JP2017015200A - Rotary device - Google Patents

Rotary device Download PDF

Info

Publication number
JP2017015200A
JP2017015200A JP2015133846A JP2015133846A JP2017015200A JP 2017015200 A JP2017015200 A JP 2017015200A JP 2015133846 A JP2015133846 A JP 2015133846A JP 2015133846 A JP2015133846 A JP 2015133846A JP 2017015200 A JP2017015200 A JP 2017015200A
Authority
JP
Japan
Prior art keywords
fixed
peripheral surface
inner peripheral
main body
rotating body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015133846A
Other languages
Japanese (ja)
Other versions
JP6506640B2 (en
Inventor
朋文 柴田
Tomofumi Shibata
朋文 柴田
哲夫 久保
Tetsuo Kubo
哲夫 久保
達太郎 出村
Tatsutaro Demura
達太郎 出村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EMAAJII KK
Original Assignee
EMAAJII KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EMAAJII KK filed Critical EMAAJII KK
Priority to JP2015133846A priority Critical patent/JP6506640B2/en
Publication of JP2017015200A publication Critical patent/JP2017015200A/en
Application granted granted Critical
Publication of JP6506640B2 publication Critical patent/JP6506640B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Discharging, Photosensitive Material Shape In Electrophotography (AREA)
  • Electrophotography Configuration And Component (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rotary device in which a driving shaft for rotating a rotary member and the rotary member are connected in a superior manner at its high speed rotation.SOLUTION: One preferred embodiment of a rotary device 1 comprises a driving shaft 2 for being rotationally driven, a cylindrical rotary main body 11 and a connecting structure 4 for connecting the driving shaft 2 with the rotary main body 11. The connecting structure 4 is constituted by a buffer part 4A and a connecting part 4B. The buffer part 4A has a cylindrical buffer member 14 and an outer peripheral surface of the buffer member 14 and an inner peripheral surface of the rotary main body 11 are fixed at two points. The connecting part 4B has a disc-like member 16, an end part of the outer peripheral side of the disc-like member 16 is fixed to an inner peripheral surface of the buffer member 14 and the inner peripheral side of the disc-like member 16 is fixed to the driving shaft 2. When the rotary main body 11 is rotated at high speed, the buffer member 14 is flexed and a difference between a deformation amount of the rotary main body 11 and a deformation amount of the disc-like member 16 is absorbed.SELECTED DRAWING: Figure 2

Description

本発明は、駆動軸と連結されて回転する回転体を備える回転装置に関する。   The present invention relates to a rotating device including a rotating body that is connected to a drive shaft and rotates.

回転する物体(回転体)には、回転の運動エネルギーが蓄えられる。例えば図1のような円柱状の回転体100が、平面に垂直なz軸を回転軸として回転速度v[回転数/s]で回転する場合を想定する。回転体100の角速度をω[rad/s]とすると、運動エネルギーEは式(1)で表される。
E=1/2×Ip×ω ・・・・(1)
The rotating kinetic energy is stored in the rotating object (rotating body). For example, it is assumed that a columnar rotating body 100 as shown in FIG. 1 rotates at a rotation speed v [number of rotations / s] with a z axis perpendicular to a plane as a rotation axis. If the angular velocity of the rotating body 100 is ω [rad / s], the kinetic energy E is expressed by the equation (1).
E = 1/2 × Ip × ω 2 (1)

ここでIpは、回転体100の平面に垂直なz軸回りの慣性モーメント[kg・m]であり、極慣性モーメントと呼ばれる。回転体100の任意の質量質点における質量m[kg]と、回転の中心(z軸)から質量質点までの距離(図3の例では半径r)が大きくなると、極慣性モーメントIpも大きくなる。したがって、質量質点における質量m、回転の中心(z軸)から質量質点までの距離r、及び角速度ω(回転速度v)の値が大きいほど、回転体100の運動エネルギーEは大きくなる。 Here, Ip is the moment of inertia [kg · m 2 ] around the z-axis perpendicular to the plane of the rotator 100, and is called the polar moment of inertia. As the mass m [kg] at an arbitrary mass mass point of the rotator 100 and the distance from the center of rotation (z axis) to the mass mass point (radius r in the example of FIG. 3) increase, the polar moment of inertia Ip also increases. Therefore, the larger the values of the mass m at the mass point, the distance r from the center of rotation (z axis) to the mass point, and the angular velocity ω (rotational speed v), the greater the kinetic energy E of the rotating body 100.

この物理現象を利用して、電力を回転体(例えばフライホイール)の運動エネルギーに変換して蓄積するとともに、回転体に蓄積されている運動エネルギーを必要な時に電気エネルギーに変換して取り出す技術の開発が進められている。   Using this physical phenomenon, electric power is converted into kinetic energy of a rotating body (for example, flywheel) and stored, and the kinetic energy stored in the rotating body is converted into electrical energy and extracted when necessary. Development is underway.

一般に、回転体は軽量化のために円筒であることが多く、その中空部の中心に駆動軸が通される。円筒状の回転体は、円板状の連結部を介して駆動軸と連結される。例えば、特許文献1には、円板状の連結部を介して円筒状のフライホイールが回転軸に連結されている構成が開示されている。   In general, the rotating body is often a cylinder for weight reduction, and a drive shaft is passed through the center of the hollow portion. The cylindrical rotating body is connected to the drive shaft via a disk-like connecting portion. For example, Patent Document 1 discloses a configuration in which a cylindrical flywheel is connected to a rotating shaft via a disk-like connecting portion.

特開2003−219581号公報(図4参照)JP 2003-219581 A (see FIG. 4)

ところで、回転体100の質量質点に作用する遠心力Fは式(2)で表されるように、回転体100の質量質点における質量m、回転の中心から質量質点までの距離r、及び角速度ωが大きくなると、回転体100の質量質点に作用する遠心力Fも大きくなる。
F=m×r×ω ・・・・(2)
By the way, the centrifugal force F acting on the mass mass point of the rotating body 100 is expressed by the equation (2), the mass m at the mass mass point of the rotating body 100, the distance r from the center of rotation to the mass mass point, and the angular velocity ω. Increases, the centrifugal force F acting on the mass mass point of the rotating body 100 also increases.
F = m × r × ω 2 (2)

回転する回転体100には、回転の中心から質量質点までの距離rが大きいほど、質量質点に大きな遠心力Fが作用する。そのため、回転体100の各部(各質量質点)は、回転の中心からの距離rに応じて遠心方向に伸びて変形する。駆動軸付近は、回転の中心から近いために作用する遠心力が小さく遠心方向の変形量が小さいが、回転の中心から遠い部分は、作用する遠心力が大きく遠心方向の変形量が大きい。そのため、駆動軸(変形しにくい部分)と回転体(変形しやすい部分)をどのように連結するか、あるいは如何に変形を抑えて回転体を回転させるかが重要である。   The larger the distance r from the center of rotation to the mass mass point, the greater the centrifugal force F acts on the mass mass point. Therefore, each part (each mass mass point) of the rotator 100 extends and deforms in the centrifugal direction according to the distance r from the center of rotation. In the vicinity of the drive shaft, the centrifugal force acting is small and the amount of deformation in the centrifugal direction is small because it is close to the center of rotation, but in the portion far from the center of rotation, the acting centrifugal force is large and the amount of deformation in the centrifugal direction is large. Therefore, it is important how to connect the drive shaft (part that is difficult to deform) and the rotating body (part that is easily deformed) or how to rotate the rotating body while suppressing deformation.

