JP2017009435A - Heating/cooling mechanism and heating/cooling system - Google Patents

Heating/cooling mechanism and heating/cooling system Download PDF

Info

Publication number
JP2017009435A
JP2017009435A JP2015124867A JP2015124867A JP2017009435A JP 2017009435 A JP2017009435 A JP 2017009435A JP 2015124867 A JP2015124867 A JP 2015124867A JP 2015124867 A JP2015124867 A JP 2015124867A JP 2017009435 A JP2017009435 A JP 2017009435A
Authority
JP
Japan
Prior art keywords
heating
cooling
fluid
flow path
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015124867A
Other languages
Japanese (ja)
Inventor
亘 千住
Wataru Senju
亘 千住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2015124867A priority Critical patent/JP2017009435A/en
Publication of JP2017009435A publication Critical patent/JP2017009435A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heating/cooling mechanism which can repeatedly heat and cool fluid while allowing the fluid to continuously flow through a flow channel and which can rapidly obtain inspection result.SOLUTION: A heating/cooling mechanism having a flow channel with a width of 1 mm or less, through which fluid flows, includes: heating means in which heating areas for heating a fluid flowing through a flow channel 230 are formed; and cooling means in which cooling areas for cooling the fluid flowing through the flow channel 230 are formed. The flow channel 230 is formed in a manner to transfer the fluid in one direction in the heating and cooling areas and allow the fluid to pass through each of the heating and cooling areas one or more times. The temperature of the heating areas is higher than target heating temperature of the fluid, and the temperature of the cooling areas is lower than target cooling temperature of the fluid.SELECTED DRAWING: Figure 2

Description

本発明は、加熱冷却機構及び加熱冷却システムに関する。   The present invention relates to a heating / cooling mechanism and a heating / cooling system.

近年、基板内に形成された微細な流路内で物質の化学反応、合成、抽出等の各種操作を行うμ−TAS(Micro-Total Analysis Systems)が実用化されている。例えば、異なる温度に設定された複数の温度室を備え、流体を温度室間で移送することでPCR(polymerase chain reaction)法等を実行可能なマイクロ流体チップが提案されている(例えば、特許文献1参照)。   In recent years, μ-TAS (Micro-Total Analysis Systems) that performs various operations such as chemical reaction, synthesis, and extraction of substances in a fine channel formed in a substrate has been put into practical use. For example, a microfluidic chip having a plurality of temperature chambers set at different temperatures and capable of performing a PCR (polymerase chain reaction) method by transferring a fluid between the temperature chambers has been proposed (for example, Patent Documents) 1).

特開2007−278789号公報JP 2007-278789 A

しかしながら、特許文献1に係るマイクロ流体チップは、流体を繰り返し加熱及び冷却する場合には、温度室間で流体を往復させる必要があり、構成及び操作が複雑化すると共に、流体を流路に連続的に流しながら処理できない。   However, in the microfluidic chip according to Patent Document 1, when the fluid is repeatedly heated and cooled, it is necessary to reciprocate the fluid between the temperature chambers, and the configuration and operation are complicated, and the fluid is continuously connected to the flow path. Can not be processed while flowing.

また、特許文献1に開示されている技術では、変性、アニーリング、伸長の各過程で、流体を冷熱源と同じ温度に加熱又は冷却し、その過程の時間に応じて温度を維持する。μ−TASを他の装置と比較した場合の利点として、ごく少量のサンプルから分析や検査を実施できるため処理時間(反応時間等)を短くでき、その検査結果を迅速に得られることが挙げられる。   In the technique disclosed in Patent Document 1, the fluid is heated or cooled to the same temperature as the cold heat source in each process of denaturation, annealing, and elongation, and the temperature is maintained according to the time of the process. The advantage of comparing μ-TAS with other devices is that analysis and inspection can be performed from a very small amount of sample, so that the processing time (reaction time, etc.) can be shortened, and the inspection result can be obtained quickly. .

一方、特許文献1に開示されている技術のように、流体を留めて冷熱源と同じ温度に加熱又は冷却し更にその過程に応じた時間だけ温度を維持する方式の場合、当然ながら検査結果を得るまでにこれらの時間が全て積み上がっていくため、検査結果を迅速に得られるというμ−TASの利点を十分に享受できるとは言い難い。   On the other hand, as in the technique disclosed in Patent Document 1, in the case of a method in which a fluid is retained and heated or cooled to the same temperature as the cold heat source and the temperature is maintained for a time corresponding to the process, naturally, the inspection result is obtained. Since all these times are accumulated before being obtained, it is difficult to say that the advantage of μ-TAS that test results can be obtained quickly can be fully enjoyed.

本発明は上記に鑑みてなされたものであって、流体を流路に連続的に流しながら加熱及び冷却を繰り返し実行可能であり、且つ、迅速に検査結果が得られる加熱冷却機構を提供することを目的とする。   The present invention has been made in view of the above, and provides a heating / cooling mechanism capable of repeatedly performing heating and cooling while flowing a fluid continuously through a flow path and capable of quickly obtaining a test result. With the goal.

