice or snow produced by an artificial snow making machine or ice making machine. . In this example, insertion portions 33A, 33A for inserting the pair of straight tube portions 2A, 2A are provided on the upper surface 33 of the snow chamber 31, and the lower straight tube portion 2B is disposed in the snow chamber 31, and the second high temperature side. The heat exchanger 6, the second low temperature side heat exchanger 7, and the second stack 3 </ b> B are located in the snow chamber 31. The lower pipe portion 26B is fixed on the upper surface 33 which is the roof of the snow chamber 31.

そして、第一高温側熱交換器4を太陽熱により加熱し、第一低温側熱交換器5に循環水によりそれよりも低い温度の熱を与えることにより、第一のスタック3Aの両端で温度差を与えると、第一のスタック3Aの内部から第一高温側熱交換器4側のループ管2に向かって音波が発生する。その音波をループ管2を通して下部の第二のスタック3B側の第二高温側熱交換器6に当てると、第二のスタック3Bの両端に温度差が生じ、第二低温側熱交換器7に冷熱が発生する。尚、第一のスタック3A側の第二低温側熱交換器7からも音波が発生するので、その音波をループ管2を通して第一のスタック3A側の第一低温側熱交換器5に当てる構造にしている。   Then, the first high temperature side heat exchanger 4 is heated by solar heat, and the first low temperature side heat exchanger 5 is supplied with heat at a temperature lower than that by circulating water, so that a temperature difference occurs at both ends of the first stack 3A. , Sound waves are generated from the inside of the first stack 3A toward the loop tube 2 on the first high temperature side heat exchanger 4 side. When the sound wave is applied to the second high temperature side heat exchanger 6 on the lower second stack 3B side through the loop tube 2, a temperature difference occurs between both ends of the second stack 3B, and the second low temperature side heat exchanger 7 Cold heat is generated. Since sound waves are also generated from the second low temperature side heat exchanger 7 on the first stack 3A side, the sound waves are applied to the first low temperature side heat exchanger 5 on the first stack 3A side through the loop tube 2. I have to.

図5を用いて音波の発生原理を説明する。同図は、第一のスタック3Aの多孔の1つの孔を拡大した説明図であり、孔内の左側の気体は、(1)太陽熱で暖められて膨張し圧力が上がるため、(2)圧力の低い右側に移動する。(3)右側に移動した気体は循環水で冷やされ収縮して圧力が下がり、(4)さらに外側の気体の圧力より下がるため、これに押し返されて左側に移動する。第一高温側熱交換器4と第一低温側熱交換器5との温度差がある程度大きくなると、上記(1)〜(4)の現象が連続して起き、この気体の振動により第一のスタック3Aから第一高温側熱交換器4側に向かって音波が発生する。逆に、音波を第二のスタック3Bの第二高温側熱交換器6側に当てると、孔内の気体が強制的に収縮・膨張し、第二のスタック3Bの両端に温度差が発生する。   The principle of sound wave generation will be described with reference to FIG. This figure is an explanatory view enlarging one porous hole of the first stack 3A. The gas on the left side in the hole is (1) heated by solar heat and expanded to increase pressure, and (2) pressure Move to the lower right side. (3) The gas moved to the right side is cooled by the circulating water and contracted to decrease the pressure. (4) Since the pressure falls below the pressure of the outer gas, it is pushed back and moved to the left side. When the temperature difference between the first high temperature side heat exchanger 4 and the first low temperature side heat exchanger 5 is increased to some extent, the above phenomena (1) to (4) occur continuously. Sound waves are generated from the stack 3A toward the first high temperature side heat exchanger 4 side. On the contrary, when the sound wave is applied to the second high temperature side heat exchanger 6 side of the second stack 3B, the gas in the hole is forcibly contracted and expanded, and a temperature difference is generated between both ends of the second stack 3B. .

