JP2017015215A - Flow rate adjustment structure - Google Patents

Flow rate adjustment structure Download PDF

Info

Publication number
JP2017015215A
JP2017015215A JP2015134399A JP2015134399A JP2017015215A JP 2017015215 A JP2017015215 A JP 2017015215A JP 2015134399 A JP2015134399 A JP 2015134399A JP 2015134399 A JP2015134399 A JP 2015134399A JP 2017015215 A JP2017015215 A JP 2017015215A
Authority
JP
Japan
Prior art keywords
flow rate
flow
flow path
rate adjusting
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015134399A
Other languages
Japanese (ja)
Inventor
光則 榊原
Mitsunori Sakakibara
光則 榊原
芳信 上舘
Yoshinobu Kamidate
芳信 上舘
修司 冨永
Shuji Tominaga
修司 冨永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2015134399A priority Critical patent/JP2017015215A/en
Publication of JP2017015215A publication Critical patent/JP2017015215A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a flow rate adjustment structure enabling rational flow rate adjustment.SOLUTION: A flow rate adjustment structure includes: a flow passage member 10 having a flow passage in which fluid circulates; a projection 19 provided on the inner peripheral surface of the flow passage, and defining a flow passage area; and a flow rate adjustment body 30 arranged overlappingly to the projection 19 in a circulation direction of fluid, and having a hole 31 along the circulation direction. The cross sectional shape of a flow passage 17 at the position of the projection 19 and the cross sectional shape of the hole 31 of the flow rate adjustment body 30 are different from each other. The flow rate adjustment body 30 is fixed to a predetermined rotation phase along the circumferential direction of the flow passage 17, and thereby an overlapped state of the flow passage 17 and the hole 31 in the circulation direction of fluid is changed to determine the flow passage area.SELECTED DRAWING: Figure 2

Description

本発明は、流路部材に形成された流路に設けられる流量調節構造に関する。   The present invention relates to a flow rate adjusting structure provided in a flow path formed in a flow path member.

特許文献1には、固定コアと弁収容部材とを備え、通電された固定コアに発生する電磁力によりプランジャとともにボール弁を往復移動させて弁収容部材に形成された流体流路を切り替える電磁弁の構成が開示されている。この電磁弁は3方弁であり、ボール弁を挟んで2つの弁座部材が設けられている。弁収容部材に導入された流体は、制御ポートに供給されるか、流体の流出側の弁座部材の孔部を介してドレンポートに戻される。制御ポートに供給される流体の流量は、流入側の弁座部材の孔部の流路面積によって変化する。一方、ドレンポートに戻される流体の流量は、流出側の弁座部材の孔部の流路面積によって変化する。   Patent Document 1 includes a fixed core and a valve accommodating member, and an electromagnetic valve that switches a fluid flow path formed in the valve accommodating member by reciprocating a ball valve together with a plunger by electromagnetic force generated in the energized fixed core. The configuration is disclosed. This electromagnetic valve is a three-way valve, and two valve seat members are provided with a ball valve interposed therebetween. The fluid introduced into the valve housing member is supplied to the control port or returned to the drain port through the hole of the valve seat member on the fluid outflow side. The flow rate of the fluid supplied to the control port varies depending on the flow path area of the hole of the valve seat member on the inflow side. On the other hand, the flow rate of the fluid returned to the drain port varies depending on the flow path area of the hole of the valve seat member on the outflow side.

特開2002−317882号公報JP 2002-317882 A

特許文献1の電磁弁では、一般的に制御ポート及びドレンポートの流路径に応じて弁座部材に適正な流路面積を有する孔部が形成されている。すなわち、流体の供給対象に応じて供給側の流路に適正な流路面積を有する部材が配置されて流量が設定されている。通常、使用環境や用途等によって流体の供給対象に要求される流路面積は異なる。このため、供給側の流路に適正な流路面積を設定するには、例えば孔部の面積が異なる部材を複数用意し、その中から部材を選択して流路部材に組み込むことになる。
しかし、適正な流路面積を設定するための部材が複数存在することで、部材の加工コストが増し、部材の管理も煩雑となる。
In the solenoid valve of Patent Document 1, generally, a hole portion having an appropriate flow path area is formed in the valve seat member in accordance with the flow path diameters of the control port and the drain port. That is, the flow rate is set by arranging a member having an appropriate flow path area in the flow path on the supply side in accordance with the supply target of the fluid. Usually, the flow path area required for the fluid supply target varies depending on the use environment, application, and the like. For this reason, in order to set an appropriate flow path area for the flow path on the supply side, for example, a plurality of members having different hole areas are prepared, and members are selected from the members and incorporated into the flow path member.
However, since there are a plurality of members for setting an appropriate flow path area, the processing cost of the members increases and the management of the members becomes complicated.

