JP2017009272A - Freezing method and freezing device of food product - Google Patents
Freezing method and freezing device of food product Download PDFInfo
- Publication number
- JP2017009272A JP2017009272A JP2015253472A JP2015253472A JP2017009272A JP 2017009272 A JP2017009272 A JP 2017009272A JP 2015253472 A JP2015253472 A JP 2015253472A JP 2015253472 A JP2015253472 A JP 2015253472A JP 2017009272 A JP2017009272 A JP 2017009272A
- Authority
- JP
- Japan
- Prior art keywords
- freezing
- food
- cooling
- antifreeze
- tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 235000013305 food Nutrition 0.000 title claims abstract description 138
- 238000007710 freezing Methods 0.000 title claims abstract description 109
- 230000008014 freezing Effects 0.000 title claims abstract description 109
- 238000000034 method Methods 0.000 title claims abstract description 27
- 238000001816 cooling Methods 0.000 claims abstract description 65
- 230000002528 anti-freeze Effects 0.000 claims abstract description 51
- 239000007788 liquid Substances 0.000 claims abstract description 42
- 238000005057 refrigeration Methods 0.000 claims abstract description 29
- 239000003507 refrigerant Substances 0.000 claims abstract description 9
- 238000004806 packaging method and process Methods 0.000 claims abstract description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical group CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 29
- 239000012267 brine Substances 0.000 claims description 6
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 claims description 6
- 239000008346 aqueous phase Substances 0.000 claims description 4
- 239000007790 solid phase Substances 0.000 claims description 3
- 238000007789 sealing Methods 0.000 claims 1
- 238000010257 thawing Methods 0.000 abstract description 27
- 235000013611 frozen food Nutrition 0.000 abstract description 8
- 238000004781 supercooling Methods 0.000 abstract description 7
- 238000002791 soaking Methods 0.000 abstract 2
- 239000013078 crystal Substances 0.000 description 19
- 230000000052 comparative effect Effects 0.000 description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- 230000015572 biosynthetic process Effects 0.000 description 13
- 238000012360 testing method Methods 0.000 description 11
- 235000019441 ethanol Nutrition 0.000 description 9
- 238000010583 slow cooling Methods 0.000 description 9
- 244000247812 Amorphophallus rivieri Species 0.000 description 7
- 229920002752 Konjac Polymers 0.000 description 7
- 230000006866 deterioration Effects 0.000 description 6
- 230000003028 elevating effect Effects 0.000 description 6
- 235000001206 Amorphophallus rivieri Nutrition 0.000 description 5
- 239000005457 ice water Substances 0.000 description 5
- 235000010485 konjac Nutrition 0.000 description 5
- 239000000252 konjac Substances 0.000 description 5
- 241000220223 Fragaria Species 0.000 description 4
- 235000021485 packed food Nutrition 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 235000019640 taste Nutrition 0.000 description 4
- 229920000742 Cotton Polymers 0.000 description 3
- 235000013527 bean curd Nutrition 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 235000015110 jellies Nutrition 0.000 description 3
- 239000008274 jelly Substances 0.000 description 3
- 238000007711 solidification Methods 0.000 description 3
- 230000008023 solidification Effects 0.000 description 3
- 235000021012 strawberries Nutrition 0.000 description 3
- 241000251468 Actinopterygii Species 0.000 description 2
- 238000010411 cooking Methods 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 235000019583 umami taste Nutrition 0.000 description 2
- 235000016623 Fragaria vesca Nutrition 0.000 description 1
- 235000011363 Fragaria x ananassa Nutrition 0.000 description 1
- 244000269722 Thea sinensis Species 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 235000015278 beef Nutrition 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 235000011194 food seasoning agent Nutrition 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 235000014347 soups Nutrition 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
Landscapes
- Devices That Are Associated With Refrigeration Equipment (AREA)
Abstract
Description
本発明は、調理済み又は半調理済みの食品を冷凍する方法及びこのための冷凍装置に関し、特に解凍時のドリップの発生を抑制し、冷凍前の品質の再現性に優れた食品の冷凍方法及びこのための冷凍装置に関する。 The present invention relates to a method for freezing cooked or semi-cooked food and a freezing apparatus therefor, and in particular, a method for freezing food that suppresses the occurrence of drip at the time of thawing and has excellent reproducibility of quality before freezing. The present invention relates to a refrigeration apparatus.
食品を長期間保存するために冷凍保存を行うが解凍後の食品の品質劣化がしばしば問題になる。特に、調理済み又は半調理済みの食品では、成分が局所的に大きく変化しているため、冷凍及び解凍の進行が非常に複雑で品質の維持が難しい。例えば、緩慢な冷却速度で冷凍を行うと氷結晶を生成する温度域である最大氷結晶生成帯の通過時間が長くなる。このとき、食品中のもっとも氷結しやすい箇所を起点に氷結晶が大きく成長し、食品の細胞膜が破壊し旨味成分などを含む水分が解凍時にドリップとして流出し食感を劣化させてしまう。一方、食品を急速冷凍する技術も知られている。すなわち、最大氷結晶生成帯を急速に通過させ氷結晶の成長を抑制するのである。 In order to preserve food for a long period of time, it is frozen and the quality of the food after thawing is often a problem. In particular, in a cooked or semi-cooked food, since the ingredients are greatly changed locally, the process of freezing and thawing is very complicated and it is difficult to maintain the quality. For example, when freezing is performed at a slow cooling rate, the passage time of the maximum ice crystal formation zone, which is a temperature range in which ice crystals are generated, becomes long. At this time, ice crystals grow large starting from the most freezing portion in the food, the cell membrane of the food breaks down, and moisture containing umami components and the like flows out as a drip when defrosting and deteriorates the texture. On the other hand, a technique for rapidly freezing food is also known. That is, the ice crystal growth is suppressed by rapidly passing through the maximum ice crystal formation zone.
例えば、特許文献1では、エチルアルコール系の不凍液を用いて食肉や生鮮魚などの未調理の食品を急速冷凍する冷凍方法を開示している。ここでは、側壁に冷媒管を備えて不凍液を収容し上部に開口を有する冷凍槽とその上部に昇降自在に設けられて内部に食品を収容するカゴ様の通液性容器とを備えた冷凍装置を用いている。通液性容器に収容した食品は冷凍槽内の不凍液に浸漬されて冷凍されるが空気に比べて大きな熱容量を有する不凍液に接触させることで空気による冷却に比べて急速な冷却ができる。つまり、最大氷結晶生成帯を短時間で通過させるため、生成する氷結晶が大きく成長せず、食品の解凍時のドリップを低減できることを述べている。 For example, Patent Document 1 discloses a freezing method in which an uncooked food such as meat or fresh fish is rapidly frozen using an ethyl alcohol antifreeze. Here, a refrigeration apparatus comprising a freezing tank having a refrigerant pipe on the side wall for containing antifreeze liquid and having an opening in the upper part, and a basket-like liquid-permeable container provided in the upper part thereof so as to be movable up and down and containing food inside. Is used. The food contained in the liquid-permeable container is immersed in the antifreeze liquid in the freezing tank and frozen, but when brought into contact with the antifreeze liquid having a larger heat capacity than air, it can be cooled more rapidly than air cooling. In other words, since the maximum ice crystal formation zone is passed in a short time, the ice crystals to be generated do not grow greatly, and drip at the time of thawing food can be reduced.