本発明の一態様によれば、流体が流れる幅1ミリ以下の流路を有する加熱冷却機構であって、前記流路を流れる前記流体を加熱する加熱領域を形成する加熱手段と、前記流路を流れる前記流体を冷却する冷却領域を形成する冷却手段と、を有し、前記流路は、前記加熱領域及び前記冷却領域において一方向に前記流体を移送し、且つ、前記流体が前記加熱領域及び前記冷却領域をそれぞれ1回以上通過するように形成され、前記加熱領域の温度は、前記流体の目標加熱温度より高く、前記冷却領域の温度は、前記流体の目標冷却温度より低い。   According to one aspect of the present invention, there is provided a heating / cooling mechanism having a channel having a width of 1 mm or less through which a fluid flows, a heating unit that forms a heating region for heating the fluid flowing through the channel, and the channel Cooling means for forming a cooling area for cooling the fluid flowing through the flow path, the flow path transfers the fluid in one direction in the heating area and the cooling area, and the fluid is in the heating area And the cooling region is formed so as to pass at least once, the temperature of the heating region is higher than the target heating temperature of the fluid, and the temperature of the cooling region is lower than the target cooling temperature of the fluid.

本発明の実施形態によれば、流体を流路に連続的に流しながら加熱及び冷却を繰り返し実行可能であり、且つ、迅速に検査結果が得られる加熱冷却機構が提供される。   According to the embodiment of the present invention, there is provided a heating and cooling mechanism that can repeatedly perform heating and cooling while continuously flowing a fluid through a flow path and that can quickly obtain a test result.

実施形態における加熱冷却システムの構成を例示する図である。It is a figure which illustrates the composition of the heating cooling system in an embodiment. 実施形態における加熱冷却機構の構成を例示する図である。It is a figure which illustrates the composition of the heating cooling mechanism in an embodiment. 実施形態における加熱冷却機構の構成を例示する断面概略図である。It is a section schematic diagram which illustrates the composition of the heating cooling mechanism in an embodiment. 実施形態における加熱冷却機構の他の構成を例示する図である。It is a figure which illustrates other composition of a heating cooling mechanism in an embodiment. 実施形態における加熱冷却機構の他の構成を例示する図である。It is a figure which illustrates other composition of a heating cooling mechanism in an embodiment. 実施形態における加熱冷却機構の他の構成を例示する図である。It is a figure which illustrates other composition of a heating cooling mechanism in an embodiment. 実施形態における加熱冷却機構の他の構成を例示する図である。It is a figure which illustrates other composition of a heating cooling mechanism in an embodiment. 実施形態における加熱冷却機構の他の構成を例示する図である。It is a figure which illustrates other composition of a heating cooling mechanism in an embodiment.

以下、図面を参照して発明を実施するための形態について説明する。各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。   Hereinafter, embodiments for carrying out the invention will be described with reference to the drawings. In the drawings, the same components are denoted by the same reference numerals, and redundant description may be omitted.

図1は、実施形態における加熱冷却システム10の構成を例示する図である。   FIG. 1 is a diagram illustrating a configuration of a heating / cooling system 10 according to the embodiment.

図1に示されるように、加熱冷却システム10は、加熱冷却装置100と、流路基板200とを含んで構成される。   As shown in FIG. 1, the heating / cooling system 10 includes a heating / cooling device 100 and a flow path substrate 200.

加熱冷却装置100は、加熱冷却部130が内部に設けられている。加熱冷却部130は、加熱部131及び冷却部132を含んで構成され、挿入口120から挿入される流路基板200に形成されている流路230を流れる流体を繰り返し加熱及び冷却する。   The heating / cooling device 100 includes a heating / cooling unit 130 therein. The heating / cooling unit 130 includes a heating unit 131 and a cooling unit 132, and repeatedly heats and cools the fluid flowing through the channel 230 formed in the channel substrate 200 inserted from the insertion port 120.

また、加熱冷却装置100は、表示部110を有する。表示部110は、例えば液晶ディスプレイであり、加熱冷却部130における加熱温度及び冷却温度等が表示される。また、表示部110は、例えばタッチパネルを有し、加熱冷却部130における加熱温度及び冷却温度等の設定を受け付けてもよい。   In addition, the heating / cooling device 100 includes a display unit 110. The display unit 110 is a liquid crystal display, for example, and displays the heating temperature and cooling temperature in the heating / cooling unit 130. The display unit 110 may include a touch panel, for example, and may accept settings such as a heating temperature and a cooling temperature in the heating / cooling unit 130.

流路基板200は、導入口210、流路230、導出口220を有する。流路基板200は、挿入口120から加熱冷却装置100内に挿入され、加熱冷却装置100に着脱可能に保持される。流路基板200は、加熱冷却装置100に挿入された状態で、加熱冷却部130に当接又は近接する位置に保持される。   The channel substrate 200 has an inlet 210, a channel 230, and a outlet 220. The flow path substrate 200 is inserted into the heating / cooling device 100 from the insertion port 120 and is detachably held by the heating / cooling device 100. The flow path substrate 200 is held at a position in contact with or close to the heating / cooling unit 130 in a state of being inserted into the heating / cooling apparatus 100.