上記実情に鑑み、合理的な流量調節が可能な流量調節構造が望まれている。   In view of the above circumstances, a flow rate adjustment structure capable of rational flow rate adjustment is desired.

本発明に係る流量調節構造の特徴構成は、流体を流通させる流路を有する流路部材と、前記流路の内周面に設けられ流路面積を規定する凸部と、前記凸部に対して前記流体の流通方向に重ねて配置され、前記流体の流通方向に沿う孔部を有する流量調節体と、を備え、前記凸部の位置の前記流路の断面形状と前記流量調節体の前記孔部の断面形状とが異形であり、前記流量調節体を前記流路の周方向に沿った所定の回転位相に固定することで、前記流体の流通方向における前記流路と前記孔部との重なり状態を変更して流路面積を決定する点にある。   The flow rate adjusting structure according to the present invention is characterized by a flow path member having a flow path for circulating a fluid, a convex portion provided on an inner peripheral surface of the flow path to define a flow channel area, and the convex section. And a flow rate adjusting body arranged in the fluid flow direction and having a hole along the fluid flow direction, and a cross-sectional shape of the flow path at the position of the convex portion and the flow rate control body The cross-sectional shape of the hole is irregular, and by fixing the flow rate adjusting body to a predetermined rotational phase along the circumferential direction of the flow path, the flow path and the hole in the flow direction of the fluid The point is that the channel area is determined by changing the overlapping state.

本構成によれば、流路の内周面に設けられ流路面積を規定する凸部に対し、流量調節体を流路の周方向の沿う所定の回転位相に固定することで、流路と流量調節体の孔部との重なり状態を変更して流路面積を決定する。これにより、単一の流量調節体であっても回転位相を変更することで流路面積を増減することができるため、異なる供給対象に対応した流量調節が可能になる。その結果、流量調節体の管理が簡単になり、流量調節体の加工コストが低減される。   According to this configuration, the flow rate adjusting body is fixed to a predetermined rotation phase along the circumferential direction of the flow path with respect to the convex portion that is provided on the inner peripheral surface of the flow path and defines the flow path area. The flow path area is determined by changing the overlapping state with the hole of the flow control body. Thereby, even if it is a single flow control body, since a flow-path area can be increased / decreased by changing a rotation phase, the flow control corresponding to a different supply object is attained. As a result, the management of the flow rate regulator is simplified, and the processing cost of the flow rate regulator is reduced.

本発明の他の特徴構成は、前記凸部の位置の前記流路にボール弁が配置され、前記凸部が前記ボール弁の移動を案内する点にある。   Another feature of the present invention is that a ball valve is disposed in the flow path at the position of the convex portion, and the convex portion guides the movement of the ball valve.

本構成であれば、ボール弁が凸部に案内されて流路におけるボール弁の移動がスムーズになるので、ボール弁の開閉動作が安定する。   With this configuration, since the ball valve is guided by the convex portion and the ball valve moves smoothly in the flow path, the opening and closing operation of the ball valve is stabilized.

本発明の他の特徴構成は、前記流路に前記ボール弁の弁座が備えられ、前記流量調節体は、前記ボール弁を挟んで前記弁座に対向して配置され、前記ボール弁の移動を規制する点にある。   In another aspect of the present invention, the flow path is provided with a valve seat of the ball valve, and the flow rate adjuster is disposed to face the valve seat with the ball valve interposed therebetween. It is in the point which regulates.

本構成であれば、流量調節体をボール弁の開方向への移動を規制する部材として兼用することができるので、流量調節構造を構成する部品点数を減らすことができる。   With this configuration, the flow rate adjusting body can also be used as a member for restricting the movement of the ball valve in the opening direction, so that the number of parts constituting the flow rate adjusting structure can be reduced.

本発明の他の特徴構成は、前記流路部材の内面に前記流量調節体をかしめて固定する点にある。   Another feature of the present invention is that the flow rate adjusting body is caulked and fixed to the inner surface of the flow path member.