また、特許文献2では、同様に不凍液を用いた食品の急速冷凍において、食品の厚さ方向の温度勾配を大きくすることで時間的に遅れて凍結する食品の内部の膨張によって食品の外部にクラックを生じる、いわゆる身割れの問題について述べている。例えば、厚さ18mm以上で、不凍液に対して60℃以上の温度差のある食品を冷凍する場合に身割れを生じやすい。これに対して、冷凍前(浸漬前)の食品との温度差を20〜40℃とする範囲の不凍液(冷凍液)に浸漬させて未調理又は調理済みの食品を冷凍する冷凍方法を開示している。例えば、−35℃の不凍液を用いて冷凍後の食品の温度を−20℃とするが、食品を0〜3℃程度まで予冷しておくことで不凍液との温度差を40℃以下に小さくできて、不凍液に浸漬した食品の厚さ方向の温度勾配も小さくでき、食品の身割れを防止できるとしている。 Similarly, in Patent Document 2, in the rapid freezing of food using an antifreeze, a crack in the outside of the food is caused by expansion of the food that freezes with time delay by increasing the temperature gradient in the thickness direction of the food. It describes the so-called cracking problem that causes For example, when a food having a thickness of 18 mm or more and having a temperature difference of 60 ° C. or more with respect to the antifreeze liquid is likely to be cracked. On the other hand, the freezing method which freezes the uncooked or cooked food by being immersed in the antifreeze liquid (frozen liquid) of the range which makes the temperature difference with the food before freezing (before immersion) 20-40 degreeC is disclosed. ing. For example, the temperature of food after freezing is −20 ° C. using an antifreeze solution of −35 ° C., but the temperature difference from the antifreeze solution can be reduced to 40 ° C. or less by pre-cooling the food to about 0 to 3 ° C. In addition, the temperature gradient in the thickness direction of food immersed in antifreeze can be reduced, and the food can be prevented from cracking.
また、特許文献3では、急速冷凍でも中心部の冷却速度が遅くなり、解凍時のドリップ量を減じ品質の良い冷凍を行うことは必ずしも容易でないことを述べ、過冷却を用いた未調理の食品の冷凍方法について述べている。まず、食品に氷結点よりも低い第1温度の冷風を当て食品を過冷却状態にしつつ温度を下げ、過冷却状態を解消して氷結晶を生成させた後、さらに第1の温度よりも低い第2の温度の冷風で冷却する。ここでは、緩慢に冷却することで安定的に過冷却状態を維持できることを述べている。そして、ラップをかけた牛肉の上面にのみ冷風を当てる場合、より急速に冷却して安定的に過冷却状態に到達させ得る冷気の温度と風速とを調べている。例えば、−7℃で風速0.2m/sの冷風であれば、95%の確率で過冷却状態を得られるとしている。 In addition, Patent Document 3 states that even in quick freezing, the cooling rate at the center is slow, and it is not always easy to reduce the amount of drip at the time of thawing and to perform high-quality freezing. Uncooked food using supercooling The freezing method is described. First, a cold air having a first temperature lower than the freezing point is applied to the food to lower the temperature while keeping the food in a supercooled state. After the supercooled state is eliminated and ice crystals are generated, the food is further lower than the first temperature. Cool with cold air at the second temperature. Here, it is stated that a supercooled state can be stably maintained by slow cooling. When cold air is applied only to the top surface of the wrapped beef, the temperature and wind speed of the cold air that can be cooled more rapidly and stably reach the supercooled state are examined. For example, in the case of cold wind at −7 ° C. and a wind speed of 0.2 m / s, a supercooled state can be obtained with a probability of 95%.
食品の過冷却状態を安定的に維持したままより低温まで冷却するには、特許文献3でも述べられている通り緩慢な冷却速度での冷却を必要とし、冷却媒体の流速や温度の条件によってはある確率で過冷却状態を維持できなくなる。特に、調理済みの食品や半調理済みの食品にあっては味付け等がなされることによる水の凝固点降下を生じ得る。これが1つの食品の内部で局所的に大きく変化し得て、これに伴い氷結点も局所的に異なり、過冷却状態を安定的に維持したまま冷却するために必要な条件も局所的に変化するのである。つまり、このような食品の過冷却状態を安定的に維持しつつより低温まで冷却することは困難である。また、過冷却状態を維持すべく緩慢な冷却速度で冷却したにもかかわらず、過冷却状態を維持できなかった場合には、緩慢な冷却速度と氷の生成による水の凝固熱の発生によって、食品を最大氷結晶生成帯に長時間曝すことになり得る。その結果、過冷却を用いずに単に緩慢な冷却速度で冷凍した場合と同様に、食品の品質を大きく低下させてしまう。 Cooling to a lower temperature while stably maintaining the supercooled state of the food requires cooling at a slow cooling rate as described in Patent Document 3, depending on the flow rate and temperature conditions of the cooling medium. The supercooled state cannot be maintained with a certain probability. In particular, in the case of cooked foods and semi-cooked foods, the freezing point of water can be lowered due to seasoning or the like. This can greatly change locally within a single food, and the freezing point is also locally different along with this, and the conditions necessary for cooling while maintaining a stable supercooled state also change locally. It is. That is, it is difficult to cool to a lower temperature while stably maintaining such a supercooled state of food. In addition, if the supercooling state could not be maintained despite cooling at a slow cooling rate to maintain the supercooled state, the slow cooling rate and the generation of water solidification heat due to the formation of ice, Food can be exposed to the maximum ice crystal formation zone for extended periods of time. As a result, the quality of food is greatly reduced as in the case of freezing at a slow cooling rate without using supercooling.