前記集熱手段21は太陽熱を集め、集熱手段21の内部の水が加熱されて蒸気となり、この蒸気が熱輸送手段22の加熱管路24を通って第一高温側熱交換器4の流入口14Aへと上昇し、貫通孔14を通る間に熱交換が行われ、第一高温側熱交換器4が加熱される。貫通孔14を通って温度の低下した蒸気は液化して返送管路26に流れ落ち、このようにして加熱媒体たる水が集熱手段21と加熱管路24と返送管路26とからなる閉管路を循環する。そして、本実施例では、加熱媒体が水であり、蒸発した加熱媒体が蒸気である。この場合、貫通孔14は、流出口14Bの高さ位置が流入口14Aの高さ位置より低くなるように斜めに設けられているから、流入口14Aから入った蒸気が貫通孔14内において液化して水になっても、その水は斜めの傾斜により流出口14Bから返送管路26に落下する。   The heat collecting means 21 collects solar heat, the water inside the heat collecting means 21 is heated to become steam, and this steam flows through the heating line 24 of the heat transport means 22 and flows through the first high temperature side heat exchanger 4. Heat rises to the inlet 14A and passes through the through hole 14, and the first high temperature side heat exchanger 4 is heated. The vapor whose temperature has decreased through the through-hole 14 is liquefied and flows down to the return pipe 26, and thus the water as the heating medium is a closed pipe comprising the heat collecting means 21, the heating pipe 24 and the return pipe 26. Circulate. In this embodiment, the heating medium is water, and the evaporated heating medium is steam. In this case, since the through hole 14 is provided obliquely so that the height position of the outlet 14B is lower than the height position of the inlet 14A, the vapor entering from the inlet 14A is liquefied in the through hole 14. Even if it becomes water, the water falls from the outlet 14B to the return conduit 26 by an oblique inclination.

図4に示したように、フィン部12の中には蒸気や水が通る貫通孔14が貫通している。貫通孔14内を通過する蒸気により第一高温側熱交換器4を効率よく加熱することで、第一高温側熱交換器4に接続している第一のスタック3Aの端面全体を均一に加熱することが可能となり、第一のスタック3Aから大きな音波を発生させたり大きな温度差を発生させたりすることができる。また、第一低温側熱交換器5及び第二高温側熱交換器6においても、循環水が貫通孔14を通過することにより効率よく熱交換が行われる。尚、循環水の循環にはポンプなどの圧送手段(図示せず)を用いることができる。   As shown in FIG. 4, a through hole 14 through which steam and water pass is penetrated in the fin portion 12. By efficiently heating the first high temperature side heat exchanger 4 with the steam passing through the through hole 14, the entire end face of the first stack 3A connected to the first high temperature side heat exchanger 4 is uniformly heated. It is possible to generate a large sound wave or a large temperature difference from the first stack 3A. Further, also in the first low temperature side heat exchanger 5 and the second high temperature side heat exchanger 6, the circulating water passes through the through-holes 14 so that heat exchange is efficiently performed. For circulating the circulating water, a pumping means (not shown) such as a pump can be used.

上記のように第一高温側熱交換器4を加熱することによって自励による定在波及び進行波を発生させ、この定在波及び進行波によって前記第二低温側熱交換器7を冷却することができる。このように太陽熱を利用して熱音響冷却機1により雪室31を冷却することで、雪などの貯蔵量を削減することができる。また、第二高温側熱交換器6を雪室31内に配置し、雪室31内の雪などにより冷却するように構成すれば、第二高温側熱交換器6において循環水による冷却を行う必要がなくなる。   As described above, the first high temperature side heat exchanger 4 is heated to generate a self-excited standing wave and traveling wave, and the second low temperature side heat exchanger 7 is cooled by the standing wave and traveling wave. be able to. Thus, by storing the snow chamber 31 with the thermoacoustic cooler 1 using solar heat, the storage amount of snow or the like can be reduced. If the second high temperature side heat exchanger 6 is arranged in the snow chamber 31 and is cooled by snow in the snow chamber 31, the second high temperature side heat exchanger 6 performs cooling with circulating water. There is no need.

このように実施例では、請求項1に対応して、ループ管2の内部に、第一高温側熱交換器4と第一低温側熱交換器5に挟まれた第一のスタック3Aと、第二高温側熱交換器6と第二低温側熱交換器7に挟まれた第二のスタック3Bとを具備してなり、第一高温側熱交換器4を加熱することによって自励による定在波及び進行波を発生させ、この定在波及び進行波によって第二低温側熱交換器7が冷却される熱音響冷却機1を用い、太陽熱により第一高温側熱交換器4を加熱し、雪室31を第二低温側熱交換器7により冷却するから、太陽熱により第一高温側熱交換器4を加熱すると、第二低温側熱交換器7により雪室31が冷却される。この場合、第一高温側熱交換器4を加熱する太陽熱が大きいほど冷却能力が高くなるから、日差しが強く雪の解ける量が多い時ほど冷却能力も高くなるため、雪室31での利用に適する。このようにして雪が解ける量を減らせるから、雪の貯蔵量を減らすことができ、雪室31も小さくて済むため、建築コスト低減により導入コストを削減することができる。   Thus, in the embodiment, corresponding to claim 1, the first stack 3A sandwiched between the first high temperature side heat exchanger 4 and the first low temperature side heat exchanger 5 inside the loop pipe 2, A second stack 3B sandwiched between the second high temperature side heat exchanger 6 and the second low temperature side heat exchanger 7 is provided, and the first high temperature side heat exchanger 4 is heated to determine by self-excitation. Using the thermoacoustic cooler 1 that generates standing waves and traveling waves and cools the second low-temperature side heat exchanger 7 by the standing waves and traveling waves, the first high-temperature side heat exchanger 4 is heated by solar heat. Since the snow chamber 31 is cooled by the second low temperature side heat exchanger 7, when the first high temperature side heat exchanger 4 is heated by solar heat, the snow chamber 31 is cooled by the second low temperature side heat exchanger 7. In this case, the greater the solar heat that heats the first high-temperature side heat exchanger 4, the higher the cooling capacity. Therefore, the higher the sunlight and the greater the amount of snow that can be melted, the higher the cooling capacity. Suitable. Since the amount of snow that can be melted can be reduced in this way, the amount of stored snow can be reduced, and the snow chamber 31 can be made smaller, so that the introduction cost can be reduced by reducing the construction cost.