本構成であれば、流路部材の内面に流量調節体をかしめて固定するので、流量調節体の加工は不要であり、流路部材に流量調節体を固定するためのねじ等の別部材も不要である。したがって、流路部材に対して流量調節体を簡易に固定することができる。   In this configuration, since the flow rate adjusting body is fixed by caulking to the inner surface of the flow path member, the processing of the flow rate adjusting body is unnecessary, and other members such as screws for fixing the flow rate adjusting body to the flow path member are also included. It is unnecessary. Accordingly, the flow rate adjusting body can be easily fixed to the flow path member.

流量調節構造を備えた流路部材を示す断面図である。It is sectional drawing which shows the flow-path member provided with the flow volume adjustment structure. 流量調節構造の分解斜視図である。It is a disassembled perspective view of a flow control structure. 流路部材において流路に直交する断面図である。It is sectional drawing orthogonal to a flow path in a flow path member. 第1回転位相の流量調節体の孔部と流路との連通領域を示す図である。It is a figure which shows the communication area | region of the hole of the flow volume adjustment body of a 1st rotation phase, and a flow path. 第2回転位相の流量調節体の孔部と流路との連通領域を示す図である。It is a figure which shows the communication area | region of the hole and flow path of the flow volume adjustment body of a 2nd rotation phase. 第3回転位相の流量調節体の孔部と流路との連通領域を示す図である。It is a figure which shows the communication area | region of the hole and flow path of the flow volume adjustment body of a 3rd rotation phase. 別形態の流量調節構造を示す断面図である。It is sectional drawing which shows the flow volume adjustment structure of another form.

〔第1実施形態〕
以下に、本発明の実施形態について図面に基づいて説明する。本実施形態の流量調節構造は、電磁弁に適用した例である。
[First Embodiment]
Embodiments of the present invention will be described below with reference to the drawings. The flow rate adjustment structure of this embodiment is an example applied to a solenoid valve.

図1は、電磁弁1の軸方向断面図である。電磁弁1は、図示しないが、例えば車両のオートマチックトランスミッション等の制御に使用される流体の流路を切替える電磁二方弁(流体出入口が2つ)である。   FIG. 1 is an axial sectional view of the electromagnetic valve 1. Although not shown, the electromagnetic valve 1 is an electromagnetic two-way valve (two fluid inlets and outlets) that switches a fluid flow path used for control of an automatic transmission of a vehicle, for example.

図1に示すように、電磁弁1は、固定コア2と弁収容部材(流路部材の一例)10とを備える。固定コア2は、円筒部21、鍔部22及びケース部23を有し、磁性体により形成されている。ボビン3は、円筒形状の樹脂材であり、ケース部23の内側に配設されている。ボビン3の内側には、磁性体によって形成されたヨーク6が固設されている。また、ボビン3の外周面にはコイル5が巻回されている。   As shown in FIG. 1, the electromagnetic valve 1 includes a fixed core 2 and a valve housing member (an example of a flow path member) 10. The fixed core 2 has a cylindrical portion 21, a flange portion 22, and a case portion 23, and is formed of a magnetic material. The bobbin 3 is a cylindrical resin material and is disposed inside the case portion 23. A yoke 6 made of a magnetic material is fixed inside the bobbin 3. A coil 5 is wound around the outer peripheral surface of the bobbin 3.

プランジャ7は、有底円筒状の磁性体であり、ヨーク6の円筒部内側において軸方向の往復移動可能に挿通されている。プランジャ7の端面と、固定コア2の円筒部21の端面との間には磁気ギャップが形成されている。こうして、固定コア2、プランジャ7及びヨーク6により磁気回路を形成している。プランジャ7は、内部に収容されたスプリング8によってボール弁11に向けて付勢されている。プランジャ7の端部は後述する流量調節体30の挿入孔33に挿入されてボール弁11に当接する。ボール弁11はプランジャ7によって弁座部材14に向けて付勢される。   The plunger 7 is a bottomed cylindrical magnetic body, and is inserted inside the cylindrical portion of the yoke 6 so as to be capable of reciprocating in the axial direction. A magnetic gap is formed between the end surface of the plunger 7 and the end surface of the cylindrical portion 21 of the fixed core 2. Thus, a magnetic circuit is formed by the fixed core 2, the plunger 7 and the yoke 6. The plunger 7 is urged toward the ball valve 11 by a spring 8 accommodated therein. The end of the plunger 7 is inserted into an insertion hole 33 of the flow rate adjusting body 30 described later and comes into contact with the ball valve 11. The ball valve 11 is urged toward the valve seat member 14 by the plunger 7.