本発明は、以上のような状況に鑑みてなされたものであって、その目的とするところは、解凍後のドリップを少なくできて、冷凍前の品質の再現性に優れた冷凍食品を簡便かつ確実に得ることのできる調理済み又は半調理済みの食品の冷凍方法及び冷凍装置の提供にある。 The present invention has been made in view of the situation as described above, and the object of the present invention is to provide a frozen food that can reduce drip after thawing and has excellent quality reproducibility before freezing. An object of the present invention is to provide a method and apparatus for freezing cooked or semi-cooked food that can be reliably obtained.
本発明による冷凍方法は、未加熱の食品の冷凍方法であって、前記食品を密閉包装するステップと、流れを形成させた液体冷媒中に前記食品を浸漬させ前記食品を0℃以下の凍結させない温度で冷却保持する冷却ステップと、−20℃以下の不凍液内に前記食品を浸漬し過冷却状態から冷凍させる冷凍ステップと、を含むことを特徴とする。 The freezing method according to the present invention is a method of freezing unheated food, the step of hermetically packaging the food, and immersing the food in a liquid refrigerant in which a flow is formed so that the food is not frozen below 0 ° C. A cooling step of cooling and holding at a temperature, and a freezing step of immersing the food in an antifreeze solution of −20 ° C. or lower and freezing from a supercooled state.
かかる発明によれば、未加熱の食品であっても、冷却ステップを追加するだけの簡便な方法で、食品を室温から不凍液により冷却する場合に比べても最大氷結晶生成帯を速く通過させることができて、解凍後のドリップを少なくできて、冷凍前の品質の再現性に優れた冷凍食品を得ることができる。 According to such an invention, even a non-heated food can be passed through the maximum ice crystal formation zone faster than a case where the food is cooled with an antifreeze liquid from room temperature by a simple method of adding a cooling step. Thus, a drip after thawing can be reduced and a frozen food excellent in reproducibility of quality before freezing can be obtained.
上記した発明において、前記液体冷媒は、水相、又は固相を含む水相であることを特徴としてもよい。かかる発明によれば、容易に食品を0℃以下の凍結させない温度で冷却保持できて、解凍後のドリップを少なくできて、冷凍前の品質の再現性に優れた冷凍食品を得ることができる。 In the above-described invention, the liquid refrigerant may be an aqueous phase or an aqueous phase including a solid phase. According to this invention, it is possible to easily hold the food at a temperature not to be frozen at 0 ° C. or less, reduce drip after thawing, and obtain a frozen food excellent in reproducibility of quality before freezing.
上記した発明において、前記冷凍ステップは、前記不凍液を冷却槽と冷却機構との間で循環させ前記冷却槽内に前記不凍液の噴流を形成させこの中に前記食品を配置するステップであることを特徴としてもよい。かかる発明によれば、冷凍ステップにおける食品の冷却速度をさらに高めて、最大氷結晶生成帯をより速く通過させることができて、解凍後のドリップをより少なくできて、冷凍前の品質の再現性に優れた冷凍食品を得ることができる。 In the above-described invention, the freezing step is a step in which the antifreeze liquid is circulated between a cooling tank and a cooling mechanism to form a jet of the antifreeze liquid in the cooling tank and the food is disposed therein. It is good. According to this invention, the cooling rate of the food in the freezing step can be further increased, the maximum ice crystal formation zone can be passed faster, the drip after thawing can be reduced, and the quality reproducibility before freezing can be reduced. Frozen food with excellent quality can be obtained.
上記した発明において、前記不凍液はエタノールを含むエタノールブラインであることを特徴としてもよい。かかる発明によれば、不凍液を簡便に準備できて、解凍後のドリップを少なくできて、冷凍前の品質の再現性に優れた冷凍食品をより簡便に得ることができる。 In the above-described invention, the antifreeze liquid may be ethanol brine containing ethanol. According to this invention, an antifreeze can be prepared easily, drip after thawing can be reduced, and a frozen food excellent in reproducibility of quality before freezing can be obtained more easily.
また、本発明による冷凍装置は、未加熱の食品を冷凍するための冷凍装置であって、0℃以下の液体冷媒を貯留する冷蔵槽と、−20℃以下の不凍液を貯留する冷却槽と、前記冷却槽の外部に備えられて前記不凍液を少なくとも−20℃以下に冷却する冷却機構と、前記不凍液を前記冷却槽と前記冷却機構との間で循環させ前記冷却槽内に前記不凍液の噴流を形成させる循環機構と、を含むことを特徴とする。 Moreover, the freezing apparatus according to the present invention is a freezing apparatus for freezing unheated food, a refrigeration tank storing liquid refrigerant at 0 ° C. or lower, a cooling tank storing antifreeze liquid at −20 ° C. or lower, A cooling mechanism provided outside the cooling tank for cooling the antifreeze liquid to at least −20 ° C. or less, and circulating the antifreeze liquid between the cooling tank and the cooling mechanism to cause a jet of the antifreeze liquid to flow into the cooling tank. And a circulation mechanism to be formed.
かかる発明によれば、未加熱の食品であっても、食品の冷却速度を高めて、最大氷結晶生成帯を速く通過させることができて、解凍後のドリップを少なくできて、冷凍前の品質の再現性に優れた冷凍食品を得ることができる。 According to this invention, even an unheated food can increase the cooling rate of the food, can pass through the maximum ice crystal formation zone quickly, can reduce the drip after thawing, and the quality before freezing Frozen food with excellent reproducibility can be obtained.
以下に、本発明による調理済み又は半調理済みの食品の冷凍方法の1つの実施例について、そのフローを図1に沿って、適宜、図2を参照しながら説明する。本発明の冷凍方法は、特に調理済み又は半調理済みの食品において冷凍前の品質の再現性に優れるが、調理を施さない食品素材であっても同様に冷凍前の品質の再現性に優れていることはいうまでもない。 Hereinafter, one embodiment of the method for freezing cooked or semi-cooked food according to the present invention will be described with reference to FIG. The freezing method of the present invention is excellent in the reproducibility of the quality before freezing, particularly in a cooked or semi-cooked food, but is also excellent in the reproducibility of the quality before freezing even in a food material that is not subjected to cooking. Needless to say.