導入口210は、図1において流路基板200の上面側に開口を有する円形の有底孔であり、流路基板200の一端側に形成されている。導入口210には、試験、検査等に用いられる流体が供給される。導入口210に供給される流体は、例えば気体、液体、又はこれらの混合物である。   The introduction port 210 is a circular bottomed hole having an opening on the upper surface side of the flow path substrate 200 in FIG. 1, and is formed on one end side of the flow path substrate 200. The inlet 210 is supplied with fluid used for testing, inspection, and the like. The fluid supplied to the inlet 210 is, for example, a gas, a liquid, or a mixture thereof.

導出口220は、図1において流路基板200の上面側に開口を有する円形の有底孔であり、流路基板200の他端側に形成されている。導出口220は、流路基板200の内部に形成されている流路230によって導入口210と連通している。   The outlet 220 is a circular bottomed hole having an opening on the upper surface side of the flow path substrate 200 in FIG. 1, and is formed on the other end side of the flow path substrate 200. The outlet 220 is communicated with the inlet 210 through a channel 230 formed inside the channel substrate 200.

流路230は、導入口210と導出口220とを連通するように、流路基板200の内部に形成されている。流路230は、導入口210に供給された流体を導いて導出口220に排出する。流路230は、例えば幅が1mm以下に形成されている。また、流路230は、幅が〇〇μm以下であることが好ましい。   The flow path 230 is formed inside the flow path substrate 200 so as to communicate the inlet 210 and the outlet 220. The channel 230 guides the fluid supplied to the inlet 210 and discharges it to the outlet 220. The channel 230 is formed with a width of 1 mm or less, for example. Moreover, it is preferable that the flow path 230 is 0.00 micrometer or less in width.

流路基板200は、例えば樹脂材料を用いて金型により成形された複数枚の基板が積層されることで形成される。また、流路基板200は、例えばエッチング等により流路230等が形成されたガラス板が積層されることで形成されてもよく、上記以外の方法により形成されてもよい。   The flow path substrate 200 is formed, for example, by laminating a plurality of substrates molded by a mold using a resin material. The flow path substrate 200 may be formed by laminating a glass plate on which the flow path 230 or the like is formed by, for example, etching or the like, or may be formed by a method other than the above.

なお、流路基板200の構成は、図1に例示される構成に限られるものではない。例えば、流路基板200には、希釈機構、撹拌機構等といった様々な機能を有する機構が形成されてもよい。   The configuration of the flow path substrate 200 is not limited to the configuration illustrated in FIG. For example, the flow path substrate 200 may be formed with mechanisms having various functions such as a dilution mechanism and a stirring mechanism.

加熱冷却システム10は、上記した構成を有し、流体が供給された流路基板200が加熱冷却装置100に装着されることで、流路基板200の流路230を流れる流体が、加熱冷却部130によって繰り返し加熱及び冷却される。   The heating / cooling system 10 has the above-described configuration, and the fluid flowing through the flow path 230 of the flow path substrate 200 is attached to the heating / cooling device 100 when the flow path substrate 200 to which the fluid is supplied is attached to the heating / cooling unit 100. Heat and cool repeatedly by 130.

加熱冷却装置100の加熱冷却部130と、流路基板200の流路230とは、加熱冷却機構を構成する。図2は、実施形態において流路基板200が加熱冷却装置100に保持された状態での加熱冷却機構20の構成を例示する図である。また、図3は、図2のA−A断面概略図である。以下の図面における矢印は、流体が流路230内を流れる方向を示している。   The heating / cooling unit 130 of the heating / cooling apparatus 100 and the channel 230 of the channel substrate 200 constitute a heating / cooling mechanism. FIG. 2 is a diagram illustrating the configuration of the heating / cooling mechanism 20 in a state where the flow path substrate 200 is held by the heating / cooling device 100 in the embodiment. FIG. 3 is a schematic cross-sectional view taken along the line AA in FIG. Arrows in the following drawings indicate directions in which fluid flows in the flow path 230.

図2に示されるように、加熱冷却部130は、複数の加熱部131と、複数の冷却部132とを有し、加熱部131と冷却部132とが交互に配列されている。   As shown in FIG. 2, the heating / cooling unit 130 includes a plurality of heating units 131 and a plurality of cooling units 132, and the heating units 131 and the cooling units 132 are alternately arranged.

加熱部131は、熱源に接続された直線状の金属板であり、熱源によって例えば100℃〜150℃に保たれ、流路230を流れる流体を加熱する加熱領域を周囲に形成する。   The heating unit 131 is a linear metal plate connected to a heat source, and is maintained at, for example, 100 ° C. to 150 ° C. by the heat source, and forms a heating region around the fluid that flows through the flow path 230.

