JP2017012628A - Blue led light radiation for softening subcutaneous fatty tissue and dissolving and atrophying or freezing and atrophying followed by atrophy of skin, and freezing treatment tool - Google Patents

Blue led light radiation for softening subcutaneous fatty tissue and dissolving and atrophying or freezing and atrophying followed by atrophy of skin, and freezing treatment tool Download PDF

Info

Publication number
JP2017012628A
JP2017012628A JP2015134831A JP2015134831A JP2017012628A JP 2017012628 A JP2017012628 A JP 2017012628A JP 2015134831 A JP2015134831 A JP 2015134831A JP 2015134831 A JP2015134831 A JP 2015134831A JP 2017012628 A JP2017012628 A JP 2017012628A
Authority
JP
Japan
Prior art keywords
freezing
skin
cooling
blue led
led light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015134831A
Other languages
Japanese (ja)
Inventor
大工園則雄
Norio Daikuzono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NANO OPTEC KK
Original Assignee
NANO OPTEC KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NANO OPTEC KK filed Critical NANO OPTEC KK
Priority to JP2015134831A priority Critical patent/JP2017012628A/en
Publication of JP2017012628A publication Critical patent/JP2017012628A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To achieve softening and atrophying a subcutaneous fat tissue having high fat absorption selectivity without generation of heat evolution and pain, and inflammation of a skin, and with less load of prevention of slacking of a skin, improve cooling efficiency of a skin surface and reduce treatment time, prevent overheat and prevent generation of heat and pain, and apply to various fat layers by a freezing treatment method to a portion having a thick fat layer, and by blue light radiation to a portion having a thin fat layer.SOLUTION: The means relates to: (1) a blue LED light radiation cooling/freezing treatment tool; (2) a blue light radiation tool for radiating a blue wavelength of 400-480 nm; (3) a pulse light emission; (4) a blue light radiation tool for radiating a blue light which is 1 W or higher per 1 cm2; (5) a freezing function for freezing and atrophying fat cells in a subcutaneous fat component; (6) a gel body having thermal conductivity and light transmissivity; (7) a mechanism for cooling and freezing the gel body; (8) a detachable air type suction cup; and (9) a structure in which the cooling and freezing mechanism is arranged to contact a back face of a light emission body.SELECTED DRAWING: Figure 5

Description

本発明は高出力青色LED光照射冷凍器を皮膚に接触照射し皮膚に炎症反応をともなう傷害なしに皮下脂肪組織の脂肪を軟化、溶解委縮、冷凍委縮させ、皮膚を委縮させる美容形成の技術に関するものである。 TECHNICAL FIELD The present invention relates to a technique for cosmetic formation in which a high-power blue LED light irradiation refrigerator is contact-irradiated to the skin, and the fat of the subcutaneous adipose tissue is softened, melted and frozen, and the skin is contracted without injury accompanied by an inflammatory reaction. Is.