図1に示すように、まず、食品の調理を行う(S1)。ここで扱う食品は後述する冷凍時に水を含む食品である。例えば、出汁などの旨味成分を含む液体を含む調理済み又は半調理済みの食品で、局所的な塩分濃度の差異によって氷結点が異なるような食品であってもよい。調理済みの食品としては、例えば、煮物などであり、半調理済みの食品としては、加熱して固化させる前の茶碗蒸しなどである。また、洗浄や切断した程度の半調理済み食品であってもよい。半調理済み食品として、冷凍前の品質の再現性に影響を与える操作を行った食品も含める。例えば、切断によって内部を露出させた野菜や果物、鮮魚などである。なお、調理を施さない食品素材であっても少なからず局所的な氷結点の差異を有するが、このような食品素材であってもよく、ここでは便宜的に半調理済みの食品に含める。 As shown in FIG. 1, first, food is cooked (S1). The food handled here is a food containing water at the time of freezing described later. For example, it may be a cooked or semi-cooked food containing a liquid containing an umami component such as soup stock, and the freezing point may be different depending on a local salt concentration difference. The cooked food is, for example, boiled food, and the semi-cooked food is steamed with tea before being solidified by heating. Alternatively, it may be a semi-cooked food that has been washed or cut. Semi-cooked foods include foods that have been manipulated to affect the reproducibility of quality before freezing. For example, vegetables, fruits, fresh fish, etc. whose interiors are exposed by cutting. In addition, even if it is a food raw material which does not perform cooking, it has the difference of a local freezing point to some extent, However, Such a food raw material may be sufficient and is included in the half-cooked food here for convenience.
次に、上記した食品を密閉包装する(S2)。密閉包装には、例えば、樹脂による袋状やカップ状の容器を用いることができる。ここで、容器外部からの冷却により内部を効率良く冷却できるよう、袋やカップの壁面の厚さは薄いことが好ましい。容器に食品を収容させ、密閉する場合に気体が封入される場合などは、これを非酸化性ガスに置換して封入してもよいが、熱伝導性を考慮して、可能な限り気体を排除するようにすることが好ましい。 Next, the above food is hermetically packaged (S2). For hermetic packaging, for example, a bag-like or cup-like container made of resin can be used. Here, the wall thickness of the bag or cup is preferably thin so that the inside can be efficiently cooled by cooling from the outside of the container. If the container is filled with food and sealed with gas, it may be replaced with non-oxidizing gas and sealed, but in consideration of thermal conductivity, gas should be filled as much as possible. It is preferable to exclude them.
続いて、密閉包装した食品を凍結させない温度で冷却保持する(S3)。冷却保持する温度は食品が凍結しない範囲であれば低いほど好ましく、0℃以下の食品の氷結点より高い温度であるいわゆる氷温域であることがより好ましい。食品は部分的にでも凍結すると、これを起点として氷の結晶を成長させてしまい得るので、一部でも凍結させないことが肝要である。そのため、氷温域に冷却された冷却媒体を用いて、食品を氷結点以上の温度に保つことが好ましい。特に調理済みの食品は、水分の塩分濃度が局所的に異なり、氷結点がまちまちである。そこで、氷水を用いれば、非常に簡易に、しかも確実に氷温域の温度を得られるとともに、空気に比べて高い熱伝導率及び高い熱容量を有することで、食品の冷却速度を高くし得て好ましい。つまり、氷水に食品を浸漬させて冷却保持するとよい。氷水に微量の食塩を入れて氷水の温度を食品の氷温域内で調整してもよい。 Subsequently, the hermetically packaged food is cooled and held at a temperature at which it is not frozen (S3). The lower the temperature at which the food is kept freezing, the lower the temperature, and the more preferable is the so-called ice temperature range that is higher than the freezing point of the food at 0 ° C. or lower. If food is partially frozen, ice crystals can grow starting from this, so it is important not to freeze even part of the food. Therefore, it is preferable to keep the food at a temperature equal to or higher than the freezing point by using a cooling medium cooled to an ice temperature range. In particular, cooked foods have locally varying water salinity levels and varying freezing points. Therefore, if ice water is used, the temperature in the ice temperature range can be obtained very easily and reliably, and the cooling rate of food can be increased by having a higher thermal conductivity and higher heat capacity than air. preferable. That is, it is preferable that the food is immersed in ice water and kept cooled. A small amount of salt may be added to the ice water to adjust the temperature of the ice water within the ice temperature range of the food.
図2を併せて参照すると、このような冷却保持には冷凍装置30の図示左側の冷蔵部20を用い得る。冷蔵部20は、下部本体21内に冷蔵槽24を備え、冷蔵槽24内に水を貯留するとともに、水を冷却する冷却機構としての熱交換器27を備える。下部本体21には水を冷蔵槽24と熱交換器27との間で循環させ、槽内に水の流れを形成させて攪拌するためのポンプ25が備えられる。冷蔵部20は、また、冷却保持する食品を保持したまま水に浸漬させるかご26を備える。 Referring also to FIG. 2, the refrigeration unit 20 on the left side of the refrigeration apparatus 30 can be used for such cooling and holding. The refrigeration unit 20 includes a refrigeration tank 24 in the lower body 21, stores water in the refrigeration tank 24, and includes a heat exchanger 27 as a cooling mechanism that cools the water. The lower body 21 is provided with a pump 25 for circulating water between the refrigeration tank 24 and the heat exchanger 27 to form a flow of water in the tank and stir. The refrigeration unit 20 also includes a basket 26 that is immersed in water while holding the food to be cooled and held.
冷却部20は、さらに上部本体22内にかご26をワイヤなどで昇降させる昇降装置28を備え、昇降装置28やポンプ25及び熱交換器27の動作を制御するための操作盤29を備える。上部本体22には、さらにかご26を出し入れできる扉32が備えられる。すなわち、密閉包装された食品をかご26に保持させて、これを32扉から上部本体22内に挿入して昇降装置28に取り付ける。操作盤29を操作して昇降装置28によりかご26を降下させ、冷却槽24の上部から水に浸漬させる。これによって食品を冷却保持できる。 The cooling unit 20 further includes an elevating device 28 that elevates and lowers the car 26 with a wire or the like in the upper main body 22, and an operation panel 29 for controlling operations of the elevating device 28, the pump 25, and the heat exchanger 27. The upper body 22 is further provided with a door 32 into which the car 26 can be taken in and out. That is, the food that is hermetically packaged is held in the basket 26, and is inserted into the upper body 22 from the 32 doors and attached to the lifting device 28. The operation panel 29 is operated to lower the car 26 by the elevating device 28 and immerse it in water from the upper part of the cooling bath 24. As a result, the food can be kept cooled.
このとき水を氷水として、水相及び固相の両者を維持できるよう熱交換器27にて冷却すると、簡易に氷温域の温度とできる。また、水に食塩やエタノールを加えて凝固点を0℃より低くし、冷却保持する食品に合わせて氷温域の温度となるように制御してもよい。 At this time, if the water is iced water and cooled by the heat exchanger 27 so that both the water phase and the solid phase can be maintained, the temperature can be easily set to the ice temperature range. Further, salt or ethanol may be added to water to lower the freezing point below 0 ° C., and the temperature may be controlled to be in the ice temperature range according to the food to be cooled and held.