加熱部131は、例えば流路230を流れる流体を目標加熱温度95℃に加熱する場合には、加熱領域の温度が目標加熱温度95℃よりも高い120℃になるように熱源によって加熱される。また、加熱部131は、例えば流路230を流れる流体を目標加熱温度72℃に加熱する場合には、加熱領域の温度が目標加熱温度72℃よりも高い100℃になるように熱源によって加熱される。このように、加熱領域の温度を流体の目標加熱温度以上にすることで、流路230を流れる流体を短時間で目標加熱温度まで加熱することが可能になる。   For example, when the fluid flowing in the flow path 230 is heated to the target heating temperature 95 ° C., the heating unit 131 is heated by the heat source so that the temperature of the heating region becomes 120 ° C. higher than the target heating temperature 95 ° C. In addition, for example, when the fluid flowing through the flow path 230 is heated to the target heating temperature 72 ° C., the heating unit 131 is heated by the heat source so that the temperature of the heating region becomes 100 ° C. higher than the target heating temperature 72 ° C. The Thus, by setting the temperature of the heating region to be equal to or higher than the target heating temperature of the fluid, the fluid flowing in the flow path 230 can be heated to the target heating temperature in a short time.

なお、加熱部131は、例えばヒートパイプ等であってもよく、流路230を流れる流体を加熱可能であれば、上記した構成に限られない。また、加熱部131が複数設けられている場合には、各加熱部131の温度が異なってもよい。   The heating unit 131 may be, for example, a heat pipe, and is not limited to the above configuration as long as the fluid flowing through the flow path 230 can be heated. Moreover, when the heating part 131 is provided with two or more, the temperature of each heating part 131 may differ.

また、冷却部132は、冷却源に接続された金属板であり、冷却源によって例えば0℃〜30℃に保たれ、流路230を流れる流体を冷却する冷却領域を周囲に形成する。   The cooling unit 132 is a metal plate connected to a cooling source, and is maintained at, for example, 0 ° C. to 30 ° C. by the cooling source, and forms a cooling region around which the fluid flowing through the flow path 230 is cooled.

冷却部132は、例えば流路230を流れる流体を目標冷却温度55℃に加熱する場合には、冷却領域の温度が目標冷却温度55℃よりも低い20℃になるように冷却源によって冷却される。冷却部132は、例えば流路230を流れる流体をより短時間で目標冷却温度まで冷却するために、冷却領域の温度を常温以下にすることが好ましい。このように、冷却領域の温度を流体の目標冷却温度以上にすることで、流路230を流れる流体を短時間で目標冷却温度まで冷却することが可能になる。   For example, when the fluid flowing through the flow path 230 is heated to the target cooling temperature 55 ° C., the cooling unit 132 is cooled by the cooling source so that the temperature of the cooling region is 20 ° C. lower than the target cooling temperature 55 ° C. . For example, in order to cool the fluid flowing through the flow path 230 to the target cooling temperature in a shorter time, the cooling unit 132 preferably sets the temperature of the cooling region to room temperature or lower. Thus, by setting the temperature of the cooling region to be equal to or higher than the target cooling temperature of the fluid, the fluid flowing through the flow path 230 can be cooled to the target cooling temperature in a short time.

上記したように、本実施形態における加熱冷却機構130は、流路230を流れる流体を短時間で加熱又は冷却することが可能であり、例えばPCR法による実験等を迅速に行うことが可能になる。   As described above, the heating / cooling mechanism 130 in the present embodiment can heat or cool the fluid flowing through the flow path 230 in a short time, and for example, it is possible to quickly perform an experiment using the PCR method or the like. .

なお、冷却部132は、例えばヒートパイプ、ペルチェ素子等であってもよく、流路230を流れる流体を冷却可能であれば、上記した構成に限られない。また、冷却部132が複数設けられている場合には、各冷却部132の温度が異なってもよい。   The cooling unit 132 may be, for example, a heat pipe, a Peltier element, or the like, and is not limited to the above configuration as long as the fluid flowing through the flow path 230 can be cooled. Moreover, when the cooling part 132 is provided with two or more, the temperature of each cooling part 132 may differ.

流路基板200に形成されている流路230は、図2に示されるように、複数の屈曲部を有し、内部を流れる流体が、加熱部131によって形成される加熱領域及び冷却部132によって形成される冷却領域をそれぞれ1回以上通過するように形成されている。また、流路230は、加熱領域及び冷却領域において一方向に流体を移送する。流体は、流路230の中で滞ることなく、流路230に沿って加熱領域及び冷却領域を通過する。   As shown in FIG. 2, the flow path 230 formed in the flow path substrate 200 has a plurality of bent portions, and the fluid flowing through the flow path 230 is heated by the heating region and the cooling unit 132 formed by the heating unit 131. Each cooling region is formed so as to pass one or more times. Further, the channel 230 transfers the fluid in one direction in the heating region and the cooling region. The fluid passes through the heating area and the cooling area along the flow path 230 without stagnation in the flow path 230.