非外科的に皮下脂肪組織を委縮させるには超音波、ラジオ波、冷凍、レーザーなどの方法がある。皮膚表面を冷却する非侵襲的委縮装置には超音波、ラジオ波のエネルギーが知られている。レーザーでは赤色の波長を低出力で皮膚表面に照射し皮下脂肪組織を溶解委縮するものである。赤色光の吸収は皮膚表面でも発生し発熱するので皮膚熱傷をさけるため低出力で照射する。同じ出力では赤色光は波長の短い青色光より組織への浸透は深い。しかしながら皮下脂肪組織に対する吸収は可視光から1200nmの範囲では波長が短いほど高く、400−450nmの波長では特異的に吸収が高い。脂肪組織による特異的に高い吸収は1200nm近辺での赤外領域でも見られるが1100nm以上では水吸収が高くなり皮下真皮層での発熱は避けられず皮下真皮層への熱傷害のリスクを伴う。一方同じ波長の場合、出力が高いほど照射深度は深くなる。疼痛、熱変性などが起こらない低出力レーザー、冷凍療法による脂肪組織の委縮は皮下脂肪細胞のアポトーシス(自然死)によると言われている。皮膚表面の冷却下で600-1200nm領域の光により表皮層の破壊なしに皮膚のコラーゲン成分の熱収縮により皮膚収縮を発生させ光皺治療は知られている。コラーゲンによる光吸収は600nmより短波長の400−500nmではさらに高いことも既知である。 Non-surgical methods for contracting subcutaneous adipose tissue include ultrasound, radio waves, freezing, and laser. The energy of ultrasonic waves and radio waves is known as a non-invasive constriction device for cooling the skin surface. The laser irradiates the skin surface at a low output with a red wavelength to dissolve and contract the subcutaneous fat tissue. Absorption of red light occurs on the skin surface and generates heat, so it is irradiated with low power to avoid skin burns. At the same output, red light penetrates deeper into the tissue than blue light with a short wavelength. However, the absorption of subcutaneous adipose tissue is higher as the wavelength is shorter in the range from visible light to 1200 nm, and the absorption is specifically higher at wavelengths of 400 to 450 nm. Specific high absorption by adipose tissue is also seen in the infrared region near 1200 nm, but water absorption is high at 1100 nm or more, and fever in the subcutaneous dermis layer cannot be avoided, and there is a risk of thermal injury to the subcutaneous dermis layer. On the other hand, for the same wavelength, the higher the output, the deeper the irradiation depth. It is said that atrophy of adipose tissue by low-power laser and cryotherapy that does not cause pain, heat denaturation, etc. is due to apoptosis (natural death) of subcutaneous fat cells. Light acupuncture treatment is known in which skin contraction is caused by heat contraction of the collagen component of the skin without destruction of the epidermis layer by light in the 600-1200 nm region under cooling of the skin surface. It is also known that light absorption by collagen is even higher at 400-500 nm, shorter than 600 nm.

特開2013-034536JP2013-034536 特表2013-514125Special table 2013-514125 US6071239US6071239 US3941122US3941122 US 5964749 AUS 5964749 A

2009、Lasers in Surgery and Medicine,”Low-level laser therapy as a non-invasive approach for body contouring: A randomized, controlled study”、 Robert F. Jackson 、Volume 41, Issue 10, pages 7998092009, Lasers in Surgery and Medicine, “Low-level laser therapy as a non-invasive approach for body contouring: A randomized, controlled study”, Robert F. Jackson, Volume 41, Issue 10, pages 799809 2005、Optics and Spectroscopy, ”Optical Properties of the Subcutaneous Adipose Tissuein the Spectral Range 400 to 2500 nm", A. N. Bashkatov,Vol. 99, No. 5, 2005, pp. 836-8422005, Optics and Spectroscopy, “Optical Properties of the Subcutaneous Adipose Tissuein the Spectral Range 400 to 2500 nm”, A. N. Bashkatov, Vol. 99, No. 5, 2005, pp. 836-842 2008、Optics Express,"Measurement of internal tissue optical properties at ultraviolet and visible wavelengths: Development and implementation of a fiberoptic-based system"Quanzeng Wang, Vol. 16, Issue 12, pp. 8685-87032008, Optics Express, "Measurement of internal tissue optical properties at ultraviolet and visible wavelengths: Development and implementation of a fiberoptic-based system" Quanzeng Wang, Vol. 16, Issue 12, pp. 8685-8703 2009, SPIE Newsroom.”Low-level laser therapy: an emerging clinical paradigm”、Ying-Ying Huang、Biomedical Optics & Medical Imaging2009, SPIE Newsroom. “Low-level laser therapy: an emerging clinical paradigm”, Ying-Ying Huang, Biomedical Optics & Medical Imaging 2014、Clinical, Cosmetic and Investigational Dermatology 、Nils Krueger, ”Cryolipolysis for noninvasive body contouring:clinical efficacy and patient satisfaction”, 201-2052014, Clinical, Cosmetic and Investigational Dermatology, Nils Krueger, “Cryolipolysis for noninvasive body contouring: clinical efficacy and patient satisfaction”, 201-205