なお、冷却保持においては、食品の芯部温度も氷温域近傍まで冷却して、食品内部の温度勾配を小さくすることが好ましい。そのため、食品の種類や寸法によってあらかじめ保持する時間を定めておくとよい。 In the cooling holding, it is preferable that the core temperature of the food is also cooled to near the ice temperature range to reduce the temperature gradient inside the food. Therefore, it is advisable to determine the holding time in advance depending on the type and size of the food.
続いて、密閉包装した食品を−20℃以下の不凍液に浸漬し、過冷却下で冷凍させる(S4)。かかる冷凍には上記した冷凍装置30の冷凍部10を使用できる。 Subsequently, the hermetically sealed food is immersed in an antifreeze solution of −20 ° C. or lower and frozen under supercooling (S4). The refrigeration unit 10 of the refrigeration apparatus 30 described above can be used for such freezing.
再び図2を併せて参照すると、冷凍装置30は、図示右側に冷凍部10を備える。冷凍部10は、下部本体1内に断熱壁3による冷凍槽4を備え、冷凍槽4内に不凍液11を貯留するとともに、不凍液11を冷却する冷却機構としての熱交換器7を備える。下部本体1には不凍液11を冷凍槽4と熱交換器7との間で循環させ、槽内に不凍液11の流れを形成させて攪拌するためのポンプ5が備えられる。特に、ポンプ5は循環させる不凍液11の流速を高く噴流となるように、ノズルなどから高圧の不凍液11を噴出し得るものである。ポンプ5は、熱交換器7から冷却した不凍液11を導く導管を備えていてもよい。冷凍部10は、また、冷凍させる食品を保持したまま不凍液11に浸漬させるかご6を備える。なお、冷却槽は側面に熱交換器を備える構造としてもよいが、上記の熱交換器7とポンプ5とを備える冷却槽4とすると、食品の冷却速度を高くし得て好ましい。 Referring to FIG. 2 again, the refrigeration apparatus 30 includes the refrigeration unit 10 on the right side in the figure. The refrigeration unit 10 includes a freezing tank 4 formed of a heat insulating wall 3 in the lower body 1, stores an antifreeze liquid 11 in the freezing tank 4, and includes a heat exchanger 7 as a cooling mechanism that cools the antifreeze liquid 11. The lower body 1 is provided with a pump 5 for circulating the antifreeze liquid 11 between the freezing tank 4 and the heat exchanger 7 to form a flow of the antifreeze liquid 11 in the tank and stirring it. In particular, the pump 5 is capable of ejecting the high-pressure antifreeze 11 from a nozzle or the like so that the flow rate of the antifreeze 11 to be circulated becomes high. The pump 5 may include a conduit that guides the antifreeze liquid 11 cooled from the heat exchanger 7. The freezing unit 10 also includes a car 6 that is immersed in the antifreeze liquid 11 while holding the food to be frozen. In addition, although a cooling tank is good also as a structure which equips a side surface with a heat exchanger, when it is the cooling tank 4 provided with said heat exchanger 7 and the pump 5, the cooling rate of a foodstuff can be made high and it is preferable.
冷凍部10は、さらに上部本体2内にかご6をワイヤなどで昇降させる昇降装置8を備え、昇降装置8やポンプ5及び熱交換器7の動作を制御するための操作盤9を備える。上部本体2には、さらにかご6を出し入れできる扉12が備えられる。 The refrigeration unit 10 further includes an elevating device 8 that elevates and lowers the car 6 with a wire or the like in the upper body 2, and an operation panel 9 for controlling the operations of the elevating device 8, the pump 5, and the heat exchanger 7. The upper body 2 is further provided with a door 12 into which the car 6 can be taken in and out.
不凍液11としては、例えば、約50体積%のエチルアルコールの水溶液によるエタノールブラインを用いることができる。上記した冷却保持(S3)で保持された食品の温度、食品の量及び不凍液11の噴流の速度などにもよるが、不凍液11は、その噴流に曝した食品を過冷却下で冷凍させることが好ましく、例えば−20〜−30℃程度の温度まで一気に冷却させ得る液体であり、上記したように少なくとも−20℃以下の温度に制御される。つまり、不凍液11は、液相を維持したまま食品を密封包装した容器表面に接触すると、容器の熱を効率的に吸収し、その内部の食品を確実に冷却し、好ましくは過冷却下で一気に冷凍できるのである。 As the antifreeze 11, for example, ethanol brine using an aqueous solution of about 50% by volume of ethyl alcohol can be used. Depending on the temperature of the food held in the cooling holding (S3), the amount of food, the speed of the jet of the antifreeze 11 and the like, the antifreeze 11 can freeze the food exposed to the jet under supercooling. Preferably, it is a liquid that can be cooled at once to a temperature of about -20 to -30 ° C, for example, and is controlled to a temperature of at least -20 ° C or less as described above. That is, when the antifreeze liquid 11 comes into contact with the surface of the container in which the food is hermetically packaged while maintaining the liquid phase, the heat of the container is efficiently absorbed, and the food in the container is reliably cooled, preferably at a stretch under supercooling. It can be frozen.
食品の冷凍(S4)においては、密閉包装された食品をかご6に保持させて、これを扉から上部本体2内に挿入して昇降装置8に取り付ける。操作盤9を操作して昇降装置8によりかご6を降下させ、冷凍槽4の上部から不凍液11に浸漬させる。この際、噴流として与えられる不凍液11が食品の容器表面の熱を効率的に奪い、容器内部の食品を確実に過冷却状態に出来て、急速に冷凍することができる。特に、食品は冷却保持(S3)において、冷却されているので、過冷却状態から一気に冷凍される。 In the freezing of the food (S4), the hermetically packaged food is held in the car 6, inserted into the upper body 2 from the door, and attached to the lifting device 8. The operation panel 9 is operated to lower the car 6 by the elevating device 8 and immerse it in the antifreeze 11 from the upper part of the freezing tank 4. At this time, the antifreeze 11 given as a jet efficiently removes heat from the surface of the food container, and the food inside the container can be surely brought into a supercooled state and can be quickly frozen. In particular, since the food is cooled in the cooling hold (S3), it is frozen at a stretch from the supercooled state.