弁収容部材10は、ヨーク6に対向して配設され、ケース部23の端部を径内方向にかしめることで固定されている。弁収容部材10は、2つの流体出入口、すなわち、流体を供給する供給ポート12と、制御対象へ油圧を供給する制御ポート13とを有している。弁収容部材10の弁は、ボール弁11と、供給ポート12の側に配置される弁座部材14とによって構成されている。   The valve housing member 10 is disposed to face the yoke 6 and is fixed by caulking the end portion of the case portion 23 in the radially inward direction. The valve housing member 10 has two fluid inlets / outlets, that is, a supply port 12 for supplying fluid and a control port 13 for supplying hydraulic pressure to a controlled object. The valve of the valve housing member 10 includes a ball valve 11 and a valve seat member 14 disposed on the supply port 12 side.

弁収容部材10には長手方向に沿って内部に流体を流通させる流路15を有する。流路15は、弁座部材14が配置される第1流路16と、ボール弁11の収納空間である第2流路17と、流量調節体30が配置される第3流路18とによって構成されている。   The valve housing member 10 has a flow path 15 through which fluid flows along the longitudinal direction. The flow path 15 includes a first flow path 16 in which the valve seat member 14 is disposed, a second flow path 17 that is a storage space for the ball valve 11, and a third flow path 18 in which the flow rate adjusting body 30 is disposed. It is configured.

第1流路16及び第3流路18は流体の流通方向(軸芯Xの方向)に垂直な断面が円形であり、第2流路17は径方向内側に突出する凸部19によって形成されている。凸部19は流路15の内周面に設けられ、第2流路17の流路面積を規定する。凸部19は、供給ポート12の側の段部19aと制御ポート13の側の段部19bとを備える。弁座部材14は段部19aに当接され、流量調節体30は段部19bに当接される。   The first flow path 16 and the third flow path 18 have a circular cross section perpendicular to the fluid flow direction (the direction of the axis X), and the second flow path 17 is formed by a convex portion 19 protruding radially inward. ing. The convex portion 19 is provided on the inner peripheral surface of the flow channel 15 and defines the flow channel area of the second flow channel 17. The convex portion 19 includes a step portion 19 a on the supply port 12 side and a step portion 19 b on the control port 13 side. The valve seat member 14 is in contact with the step portion 19a, and the flow rate adjusting body 30 is in contact with the step portion 19b.

図3に示すように、凸部19の位置の第2流路17は、流体の流通方向(軸芯Xの方向)に垂直な断面において、ボール弁11よりもやや大径の円形の中央孔17aと、中央孔17aの外周側に円弧状に形成された第1孔部17bと第2孔部17cとを有する。第1孔部17bと第2孔部17cとは中央孔17aの周方向に交互に計4つ設けられ、2つの孔部17b,17cはそれぞれ軸芯Xを挟んで対向位置に存在する。第1孔部17bは、第2孔部17cよりも周方向に長く径方向に短い。開口面積は第1孔部17bよりも第2孔部17cの方が大きい。   As shown in FIG. 3, the second flow path 17 at the position of the convex portion 19 has a circular central hole slightly larger in diameter than the ball valve 11 in a cross section perpendicular to the fluid flow direction (direction of the axis X). 17a, and a first hole 17b and a second hole 17c formed in an arc shape on the outer peripheral side of the central hole 17a. A total of four first hole portions 17b and second hole portions 17c are provided in the circumferential direction of the central hole 17a, and the two hole portions 17b and 17c are present at opposing positions with the shaft core X in between. The first hole 17b is longer in the circumferential direction than the second hole 17c and shorter in the radial direction. The opening area of the second hole 17c is larger than that of the first hole 17b.

流量調節体30は、図1に示すように、弁座部材14に対してボール弁11を挟んで対向する位置に配置されている。流量調節体30は円板状に形成されており、径方向の中間位置に周方向に延びる貫通孔(孔部の一例)31が2つ形成されている。2つの貫通孔31は軸芯Xを挟んで対称となる位置に形成されている。流量調節体30は径方向の中央側が厚み方向に突出する突出部32を有し、突出部32の外周側に貫通孔31が設けられている。流量調節体30は突出部32を有しない面部34がボール弁11に対向した状態で挿入され、凸部19に対して流体の流通方向に重ねて配置される。流量調節体30の中心部分にはプランジャ7の挿入孔33が形成されている。   As shown in FIG. 1, the flow rate adjusting body 30 is disposed at a position facing the valve seat member 14 with the ball valve 11 interposed therebetween. The flow rate adjusting body 30 is formed in a disk shape, and two through-holes (an example of hole portions) 31 extending in the circumferential direction are formed at an intermediate position in the radial direction. The two through holes 31 are formed at positions that are symmetric with respect to the axis X. The flow rate adjusting body 30 has a protruding portion 32 that protrudes in the thickness direction on the radial center side, and a through hole 31 is provided on the outer peripheral side of the protruding portion 32. The flow rate adjusting body 30 is inserted in a state where the surface portion 34 that does not have the protruding portion 32 faces the ball valve 11, and is disposed so as to overlap the convex portion 19 in the fluid flow direction. An insertion hole 33 for the plunger 7 is formed in the central portion of the flow rate adjusting body 30.