青色LED光照射、冷凍治療器により皮膚表面を冷却し発熱疼痛、皮膚の炎症を伴わず、皮膚の委縮を伴いながら青色LED光照射により皮下脂肪組織を軟化し、溶解委縮し脂肪層の厚い部位によっては冷凍委縮が可能な美容形成治療を実現する。脂肪吸収が特異的に高い青色LED光の照射と皮膚冷却が可能な青色LED光照射、冷凍治療器により皮膚の熱疼痛、炎症を防ぎ脂肪組織溶解、委縮を可能とする。青色LED光照射、冷凍治療器により青色LED光の照射中の過発熱を防止し熱疼痛発生を防止する。青色LED光照射、冷凍治療器により脂肪層の厚い部位の身ならず、薄い部位にも適用を拡大する。青色LED光照射、冷凍治療器により多大な光エネルギーが投入でき、脂肪組織の高い委縮効率を実現する。青色LED光照射、冷凍治療器により冷凍治療する範囲の皮膚を吸引により脂肪組織にたいする冷凍効率を高める。青色LED光照射、冷凍治療器により高い冷却効率と冷凍療法可能な低温度到達を可能とする。 Blue LED light irradiation, the skin surface is cooled by a refrigeration treatment device, without fever pain and skin irritation, while skin atrophy is accompanied by softening of subcutaneous fat tissue by blue LED light irradiation, dissolution atrophy and thick fat layer Depending on the type, it can be used for cosmetic surgery that can be frozen. Blue LED light irradiation with specifically high fat absorption and blue LED light irradiation capable of cooling the skin and a cryotherapy device prevent thermal pain and inflammation of the skin and enable adipose tissue dissolution and contraction. Blue LED light irradiation and refrigeration treatment equipment prevent overheating during blue LED light irradiation and prevent the generation of thermal pain. Blue LED light irradiation and refrigeration treatment equipment will expand the application to thin parts as well as thick parts of fat layers. A large amount of light energy can be input by the blue LED light irradiation and the refrigeration treatment device, and a high contraction efficiency of the adipose tissue is realized. The efficiency of refrigeration of adipose tissue is increased by suctioning the skin in the range of refrigeration treatment using a blue LED light irradiation and refrigeration treatment device. The blue LED light irradiation and the cryotherapy device enable high cooling efficiency and low temperature that can be cryotherapy.

課題解決のための第一の発明は皮膚表面を接触冷却し同時に接触冷却面を経由して皮下脂肪組織脂肪成分を軟化、溶解させ皮膚組織を委縮させるに十分な高い出力を有する青色LED光照射冷却・冷凍治療器である。第二の発明は脂肪吸収が可視光領域から1200nmの以内の赤外線領域のなかでも特異的に高い波長400から480nmの青色光の照射器である。第三の発明は被照射生体の温度制御の精度を増加させるパルス発光による温度制御機構である。第四の発明は1平方センチメートルあたり1W以上の青色光照射器である。第五の発明は光照射接触面経由で皮下脂肪成分を冷凍し脂肪細胞を委縮させる青色LED光照射冷却・冷凍機能である。第六の発明は皮膚表面を体温以下に接触冷却し接触照射でき、皮膚表面を−5度C以下に冷凍できる熱伝導性と透光性のゲル体である。第七の発明はLED発光体と皮膚接触するゲル体を冷却、冷凍する機構である。第八の発明は請求項1の青色LED光照射冷却・冷凍治療器が冷却、冷凍する範囲の皮膚を吸引できる脱着可能なエアー式吸引カップである。第九の発明は冷却・冷凍する機構においてペルチェ冷却器が発光体背面に接触配置される構造である。第十の発明は冷却・冷凍する機構において不凍液循環の冷却容器が発光体背面に接触配置される構造である。 A first invention for solving the problem is blue LED light irradiation having a high output sufficient to soften and dissolve the subcutaneous fat tissue fat component and contract the skin tissue through contact cooling of the skin surface and simultaneously through the contact cooling surface. It is a cooling and freezing treatment device. The second invention is an irradiator for blue light having a wavelength of 400 to 480 nm, which is specifically high in the infrared region within 1200 nm from the visible light region. The third invention is a temperature control mechanism using pulsed light emission that increases the accuracy of temperature control of the irradiated living body. The fourth invention is a blue light irradiator with 1 W or more per square centimeter. A fifth invention is a blue LED light irradiation cooling / freezing function that freezes subcutaneous fat components via a light irradiation contact surface and contracts fat cells. The sixth invention is a thermally conductive and translucent gel that can cool and cool the skin surface below body temperature and can freeze the skin surface to -5 degrees C or below. The seventh invention is a mechanism for cooling and freezing the gel body that is in skin contact with the LED light emitter. The eighth invention is a detachable air suction cup capable of sucking the skin in the range to be cooled and frozen by the blue LED light irradiation cooling / freezing treatment device of claim 1. A ninth aspect of the invention is a structure in which a Peltier cooler is disposed in contact with the back surface of the light emitter in a cooling / freezing mechanism. A tenth aspect of the invention is a structure in which an antifreeze circulating cooling container is disposed in contact with the rear surface of the light emitter in a cooling / freezing mechanism.