また、このように実施例では、請求項2に対応して、太陽熱を集熱する集熱手段21と、この集熱手段21により集めた熱を第一高温側熱交換器4に輸送する熱輸送手段22とを備えるから、集熱手段21により太陽熱を集め、この集熱手段21により集めた熱を熱輸送手段22により輸送して第一高温側熱交換器4を加熱することができる。   In this way, in the embodiment, corresponding to claim 2, the heat collecting means 21 for collecting solar heat and the heat for transporting the heat collected by the heat collecting means 21 to the first high temperature side heat exchanger 4 Since the transportation means 22 is provided, solar heat can be collected by the heat collection means 21, and the heat collected by the heat collection means 21 can be transported by the heat transportation means 22 to heat the first high temperature side heat exchanger 4.

また、このように実施例では、請求項3に対応して、集熱手段21は太陽熱により加熱媒体たる水を蒸発させ、この蒸発した加熱媒体を熱輸送手段22により第一高温側熱交換器4に輸送するから、蒸発した加熱媒体により第一高温側熱交換器4を加熱することができる。   Thus, in this embodiment, corresponding to claim 3, the heat collecting means 21 evaporates water as a heating medium by solar heat, and the evaporated heating medium is converted into the first high temperature side heat exchanger by the heat transport means 22. Therefore, the first high temperature side heat exchanger 4 can be heated by the evaporated heating medium.

また、このように実施例では、請求項4に対応して、第一高温側熱交換器4には、ループ管2の内部に、蒸発した加熱媒体が通る複数の通路たる貫通孔14を設けたから、複数の貫通孔14を加熱媒体たる蒸気が通ることにより熱交換が行われ、第一高温側熱交換器4を効果的に加熱することができる。   In this way, in the embodiment, corresponding to claim 4, the first high temperature side heat exchanger 4 is provided with through holes 14 as a plurality of passages through which the evaporated heating medium passes inside the loop pipe 2. Therefore, heat exchange is performed when steam as a heating medium passes through the plurality of through holes 14, and the first high temperature side heat exchanger 4 can be effectively heated.

また、実施例上の効果として、第一高温側熱交換器4の下方に集熱手段21を配置し、集熱手段21により加熱媒体たる水を蒸発させ、発生した蒸気が加熱管路24を上昇して第一高温側熱交換器4に達し、熱交換した後、水となって返送管路26に流下するから、ポンプなどを用いることなく、加熱媒体を循環することができる。   Further, as an effect of the embodiment, the heat collecting means 21 is arranged below the first high temperature side heat exchanger 4, the water as the heating medium is evaporated by the heat collecting means 21, and the generated steam passes through the heating pipe 24. After rising to the first high temperature side heat exchanger 4 and exchanging heat, it becomes water and flows down to the return pipe 26, so that the heating medium can be circulated without using a pump or the like.

尚、本発明は、前記実施形態に限定されるものでは無く、種々の変形実施が可能である。例えば、第一低温側熱交換器,第二高温側熱交換器に、図4に示した貫通孔14を有する筒体を用いてもよい。また、集熱手段は各種のものを用いることができ、液体状の加熱媒体を貫通孔14に通すようにしてもよく、この場合は、ポンプなどの圧送手段を用いることができる。また、フィン部12の数は実施例に限定されず、例えば20個以上でもよい。さらに、加熱媒体は水以外の液体でもよい。また、雪室は、新設・既設のいずれにでも適用可能なことは言うまでもない。   In addition, this invention is not limited to the said embodiment, A various deformation | transformation implementation is possible. For example, you may use the cylinder which has the through-hole 14 shown in FIG. 4 for a 1st low temperature side heat exchanger and a 2nd high temperature side heat exchanger. Various heat collecting means can be used, and a liquid heating medium may be passed through the through hole 14. In this case, a pressure feeding means such as a pump can be used. Moreover, the number of the fin parts 12 is not limited to an Example, For example, 20 or more may be sufficient. Further, the heating medium may be a liquid other than water. Needless to say, the snow room can be applied to either a new construction or an existing construction.