流量調節体30は、弁収容部材10への組付け時にあっては軸芯X周りに回転可能であり、第2流路17の周方向に沿った所定の回転位相に固定できるよう構成されている。図4では、第2流路17に対して貫通孔31が軸芯Xを挟んで上下に対称となる位置に流量調節体30が保持されている。流量調節体30のこの位置を第1回転位相とし、例えば回転位相の基準角度となる0度に設定する。第2流路17と流量調節体30との間に、流体の流通方向において第2流路17と貫通孔31とが重なる領域として連通領域20が形成される。第1回転位相での連通領域20では、貫通孔31に第1孔部17bの全体が重なっている。流量調節体30に回転させる際の回転角度の確認は、例えば弁収容部材10及び流量調節体30に周方向の目盛等を設けて行う。   The flow rate adjusting body 30 is configured to be rotatable around the axis X when assembled to the valve housing member 10 and to be fixed at a predetermined rotational phase along the circumferential direction of the second flow path 17. Yes. In FIG. 4, the flow rate adjusting body 30 is held at a position where the through hole 31 is vertically symmetric with respect to the second flow path 17 with the axis X interposed therebetween. This position of the flow rate adjusting body 30 is set as the first rotation phase, and is set to 0 degrees as a reference angle of the rotation phase, for example. A communication region 20 is formed between the second flow channel 17 and the flow rate adjusting body 30 as a region where the second flow channel 17 and the through hole 31 overlap in the fluid flow direction. In the communication region 20 in the first rotation phase, the entire first hole portion 17 b overlaps the through hole 31. The rotation angle when the flow rate adjusting body 30 is rotated is confirmed by providing, for example, a circumferential scale on the valve housing member 10 and the flow rate adjusting body 30.

流量調節体30の第2回転位相(図5)は、流量調節体30を第1回転位相(図4)から右回りに40度回転させた位置に設定されている。第2回転位相での連通領域20は、貫通孔31に第1孔部17bの一部及び第2孔部17cの一部が重なる。これにより、連通領域20の面積は、第1回転位相(図4)に比べて第2回転位相の方が大きくなる。   The second rotational phase (FIG. 5) of the flow rate adjuster 30 is set to a position obtained by rotating the flow rate adjuster 30 clockwise by 40 degrees from the first rotational phase (FIG. 4). In the communication region 20 in the second rotational phase, a part of the first hole part 17 b and a part of the second hole part 17 c overlap the through hole 31. Thereby, the area of the communication region 20 is larger in the second rotational phase than in the first rotational phase (FIG. 4).

流量調節体30の第3回転位相(図6)は、流量調節体30を第1回転位相(図4)から右回りに70度回転させた位置である。第3回転位相での連通領域20では、貫通孔31に第1孔部17bの一部及び第2孔部17cの全体が重なっている。これにより、連通領域20の面積は、第2回転位相(図5)に比べて第3回転位相の方が大きくなる。   The third rotational phase (FIG. 6) of the flow rate adjusting body 30 is a position where the flow rate adjusting body 30 is rotated 70 degrees clockwise from the first rotational phase (FIG. 4). In the communication region 20 in the third rotation phase, a part of the first hole portion 17b and the entire second hole portion 17c overlap the through hole 31. Thereby, the area of the communication region 20 is larger in the third rotational phase than in the second rotational phase (FIG. 5).