十分な高い出力を有する青色LED光照射冷却・冷凍治療器は皮膚表面を接触冷却し同時に接触冷却面を経由して皮下脂肪組織を軟化、溶解委縮、皮膚組織の委縮が可能となる。青色LED光照射冷却・冷凍治療器により発熱疼痛、皮膚の炎症を伴わず、表皮のタルミ防ぎ負担が少ない皮下脂肪組織の軟化、縮小が可能となる。脂肪吸収が特異的に高い波長を有する青色LED光照射冷却・冷凍治療器により効率の高い脂肪溶解、縮小が可能となる。パルス照射が可能な青色LED光照射、冷凍治療器により青色LED光の照射中の過発熱を防止し熱疼痛発生を防止できる。青色LED光照射、冷凍治療器により脂肪層の厚い部位には冷凍委縮、薄い部位には光委縮により、適用拡大が可能となる。青色LED光照射、冷凍治療器により冷凍委縮と光委縮の併用が可能となり多大な光エネルギーが投入でき、脂肪組織の高い委縮効率を実現できる。吸引カップと吸引機構を有する青色LED光照射、冷凍治療器により冷凍治療する範囲の皮膚を吸引により脂肪組織にたいする高い冷凍効率が実現する。皮膚と接触するゲル体とペルチェ冷却器、あるいは不凍液循環の冷却容器が発光体背面に接触配置される構造を有する青色LED光照射、冷凍治療器により高い冷却効率と冷凍療法可能な低温度到達が可能となる。 A blue LED light irradiation cooling / freezing treatment device having a sufficiently high output enables the skin surface to be contact-cooled, and at the same time, the subcutaneous adipose tissue can be softened, dissolved and contracted via the contact cooling surface. The blue LED light irradiation cooling / freezing treatment device can soften or reduce the subcutaneous fat tissue with no burden of fever and skin inflammation and less burden on the epidermis. Efficient fat dissolution and reduction can be achieved by a blue LED light irradiation cooling / freezing treatment device having a fat absorption specific high wavelength. With the blue LED light irradiation and refrigeration treatment device capable of pulse irradiation, overheating during the blue LED light irradiation can be prevented and the occurrence of thermal pain can be prevented. The application can be expanded by blue LED light irradiation and a cryotherapy device by freezing constriction in a thick part of the fat layer and light constriction in a thin part. The blue LED light irradiation and the refrigeration treatment device can be combined with refrigeration constriction and light constriction, so that a large amount of light energy can be input, and high constriction efficiency of adipose tissue can be realized. Blue LED light irradiation having a suction cup and a suction mechanism, and high freezing efficiency for adipose tissue is realized by suctioning the skin in the range of freezing treatment by a freezing treatment device. Blue LED light irradiation with a gel body and Peltier cooler in contact with the skin, or a structure in which a cooling vessel with antifreeze circulation is placed in contact with the back of the light emitter, high cooling efficiency and low temperature reachable by cryotherapy It becomes possible.