過冷却状態が解除されると食品内部では局所的に水分の凍結が開始され、凝固熱が発生する。通常の緩慢冷却であれば、これにより食品の温度が上昇し凍結が進行しづらく、その結果、最大氷結晶生成帯に長く滞在してしまう。これに対して、本実施例によれば、冷却保持(S3)によって食品の保有する熱量が減じられており、水分の凍結に伴う凝固熱を合計した熱量も小さくなる。そのため、急速に冷凍する過程において過冷却状態が解除された後も、食品の温度を急速に低下させることが可能なのである。これにより、室温で保持されていた食品を不凍液で急速に冷凍させる従来の急速冷凍に比べて、少なくとも最大氷結晶生成帯を通過する速度は速くなり、解凍後の品質の劣化も少なくなるのである。 When the supercooled state is cancelled, freezing of water locally starts in the food and heat of solidification is generated. With normal slow cooling, this increases the temperature of the food and makes it difficult for freezing to proceed, resulting in a longer stay in the maximum ice crystal formation zone. On the other hand, according to the present embodiment, the amount of heat held by the food is reduced by cooling and holding (S3), and the amount of heat obtained by totaling the heat of solidification accompanying freezing of moisture is also reduced. Therefore, the temperature of the food can be rapidly lowered even after the supercooled state is released in the process of rapid freezing. This speeds up at least the maximum ice crystal formation zone and reduces quality degradation after thawing, compared to conventional quick freezing, where food stored at room temperature is rapidly frozen with antifreeze. .
特に、冷却保持(S3)において食品の芯部温度を氷温域近傍まで冷却させておけば、冷凍(S4)において急速に冷却しても、食品の厚さ方向の熱勾配は小さく、食品のほぼ全域を過冷却状態にし得る。すなわち、緩慢な冷却速度で過冷却状態を安定的に維持したまま食品の全域を氷結点以下の低温まで冷却するような困難な制御を行わなくとも、食品を過冷却状態から一気に冷凍できるのである。よって、局所的に塩分濃度などの成分が異なり氷結点の異なる調理済み又は半調理済みの食品であっても過冷却状態から一気に冷凍できる。 In particular, if the core temperature of the food is cooled to near the ice temperature range in the cooling hold (S3), the thermal gradient in the thickness direction of the food is small even when rapidly cooled in the freezing (S4). Almost the entire region can be supercooled. That is, the food can be frozen from the supercooled state at once without performing difficult control such as cooling the whole area of the food to a low temperature below the freezing point while stably maintaining the supercooled state at a slow cooling rate. . Therefore, even a cooked or semi-cooked food having locally different components such as salt concentration and different freezing points can be frozen at a stretch from a supercooled state.
また、上記したように、冷凍部10によれば、冷凍槽4内に不凍液11の噴流を形成させて、食品の冷却速度を高く維持できる。これによっても最大氷結晶生成帯を通過する速度を速くでき、解凍後の品質の劣化を少なくし得る。 Moreover, according to the freezing part 10, as mentioned above, the jet of the antifreeze liquid 11 can be formed in the freezing tank 4, and the cooling rate of a foodstuff can be maintained high. This also makes it possible to increase the speed of passing through the maximum ice crystal formation zone, and to reduce deterioration in quality after thawing.
このようにして冷凍された食品は、保存され、解凍されて適宜調理されるなどして食に供されるが、調理済み又は半調理済みの食品であっても、解凍されたときにドリップの生成の少ない、品質の劣化の少ない、すなわち冷凍前の品質の再現性に優れた食品とし得る。 The food frozen in this way is stored, thawed, cooked as appropriate, etc., and used for food. Even if it is cooked or semi-cooked, It can be made into a food with little production, little deterioration of quality, that is, excellent reproducibility of quality before freezing.
[冷凍試験]
次に、上記した本実施例による冷凍方法と他の冷凍方法とを比較した冷凍試験について、図3を用いて説明する。
[Freezing test]
Next, a refrigeration test comparing the refrigeration method according to the present embodiment with other refrigeration methods will be described with reference to FIG.
冷凍試験では、一般的に、冷凍によって解凍後の品質が劣化しやすいとされる食品である、木綿豆腐を出汁で煮たもの(木綿豆腐煮)、こんにゃくを出汁で煮たもの(こんにゃく煮)、生のいちご(いちご)、こんにゃくゼリーを用いた。まず、これらの食品を樹脂による袋状の容器によっておよそ100gずつ密閉包装した。なお、こんにゃくゼリーについては約25gを密閉容器に封入された市販品をそのまま使用した。本発明の方法は、特に調理を施していない食品であっても冷凍前の品質の再現性に優れるが、この確認のため生のいちごについても冷凍試験を行っている。 In the freezing test, it is generally considered that the quality after thawing is likely to deteriorate due to freezing, which is boiled cotton tofu (boiled cotton tofu), boiled konjac (boiled konnyaku) , Raw strawberries and konjac jelly were used. First, these foods were hermetically packaged approximately 100 g each in a bag-like container made of resin. In addition, about the konjac jelly, about 25g was used for the commercial item enclosed with the airtight container as it was. The method of the present invention is excellent in the reproducibility of the quality before freezing even for foods that are not particularly cooked. For this confirmation, a freezing test is also performed on raw strawberries.
図3に示すように、比較例1、比較例2及び実施例のそれぞれの冷却方法で食品を冷凍した。比較例1では緩慢冷凍を行った。詳細には、密閉包装した食品を20℃で保持し、−20℃の空気によって冷却した。比較例2では急速冷凍を行った。詳細には、密閉包装した食品を20℃で保持し、上記した冷凍装置30の冷凍部10を用いて−30℃のエタノールブラインに浸漬して冷却した。実施例では、冷却後急速冷凍を行った。すなわち、上記した実施例の方法であって、具体的には、密閉包装した食品を上記した冷凍装置30の冷蔵部20を用いて氷水に浸漬して芯部温度を0℃に近づけるべく1℃以下になるまで保持して、冷凍部10を用いて−30℃のエタノールブラインに浸漬して冷却した。なお、芯部温度は、例えば、芯部まで温度計を挿入した芯部温度測定用の食品を別に用意し、同時に冷却することで測定できる。 As shown in FIG. 3, the food was frozen by the cooling methods of Comparative Example 1, Comparative Example 2, and Example. In Comparative Example 1, slow freezing was performed. Specifically, the hermetically sealed food was kept at 20 ° C. and cooled by air at −20 ° C. In Comparative Example 2, quick freezing was performed. Specifically, the hermetically packaged food was held at 20 ° C. and cooled by immersing in ethanol brine at −30 ° C. using the freezing unit 10 of the above-described freezing device 30. In the examples, quick freezing was performed after cooling. That is, in the method of the above-described embodiment, specifically, the hermetically packaged food is immersed in ice water using the refrigeration unit 20 of the refrigeration apparatus 30 described above, and 1 ° C. in order to bring the core temperature close to 0 ° C. It hold | maintained until it became below, and it immersed in -30 degreeC ethanol brine using the freezing part 10, and cooled. The core temperature can be measured, for example, by separately preparing a food for core temperature measurement in which a thermometer is inserted up to the core and simultaneously cooling the food.