このように、流量調節体30を第2流路17の周方向に沿った所定の回転位相に固定することで、流体の流通方向における第2流路17と貫通孔31との重なり状態を変更して流路面積を決定する。流量調節体30の回転位相を変えることで、第2流路17と貫通孔31とが重なる連通領域20の面積(流路面積)は少なくとも小・中・大の3段階の設定が可能になる。これにより、単一の流量調節体30によって異なる供給対象に対応した流量に調節することができる。その結果、流量調節体30の管理が簡単になり、流量調節体30の加工コストが低減される。   Thus, by fixing the flow rate adjusting body 30 to a predetermined rotational phase along the circumferential direction of the second flow path 17, the overlapping state of the second flow path 17 and the through hole 31 in the fluid flow direction is changed. To determine the channel area. By changing the rotational phase of the flow rate adjusting body 30, the area (channel area) of the communication region 20 where the second channel 17 and the through hole 31 overlap can be set in at least three stages: small, medium, and large. . Thereby, it can adjust to the flow volume corresponding to a different supply object with the single flow volume adjustment body 30. FIG. As a result, the management of the flow rate adjusting body 30 is simplified, and the processing cost of the flow rate adjusting body 30 is reduced.

図1〜図3に示すように、凸部19には、第1孔部17bと第2孔部17cとの間に流体の流通方向に沿うリブ状の案内部19cが形成されている。案内部19cはボール弁11に近接した位置に突出形成されている。これにより、ボール弁11は案内部19cに案内されて移動する。その結果、ボール弁11の第2流路17での移動がスムーズになるため、ボール弁11の開閉動作が安定する。   As shown in FIGS. 1 to 3, a rib-shaped guide portion 19 c is formed on the convex portion 19 between the first hole portion 17 b and the second hole portion 17 c along the fluid flow direction. The guide portion 19 c is formed to protrude at a position close to the ball valve 11. Thereby, the ball valve 11 moves while being guided by the guide portion 19c. As a result, the movement of the ball valve 11 in the second flow path 17 becomes smooth, so that the opening / closing operation of the ball valve 11 is stabilized.

流量調節体30は、貫通孔31の断面形状と第2流路17の断面形状とが異形であればよい。したがって、貫通孔31は流量調節体30の外周側に形成されていてもよい。
流量調節体30は弁収容部材10の内面10aをかしめて固定されている。これにより、流量調節体30を固定するための別部材が不要となり、流量調節体30の固定構造が簡素になる。
The flow rate adjusting body 30 only needs to have a different cross-sectional shape of the through hole 31 and a cross-sectional shape of the second flow path 17. Therefore, the through hole 31 may be formed on the outer peripheral side of the flow rate adjusting body 30.
The flow rate adjusting body 30 is fixed by caulking the inner surface 10 a of the valve housing member 10. Thereby, a separate member for fixing the flow rate adjusting body 30 is not required, and the fixing structure of the flow rate adjusting body 30 is simplified.

ボール弁11は、第2流路17において弁座部材14と流量調節体30との間に配置され、弁座14aと面部34との間で軸芯Xの方向に移動可能となっている。このように、流量調節体30がボール弁11を挟んで弁座14aに対向して配置されているため、流量調節体30によってボール弁11の開方向への移動が規制される。このように、流量調節体30は、ボール弁11の移動規制部材として兼用できることで、流量調節構造を構成する部品点数を減らすことができる。   The ball valve 11 is disposed between the valve seat member 14 and the flow rate adjusting body 30 in the second flow path 17, and is movable in the direction of the axis X between the valve seat 14 a and the surface portion 34. As described above, since the flow rate adjusting body 30 is disposed so as to face the valve seat 14a with the ball valve 11 interposed therebetween, movement of the ball valve 11 in the opening direction is restricted by the flow rate adjusting body 30. As described above, the flow rate adjusting body 30 can also be used as a movement restricting member for the ball valve 11, thereby reducing the number of parts constituting the flow rate adjusting structure.

コネクタ部25は、コイル5を通電するために設けられており、内部のターミナル端子26は、コイル5と電気的に接続されている。ターミナル端子26を図示しない電流制御装置等に電気的に接続することにより、コイル5に通電する電流を制御できるようになっている。   The connector portion 25 is provided to energize the coil 5, and the internal terminal terminal 26 is electrically connected to the coil 5. By electrically connecting the terminal terminal 26 to a current control device or the like (not shown), the current supplied to the coil 5 can be controlled.