青色LED光照射器のハンドピースの外観図である。It is an external view of the handpiece of a blue LED light irradiator. 熱伝導性と透光性のゲル体が照射部に装着された青色LED光照射器のハンドピースの透視図である。It is a perspective view of the handpiece of the blue LED light irradiator in which the thermally conductive and translucent gel body is attached to the irradiation unit. 不凍液循環の冷却容器により冷却、冷凍が可能な青色LED光照射器のハンドピースの透視図である。It is a perspective view of the handpiece of the blue LED light irradiator that can be cooled and frozen by the antifreeze circulating cooling container. ペルチェ冷却器により冷却、冷凍が可能な青色LED光照射器のハンドピースの透視図である。It is a perspective view of the handpiece of a blue LED light irradiator that can be cooled and frozen by a Peltier cooler. 冷凍する範囲の皮膚を吸引できる脱着可能なエアー式吸引カップが装着された青色LED光照射器のハンドピースの透視図である。It is a perspective view of the handpiece of a blue LED light irradiator equipped with a detachable air suction cup capable of sucking the skin in the freezing range. 切除豚皮膚組織に対する皮膚表面冷却下、高出力青色LED光による脂肪組織の溶解結果写真である。It is a melt | dissolution photograph of the fat tissue by high output blue LED light under skin surface cooling with respect to excision pig skin tissue. 切除豚皮膚組織に対する皮膚表面冷却下、高出力青色LED光による皮膚表面縮小の写真である。It is the photograph of skin surface reduction | decrease by high output blue LED light under skin surface cooling with respect to excision pig skin tissue. ラット実験動物背中の皮膚組織に対する皮膚表面冷却下、高出力青色LED光の影響の病理標本顕微鏡写真である。It is a pathological specimen micrograph of the influence of high-power blue LED light under skin surface cooling on the skin tissue of the rat experimental animal back.

ハンドピース型の高出力青色LED照射器は1の青色LED光源と光源からの発熱による皮膚の熱傷を防止のため設定温度になった時に発光が停止となる安全機構の温度センサー2を有する。3は光源発熱を伝熱させるための伝熱マウントである。4のヒートシンクは伝熱マウントを経由し光源からの発熱を徐熱する。5は術者の把持ハンドルであり。6は光源の電源、温度センサーの信号ケーブルの電気系統の保護チューブである。8は皮膚表面を−5度C以下に冷凍できる熱伝導性と透光性のゲル体でLED発光体を皮膚に伝達し、LED発光体背面の冷却を皮膚に伝える。9はゲル体と皮膚を隔壁する薄い光透過性のフィルムである。10は不凍液循環の冷却容器であり11、12は不凍液循環のホースである。13は光源の電源、温度センサーの電気系統ケーブルである。14はペルチェ冷却器である。15は皮膚を吸引できる脱着可能なエアー式吸引カップであり16はその吸引チューブである。17は吸引された皮下組織と皮膚組織である。 The handpiece-type high-power blue LED irradiator has one blue LED light source and a temperature sensor 2 that is a safety mechanism that stops light emission when the temperature reaches a set temperature to prevent skin burns due to heat generated by the light source. Reference numeral 3 denotes a heat transfer mount for transferring light from the light source. The heat sink 4 gradually heats the heat from the light source via the heat transfer mount. Reference numeral 5 denotes an operator's grip handle. Reference numeral 6 denotes a protection tube for a power source of the light source and an electric system of a signal cable of the temperature sensor. 8 is a thermally conductive and translucent gel that can freeze the skin surface to −5 ° C. or lower, and transmits the LED luminous body to the skin, and transmits the cooling of the back surface of the LED luminous body to the skin. 9 is a thin light-transmitting film that partitions the gel body and the skin. Reference numeral 10 denotes a cooling container for antifreeze liquid circulation, and 11 and 12 denote antifreeze liquid circulation hoses. Reference numeral 13 denotes a power source for the light source and an electrical cable for the temperature sensor. Reference numeral 14 denotes a Peltier cooler. Reference numeral 15 denotes a removable air suction cup capable of sucking the skin, and 16 a suction tube thereof. Reference numeral 17 denotes aspirated subcutaneous tissue and skin tissue.