この対策が不十分であると、回転体の変形が大きいために、回転体と駆動軸を連結する連結部が破損したり、駆動軸の回転の中心がずれて駆動軸が振動したりする。しかし、特許文献1では、このような問題を解決する方法については言及していない。   If this countermeasure is insufficient, the rotating body is greatly deformed, so that the connecting portion that connects the rotating body and the drive shaft is damaged, or the center of rotation of the drive shaft is shifted and the drive shaft vibrates. However, Patent Document 1 does not mention a method for solving such a problem.

本発明は、上記の状況を考慮してなされたものであり、高速回転において、回転体を回転させる駆動軸と該回転体とを良好に連結する回転装置を提供する。   The present invention has been made in consideration of the above-described situation, and provides a rotating device that satisfactorily connects a rotating shaft to a driving shaft that rotates the rotating body at high speed rotation.

本発明の一態様の中間装置は、回転駆動する駆動軸部と、該駆動軸部の回転軸を中心に回転可能な円筒状の回転体本体と、該回転体本体の内周面に固定された上側円環部材と、回転体本体の内周面の上側円環部材よりも低い位置に固定された下側円環部材とを備える。また、回転体本体の内側に配置された可撓性を有する円筒であって、該円筒の外周面の上部に上側円環部材が固定されるとともに、該外周面の下部に下側円環部材が固定された緩衝部材を備える。また、駆動軸部の回転軸と同一の中心軸を持つ円板状部材を有し、該円板状部材の内周側において駆動軸部が軸通された状態で固定されるとともに、該円板状部材の外周側の端部が緩衝部材の内周面に固定され、駆動軸部の回転に伴い該駆動軸部を回転軸として回転する連結部を備える。さらに、緩衝部材の外周面に対して、緩衝部材の内周面に固定された円板状部材の外周側の端部と対向する位置に固定された円環状の補強部材を備える。   An intermediate device according to an aspect of the present invention is fixed to a driving shaft portion that is rotationally driven, a cylindrical rotating body that is rotatable about a rotating shaft of the driving shaft, and an inner peripheral surface of the rotating body. An upper annular member, and a lower annular member fixed at a position lower than the upper annular member on the inner peripheral surface of the rotating body main body. A flexible cylinder disposed inside the rotating body, wherein an upper annular member is fixed to an upper portion of an outer peripheral surface of the cylinder, and a lower annular member is disposed to a lower portion of the outer peripheral surface Is provided with a fixed buffer member. The disk-shaped member having the same central axis as the rotation axis of the drive shaft portion is fixed in a state where the drive shaft portion is passed through on the inner peripheral side of the disk-shaped member. An end portion on the outer peripheral side of the plate-like member is fixed to the inner peripheral surface of the buffer member, and includes a connecting portion that rotates around the drive shaft portion as a rotation shaft as the drive shaft portion rotates. Further, an annular reinforcing member fixed to the outer peripheral surface of the buffer member at a position facing the outer peripheral end of the disk-shaped member fixed to the inner peripheral surface of the buffer member is provided.

本発明の少なくとも一態様によれば、回転体本体が高速回転しているとき、回転体本体に固定された緩衝部材が撓み、回転体本体の変形量と円板状部材の変形量の差が吸収される。それゆえ、駆動軸部と回転体本体とを良好に連結することができる。
上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
According to at least one aspect of the present invention, when the rotating body is rotating at a high speed, the buffer member fixed to the rotating body is bent, and the difference between the deformation amount of the rotating body and the deformation amount of the disk-shaped member is Absorbed. Therefore, it is possible to satisfactorily connect the drive shaft portion and the rotating body main body.
Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.

回転体の説明図である。It is explanatory drawing of a rotary body. 本発明の一実施形態に係る回転装置の全体構成を示す外観斜視図である。It is an appearance perspective view showing the whole rotation device composition concerning one embodiment of the present invention. 図2のX−X´線に沿う矢視図である。It is an arrow line view which follows the XX 'line | wire of FIG. 回転装置の各部の変形量のシミュレーション結果(全体)を示す図である。It is a figure which shows the simulation result (whole) of the deformation amount of each part of a rotation apparatus. 回転装置の各部の変形量のシミュレーション結果(緩衝部材のみ)を示す図である。It is a figure which shows the simulation result (only a buffer member) of the deformation amount of each part of a rotation apparatus. 回転装置の各部の変形量のシミュレーション結果(緩衝部材、補強部材)を示す図である。It is a figure which shows the simulation result (a buffer member, a reinforcement member) of the deformation amount of each part of a rotation apparatus. 回転装置の各部の変形量のシミュレーション結果(緩衝部材、補強部材、連結部)を示す図である。It is a figure which shows the simulation result (a buffer member, a reinforcement member, a connection part) of the deformation amount of each part of a rotation apparatus. 回転装置の各部の変形量のシミュレーション結果(緩衝部材、補強部材、連結部、上側円環部材及び下側円環部材)を示す図である。It is a figure which shows the simulation result (a buffer member, a reinforcement member, a connection part, an upper ring member, and a lower ring member) of the deformation amount of each part of a rotating device.

以下、本発明を実施するための形態の例について、添付図面を参照しながら説明する。
なお、各図において実質的に同一の機能又は構成を有する構成要素については、同一の符号を付して重複する説明を省略する。
Hereinafter, an example of an embodiment for carrying out the present invention will be described with reference to the accompanying drawings.
In addition, in each figure, about the component which has the substantially same function or structure, the same code | symbol is attached | subjected and the overlapping description is abbreviate | omitted.

<1.一実施形態>
[中間装置の構成]
まず、本発明の一実施形態に係る回転装置の構成について図2及び図3を参照して説明する。
図2は、本発明の一実施形態に係る回転装置の全体構成を示す外観斜視図である。図2において、説明の便宜上、一部を断面表示している。
図3は、図2のX−X´線に沿う矢視図である。図3において、駆動軸部2の回転軸であって、回転体本体11の上面及び下面に垂直な軸をz軸としている。図3において、駆動軸部2については断面表示としていない。
<1. One Embodiment>
[Configuration of intermediate device]
First, the configuration of a rotating device according to an embodiment of the present invention will be described with reference to FIGS.
FIG. 2 is an external perspective view showing the overall configuration of the rotating device according to the embodiment of the present invention. In FIG. 2, for convenience of explanation, a part of the cross section is shown.
FIG. 3 is an arrow view along the line XX ′ in FIG. 2. In FIG. 3, the rotation axis of the drive shaft portion 2 and the axis perpendicular to the upper surface and the lower surface of the rotator main body 11 is taken as the z axis. In FIG. 3, the drive shaft portion 2 is not shown in cross section.

回転装置1は、回転駆動する駆動軸部2、円筒状の回転体本体11、駆動軸部2と回転体本体11を連結する連結構造4を備える。連結構造4は、緩衝部4Aと連結部4Bから構成される。緩衝部4Aは、回転体本体11の回転による連結部4Bの遠心方向の変形を抑える。   The rotating device 1 includes a drive shaft portion 2 that is rotationally driven, a cylindrical rotating body main body 11, and a connection structure 4 that connects the driving shaft portion 2 and the rotating body main body 11. The connection structure 4 includes a buffer part 4A and a connection part 4B. 4 A of buffer parts suppress the deformation | transformation of the centrifugal direction of the connection part 4B by rotation of the rotary body main body 11. As shown in FIG.

駆動軸部2は、回転軸であるz軸の方向に延在する略円柱状の本体部2aと、本体部2aの上側及び下側に設けられた駆動軸2bと、本体部2aの上部に設けられたつば部2cを備える。   The drive shaft portion 2 includes a substantially cylindrical main body portion 2a extending in the direction of the z-axis that is a rotation shaft, a drive shaft 2b provided on the upper and lower sides of the main body portion 2a, and an upper portion of the main body portion 2a. The provided collar part 2c is provided.