次に、電磁弁1の動作について説明する。コイル5が通電されていない状態では、供給ポート12はボール弁11によって遮断されている。この状態からコイル5が通電されると、前述した磁気回路に磁束が発生し、プランジャ7は、固定コア2の円筒部21に向かって軸方向に吸引されスプリング8の付勢力に抗して移動する。その結果、ボール弁11は、供給ポート12からの流体圧に押されて、弁座14aから離間する。これにより、供給ポート12と流量調節体30に形成された貫通孔31とが連通する。   Next, the operation of the electromagnetic valve 1 will be described. When the coil 5 is not energized, the supply port 12 is blocked by the ball valve 11. When the coil 5 is energized from this state, a magnetic flux is generated in the magnetic circuit described above, and the plunger 7 is attracted in the axial direction toward the cylindrical portion 21 of the fixed core 2 and moves against the urging force of the spring 8. To do. As a result, the ball valve 11 is pushed by the fluid pressure from the supply port 12 and is separated from the valve seat 14a. As a result, the supply port 12 and the through hole 31 formed in the flow rate adjusting body 30 communicate with each other.

弁座14aから離間したボール弁11は、流量調節体30の面部34に当接し停止する。突出部32に形成されたプランジャ7の挿入孔33はボール弁11によって閉鎖される。このため、供給ポート12から供給される流体は挿入孔33から流出しない。   The ball valve 11 separated from the valve seat 14a comes into contact with the surface portion 34 of the flow rate adjusting body 30 and stops. The insertion hole 33 of the plunger 7 formed in the protrusion 32 is closed by the ball valve 11. For this reason, the fluid supplied from the supply port 12 does not flow out of the insertion hole 33.

〔他の実施形態〕
(1)上記実施形態では電磁弁1においてボール弁11を備える流路15に組み込まれた流量調節構造を示したが、図7に示すように、流量調節構造は弁体を備えない流路部材40の流路15に設けてもよい。本実施形態では、流路15の内周側に凸部19が突出形成されている。流量調節体30は、凸部19の位置の小径の流路17に重ねて配置され、流路17の周方向に沿った所定の回転位相に固定される。
[Other Embodiments]
(1) In the above embodiment, the flow rate adjusting structure incorporated in the flow path 15 including the ball valve 11 in the electromagnetic valve 1 is shown. However, as shown in FIG. 7, the flow rate adjusting structure does not include a valve body. For example, 40 channels 15 may be provided. In the present embodiment, a convex portion 19 is formed to protrude on the inner peripheral side of the flow path 15. The flow rate adjusting body 30 is disposed so as to overlap the small diameter flow path 17 at the position of the convex portion 19, and is fixed to a predetermined rotation phase along the circumferential direction of the flow path 17.

(2)上記実施形態では、電磁二方弁について説明したが、本発明は電磁二方弁に限定されるものではなく、三方弁でもよく、バタフライ弁、オンオフ弁等、電磁弁以外の制御弁にも採用することができる。 (2) Although the electromagnetic two-way valve has been described in the above embodiment, the present invention is not limited to the electromagnetic two-way valve, and may be a three-way valve, such as a butterfly valve, an on / off valve, or a control valve other than the electromagnetic valve. Can also be adopted.

(3)上記実施形態では、流量調節体30に形成される孔部31が貫通孔である例を示したが、孔部31は流路の方向に連続して形成されていればよく、例えば切欠きであってもよい。また、流量調節体30は偏心した形状であってもよい。 (3) In the above embodiment, an example in which the hole 31 formed in the flow rate adjusting body 30 is a through-hole is shown, but the hole 31 may be formed continuously in the direction of the flow path, for example, It may be a notch. Further, the flow rate adjusting body 30 may have an eccentric shape.

(4)上記実施形態では、流量調節体30の回転位相を変えることで連通領域20の面積を3段階に変更して設定する例を示したが、連通領域20の面積の設定位置は2つでもよいし、4つ以上であってもよい。 (4) In the above embodiment, an example in which the area of the communication region 20 is changed and set in three stages by changing the rotational phase of the flow rate adjusting body 30 has been described. It may be four or more.

本発明に係る流量調節構造は、流路部材に形成された流路空間に広く利用することができる。   The flow rate adjusting structure according to the present invention can be widely used in the flow path space formed in the flow path member.

10 :弁収容部材(流路部材)
11 :ボール弁
14 :弁座部材
14a :弁座
15 :流路
17 :第2流路(流路)
17a :中央孔
17b :第1孔部
17c :第2孔部
19 :凸部
19c :案内部
20 :連通領域
30 :流量調節体
31 :貫通孔(孔部)
40 :流路部材
X :軸芯(流体の流通方向)
10: Valve housing member (flow path member)
11: Ball valve 14: Valve seat member 14a: Valve seat 15: Channel 17: Second channel (channel)
17a: central hole 17b: first hole portion 17c: second hole portion 19: convex portion 19c: guide portion 20: communication region 30: flow rate adjusting body 31: through hole (hole portion)
40: Channel member X: Shaft core (fluid flow direction)