本実施形態に係る加熱冷却機構20は、棒状又は板状に形成された加熱部131及び冷却部132が、長手方向が平行になるように交互に並列配置され、流路230が加熱領域と冷却領域とを交互に通過するように形成されている。   In the heating / cooling mechanism 20 according to the present embodiment, the heating unit 131 and the cooling unit 132 formed in a bar shape or a plate shape are alternately arranged in parallel so that the longitudinal direction thereof is parallel, and the flow path 230 is cooled with the heating region. It is formed so as to pass through the region alternately.

このような構成により、流路230を流れる流体は、加熱部131に対向する加熱領域と、冷却部132に対向する冷却領域とを交互に通過することとなり、加熱と冷却とが交互に繰り返し実行される。なお、加熱部131及び冷却部132は、流路230の構成や、加熱と冷却とを繰り返す回数等に応じて、それぞれ1つ以上設けられる。   With such a configuration, the fluid flowing through the flow path 230 alternately passes through the heating region facing the heating unit 131 and the cooling region facing the cooling unit 132, and heating and cooling are alternately performed repeatedly. Is done. One or more heating units 131 and cooling units 132 are provided in accordance with the configuration of the flow path 230, the number of times heating and cooling are repeated, and the like.

なお、加熱部131の幅d1、冷却部132の幅d2、加熱部131と冷却部132との配列方向における間隔d3等は、流路230を流れる流体の流速、必要な加熱時間及び冷却時間等に応じて適宜設定される。例えば流体を長時間加熱する場合には、加熱部131の幅d1を大きくし、加熱時間が短時間でよい場合には、加熱部131の幅d1を小さくする。また、例えば流体を長時間冷却する場合には、冷却部132の幅d2を大きくし、冷却時間が短時間でよい場合には、冷却部132の幅d2を小さくする。このように、加熱時間や冷却時間等に応じて、加熱部131の幅d1及び冷却部132の幅d2等が設定される。   The width d1 of the heating unit 131, the width d2 of the cooling unit 132, the interval d3 in the arrangement direction of the heating unit 131 and the cooling unit 132, and the like are the flow velocity of the fluid flowing through the flow path 230, the required heating time and cooling time, and the like. It is set appropriately according to For example, when the fluid is heated for a long time, the width d1 of the heating unit 131 is increased, and when the heating time is short, the width d1 of the heating unit 131 is decreased. For example, when the fluid is cooled for a long time, the width d2 of the cooling unit 132 is increased, and when the cooling time is short, the width d2 of the cooling unit 132 is decreased. Thus, the width d1 of the heating unit 131, the width d2 of the cooling unit 132, and the like are set according to the heating time, the cooling time, and the like.

例えば、図2と同じ流路230の構成で、流体の加熱時間を冷却時間よりも長くする場合には、図4に示すように、加熱部131の幅を冷却部132の幅よりも大きくする。このような構成により、流体の加熱時間を冷却時間よりも長くすることができる。   For example, when the fluid heating time is longer than the cooling time with the same flow path 230 configuration as in FIG. 2, the width of the heating unit 131 is made larger than the width of the cooling unit 132 as shown in FIG. 4. . With such a configuration, the heating time of the fluid can be made longer than the cooling time.

また、例えば、図2と同じ流路230の構成で、流体の冷却時間を加熱時間よりも長くする場合には、図5に示すように、加熱部131の間に、複数の冷却部132を設けてもよい。このような構成により、流体の冷却時間を加熱時間よりも長くすることが可能であり、冷却部132の幅を加熱部131の幅よりも大きくするのと同等の効果が得られる。   Further, for example, when the fluid cooling time is longer than the heating time with the same flow path 230 configuration as in FIG. 2, a plurality of cooling units 132 are provided between the heating units 131 as shown in FIG. It may be provided. With such a configuration, it is possible to make the cooling time of the fluid longer than the heating time, and an effect equivalent to making the width of the cooling unit 132 larger than the width of the heating unit 131 is obtained.

さらに、加熱部131及び冷却部132は、何れも直線的な形状に限定されるものではなく、流路230を流れる流体を所定の温度に加熱又は冷却可能であれば、それぞれ矩形以外の任意の形状であってもよい。   Furthermore, the heating unit 131 and the cooling unit 132 are not limited to linear shapes, and any arbitrary shape other than a rectangle can be used as long as the fluid flowing through the flow path 230 can be heated or cooled to a predetermined temperature. It may be a shape.

また、加熱部131及び冷却部132は、図6に示されるように、流路230を挟んで反対側に設けられてもよい。図6に例示される構成では、加熱部131が流路基板200の一方の面側に設けられ、冷却部132が流路基板200の他方の面側に設けられている。このような構成により、加熱部131の加熱領域と冷却部132の冷却領域との重複を低減し、流体を効率良く加熱又は冷却することが可能になる。   Further, as shown in FIG. 6, the heating unit 131 and the cooling unit 132 may be provided on the opposite side with the flow channel 230 interposed therebetween. In the configuration illustrated in FIG. 6, the heating unit 131 is provided on one surface side of the flow path substrate 200, and the cooling unit 132 is provided on the other surface side of the flow path substrate 200. With such a configuration, overlap between the heating region of the heating unit 131 and the cooling region of the cooling unit 132 is reduced, and the fluid can be efficiently heated or cooled.