駆動軸2bは、本体部2aの上側と下側の平面に設けられており、本体部2aよりも直径が小さい。図3の例では、駆動軸2bの直径を本体部2aよりも小さくしているが、同じ直径でもよい。いずれか一方の駆動軸2bの先端側は、電動機(モータ)又は発電機の不図示の駆動軸と接続している。電動機の回転駆動力が連結構造4を介して回転体本体11に伝達されることで、回転体本体11が回転する。   The drive shaft 2b is provided on the upper and lower planes of the main body 2a and has a diameter smaller than that of the main body 2a. In the example of FIG. 3, the diameter of the drive shaft 2b is smaller than that of the main body 2a, but it may be the same diameter. The tip end side of one of the drive shafts 2b is connected to a drive shaft (not shown) of an electric motor (motor) or a generator. When the rotational driving force of the electric motor is transmitted to the rotating body main body 11 via the connection structure 4, the rotating body main body 11 rotates.

つば部2cは、本体部2aの円柱面の上端であって、円柱面の周部に設けられる。つば部2cの所定位置には雄ネジ42と螺合する複数のネジ孔(雌ネジ)が形成される。図2の例では、つば部2cの周端部の近くであって、互いに等距離となる位置(45度間隔)に8個のネジ孔が形成されている。本体部2a、駆動軸2b、及びつば部2cは一体に構成されている。なお、図3では、つば部2cが本体部2aの円柱面の上端に設けられているが、円柱面の下端、あるいは円柱面の上端と下端の両方に設けられてもよい。つば部2cが円柱面の上端と下端の両方に設けられた場合には、つば部2cが連結部4Bの上側支持部材21とより安定的に固定される。   The collar part 2c is the upper end of the cylindrical surface of the main body part 2a, and is provided in the peripheral part of the cylindrical surface. A plurality of screw holes (female screws) to be screwed with the male screw 42 are formed at predetermined positions of the collar portion 2c. In the example of FIG. 2, eight screw holes are formed at positions (45 ° intervals) near the peripheral end of the collar portion 2 c and equidistant from each other. The main body 2a, the drive shaft 2b, and the collar 2c are integrally formed. In FIG. 3, the collar portion 2c is provided at the upper end of the cylindrical surface of the main body portion 2a, but may be provided at the lower end of the cylindrical surface or both the upper and lower ends of the cylindrical surface. When the collar portion 2c is provided at both the upper end and the lower end of the cylindrical surface, the collar portion 2c is more stably fixed to the upper support member 21 of the connecting portion 4B.

回転体本体11は、駆動軸部2の回転軸(z軸)と同一の中心軸を持ち、その回転軸を中心に回転可能な円筒状の物体である。回転体本体11は、一例として、剛性が高く、高速回転でも変形しにくい材料を用いて構成される。このような高剛性を有する材料として、例えば炭素繊維強化プラスチック(Carbon Fiber Reinforced Plastic:CFRP)などがある。炭素繊維強化プラスチックは、炭素繊維を強化材とし,熱硬化性樹脂又は熱可塑性樹脂をマトリックス(結合材料)とする複合材料である。特に後者をCFRTPともいう。ただし、回転体本体11はこのような材料を用いても、他の部材と比較して回転軸からの距離が遠く、且つ、重量が大きいため、高速回転によって遠心方向に一定程度伸びて変形する。以下の説明では、炭素繊維強化プラスチックをCFRPと表記する。   The rotating body 11 is a cylindrical object that has the same central axis as the rotational axis (z-axis) of the drive shaft portion 2 and can rotate around the rotational axis. For example, the rotating body 11 is made of a material that has high rigidity and is difficult to be deformed even at high speed. As such a material having high rigidity, for example, there is a carbon fiber reinforced plastic (CFRP). The carbon fiber reinforced plastic is a composite material using carbon fiber as a reinforcing material and thermosetting resin or thermoplastic resin as a matrix (binding material). In particular, the latter is also referred to as CFRTP. However, even if such a material is used for the rotator main body 11, the distance from the rotating shaft is far greater than that of other members and the weight is large. . In the following description, the carbon fiber reinforced plastic is expressed as CFRP.

一例としてCFRPを用いて繊維の向きが円周方向の厚みが薄い、環状のCFRP層を作成し、この環状のCFRP層を回転軸方向に何重にも積層することで、円筒状の回転体本体11が作成される。   As an example, a CFRP layer is used to create an annular CFRP layer whose fiber orientation is thin in the circumferential direction, and this annular CFRP layer is laminated in the direction of the axis of rotation to form a cylindrical rotating body. A main body 11 is created.

回転体本体11の内周面に、連結構造4の緩衝部4Aが設けられる。緩衝部4Aは、上側円環部材13aと下側円環部材13b、緩衝部材14、及び補強部材18から構成される。   4 A of buffer parts of the connection structure 4 are provided in the internal peripheral surface of the rotary body main body 11. As shown in FIG. The buffer portion 4A includes an upper ring member 13a, a lower ring member 13b, a buffer member 14, and a reinforcing member 18.

図3に示すように、回転体本体11の内周面に、上側円環部材13a及び下側円環部材13bの2つの円環部材が設けられる。上側円環部材13aは、駆動軸部2の回転軸と同一の中心軸を持ち、回転体本体11の内周面の上部(図3では内周面の上端)に、駆動軸部2の回転軸と同一の中心軸となるように固定される。また、下側円環部材13bも同様に、回転体本体11の内周面に上側円環部材13aよりも低い位置(図3では内周面の下端)に、駆動軸部2の回転軸と同一の中心軸となるように固定される。例えば任意の接着剤を用いて、回転体本体11の内周面に上側円環部材13a及び下側円環部材13bを固着する。そして、上側円環部材13a及び下側円環部材13bにおける回転体本体11の内周面と反対側には、緩衝部材14の外周面が固定される。   As shown in FIG. 3, two annular members, an upper annular member 13 a and a lower annular member 13 b, are provided on the inner peripheral surface of the rotating body main body 11. The upper annular member 13a has the same central axis as the rotation shaft of the drive shaft portion 2, and rotates the drive shaft portion 2 at the upper part of the inner peripheral surface of the rotating body 11 (the upper end of the inner peripheral surface in FIG. 3). It is fixed so as to be the same central axis as the axis. Similarly, the lower annular member 13b is located on the inner peripheral surface of the rotating body 11 at a position lower than the upper annular member 13a (the lower end of the inner peripheral surface in FIG. 3). It is fixed so as to have the same central axis. For example, the upper ring member 13 a and the lower ring member 13 b are fixed to the inner peripheral surface of the rotating body 11 using an arbitrary adhesive. And the outer peripheral surface of the buffer member 14 is fixed to the opposite side to the internal peripheral surface of the rotary body 11 in the upper ring member 13a and the lower ring member 13b.

上側円環部材13aと下側円環部材13bは、例えばガラス繊維強化プラスチック(Grass Fiber Reinforced Plastics:GFRP)を用いて構成することができる。ガラス繊維強化プラスチックは、ガラス繊維を強化材とし,熱硬化性樹脂又は熱可塑性樹脂をマトリックスとする複合材料である。以下の説明では、ガラス繊維強化プラスチックをGFRPと表記する。   The upper ring member 13a and the lower ring member 13b can be configured using, for example, glass fiber reinforced plastic (GFRP). The glass fiber reinforced plastic is a composite material using glass fiber as a reinforcing material and a thermosetting resin or a thermoplastic resin as a matrix. In the following description, the glass fiber reinforced plastic is expressed as GFRP.