Claims (4)

流体を流通させる流路を有する流路部材と、
前記流路の内周面に設けられ流路面積を規定する凸部と、
前記凸部に対して前記流体の流通方向に重ねて配置され、前記流体の流通方向に沿う孔部を有する流量調節体と、を備え、
前記凸部の位置の前記流路の断面形状と前記流量調節体の前記孔部の断面形状とが異形であり、
前記流量調節体を前記流路の周方向に沿った所定の回転位相に固定することで、前記流体の流通方向における前記流路と前記孔部との重なり状態を変更して流路面積を決定する流量調節構造。
A flow path member having a flow path for circulating a fluid;
Protrusions provided on the inner peripheral surface of the flow path to define the flow path area;
A flow rate regulator that is disposed so as to overlap with the fluid flow direction with respect to the convex portion, and has a hole along the fluid flow direction.
The cross-sectional shape of the flow path at the position of the convex portion and the cross-sectional shape of the hole of the flow rate adjusting body are irregular,
By fixing the flow rate adjusting body at a predetermined rotational phase along the circumferential direction of the flow channel, the flow channel area is determined by changing the overlapping state of the flow channel and the hole in the fluid flow direction. Flow control structure to do.
前記凸部の位置の前記流路にボール弁が配置され、前記凸部が前記ボール弁の移動を案内する請求項1に記載の流量調節構造。   The flow rate adjusting structure according to claim 1, wherein a ball valve is disposed in the flow path at the position of the convex portion, and the convex portion guides the movement of the ball valve. 前記流路に前記ボール弁の弁座が備えられ、
前記流量調節体は、前記ボール弁を挟んで前記弁座に対向して配置され、前記ボール弁の移動を規制する請求項2に記載の流量調節構造。
A valve seat of the ball valve is provided in the flow path;
The flow rate adjusting structure according to claim 2, wherein the flow rate adjusting body is disposed to face the valve seat with the ball valve interposed therebetween, and restricts movement of the ball valve.
前記流路部材の内面に前記流量調節体をかしめて固定する請求項1〜3の何れか一項に記載の流量調節構造。   The flow rate adjusting structure according to any one of claims 1 to 3, wherein the flow rate adjusting body is fixed by caulking to an inner surface of the flow path member.
JP2015134399A 2015-07-03 2015-07-03 Flow rate adjustment structure Pending JP2017015215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015134399A JP2017015215A (en) 2015-07-03 2015-07-03 Flow rate adjustment structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015134399A JP2017015215A (en) 2015-07-03 2015-07-03 Flow rate adjustment structure

Publications (1)

Publication Number Publication Date
JP2017015215A true JP2017015215A (en) 2017-01-19

Family

ID=57830154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015134399A Pending JP2017015215A (en) 2015-07-03 2015-07-03 Flow rate adjustment structure

Country Status (1)

Country Link
JP (1) JP2017015215A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111537250A (en) * 2019-12-31 2020-08-14 北京金风科创风电设备有限公司 Environment simulation system and equipment with same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111537250A (en) * 2019-12-31 2020-08-14 北京金风科创风电设备有限公司 Environment simulation system and equipment with same

Similar Documents

Publication Publication Date Title
US6501359B2 (en) Electromagnetic actuator
US10139006B2 (en) Solenoid valve device
US10139009B2 (en) Electromagnetic valve
JP7463104B2 (en) Solenoid valve
US20080072975A1 (en) Oil pressure control valve having actuator
JP6645505B2 (en) Linear solenoid valve and method of manufacturing linear solenoid valve
JP2017015215A (en) Flow rate adjustment structure
JP2002340219A (en) Solenoid valve
JP2001343086A (en) Solenoid valve device
JP6991890B2 (en) Spool valve
JP2012255508A (en) Fluid control valve
US11320061B2 (en) Solenoid valve
JP3932898B2 (en) Solenoid valve device
JP7164965B2 (en) solenoid valve
JP2001082625A (en) Solenoid valve
EP3499102A1 (en) Anti-latching and damping shim for an electromagnetic actuator
US11948737B2 (en) Solenoid
JP6657790B2 (en) Hydraulic control valve
JP7463355B2 (en) Solenoid valve
US20210005369A1 (en) Solenoid
JP2014194970A (en) Solenoid actuator
US20220285066A1 (en) Solenoid
JP2019019898A (en) solenoid valve
US11908620B2 (en) Solenoid
US20210246990A1 (en) Valve device and assembly method of valve device