1 熱音響冷却機
2 ループ管
3A 第一のスタック
3B 第二のスタック
4 第一高温側熱交換器
5 第一低温側熱交換器
6 第二高温側熱交換器
7 第二低温側熱交換器
14 貫通孔(通路)
21 集熱手段
22 熱輸送手段
31 雪室
DESCRIPTION OF SYMBOLS 1 Thermoacoustic cooler 2 Loop pipe 3A 1st stack 3B 2nd stack 4 1st high temperature side heat exchanger 5 1st low temperature side heat exchanger 6 2nd high temperature side heat exchanger 7 2nd low temperature side heat exchanger
14 Through hole (passage)
21 Heat collection means
22 Heat transport means
31 Snow room

Claims (4)

ループ管の内部に、第一高温側熱交換器と第一低温側熱交換器に挟まれた第一のスタックと、第二高温側熱交換器と第二低温側熱交換器に挟まれた第二のスタックとを具備してなり、前記第一高温側熱交換器を加熱することによって自励による定在波及び進行波を発生させ、この定在波及び進行波によって前記第二低温側熱交換器が冷却される熱音響冷却機を用い、
太陽熱により前記第一高温側熱交換器を加熱し、雪室を前記第二低温側熱交換器により冷却することを特徴とする熱音響冷却装置。
Inside the loop tube, the first stack sandwiched between the first high temperature side heat exchanger and the first low temperature side heat exchanger, and the second high temperature side heat exchanger and the second low temperature side heat exchanger. A standing wave and a traveling wave generated by self-excitation by heating the first high-temperature side heat exchanger, and the second low-temperature side by the standing wave and the traveling wave. Using a thermoacoustic cooler where the heat exchanger is cooled,
The thermoacoustic cooling device, wherein the first high temperature side heat exchanger is heated by solar heat, and the snow chamber is cooled by the second low temperature side heat exchanger.
前記太陽熱を集熱する集熱手段と、この集熱手段により集めた熱を前記第一高温側熱交換器に輸送する熱輸送手段とを備えることを特徴とする請求項1記載の熱音響冷却装置。 The thermoacoustic cooling according to claim 1, further comprising: heat collecting means for collecting the solar heat; and heat transport means for transporting heat collected by the heat collecting means to the first high temperature side heat exchanger. apparatus. 前記集熱手段は前記太陽熱により加熱媒体を蒸発させ、この蒸発した加熱媒体を前記熱輸送手段により前記第一高温側熱交換器に輸送することを特徴とする請求項2記載の熱音響冷却装置。 3. The thermoacoustic cooling device according to claim 2, wherein the heat collecting means evaporates a heating medium by the solar heat and transports the evaporated heating medium to the first high temperature side heat exchanger by the heat transporting means. . 前記第一高温側熱交換器には、前記ループ管の内部に、前記蒸発した加熱媒体が通る複数の通路を設けたことを特徴とする請求項3記載の熱音響冷却装置。
The thermoacoustic cooling device according to claim 3, wherein the first high temperature side heat exchanger is provided with a plurality of passages through which the evaporated heating medium passes inside the loop pipe.
JP2015131627A 2015-06-30 2015-06-30 Thermal acoustic cooling device Pending JP2017015313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015131627A JP2017015313A (en) 2015-06-30 2015-06-30 Thermal acoustic cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015131627A JP2017015313A (en) 2015-06-30 2015-06-30 Thermal acoustic cooling device

Publications (1)

Publication Number Publication Date
JP2017015313A true JP2017015313A (en) 2017-01-19

Family

ID=57830410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015131627A Pending JP2017015313A (en) 2015-06-30 2015-06-30 Thermal acoustic cooling device

Country Status (1)

Country Link
JP (1) JP2017015313A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018143258A1 (en) 2017-01-31 2018-08-09 オリエンタル酵母工業株式会社 Agent for accelerating growth of stem cells with differentiation potential
CN108547746A (en) * 2018-03-30 2018-09-18 中国科学院理化技术研究所 A kind of portable small-sized helioplant
CN109307443A (en) * 2017-07-27 2019-02-05 中国科学院理化技术研究所 A kind of the visualization thermoacoustic core element and thermoacoustic system of high-vacuum insulation
JP2019210647A (en) * 2018-06-01 2019-12-12 株式会社Soken Water production apparatus
CN113324343A (en) * 2021-05-07 2021-08-31 太原理工大学 Combined cooling heating and power system capable of recovering waste heat