LED発光体は1cm2あたり8Wの出力を発生する。照射面積は4x4cm2の照射面を有する。ペルチェ冷却器は最大吸熱量300WでありLED発光体がマイナス10度C以下まで冷却できる不凍液循環のポンプ、ラジエータ、ラジエータ冷却ファンを有する。LED照射の場合設定温度は10度Cであり、4x4cm2のスポットに照射する時間は最大5分間である。冷凍治療の場合、脱着可能なエアー式吸引圧は可変で吸引された皮膚表面がカップ内のゲル体に接触するまで圧力調整される。設定温度はー7度Cであり、1部位につき30分間以上である。写真6は温度設定10度Cで1分間、3分間、5分間照射した切除豚皮膚組織であり、筋肉から皮膚表面に切開し両サイドに切開面を開いたものである。切開時に液状化したオイル発生が確認できた。脂肪組織は常温では固化しており白色であるが溶解により光の屈折率の変化で写真上ではグレーに見える。1、3、5分間と照射時間に比例してグレーの幅が大きくなり5分間では5mm程度の深さまで溶解が発生している。写真7は切除豚皮膚に設定温度10度Cで5分間照射し面積が縮小した結果である。10%程度の面積の委縮がみられた。写真8はラット実験動物皮膚に設定温度10度Cで5分間照射した結果である。変性、炎症は見られなかった。真皮層の毛包、皮脂腺の委縮が認められた。真皮層、皮下組織中の毛球の消失と表皮細胞の核の濃縮は認められた。真皮層の毛包、皮脂腺の委縮と表皮細胞の核の濃縮は切除豚皮膚の縮小と関連していると推察している。毛球の消失の原因は不明である。 The LED emitter generates an output of 8 W per cm2. The irradiation area has an irradiation surface of 4 × 4 cm 2. The Peltier cooler has a maximum heat absorption amount of 300 W, and has an antifreeze circulating pump, a radiator, and a radiator cooling fan that can cool the LED light emitter to minus 10 degrees C or less. In the case of LED irradiation, the set temperature is 10 ° C., and the time for irradiating a 4 × 4 cm 2 spot is 5 minutes at maximum. In the case of cryotherapy, the detachable air suction pressure is variable and adjusted until the sucked skin surface contacts the gel body in the cup. The set temperature is −7 degrees C., and it is 30 minutes or more per part. Photo 6 shows excised porcine skin tissue irradiated for 1 minute, 3 minutes, and 5 minutes at a temperature setting of 10 ° C. The skin surface was cut from the muscle and the cut surfaces were opened on both sides. The generation of liquefied oil was confirmed at the time of incision. The adipose tissue is solidified and white at normal temperature, but appears gray on the photograph due to the change in the refractive index of light due to dissolution. The width of gray increases in proportion to the irradiation time of 1, 3, 5 minutes, and dissolution occurs to a depth of about 5 mm in 5 minutes. Photo 7 shows the result of reducing the area by irradiating the cut pig skin at a set temperature of 10 ° C. for 5 minutes. A reduction in area of about 10% was observed. Photo 8 shows the result of irradiating rat experimental animal skin at a set temperature of 10 ° C. for 5 minutes. Degeneration and inflammation were not observed. Dermal follicles and sebaceous gland atrophy were observed. The disappearance of hair bulbs in the dermis layer and subcutaneous tissue and the concentration of epidermal cell nuclei were observed. It is speculated that dermal layer follicles, sebaceous gland atrophy and epidermal cell nucleus enrichment are associated with reduction of resected pig skin. The cause of hairball loss is unknown.