回転体本体11に対して連結構造4が1つの場合には、緩衝部4Aにおいて、上側円環部材13aが、回転体本体11の内周面の上部(上面と下面との中央位置Cから上面までの部分)に固定されるとともに、下側円環部材13bが、回転体本体11の内周面の下部(上面と下面との中央位置Cから下面までの部分)に固定されることが望ましい。さらに、上側円環部材13aが、回転体本体11の内周面の上端に固定されるとともに、下側円環部材13bが、回転体本体11の内周面の下端に固定されることがより望ましい。このような構成とすることで、回転体本体11の内周面に対する上側円環部材13aと下側円環部材13bの固定位置のバランスが良くなり、緩衝部4Aの緩衝機能が適切化、さらには最適化される。   In the case where there is one connection structure 4 for the rotating body main body 11, the upper ring member 13a is arranged on the upper part of the inner peripheral surface of the rotating body main body 11 (from the center position C between the upper surface and the lower surface to the upper surface in the buffer portion 4A. The lower annular member 13b is preferably fixed to the lower part of the inner peripheral surface of the rotating body 11 (the part from the center position C to the lower surface of the upper surface and the lower surface). . Furthermore, the upper annular member 13a is fixed to the upper end of the inner peripheral surface of the rotating body main body 11, and the lower annular member 13b is fixed to the lower end of the inner peripheral surface of the rotating body main body 11. desirable. With such a configuration, the balance of the fixing positions of the upper annular member 13a and the lower annular member 13b with respect to the inner peripheral surface of the rotating body main body 11 is improved, and the buffering function of the buffer unit 4A is optimized. Is optimized.

緩衝部材14は、回転体本体11の内周面よりも内側(向心方向)に、駆動軸部2の回転軸と同一の中心軸を持つように配置される円筒である。緩衝部材14は、その円筒の外周面の上部に上側円環部材13aが固定されるとともに、該外周面の下部に下側円環部材13bが固定される。例えば任意の接着剤を用いて、緩衝部材14の外周面に上側円環部材13a及び下側円環部材13bを固着する。このように、緩衝部材14の外周面と回転体本体11の内周面とは、2点で固定されている。   The buffer member 14 is a cylinder arranged to have the same central axis as the rotational axis of the drive shaft portion 2 on the inner side (centric direction) of the inner peripheral surface of the rotating body main body 11. The buffer member 14 has an upper annular member 13a fixed to the upper part of the outer peripheral surface of the cylinder, and a lower annular member 13b fixed to the lower part of the outer peripheral surface. For example, the upper annular member 13 a and the lower annular member 13 b are fixed to the outer peripheral surface of the buffer member 14 using an arbitrary adhesive. Thus, the outer peripheral surface of the buffer member 14 and the inner peripheral surface of the rotating body main body 11 are fixed at two points.

また、緩衝部材14の内周面には連結部4B(円板状部材16)が固定される。緩衝部材14の円筒は、肉薄(外径と内径との差が小さい)であり、遠心方向に対して可撓性と復元性を有する材料からなる。中間装置(回転体本体11)が回転動作しているときは回転体本体11に作用する遠心力により緩衝部材14が撓み(図4参照)、中間装置(回転体本体11)が停止しているときは緩衝部材14が元の形状に戻る。   Further, the connecting portion 4 </ b> B (disk-shaped member 16) is fixed to the inner peripheral surface of the buffer member 14. The cylinder of the buffer member 14 is thin (the difference between the outer diameter and the inner diameter is small) and is made of a material having flexibility and resilience in the centrifugal direction. When the intermediate device (rotating body main body 11) is rotating, the buffer member 14 is bent by the centrifugal force acting on the rotating body main body 11 (see FIG. 4), and the intermediate device (rotating body main body 11) is stopped. Sometimes, the buffer member 14 returns to its original shape.

図3に示すように、緩衝部材14の外周面の上端又はその近傍に上側円環部材13aが固定されるとともに、該外周面の下端又はその近傍に下側円環部材13bが固定されることが望ましい。このように構成することで、上側円環部材13aと下側円環部材13bとの間の距離が長くなり、緩衝部材14の撓みを最大限に利用できる。緩衝部材14は、例えばGFRPを用いて構成することができる。   As shown in FIG. 3, the upper annular member 13a is fixed to the upper end of the outer peripheral surface of the buffer member 14 or the vicinity thereof, and the lower annular member 13b is fixed to the lower end of the outer peripheral surface or the vicinity thereof. Is desirable. By comprising in this way, the distance between the upper ring member 13a and the lower ring member 13b becomes long, and the bending of the buffer member 14 can be utilized to the maximum. The buffer member 14 can be configured using, for example, GFRP.

補強部材18は、緩衝部材14の外周面に対して、緩衝部材14の内周面に固定された連結部4Bの円板状部材16の外周側の端部と対向する位置に固定された円環状の部材である。例えば接着剤を用いて、緩衝部材14の外周面の所定の位置に補強部材18を固着する。このように、連結部4Bの円板状部材16の外周側の端部に、緩衝部材14を挟んで補強部材18を対向させて固定することにより、円板状部材16と緩衝部材14との間で回転駆動力を伝達することができる。また、補強部材18により回転中の緩衝部材14の遠心方向への伸びが規制され、緩衝部材14と円板状部材16との嵌め合いが確保される。さらには、回転体本体11の回転により緩衝部材14が撓んだ場合に、緩衝部材14が円板状部材16から離脱することを防止できる。   The reinforcing member 18 is a circle fixed to the outer peripheral surface of the buffer member 14 at a position facing the outer peripheral side end of the disk-shaped member 16 of the connecting portion 4B fixed to the inner peripheral surface of the buffer member 14. An annular member. For example, the reinforcing member 18 is fixed to a predetermined position on the outer peripheral surface of the buffer member 14 using an adhesive. In this way, the reinforcing member 18 is fixed to the end portion on the outer peripheral side of the disk-shaped member 16 of the connecting portion 4B with the buffer member 14 interposed therebetween, so that the disk-shaped member 16 and the buffer member 14 are fixed. Rotational driving force can be transmitted between them. Further, the expansion of the rotating buffer member 14 in the centrifugal direction is restricted by the reinforcing member 18, and the fit between the buffer member 14 and the disk-like member 16 is ensured. Furthermore, it is possible to prevent the buffer member 14 from being detached from the disk-shaped member 16 when the buffer member 14 is bent by the rotation of the rotating body 11.

補強部材18は、円板状部材16の遠心方向への伸び(変形)を規制する目的から、円板状部材16よりも剛性の高い材料を用いることが望ましい。補強部材18は、例えば高剛性のCFRPを用いて構成されるとともに、少なくとも補強部材18が緩衝部材14よりも高い剛性を有する。なお、CFRP及びGFRP等の繊維強化プラスチックで構成される物体は、構成される繊維の方向で剛性が変わる。一般に、円周方向にCFRP、GFRPが巻回された物体は、繊維の方向が円周方向以外の物体よりも剛性が高い。また、補強部材18の円環の高さ(z軸方向の長さ)は、その目的を安定して達成するために、円板状部材16の高さと同じか又は高いことが望ましい。なお、補強部材18の外周側の端部は、回転していないときに回転体本体11の内周面と接触しない形状としている。   For the purpose of regulating the expansion (deformation) of the disc-like member 16 in the centrifugal direction, the reinforcing member 18 is desirably made of a material having higher rigidity than the disc-like member 16. The reinforcing member 18 is configured using, for example, high-rigidity CFRP, and at least the reinforcing member 18 has higher rigidity than the buffer member 14. Note that the rigidity of an object composed of fiber reinforced plastics such as CFRP and GFRP varies depending on the direction of the composed fiber. In general, an object in which CFRP and GFRP are wound in the circumferential direction has higher rigidity than an object whose fiber direction is other than the circumferential direction. In addition, the height of the annular shape of the reinforcing member 18 (the length in the z-axis direction) is desirably the same as or higher than the height of the disk-shaped member 16 in order to stably achieve the purpose. The end on the outer peripheral side of the reinforcing member 18 has a shape that does not contact the inner peripheral surface of the rotating body 11 when not rotating.