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4160444A (en) * 1977-07-22 1979-07-10 Hamilton Ralph A Omnidirectional heat pipe
JP2000205677A (en) * 1999-01-08 2000-07-28 Idotai Tsushin Sentan Gijutsu Kenkyusho:Kk Cooling/refrigeration equipment utilizing columnar resonance wave refrigerating machine
JP2005274101A (en) * 2004-03-26 2005-10-06 Doshisha Heat acoustic device
CN200955474Y (en) * 2006-09-05 2007-10-03 浙江大学 Thermoacoustic engine adopting heat-pipe heat-conducting drive
CN201285193Y (en) * 2008-10-24 2009-08-05 山东天力干燥设备有限公司 Thermoacoustic refrigerating device based on oscillatory flow heat pipe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4160444A (en) * 1977-07-22 1979-07-10 Hamilton Ralph A Omnidirectional heat pipe
JP2000205677A (en) * 1999-01-08 2000-07-28 Idotai Tsushin Sentan Gijutsu Kenkyusho:Kk Cooling/refrigeration equipment utilizing columnar resonance wave refrigerating machine
JP2005274101A (en) * 2004-03-26 2005-10-06 Doshisha Heat acoustic device
CN200955474Y (en) * 2006-09-05 2007-10-03 浙江大学 Thermoacoustic engine adopting heat-pipe heat-conducting drive
CN201285193Y (en) * 2008-10-24 2009-08-05 山东天力干燥设备有限公司 Thermoacoustic refrigerating device based on oscillatory flow heat pipe

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018143258A1 (en) 2017-01-31 2018-08-09 オリエンタル酵母工業株式会社 Agent for accelerating growth of stem cells with differentiation potential
CN109307443A (en) * 2017-07-27 2019-02-05 中国科学院理化技术研究所 A kind of the visualization thermoacoustic core element and thermoacoustic system of high-vacuum insulation
CN109307443B (en) * 2017-07-27 2020-07-17 中国科学院理化技术研究所 High-vacuum heat-insulation visual thermoacoustic nuclear element and thermoacoustic system
CN108547746A (en) * 2018-03-30 2018-09-18 中国科学院理化技术研究所 A kind of portable small-sized helioplant
JP2019210647A (en) * 2018-06-01 2019-12-12 株式会社Soken Water production apparatus
CN113324343A (en) * 2021-05-07 2021-08-31 太原理工大学 Combined cooling heating and power system capable of recovering waste heat
CN113324343B (en) * 2021-05-07 2022-06-07 太原理工大学 Combined cooling heating and power system capable of recovering waste heat

Similar Documents

Publication Publication Date Title
JP2017015313A (en) Thermal acoustic cooling device
JP4987610B2 (en) Geothermal heat pump cycle equipment
CN109990262B (en) Auxiliary heating steam generator
US20190212061A1 (en) Heat exchanger and air conditioning system
JP6106633B2 (en) Condenser, heat pump and method of condensing working steam
JP6283276B2 (en) Air conditioning equipment for server systems
CN110475465A (en) A kind of hot-pipe system of jet hole height change
CN102128552B (en) Single-sided corrugated plate type pulsating heat pipe
JP4657226B2 (en) Heat storage device
RU2719392C1 (en) Thermoelectric power generation device and thermoelectric power generation system
WO2016123995A1 (en) Semiconductor cooling refrigerator
CN203478730U (en) Horizontal shell-and-tube water-cooled condenser
CN107462094A (en) Phase transformation heat collector cavity heat pipe heat
CN106052121A (en) Heat pump device and hot water supply device
JP6747937B2 (en) Thermoelectric power generation system
CN111397414B (en) Loop heat pipe heat accumulator
JP6760026B2 (en) Thermoacoustic engine
JP2020063890A (en) Solar power generation and hot water supply system
Abas et al. A solar water heater for subzero temperature areas
Barrak Heat pipes heat exchanger for HVAC applications
JP2017193969A (en) Heating device
CN109945707B (en) Loop heat pipe heat accumulator with variable top heat accumulation capacity
CN206055834U (en) Geothermal heat pump air-conditioner structure
JP5310287B2 (en) Thermoacoustic engine
CN101182959A (en) Two-phase changing temperature control device and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190326

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191001