さらに、加熱部131及び冷却部132は、図7に示されるように、流路230を挟むように、流路基板200の両面にそれぞれ設けられてもよい。図7に例示される構成では、流路基板200の両面に加熱部131と冷却部132とが交互に配列され、反対面側に設けられている加熱部131と冷却部132とが対向するように配置されている。   Furthermore, as shown in FIG. 7, the heating unit 131 and the cooling unit 132 may be provided on both surfaces of the flow path substrate 200 so as to sandwich the flow path 230. In the configuration illustrated in FIG. 7, the heating units 131 and the cooling units 132 are alternately arranged on both surfaces of the flow path substrate 200 so that the heating units 131 and the cooling units 132 provided on the opposite surfaces face each other. Is arranged.

図8に示される加熱冷却機構20では、流路230を流れる流体の流通方向において、上流側から、第1加熱部131a、冷却部132、第2加熱部131b、第3加熱部131c、冷却部132、第2加熱部131b、第3加熱部131c、・・・という順に並ぶように加熱冷却部130が構成されている。   In the heating and cooling mechanism 20 shown in FIG. 8, the first heating unit 131a, the cooling unit 132, the second heating unit 131b, the third heating unit 131c, and the cooling unit are arranged from the upstream side in the flow direction of the fluid flowing through the flow path 230. The heating / cooling unit 130 is configured to be arranged in the order of 132, the second heating unit 131b, the third heating unit 131c,.

このような構成において、流路230を流れる流体は、例えば第1加熱部131aによって形成される加熱領域を通過することで、第1目標加熱温度95℃に加熱される。また、第1目標加熱温度95℃に加熱された流体は、冷却部132によって形成される冷却領域を通過することで、目標冷却温度55℃に冷却される。   In such a configuration, the fluid flowing through the flow path 230 is heated to the first target heating temperature 95 ° C., for example, by passing through a heating region formed by the first heating unit 131a. In addition, the fluid heated to the first target heating temperature 95 ° C. is cooled to the target cooling temperature 55 ° C. by passing through the cooling region formed by the cooling unit 132.

また、目標冷却温度55℃に冷却された流体は、第2加熱部131b及び第3加熱部131cによって形成される加熱領域を通過することで、第2目標加熱温度72℃から、再び第1目標加熱温度95℃に加熱される。   Further, the fluid cooled to the target cooling temperature 55 ° C. passes through the heating region formed by the second heating unit 131b and the third heating unit 131c, so that the first target again from the second target heating temperature 72 ° C. Heated to a heating temperature of 95 ° C.

流路230を流れる流体は、第1加熱部131a、冷却部132、第2加熱部131b及び第3加熱部131cによって形成される3つの加熱領域と1つの冷却領域の合計4つの領域を通過することで、第1目標加熱温度、第2目標加熱温度及び目標冷却温度の3つの温度に加熱又は冷却される。   The fluid flowing through the flow path 230 passes through a total of four regions including three heating regions and one cooling region formed by the first heating unit 131a, the cooling unit 132, the second heating unit 131b, and the third heating unit 131c. Thus, the temperature is heated or cooled to the three temperatures of the first target heating temperature, the second target heating temperature, and the target cooling temperature.

このように、加熱冷却部130には、加熱領域及び冷却領域の数が、流体の目標加熱温度及び目標冷却温度の数よりも多くなるように、加熱部131及び冷却部132が設けられる。流体を加熱又は冷却する条件に応じて加熱部131及び冷却部132を配列することで、流路230を短縮することが可能になる。   Thus, the heating / cooling unit 130 is provided with the heating unit 131 and the cooling unit 132 so that the number of heating regions and cooling regions is larger than the number of the target heating temperature and the target cooling temperature of the fluid. By arranging the heating unit 131 and the cooling unit 132 in accordance with the conditions for heating or cooling the fluid, the flow path 230 can be shortened.

以上で説明したように、本実施形態に係る加熱冷却機構20によれば、流路基板200において導入口210から導出口220まで流路230を留まることなく流れる流体が、加熱冷却部130によって連続的に繰り返し加熱及び冷却される。このような加熱冷却機構20を用いることで、複雑な操作等を必要とせずに、流体の加熱及び冷却を連続的に繰り返し実行できる。   As described above, according to the heating and cooling mechanism 20 according to the present embodiment, the fluid that flows without remaining in the flow path 230 from the inlet 210 to the outlet 220 in the flow path substrate 200 is continuously generated by the heating and cooling unit 130. Repeatedly heated and cooled. By using such a heating / cooling mechanism 20, heating and cooling of the fluid can be continuously and repeatedly performed without requiring a complicated operation or the like.