連結部4Bは、円板状部材16と支持部20から構成される。
円板状部材16は、駆動軸部2の本体部2aが通る貫通孔が形成され、駆動軸部2の回転軸と同一の中心軸を持つ円板状の形状を有する部材である。円板状部材16の内周側において駆動軸部2の本体部2aが挿入された状態で固定されるとともに、円板状部材16の外周側の端部が緩衝部材14の内周面に固定されている。円板状部材16は、駆動軸部2の回転に伴い駆動軸部2を回転軸として回転する。円板状部材16は、例えば高剛性のCFRPを用いて構成することができる。
The connecting part 4 </ b> B is composed of a disk-like member 16 and a support part 20.
The disc-like member 16 is a member having a disc-like shape having a through-hole through which the main body portion 2 a of the drive shaft portion 2 passes and having the same central axis as the rotation axis of the drive shaft portion 2. The main body 2a of the drive shaft 2 is fixed on the inner peripheral side of the disc-shaped member 16 and the outer end of the disc-shaped member 16 is fixed to the inner peripheral surface of the buffer member 14. Has been. The disc-like member 16 rotates around the drive shaft portion 2 as a rotation axis as the drive shaft portion 2 rotates. The disk-shaped member 16 can be configured using, for example, high-rigidity CFRP.

円板状部材16の外周側の端部は、緩衝部材14の内周面の、上側円環部材13aと下側円環部材13bの間に相当する位置に固定される。例えば接着剤を用いて、緩衝部材14の内周面の所定の位置に円板状部材16を固着する。さらに、円板状部材16の外周側の端部は、緩衝部材14の内周面の、上側円環部材13aと下側円環部材13bから等距離(中央)に相当する位置に固定されることがより望ましい。このように構成することで、回転体本体11の内周面に対する上側円環部材13aと下側円環部材13b、及び円板状部材16の位置関係のバランスが良くなり、緩衝部4Aの緩衝機能が最適化される。なお、回転体本体11に対して連結構造4が1つの場合には、円板状部材16の回転軸方向の位置は、回転体本体11の内周面の中央位置Cに相当する位置とする。   The outer peripheral end of the disk-shaped member 16 is fixed to a position corresponding to the space between the upper annular member 13a and the lower annular member 13b on the inner circumferential surface of the buffer member 14. For example, the disk-shaped member 16 is fixed to a predetermined position on the inner peripheral surface of the buffer member 14 using an adhesive. Furthermore, the outer peripheral end of the disk-shaped member 16 is fixed to a position corresponding to an equal distance (center) from the upper annular member 13a and the lower annular member 13b on the inner circumferential surface of the buffer member 14. It is more desirable. With this configuration, the positional relationship between the upper annular member 13a, the lower annular member 13b, and the disk-like member 16 with respect to the inner peripheral surface of the rotating body 11 is improved, and the buffering portion 4A is buffered. Function is optimized. In addition, when there is one connection structure 4 for the rotating body main body 11, the position of the disk-shaped member 16 in the rotation axis direction is a position corresponding to the center position C of the inner peripheral surface of the rotating body main body 11. .

円板状部材16の上面の内周側の端部又はその近傍には、上面から垂直に突出した突縁部17aが周方向に形成されている。同様に、円板状部材16の下面の内周側の端部又はその近傍には、下面から垂直に突出した突縁部17bが周方向に形成されている。円板状部材16の突縁部17a,17bは、支持部20の周方向に形成された係止用溝24,34に嵌合する。   A protruding edge 17a that protrudes perpendicularly from the upper surface is formed in the circumferential direction at an end portion on the inner peripheral side of the upper surface of the disk-shaped member 16 or in the vicinity thereof. Similarly, a protruding edge portion 17b that protrudes perpendicularly from the lower surface is formed in the circumferential direction at the inner peripheral end portion of the lower surface of the disk-shaped member 16 or in the vicinity thereof. The projecting edge portions 17 a and 17 b of the disc-like member 16 are fitted in locking grooves 24 and 34 formed in the circumferential direction of the support portion 20.

支持部20は、一対の上側支持部材21と下側支持部材31から構成される。
上側支持部材21及び下側支持部材31は、駆動軸部2の本体部2aが軸通される貫通孔が形成されており、駆動軸部2の回転軸と同一の中心軸を持つ円板状の形状を有する部材である。上側支持部材21の下面と下側支持部材31の上面とは、面的に接触している。上側支持部材21の下面の外周側には径方向に段差を有する段差部23が周方向に形成され、また下側支持部材31の上面の外周側には径方向に段差を有する段差部33が周方向に形成されている。さらに、上側支持部材21の段差部23において下面と平行な面には周方向に係止用溝24が形成され、また下側支持部材31の段差部33において上面と平行な面には周方向に係止用溝34が形成されている。
The support unit 20 includes a pair of an upper support member 21 and a lower support member 31.
The upper support member 21 and the lower support member 31 are formed with a through hole through which the main body portion 2 a of the drive shaft portion 2 is passed, and have a disk shape having the same center axis as the rotation shaft of the drive shaft portion 2. This is a member having the shape of The lower surface of the upper support member 21 and the upper surface of the lower support member 31 are in surface contact. A stepped portion 23 having a step in the radial direction is formed in the circumferential direction on the outer peripheral side of the lower surface of the upper support member 21, and a stepped portion 33 having a step in the radial direction is formed on the outer peripheral side of the upper surface of the lower support member 31. It is formed in the circumferential direction. Further, a locking groove 24 is formed in a circumferential direction on a surface parallel to the lower surface of the step portion 23 of the upper support member 21, and a circumferential direction is formed on a surface parallel to the upper surface of the step portion 33 of the lower support member 31. A locking groove 34 is formed in the upper surface.

この上側支持部材21の下面の係止用溝24及び下側支持部材31の上面の係止用溝34に、円板状部材16の突縁部17a,17bがそれぞれ嵌合し、さらに、上側支持部材21の段差部23と下側支持部材31の段差部33がそれぞれ、円板状部材16の上面と下面を挟み込んだ状態で、上側支持部材21と下側支持部材31が固定される。このように、支持部20は、上側支持部材21と下側支持部材31によって、円板状部材16が遠心方向に離脱しないように係止している。   The projecting edge portions 17a and 17b of the disc-like member 16 are fitted in the locking groove 24 on the lower surface of the upper support member 21 and the locking groove 34 on the upper surface of the lower support member 31, respectively. The upper support member 21 and the lower support member 31 are fixed in a state where the stepped portion 23 of the support member 21 and the stepped portion 33 of the lower support member 31 sandwich the upper surface and the lower surface of the disk-shaped member 16, respectively. As described above, the support portion 20 is locked by the upper support member 21 and the lower support member 31 so that the disc-like member 16 does not separate in the centrifugal direction.