図3(a)には食品が凍結するまでに要した時間を表示した。すなわち、比較例1においては、−20℃の空気による冷却開始時からの時間、比較例2及び実施例においてはエタノールブラインに浸漬してからの時間である。なお、凍結は、食品の芯部温度を測定して−10℃以下になったことで確認した。また、図3(b)には、実施例による冷却後急速冷凍による凍結までに要した時間を1として、これに対する比を示した。なお、図中「×」は180分の冷却によっても凍結しなかったことを示す。 FIG. 3A shows the time required for the food to freeze. That is, in Comparative Example 1, the time from the start of cooling with air at −20 ° C., and in Comparative Example 2 and Examples, the time after immersion in ethanol brine. In addition, freezing was confirmed by measuring the core temperature of the food and becoming −10 ° C. or lower. Moreover, in FIG.3 (b), the time required until freezing by quick freezing after the cooling by an Example was set to 1, and the ratio with respect to this was shown. In the figure, “x” indicates that the product was not frozen even after cooling for 180 minutes.
いずれの食品においても凍結までに要した時間は実施例の場合に最も短かった。最大氷結晶生成帯を通過する速度も実施例の場合において最も速かったものと推定できる。 In any food, the time required for freezing was the shortest in the example. It can be estimated that the speed of passing through the maximum ice crystal formation zone was also the fastest in the case of the example.
[解凍試験]
さらに、上記した比較例1、比較例2、実施例のそれぞれにより冷凍された食品について行った解凍試験について、図4及び図5を用いて説明する。
[Thawing test]
Furthermore, the thawing test performed on the food frozen in each of Comparative Example 1, Comparative Example 2, and Example described above will be described with reference to FIGS.
図4に示すように、比較例1、比較例2、実施例のそれぞれの方法で冷凍された食品のうち、こんにゃくゼリー以外について、さらに自然解凍させて生じたドリップ量を測定した。方法は上記した冷凍試験の通りである。但し、比較例1における180分の緩慢冷凍で凍結しなかった食品についてはさらに冷却を続けて、食品全体を凍結させた後に解凍試験に供した。食品の重量(サンプル量)に対して、生じたドリップの重量(ドリップ量)をドリップ割合として百分率で示した。 As shown in FIG. 4, the amount of drip produced by further natural thawing of the foods frozen by the methods of Comparative Example 1, Comparative Example 2, and Example other than konjac jelly was measured. The method is as described above for the refrigeration test. However, the food that was not frozen by slow freezing for 180 minutes in Comparative Example 1 was further cooled, and the whole food was frozen before being subjected to a thawing test. The weight (drip amount) of the drip produced was expressed as a percentage of the drip rate relative to the weight of the food (sample amount).
ドリップ割合はいずれの食品においても実施例の場合に最も小さく、解凍後の品質の劣化が最も少ないと考えられる。 It is considered that the drip rate is the smallest in the case of Examples in any food, and the quality deterioration after thawing is the least.
さらに、解凍試験後の木綿豆腐煮についてその断面写真を図5に示す。比較例1においては明らかに巣が発生しており、最大氷結晶生成帯に長時間滞在して氷の結晶を大きく成長させたものと考えられる。これに対して比較例2及び実施例では巣が発生せず、品質劣化が少なかったと考えられる。こんにゃく煮、いちごにおいても同様の傾向であった。 Furthermore, the cross-sectional photograph is shown in FIG. In Comparative Example 1, nests are apparently generated, and it is considered that the ice crystals grew greatly by staying in the maximum ice crystal formation zone for a long time. On the other hand, in the comparative example 2 and the example, no nest was generated, and it is considered that there was little quality deterioration. The same tendency was observed in konjac boiled and strawberry.
木綿豆腐煮、こんにゃく煮、いちごのそれぞれについて、解凍後に試食して食感や味を観察した結果、比較例1は明らかに味が劣化しており例えば、こんにゃく煮であれば水分の少ない繊維の塊のような食感であり、食品としての利用に難のある食感であった。比較例2と実施例においても明らかに味や食感に差があり、実施例の方が冷凍前のものに近い味と食感であった。このことは、上記したドリップ量の差によって裏付けられる。 As a result of tasting after thawing and observing the texture and taste of each of the tofu boiled cotton, konnyaku boiled and strawberries, the taste of the comparative example 1 is clearly deteriorated. The texture was like a lump and had a difficult texture for use as a food. There was a clear difference in taste and texture between Comparative Example 2 and the Examples, and the Examples had a taste and texture close to those before freezing. This is supported by the difference in drip amount described above.
以上のように、上記した実施例によれば、解凍後のドリップの量が比較例1及び比較例2に比べて少ないことから判るように、解凍後の食品の品質の劣化を抑制した冷凍を可能とする。特に、緩慢な冷却速度で過冷却状態を安定的に維持したまま食品の全域を氷結点以下の低温まで冷却することの困難な調理済み又は半調理済みの食品であっても、解凍後の品質の劣化を抑制でき、解凍後のドリップを少なくできて、冷凍前の品質の再現性に優れた冷凍食品を簡便かつ確実に得ることができる。 As described above, according to the above-described embodiment, as can be seen from the fact that the amount of drip after thawing is smaller than that of Comparative Example 1 and Comparative Example 2, freezing that suppresses the deterioration of the quality of the food after thawing is achieved. Make it possible. In particular, the quality after thawing, even for cooked or semi-cooked foods that are difficult to cool to a low temperature below the freezing point while stably maintaining a supercooled state at a slow cooling rate Deterioration can be suppressed, drip after thawing can be reduced, and a frozen food excellent in reproducibility of quality before freezing can be obtained easily and reliably.
以上、本発明による実施例及びこれに基づく変形例を説明したが、本発明は必ずしもこれに限定されるものではなく、当業者であれば、本発明の主旨又は添付した特許請求の範囲を逸脱することなく、様々な代替実施例及び改変例を見出すことができるであろう。 As mentioned above, although the Example by this invention and the modification based on this were demonstrated, this invention is not necessarily limited to this, A person skilled in the art will deviate from the main point of this invention, or the attached claim. Various alternative embodiments and modifications could be found without doing so.