また、本実施形態に係る加熱冷却システム10によれば、例えば流路230の構成が異なる流路基板200を用意することで、加熱冷却装置100の加熱冷却部130の構成を変更することなく、加熱及び冷却の条件が異なる処理を実行できる。このように、加熱冷却システム10では、流路基板200の流路230の構成を変更したり、加熱冷却部130における各温度の設定を変更したりすることで、容易に異なる加熱冷却処理を実行できる。上記した加熱冷却システム10、加熱冷却機構20は、例えばPCR法等に用いることができる。   Further, according to the heating and cooling system 10 according to the present embodiment, for example, by preparing the flow path substrate 200 having a different flow path 230 configuration, without changing the configuration of the heating and cooling unit 130 of the heating and cooling apparatus 100, Processes with different heating and cooling conditions can be executed. As described above, in the heating / cooling system 10, different heating / cooling processes can be easily performed by changing the configuration of the flow path 230 of the flow path substrate 200 or changing the setting of each temperature in the heating / cooling unit 130. it can. The heating / cooling system 10 and the heating / cooling mechanism 20 described above can be used, for example, in a PCR method or the like.

以上、実施形態に係る加熱冷却機構及び加熱冷却システムについて説明したが、本発明は上記実施形態に限定されるものではなく、本発明の範囲内で種々の変形及び改良が可能である。例えば、上記した実施形態に係る加熱冷却機構20は、加熱冷却部130及び流路230が、加熱冷却装置100と流路基板200とに分離して設けられているが、加熱冷却部130及び流路230を有する1つの加熱冷却デバイスとして構成されてもよい。   The heating / cooling mechanism and the heating / cooling system according to the embodiment have been described above, but the present invention is not limited to the above-described embodiment, and various modifications and improvements can be made within the scope of the present invention. For example, in the heating and cooling mechanism 20 according to the above-described embodiment, the heating and cooling unit 130 and the flow path 230 are provided separately in the heating and cooling device 100 and the flow path substrate 200. It may be configured as one heating / cooling device having the path 230.

10 加熱冷却システム
20 加熱冷却機構
100 加熱冷却装置
130 加熱冷却部
131 加熱部
132 冷却部
200 流路基板
210 導入口
220 導出口
230 流路
DESCRIPTION OF SYMBOLS 10 Heating / cooling system 20 Heating / cooling mechanism 100 Heating / cooling apparatus 130 Heating / cooling part 131 Heating part 132 Cooling part 200 Channel board 210 Inlet 220 Outlet 230 Channel

Claims (5)

流体が流れる幅1mm以下の流路を有する加熱冷却機構であって、
前記流路を流れる前記流体を加熱する加熱領域を形成する加熱手段と、
前記流路を流れる前記流体を冷却する冷却領域を形成する冷却手段と、を有し、
前記流路は、前記加熱領域及び前記冷却領域において一方向に前記流体を移送し、且つ、前記流体が前記加熱領域及び前記冷却領域をそれぞれ1回以上通過するように形成され、
前記加熱領域の温度は、前記流体の目標加熱温度より高く、
前記冷却領域の温度は、前記流体の目標冷却温度より低い
ことを特徴とする加熱冷却機構。
A heating / cooling mechanism having a flow path of 1 mm or less in width through which a fluid flows,
Heating means for forming a heating region for heating the fluid flowing through the flow path;
Cooling means for forming a cooling region for cooling the fluid flowing through the flow path,
The flow path is formed so that the fluid is transferred in one direction in the heating region and the cooling region, and the fluid passes through the heating region and the cooling region at least once,
The temperature of the heating region is higher than the target heating temperature of the fluid,
The heating and cooling mechanism, wherein the temperature of the cooling region is lower than a target cooling temperature of the fluid.
前記冷却領域の温度は、常温以下であることを特徴とする請求項1に記載の加熱冷却機構。   The heating / cooling mechanism according to claim 1, wherein the temperature of the cooling region is equal to or lower than normal temperature. 前記加熱領域及び前記冷却領域の数は、前記目標加熱温度及び前記目標冷却温度の数よりも多いことを特徴とする請求項1又は2に記載の加熱冷却機構。   3. The heating and cooling mechanism according to claim 1, wherein the number of the heating region and the cooling region is greater than the number of the target heating temperature and the target cooling temperature. 前記加熱手段と前記冷却手段とは、前記流路を挟んで反対側に設けられていることを特徴とする請求項1から3の何れか一項に記載の加熱冷却機構。   The heating and cooling mechanism according to any one of claims 1 to 3, wherein the heating unit and the cooling unit are provided on opposite sides of the flow path. 流体が流れる幅1ミリ以下の流路が形成されている流路基板と、
前記流路基板を着脱可能に保持し、前記流路を流れる前記流体を加熱する加熱領域を形成する加熱手段及び前記流路を流れる前記流体を冷却する冷却領域を形成する冷却手段を備える加熱冷却装置と、を有し、
前記流路は、前記流路基板が前記加熱冷却装置に保持された状態で、前記加熱領域及び前記冷却領域において一方向に前記流体を移送し、且つ、前記流体が前記加熱領域及び前記冷却領域をそれぞれ1回以上通過するように形成され、
前記加熱領域の温度は、前記流体の目標加熱温度より高く、
前記冷却領域の温度は、前記流体の目標冷却温度より低い
ことを特徴とする加熱冷却システム。
A flow path substrate in which a flow path of 1 mm or less in width through which the fluid flows is formed;
Heating / cooling provided with a heating means for detachably holding the flow path substrate and forming a heating area for heating the fluid flowing through the flow path and a cooling means for forming a cooling area for cooling the fluid flowing through the flow path. An apparatus,
The flow path transfers the fluid in one direction in the heating area and the cooling area in a state where the flow path substrate is held by the heating and cooling device, and the fluid is in the heating area and the cooling area. Are formed so that each of them passes at least once,
The temperature of the heating region is higher than the target heating temperature of the fluid,
The heating / cooling system, wherein a temperature of the cooling region is lower than a target cooling temperature of the fluid.
JP2015124867A 2015-06-22 2015-06-22 Heating/cooling mechanism and heating/cooling system Pending JP2017009435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015124867A JP2017009435A (en) 2015-06-22 2015-06-22 Heating/cooling mechanism and heating/cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015124867A JP2017009435A (en) 2015-06-22 2015-06-22 Heating/cooling mechanism and heating/cooling system