上側支持部材21と下側支持部材31の対応する位置にはそれぞれ、複数(図2の例では8か所)の貫通したネジ孔(雌ネジ)が穿設されている。上側支持部材21と下側支持部材31は、下側支持部材31の下面32側から挿入された8個の雄ネジ36によって、対向した状態で固定される。また、上側支持部材21と駆動軸部2のつば部2cは、つば部2cから挿入された雄ねじ42によって、上側支持部材21の上面とつば部2cの下面が接触した状態で固定される。これにより、駆動軸部2に支持部20(連結部4B)が固定される。なお、上述した支持部20の構成は一例である。その他種々の構成及び方法により、円板状部材16を支持して駆動軸部2に固定することが可能である。   A plurality of (8 in the example of FIG. 2) penetrating screw holes (female screws) are formed at corresponding positions of the upper support member 21 and the lower support member 31, respectively. The upper support member 21 and the lower support member 31 are fixed in an opposed state by eight male screws 36 inserted from the lower surface 32 side of the lower support member 31. Further, the upper support member 21 and the collar portion 2c of the drive shaft portion 2 are fixed in a state where the upper surface of the upper support member 21 and the lower surface of the collar portion 2c are in contact with each other by the male screw 42 inserted from the collar portion 2c. Thereby, the support part 20 (connecting part 4B) is fixed to the drive shaft part 2. In addition, the structure of the support part 20 mentioned above is an example. The disk-like member 16 can be supported and fixed to the drive shaft portion 2 by various other configurations and methods.

[シミュレーション結果]
次に、回転装置1の各部の変形量のシミュレーション結果について図4〜図8を参照して説明する。図4〜図8は、変形量(回転の中心(図3のz軸)からの距離の変化)が多い部分ほど濃度を高くして表示(グレースケール表示)している。
図4は、回転装置1の各部の変形量のシミュレーション結果(全体)を示す図である。
図5は、回転装置1の各部の変形量のシミュレーション結果(緩衝部材14のみ)を示す図である。
図6は、回転装置1の各部の変形量のシミュレーション結果(緩衝部材14、補強部材18)を示す図である。
図7は、回転装置1の各部の変形量のシミュレーション結果(緩衝部材14、補強部材18、円板状部材16)を示す図である。
図8は、回転装置1の各部の変形量のシミュレーション結果(緩衝部材14、補強部材18、円板状部材16、上側円環部材13a及び下側円環部材13b)を示す図である。
[simulation result]
Next, the simulation result of the deformation amount of each part of the rotating device 1 will be described with reference to FIGS. In FIGS. 4 to 8, as the amount of deformation (change in the distance from the center of rotation (z-axis in FIG. 3)) increases, the density is displayed (grayscale display).
FIG. 4 is a diagram showing a simulation result (whole) of the deformation amount of each part of the rotating device 1.
FIG. 5 is a diagram illustrating a simulation result (only the buffer member 14) of the deformation amount of each part of the rotating device 1.
FIG. 6 is a diagram illustrating simulation results (buffer member 14 and reinforcing member 18) of the deformation amount of each part of the rotating device 1.
FIG. 7 is a diagram illustrating simulation results (the buffer member 14, the reinforcing member 18, and the disk-shaped member 16) of the deformation amount of each part of the rotating device 1.
FIG. 8 is a diagram showing a simulation result of the deformation amount of each part of the rotating device 1 (the buffer member 14, the reinforcing member 18, the disk-like member 16, the upper annular member 13a, and the lower annular member 13b).

本実施形態に係るシミュレーションは、回転装置1の回転体本体11を始めとして各部の大きさと重量、角速度等の条件を設定して実施した。   The simulation according to the present embodiment was performed by setting conditions such as the size, weight, angular velocity, and the like of each part including the rotating body 11 of the rotating device 1.

図5に示すように、緩衝部材14のみを所定の回転速度で回転させた場合には、緩衝部材14が薄いため遠心方向において変形量に大きな差異は見られない。   As shown in FIG. 5, when only the buffer member 14 is rotated at a predetermined rotational speed, there is no significant difference in the deformation amount in the centrifugal direction because the buffer member 14 is thin.

図6では、図5に対してシミュレーション条件に補強部材18が追加されている。図6に示すように、補強部材18により緩衝部材14の遠心方向の伸びが規制される一方、緩衝部材14の上側端部と下側端部には遠心力がかかって撓んでおり、変形量がやや大きくなっている(濃度がやや高い)が、緩衝部材14の補強部材18に対応する部分の変形量は小さい。即ち、回転の中心(図3のz軸)から補強部材18までの距離はほとんど変化していないことを表している。   In FIG. 6, a reinforcing member 18 is added to the simulation conditions with respect to FIG. 5. As shown in FIG. 6, while the reinforcement member 18 restricts the extension of the buffer member 14 in the centrifugal direction, the upper end portion and the lower end portion of the buffer member 14 are bent by a centrifugal force and are deformed. However, the amount of deformation of the portion corresponding to the reinforcing member 18 of the buffer member 14 is small. That is, the distance from the center of rotation (z-axis in FIG. 3) to the reinforcing member 18 hardly changes.

図7では、図6に対してシミュレーション条件に連結部4Bの円板状部材16が追加されているが、既に図6で補強部材18がシミュレーションに反映されているため、図6と比較して大きな変形量の違いは見られない。   In FIG. 7, the disk-like member 16 of the connecting portion 4 </ b> B is added to the simulation conditions with respect to FIG. 6, but since the reinforcing member 18 is already reflected in the simulation in FIG. 6, compared with FIG. 6. There is no significant difference in deformation.

図8では、図7に対してシミュレーション条件に上側円環部材13a及び下側円環部材13bが追加されている。上側円環部材13a及び下側円環部材13b、さらにはこれらの円環部材が固定された緩衝部材14の上側端部と下側端部における変形量は大きい。   In FIG. 8, an upper ring member 13a and a lower ring member 13b are added to the simulation conditions with respect to FIG. The upper ring member 13a and the lower ring member 13b, and further, the amount of deformation at the upper end and the lower end of the buffer member 14 to which these ring members are fixed are large.

図4は、図8に対してシミュレーション条件に回転体本体11が追加されている。回転体本体11は回転の中心からの距離が遠いほど変形量が大きいが、その重みのために回転体本体11の全体が変形している。また、上側円環部材13a及び下側円環部材13b、並びに緩衝部材14の上側端部と下側端部も変形量が大きくなっている。これに対し、円板状部材16、補強部材18、及び緩衝部材14の補強部材18に対応する部分は濃度が低く表示されており、変形量は小さい。このことから、緩衝部材14が撓むことにより、回転体本体11に生じた大きな変形量と円板状部材16の小さな変形量との差を吸収し、円板状部材16(連結部4B)と回転体本体11を良好に連結していることがわかる。   In FIG. 4, the rotating body 11 is added to the simulation conditions with respect to FIG. 8. The amount of deformation of the rotating body 11 increases as the distance from the center of rotation increases, but the entire rotating body 11 is deformed due to its weight. Further, the upper annular member 13a, the lower annular member 13b, and the upper end portion and the lower end portion of the buffer member 14 have a large deformation amount. On the other hand, the portions corresponding to the disk-shaped member 16, the reinforcing member 18, and the reinforcing member 18 of the buffer member 14 are displayed with low density, and the amount of deformation is small. From this, when the buffer member 14 is bent, the difference between the large deformation amount generated in the rotating body 11 and the small deformation amount of the disk-shaped member 16 is absorbed, and the disk-shaped member 16 (connecting portion 4B). It can be seen that the rotating body 11 is connected well.

本シミュレーションでは、回転体本体11の変形量が約7mm、円板状部材16の変形量が約1mm、駆動軸部2の本体部2aの変形量はほぼ0mmという結果であった。   In this simulation, the result was that the amount of deformation of the rotating body 11 was about 7 mm, the amount of deformation of the disc-like member 16 was about 1 mm, and the amount of deformation of the main body 2a of the drive shaft 2 was almost 0 mm.