本発明により炎症反応、熱変性など障害をなしに表皮のタルミを防止しながら厚さの異なる皮下脂肪組織を軟化、溶解委縮させることが可能である。結果的に負担が少なく顔、全身部位への広い適用が可能となる。本発明の美容形成技術は美容外科のみならず美容皮膚科での治療普及に貢献する。 According to the present invention, it is possible to soften and dissolve the adipose tissue having different thicknesses while preventing tarmi of the epidermis without causing damage such as inflammatory reaction and heat denaturation. As a result, it is less burdensome and can be widely applied to the face and whole body part. The beauty forming technique of the present invention contributes to the spread of treatment not only in cosmetic surgery but also in cosmetic dermatology.

Claims (10)

皮膚表面を接触冷却し同時に接触冷却面を経由して皮下脂肪組織脂肪成分を軟化、溶解させ皮膚組織を委縮させるに十分な高い出力を有する青色LED光照射冷却・冷凍治療器 Blue LED light irradiation cooling / freezing treatment device with high enough power to soften and dissolve the fat component of subcutaneous adipose tissue via contact cooling surface and contact skin cooling and contract the skin tissue at the same time 請求項1の照射器において400から480nmの青色波長を発生するLED発光体 LED illuminator generating a blue wavelength of 400 to 480 nm in the illuminator of claim 1 請求項1の照射器において被照射生体の温度制御の精度を増加させるパルス発光による温度制御機構 2. A temperature control mechanism using pulsed light emission that increases the accuracy of temperature control of a living body in the irradiator of claim 1. 請求項1の照射器において単位面積あたり1W以上の高出力を有する青色LED発光体 The blue LED luminous body having a high output of 1 W or more per unit area in the irradiator according to claim 1 請求項1の光照射接触面経由で皮下脂肪成分を冷凍し脂肪細胞を委縮させる青色LED光照射冷却・冷凍治療機能 A blue LED light irradiation cooling / freezing treatment function for freezing subcutaneous fat components and contracting fat cells via the light irradiation contact surface of claim 1 請求項2の照射器において皮膚表面を体温以下に接触冷却し接触照射でき、皮膚表面を−5度C以下に冷凍できる熱伝導性と透光性のゲル体 A heat-conductive and translucent gel body that can cool and cool the skin surface to body temperature or less in the irradiator according to claim 2, and can freeze the skin surface to -5 degrees C or less. 請求項1の照射器においてLED発光体と皮膚接触するゲル体を冷却、冷凍する機構 A mechanism for cooling and freezing a gel body in skin contact with an LED light emitter in the irradiator of claim 1 請求項1の青色LED光照射冷却・冷凍治療器が冷却、冷凍する範囲の皮膚を吸引できる脱着可能なエアー式吸引カップ A detachable air suction cup capable of sucking the skin within the range to be cooled and frozen by the blue LED light irradiation cooling / freezing treatment device according to claim 1. 請求項6の冷却・冷凍する機構においてペルチェ冷却器が発光体背面に接触配置される構造 7. The cooling / freezing mechanism according to claim 6, wherein the Peltier cooler is disposed in contact with the back surface of the light emitter. 請求項6の冷却・冷凍する機構において不凍液循環の冷却容器が発光体背面に接触配置される構造 7. The cooling / freezing mechanism according to claim 6, wherein the antifreeze circulating cooling container is arranged in contact with the rear surface of the light emitter.
JP2015134831A 2015-07-04 2015-07-04 Blue led light radiation for softening subcutaneous fatty tissue and dissolving and atrophying or freezing and atrophying followed by atrophy of skin, and freezing treatment tool Pending JP2017012628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015134831A JP2017012628A (en) 2015-07-04 2015-07-04 Blue led light radiation for softening subcutaneous fatty tissue and dissolving and atrophying or freezing and atrophying followed by atrophy of skin, and freezing treatment tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015134831A JP2017012628A (en) 2015-07-04 2015-07-04 Blue led light radiation for softening subcutaneous fatty tissue and dissolving and atrophying or freezing and atrophying followed by atrophy of skin, and freezing treatment tool