Publications (1)

Publication Number Publication Date
JP2017009435A true JP2017009435A (en) 2017-01-12

Family

ID=57763281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015124867A Pending JP2017009435A (en) 2015-06-22 2015-06-22 Heating/cooling mechanism and heating/cooling system

Country Status (1)

Country Link
JP (1) JP2017009435A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004040645A1 (en) * 2002-10-31 2004-05-13 Stichting Voor De Technische Wetenschappen Microfluidic heat exchanger for locatized temperature control
US20080268434A1 (en) * 2004-06-04 2008-10-30 Jussi Nurmi Temperature Control of Reaction Vessel, System with Reaction Vessel, Software Product for System and Use of System
JP2011200193A (en) * 2010-03-26 2011-10-13 National Institute Of Advanced Industrial Science & Technology Method for amplifying nucleic acid
US20110312614A1 (en) * 2007-04-04 2011-12-22 Netbio, Inc. Methods for rapid multiplexed amplification of target nucleic acids

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004040645A1 (en) * 2002-10-31 2004-05-13 Stichting Voor De Technische Wetenschappen Microfluidic heat exchanger for locatized temperature control
US20080268434A1 (en) * 2004-06-04 2008-10-30 Jussi Nurmi Temperature Control of Reaction Vessel, System with Reaction Vessel, Software Product for System and Use of System
US20110312614A1 (en) * 2007-04-04 2011-12-22 Netbio, Inc. Methods for rapid multiplexed amplification of target nucleic acids
JP2011200193A (en) * 2010-03-26 2011-10-13 National Institute Of Advanced Industrial Science & Technology Method for amplifying nucleic acid

Similar Documents

Publication Publication Date Title
CN108393101B (en) Microfluidic device with multiple temperature zones
JP6004486B2 (en) Nucleic acid amplification method using microfluidic device
JP4705504B2 (en) Microfluidic chip
US20090186404A1 (en) Apparatus for amplifying nucleic acids
EP3357578B1 (en) Temperature control system for microfluidic device
US20150031087A1 (en) Nucleic acid amplification method
JP2008528886A (en) Temperature controlled variable fluid resistance device
Chen et al. Temperature distribution effects on micro-CFPCR performance
Mavraki et al. A continuous flow μPCR device with integrated microheaters on a flexible polyimide substrate
Khater et al. Thermal droplet microfluidics: From biology to cooling technology
JP2017029136A (en) Micro flow channel chip, pcr method, and heating/cooling controller
Lee et al. Mixing efficiency of a multilamination micromixer with consecutive recirculation zones
US20220001387A1 (en) Thermal cycling methods and apparatuses for carrying out efficient polymerase chain reaction (pcr) processes to amplify deoxyribonucleic acid (dna)
US20080031782A1 (en) Microfluidic device with valve and method
JP2017009435A (en) Heating/cooling mechanism and heating/cooling system
Crews et al. Flow-induced thermal effects on spatial DNA melting
JP2014059080A (en) Fluid heat transfer device
TWI296608B (en) Microscale heating module
US20070004032A1 (en) Chip device for a thermally cycled reaction
JP2005214782A (en) Thermoregulator for micro-fluid device reaction
US20210322974A1 (en) Microfluidic devices
Davani et al. Counter-flow for stabilization of microfluidic thermal reactors: Experimental and numerical study
PL242508B1 (en) Flow microsystem for performing polymerase chain reaction (PCR)
Kang et al. Simulation and optimization of a flow-through micro PCR chip
KR102510230B1 (en) Pcr device comprising reaction tube passing through plural heating blocks

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190604