以上のように構成された本実施形態によれば、回転体本体11が高速回転しているとき、緩衝部材14が撓み、回転体本体11の変形量と円板状部材16の変形量の差が吸収される。それゆえ、駆動軸部2と回転体本体11とを良好に連結することが可能である。   According to the present embodiment configured as described above, when the rotating body main body 11 rotates at a high speed, the buffer member 14 bends, and the difference between the deformation amount of the rotating body main body 11 and the deformation amount of the disk-shaped member 16. Is absorbed. Therefore, it is possible to satisfactorily connect the drive shaft portion 2 and the rotating body main body 11.

<2.その他>
上述した実施形態では、回転体本体11に対して連結構造4が1つの場合について説明したが、回転体本体の高さが高い場合には、複数の連結構造4を回転体本体の内周側の回転軸方向に配置してもよい。このとき配置される複数の連結構造4は、回転体本体の中央位置Cを通る水平な線を軸として線対称である。このように回転体本体の高さが高い場合に複数の連結構造4を備えることにより、回転体本体の回転動作及び遠心方向の変形が安定する。
<2. Other>
In the embodiment described above, the case where there is one connection structure 4 with respect to the rotating body main body 11 has been described. However, when the height of the rotating body main body is high, a plurality of connection structures 4 are arranged on the inner peripheral side of the rotating body main body. May be arranged in the direction of the rotation axis. The plurality of connecting structures 4 arranged at this time are line-symmetric with respect to a horizontal line passing through the center position C of the rotating body. Thus, when the height of a rotary body main body is high, by providing the some connection structure 4, the rotation operation | movement of a rotary body main body and the deformation | transformation of the centrifugal direction are stabilized.

また、上述した実施形態では、連結部4Bを構成する円板状部材16の形状を、貫通孔が形成された円板状としたがこの例に限られない。例えば、上述の実施形態は、円板状部材16の外周側の端部の全域(360度)が緩衝部材14の内周面に固定された構成であるが、円板状部材16の外周側の端部を周方向に等間隔(例えば8か所、45度間隔)で緩衝部材14の内周面に固定してもよい。   In the above-described embodiment, the shape of the disk-shaped member 16 constituting the connecting portion 4B is a disk shape in which a through hole is formed, but is not limited to this example. For example, in the above-described embodiment, the entire area (360 degrees) of the end portion on the outer peripheral side of the disk-shaped member 16 is fixed to the inner peripheral surface of the buffer member 14. These end portions may be fixed to the inner peripheral surface of the buffer member 14 at equal intervals in the circumferential direction (for example, eight locations at 45 ° intervals).

また、上述した実施形態において、回転体本体と上側円環部材及び下側円環部材とを一体としてもよい。   In the above-described embodiment, the rotating body main body, the upper annular member, and the lower annular member may be integrated.

また、上述した実施形態に係る回転体本体は円筒であるが、回転体本体の形状は完全な円筒でなくてもよく、回転体本体が周方向に複数個に分割された物体から構成されてもよい。   Further, the rotating body main body according to the above-described embodiment is a cylinder, but the shape of the rotating body main body does not have to be a complete cylinder, and the rotating body main body is composed of an object divided into a plurality of parts in the circumferential direction. Also good.

また、上述した実施形態に係る回転装置は、回転体本体に対して回転の運動エネルギーの蓄積及び取出しを行う電力貯蔵装置(フライホイール蓄電装置)の他、回転軸部と回転体本体とこれらを連結する連結構造を備える種々の装置に適用可能である。   In addition, the rotating device according to the above-described embodiment includes a rotating shaft portion, a rotating body main body, and a power storage device (flywheel power storage device) that accumulates and extracts rotational kinetic energy with respect to the rotating body main body. The present invention can be applied to various devices having a connecting structure for connecting.

さらに、本発明は上述した各実施形態例に限られるものではなく、特許請求の範囲に記載した本発明の要旨を逸脱しない限りにおいて、その他種々の応用例、変形例を取り得ることは勿論である。   Furthermore, the present invention is not limited to the above-described embodiments, and various other application examples and modifications can be taken without departing from the gist of the present invention described in the claims. is there.

例えば、上述した実施形態例は本発明を分かりやすく説明するために装置及びシステムの構成を詳細且つ具体的に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態例の構成の一部を他の実施形態例の構成に置き換えることは可能である。また、ある実施形態例の構成に他の実施形態例の構成を加えることも可能である。また、各実施形態例の構成の一部について、他の構成の追加、削除、置換をすることも可能である。   For example, the above-described exemplary embodiments are detailed and specific descriptions of the configuration of the apparatus and the system in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described above. . Further, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment. In addition, the configuration of another embodiment can be added to the configuration of a certain embodiment. Moreover, it is also possible to add, delete, and replace other configurations for a part of the configuration of each exemplary embodiment.

1…回転装置、
2…駆動軸部、2a…本体部、2b…駆動軸、2c…つば部、3…被回転体、4…連結構造、4A…緩衝部、4B…連結部、11…回転体(回転体本体)、13a…上側円環部材、13b…下側円環部材、14…緩衝部材、16…円板状部材、17a,17b…突縁部、18…補強部材、20…支持部、21…上側支持部材、22…上面、23…段差部、24…係止用溝、31…下側支持部材、32…下面、33…段差部、34…係止用溝、36,42…雄ねじ
1 ... rotating device,
DESCRIPTION OF SYMBOLS 2 ... Drive shaft part, 2a ... Main body part, 2b ... Drive shaft, 2c ... Collar part, 3 ... Rotated body, 4 ... Connection structure, 4A ... Buffer part, 4B ... Connection part, 11 ... Rotating body (Rotary body main body ), 13a: Upper ring member, 13b: Lower ring member, 14: Buffer member, 16: Disk-like member, 17a, 17b ... Projection edge portion, 18 ... Reinforcement member, 20 ... Support portion, 21 ... Upper side Support member, 22 ... upper surface, 23 ... stepped portion, 24 ... locking groove, 31 ... lower support member, 32 ... lower surface, 33 ... stepped portion, 34 ... locking groove, 36, 42 ... male screw

Claims (8)