Publications (1)

Publication Number Publication Date
JP2017012628A true JP2017012628A (en) 2017-01-19

Family

ID=57827397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015134831A Pending JP2017012628A (en) 2015-07-04 2015-07-04 Blue led light radiation for softening subcutaneous fatty tissue and dissolving and atrophying or freezing and atrophying followed by atrophy of skin, and freezing treatment tool

Country Status (1)

Country Link
JP (1) JP2017012628A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109471467A (en) * 2018-11-29 2019-03-15 苏州佳世达电通有限公司 The display device and its temprature control method of object can be kept the temperature
CN110465001A (en) * 2019-08-24 2019-11-19 武汉市海沁医疗科技有限公司 One kind Hong rouge machine
JP2020512849A (en) * 2017-11-16 2020-04-30 セディック フィリップ Skin care devices and methods of use

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020512849A (en) * 2017-11-16 2020-04-30 セディック フィリップ Skin care devices and methods of use
US11766382B2 (en) 2017-11-16 2023-09-26 Foreo Inc. Skincare devices and methods of use
CN109471467A (en) * 2018-11-29 2019-03-15 苏州佳世达电通有限公司 The display device and its temprature control method of object can be kept the temperature
CN110465001A (en) * 2019-08-24 2019-11-19 武汉市海沁医疗科技有限公司 One kind Hong rouge machine

Similar Documents

Publication Publication Date Title
Altshuler et al. Extended theory of selective photothermolysis
Sturesson et al. Mathematical modelling of dynamic cooling and pre-heating, used to increase the depth of selective damage to blood vessels in laser treatment of port wine stains
Farkas et al. Five parameters you must understand to master control of your laser/light-based devices
ES2636973T3 (en) Variable depth skin heating with lasers
US20080091179A1 (en) Compact, handheld device for home-based acne treatment
Azevedo et al. Venous lake of the lips treated using photocoagulation with high-intensity diode laser
JP2008529746A (en) Dermatological treatment device
JP2014503255A (en) Non-invasive fat reduction with thermal treatment
WO2014149021A2 (en) Non-invasive fat reduction by hyperthermic treatment
Sadick et al. Advances in laser surgery for leg veins: bimodal wavelength approach to lower extremity vessels, new cooling techniques, and longer pulse durations
WO2007136470A1 (en) Light beam wavelength mixing for hair removal
JP5489722B2 (en) LED device for blood vessel hemostasis
JP2017012628A (en) Blue led light radiation for softening subcutaneous fatty tissue and dissolving and atrophying or freezing and atrophying followed by atrophy of skin, and freezing treatment tool
Giglio et al. Computational simulations for infrared laser sealing and cutting of blood vessels
Shang et al. The Nd: YAG laser or combined with Er: YAG laser therapy for oral venous lakes
Shafirstein et al. Mathematical modeling of selective photothermolysis to aid the treatment of vascular malformations and hemangioma with pulsed dye laser
Lapidoth et al. Treatment of facial venous malformations with combined radiofrequency current and 900 nm diode laser
Grillo et al. Histochemical evaluation of the vessel wall destruction and selectivity after treatment with intense pulsed light in capillary malformations
Licata et al. Lipolysis using a new 1540-nm diode laser: a retrospective analysis of 230 consecutive procedures
Mungnirandr et al. Neodymium-doped yttrium aluminium garnet laser treatment of pediatric venous malformation in the oral cavity
Chang et al. Comparison of four lasers (λ= 650, 808, 980, and 1075 nm) for noninvasive creation of deep subsurface lesions in tissue
Fornaini et al. Blue diode laser: a new approach in oral surgery?
US20210052915A1 (en) Laser system for multiple beam tissue therapy with tissue and laser functional cooling
Lukac et al. TightSculpting®: A Complete Minimally Invasive Body Contouring Solution; Part I: Sculpting with PIANO® technology
Patel et al. Updates on Lasers in Dermatology