5 ポンプ
6 かご
10 冷凍部
11 不凍液
20 冷蔵部
30 冷凍装置
5 Pump 6 Basket 10 Refrigeration unit 11 Antifreeze 20 Refrigeration unit 30 Refrigeration equipment
Claims (5)
前記食品を密閉包装するステップと、
流れを形成させた液体冷媒中に前記食品を浸漬させ前記食品を0℃以下の凍結させない温度で冷却保持する冷却ステップと、
−20℃以下の不凍液内に前記食品を浸漬し過冷却状態から冷凍させる冷凍ステップと、を含むことを特徴とする冷凍方法。 A method for freezing unheated food,
Sealing and packaging the food;
A cooling step of immersing the food in a liquid refrigerant in which a flow is formed and cooling and holding the food at a temperature of 0 ° C. or less and not freezing;
A freezing step comprising immersing the food in an antifreeze at −20 ° C. or lower and freezing it from a supercooled state.
0℃以下の液体冷媒を貯留する冷蔵槽と、
−20℃以下の不凍液を貯留する冷却槽と、
前記冷却槽の外部に備えられて前記不凍液を少なくとも−20℃以下に冷却する冷却機構と、
前記不凍液を前記冷却槽と前記冷却機構との間で循環させ前記冷却槽内に前記不凍液の噴流を形成させる循環機構と、を含むことを特徴とする冷凍装置。 A freezing device for freezing unheated food,
A refrigerated tank storing liquid refrigerant at 0 ° C. or lower;
A cooling tank for storing an antifreeze at −20 ° C. or lower;
A cooling mechanism provided outside the cooling tank to cool the antifreeze liquid to at least −20 ° C. or less;
A refrigeration apparatus comprising: a circulation mechanism that circulates the antifreeze liquid between the cooling tank and the cooling mechanism to form a jet of the antifreeze liquid in the cooling tank.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015253472A JP2017009272A (en) | 2015-12-25 | 2015-12-25 | Freezing method and freezing device of food product |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015253472A JP2017009272A (en) | 2015-12-25 | 2015-12-25 | Freezing method and freezing device of food product |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015127938 Division | 2015-06-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017009272A true JP2017009272A (en) | 2017-01-12 |
Family
ID=57763227
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015253472A Pending JP2017009272A (en) | 2015-12-25 | 2015-12-25 | Freezing method and freezing device of food product |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2017009272A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019011889A (en) * | 2017-06-29 | 2019-01-24 | 株式会社テクニカン | Refrigeration device and refrigeration method |
CN109990542A (en) * | 2019-03-19 | 2019-07-09 | 中国科学院广州能源研究所 | A kind of cold fresh system of processing of poultry and method of super ice temperature |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6291170A (en) * | 1985-06-05 | 1987-04-25 | Jipukomu Kk | Method for freezing and preservation of food |
JPS62107779A (en) * | 1985-11-01 | 1987-05-19 | Kazunobu Abe | Antifreeze solution for quick freezing of agricultural and marine product and processed food and apparatus therefor |
JPH04121178A (en) * | 1990-09-10 | 1992-04-22 | Tekunikan:Kk | Method and apparatus for freezing food |
JPH05284955A (en) * | 1992-04-14 | 1993-11-02 | Toshiyuki Ota | Treatment of food |
JPH0646813A (en) * | 1992-08-03 | 1994-02-22 | Tekunikan:Kk | Immersion freezing method |
JPH11142040A (en) * | 1997-11-10 | 1999-05-28 | Sanyo Electric Co Ltd | Ice water cooler |
JP2007300913A (en) * | 2006-04-11 | 2007-11-22 | Hiroshi Mishima | Meat processing method |
-
2015
- 2015-12-25 JP JP2015253472A patent/JP2017009272A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6291170A (en) * | 1985-06-05 | 1987-04-25 | Jipukomu Kk | Method for freezing and preservation of food |
JPS62107779A (en) * | 1985-11-01 | 1987-05-19 | Kazunobu Abe | Antifreeze solution for quick freezing of agricultural and marine product and processed food and apparatus therefor |
JPH04121178A (en) * | 1990-09-10 | 1992-04-22 | Tekunikan:Kk | Method and apparatus for freezing food |
JPH05284955A (en) * | 1992-04-14 | 1993-11-02 | Toshiyuki Ota | Treatment of food |
JPH0646813A (en) * | 1992-08-03 | 1994-02-22 | Tekunikan:Kk | Immersion freezing method |
JPH11142040A (en) * | 1997-11-10 | 1999-05-28 | Sanyo Electric Co Ltd | Ice water cooler |
JP2007300913A (en) * | 2006-04-11 | 2007-11-22 | Hiroshi Mishima | Meat processing method |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019011889A (en) * | 2017-06-29 | 2019-01-24 | 株式会社テクニカン | Refrigeration device and refrigeration method |
CN109990542A (en) * | 2019-03-19 | 2019-07-09 | 中国科学院广州能源研究所 | A kind of cold fresh system of processing of poultry and method of super ice temperature |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4657768A (en) | Freezing method for perishable foods | |
US5165256A (en) | Food freezer with jet agitator | |
US5222367A (en) | Method of freezing food utilizing a set agitator | |
JP2017009272A (en) | Freezing method and freezing device of food product | |
US11503845B2 (en) | Processes and devices for freezing organic products | |
JP2011078333A (en) | Method and apparatus for cooling/freezing food | |
JP2009044981A (en) | Freezing method and freezing apparatus | |
JP6977952B2 (en) | Rapid uniform thawing method for frozen agricultural and marine products and processed foods | |
JP2007006702A (en) | Method and device for cooking food | |
EP3298902B1 (en) | METHOD FOR DIPPING AND FREEZING TUNA USING LOW SALT PENETRATION AMOUNT OF CaCl2 | |
JP2017201950A (en) | Refrigeration method of thin-sliced meat of fresh fish | |
US2863779A (en) | Method of preparing shrimp in frozen condition | |
JPH0646813A (en) | Immersion freezing method | |
JP2002191337A (en) | Thawing equipment and thawing method | |
GB2263617A (en) | Freezing process and apparatus | |
JPS6360989B2 (en) | ||
JPH10309162A (en) | Storage of perishable food | |
Niu et al. | Effects of emulsifying fish oil on the water-holding capacity and ice crystal formation of heat-induced surimi gel during frozen storage | |
WO2024134849A1 (en) | Tissue-cooling device | |
JP3960828B2 (en) | Method and system for cooling smoked products such as wine | |
JP2010022256A (en) | Method for producing and preserving cooked rice | |
JPH0994082A (en) | Preservation of food or beverage and container used therefor | |
JPS62166872A (en) | Storage of food | |
JP2023066613A (en) | Red fleshed fish meat processing method and red fleshed fish meat | |
GEORGE et al. | RAPID FREEZING OF FOODS AND ITS ROLE IN PRESERVING FOOD QUALITY AND SAFETY |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180622 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190423 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190426 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20190624 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20191025 |