回転駆動する駆動軸部と、
前記駆動軸部の回転軸を中心に回転可能な円筒状の回転体本体と、
前記回転体本体の内周面に固定された上側円環部材と、
前記回転体本体の内周面の前記上側円環部材よりも低い位置に固定された下側円環部材と、
前記回転体本体の内側に配置された可撓性を有する円筒であって、該円筒の外周面の上部に前記上側円環部材が固定されるとともに、該外周面の下部に前記下側円環部材が固定された緩衝部材と、
前記駆動軸部の回転軸と同一の中心軸を持つ円板状部材を有し、該円板状部材の内周側において前記駆動軸部が軸通された状態で固定されるとともに、該円板状部材の外周側の端部が前記緩衝部材の内周面に固定され、前記駆動軸部の回転に伴い該駆動軸部を回転軸として回転する連結部と、
前記緩衝部材の外周面に対して、前記緩衝部材の内周面に固定された前記円板状部材の外周側の端部と対向する位置に固定された円環状の補強部材と、を備える
回転装置。
A drive shaft for rotational driving;
A cylindrical rotating body main body rotatable around a rotation axis of the drive shaft portion;
An upper annular member fixed to the inner peripheral surface of the rotating body,
A lower annular member fixed at a position lower than the upper annular member of the inner peripheral surface of the rotating body; and
A flexible cylinder disposed inside the rotary body, wherein the upper annular member is fixed to an upper portion of an outer peripheral surface of the cylinder, and the lower annular ring is disposed to a lower portion of the outer peripheral surface. A buffer member to which the member is fixed;
A disk-shaped member having the same central axis as the rotational axis of the drive shaft portion, and the drive shaft portion is fixed in a state where the drive shaft portion is passed through on the inner peripheral side of the disk-shaped member; An end portion on the outer peripheral side of the plate-like member is fixed to the inner peripheral surface of the buffer member, and a connecting portion that rotates around the drive shaft portion as a rotation shaft along with the rotation of the drive shaft portion,
An annular reinforcing member fixed at a position facing an outer peripheral end of the disk-shaped member fixed to the inner peripheral surface of the buffer member with respect to the outer peripheral surface of the buffer member. apparatus.
前記上側円環部材は、前記回転体本体の内周面の上部に固定されるとともに、前記下側円環部材は、前記回転体本体の内周面の下部に固定される
請求項1に記載の回転装置。
The upper ring member is fixed to the upper part of the inner peripheral surface of the rotating body main body, and the lower ring member is fixed to the lower part of the inner peripheral surface of the rotating body main body. Rotating device.
前記上側円環部材は、前記回転体本体の内周面の上端に固定されるとともに、前記下側円環部材は、前記回転体本体の内周面の下端に固定される
請求項2に記載の回転装置。
The upper ring member is fixed to the upper end of the inner peripheral surface of the rotating body main body, and the lower ring member is fixed to the lower end of the inner peripheral surface of the rotating body main body. Rotating device.
前記緩衝部材の外周面の上端に前記上側円環部材が固定されるとともに、該外周面の下端に前記下側円環部材が固定される
請求項1乃至3のいずれかに記載の回転装置。
The rotating device according to any one of claims 1 to 3, wherein the upper annular member is fixed to an upper end of an outer peripheral surface of the buffer member, and the lower annular member is fixed to a lower end of the outer peripheral surface.
前記連結部が備える前記円板状部材の外周側の端部は、前記緩衝部材の内周面の、前記上側円環部材と前記下側円環部材の間に相当する位置に固定される
請求項1乃至4のいずれかに記載の回転装置。
An end portion on an outer peripheral side of the disk-shaped member included in the connecting portion is fixed to a position corresponding to an interval between the upper annular member and the lower annular member on an inner peripheral surface of the buffer member. Item 5. The rotating device according to any one of Items 1 to 4.
前記連結部が備える前記円板状部材の外周側の端部は、前記緩衝部材の内周面の、前記上側円環部材と前記下側円環部材の中央に相当する位置に固定される
請求項5に記載の回転装置。
The end on the outer peripheral side of the disk-shaped member provided in the connecting portion is fixed to a position corresponding to the center of the upper annular member and the lower annular member on the inner peripheral surface of the buffer member. Item 6. The rotating device according to Item 5.
前記連結部は、前記駆動軸部が挿入された状態で固定されるとともに前記円板状部材の内周側を支持する支持部、を更に備える
請求項1乃至6のいずれかに記載の回転装置。
The rotation device according to any one of claims 1 to 6, wherein the coupling portion further includes a support portion that is fixed in a state where the drive shaft portion is inserted and supports an inner peripheral side of the disk-shaped member. .
少なくとも前記補強部材は前記緩衝部材よりも高い剛性を有する
請求項1乃至7のいずれかに記載の回転装置。
The rotating device according to claim 1, wherein at least the reinforcing member has higher rigidity than the buffer member.
JP2015133846A 2015-07-02 2015-07-02 Rotating device Active JP6506640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015133846A JP6506640B2 (en) 2015-07-02 2015-07-02 Rotating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015133846A JP6506640B2 (en) 2015-07-02 2015-07-02 Rotating device

Publications (2)

Publication Number Publication Date
JP2017015200A true JP2017015200A (en) 2017-01-19
JP6506640B2 JP6506640B2 (en) 2019-04-24

Family

ID=57828933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015133846A Active JP6506640B2 (en) 2015-07-02 2015-07-02 Rotating device

Country Status (1)

Country Link
JP (1) JP6506640B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113795693A (en) * 2019-06-04 2021-12-14 基耐迪科尔解决方案有限责任公司 Flywheel energy storage device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57200745A (en) * 1981-05-26 1982-12-09 Rockwell International Corp Rim for fiber composite flywheel
JPS60109641A (en) * 1983-10-22 1985-06-15 ザ ブリテイツシユ ピトローリアム コンパニー ピー.エル.シー. Energy accumulating flywheel
JPH09177893A (en) * 1995-12-28 1997-07-11 Toyota Motor Corp Fly wheel
US5816114A (en) * 1995-12-06 1998-10-06 Hughes Electronics Corporation High speed flywheel
JPH11280764A (en) * 1998-03-27 1999-10-15 Chubu Electric Power Co Inc Thrust bearing of superconducting flywheel device
JP2000186747A (en) * 1997-04-15 2000-07-04 Kozo Yasuoka Light-heavy halved clearance flywheel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57200745A (en) * 1981-05-26 1982-12-09 Rockwell International Corp Rim for fiber composite flywheel
JPS60109641A (en) * 1983-10-22 1985-06-15 ザ ブリテイツシユ ピトローリアム コンパニー ピー.エル.シー. Energy accumulating flywheel
US5816114A (en) * 1995-12-06 1998-10-06 Hughes Electronics Corporation High speed flywheel
JPH09177893A (en) * 1995-12-28 1997-07-11 Toyota Motor Corp Fly wheel
JP2000186747A (en) * 1997-04-15 2000-07-04 Kozo Yasuoka Light-heavy halved clearance flywheel
JPH11280764A (en) * 1998-03-27 1999-10-15 Chubu Electric Power Co Inc Thrust bearing of superconducting flywheel device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113795693A (en) * 2019-06-04 2021-12-14 基耐迪科尔解决方案有限责任公司 Flywheel energy storage device
JP2022536265A (en) * 2019-06-04 2022-08-15 キネティクコア ソリューションズ エルエルシー flywheel energy storage device
US11661997B2 (en) 2019-06-04 2023-05-30 KineticCore Solutions LLC Flywheel energy storage device
US12078221B2 (en) 2019-06-04 2024-09-03 KineticCore Solutions LLC Flywheel energy storage device

Also Published As

Publication number Publication date
JP6506640B2 (en) 2019-04-24

Similar Documents

Publication Publication Date Title
US9556949B2 (en) Gear wheel
WO2017138165A1 (en) Control moment gyroscope
JP6044000B2 (en) Small flexible cardan joints and spacecraft with such cardan joints
US20130175891A1 (en) Switched reluctance motor
JP2017502227A (en) Vibration reduction device using magnet
US10577941B2 (en) Axial fan
US8734043B2 (en) Webbed through pivot
JP2017015200A (en) Rotary device
JP6226693B2 (en) Non-contact power transmission device
JP2008131783A (en) Rotor and rotary machine
US20100101365A1 (en) Flywheel structure of energy storage apparatus
JP6739608B2 (en) Rotating shaft connecting structure and rotating device
US11355977B2 (en) Multi-degree-of-freedom electromagnetic machine with Halbach array
JP2011217540A (en) Electromagnetic actuator
JP6706479B2 (en) Rotating body shaft connecting structure and rotating device
JP6584296B2 (en) Three-axis active control type magnetic bearing and its assembling method
US10449818B2 (en) Rotation damper for a motor vehicle
JPWO2018079488A1 (en) Rotating device
JP6492525B2 (en) robot
JP6792008B2 (en) Self-rotating piezoelectric motor with radial preload
US9780614B2 (en) Motor
JP7500490B2 (en) Swivel device
US20200224644A1 (en) Inertial force polarizer apparatus
JP2012200050A (en) Motor device and robot apparatus
Kuroki et al. Modeling of High-Speed Motor Drive Systems Considering Two Kinds of Vibrations

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190329

R150 Certificate of patent or registration of utility model

Ref document number: 6506640

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250