JP2017008187A - Resin having hybrid characteristic improving thermal deformation temperature and breaking elongation - Google Patents

Resin having hybrid characteristic improving thermal deformation temperature and breaking elongation Download PDF

Info

Publication number
JP2017008187A
JP2017008187A JP2015124422A JP2015124422A JP2017008187A JP 2017008187 A JP2017008187 A JP 2017008187A JP 2015124422 A JP2015124422 A JP 2015124422A JP 2015124422 A JP2015124422 A JP 2015124422A JP 2017008187 A JP2017008187 A JP 2017008187A
Authority
JP
Japan
Prior art keywords
resin
resins
epoxy
elongation
hybrid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015124422A
Other languages
Japanese (ja)
Inventor
泰我 辰巳
Taiga Tatsumi
泰我 辰巳
義則 西野
Yoshinori Nishino
義則 西野
進一 田村
Shinichi Tamura
進一 田村
正己 鵜原
Masami Uhara
正己 鵜原
加奈子 武西
Kanako Takenishi
加奈子 武西
峻志 下左近
Takashi Shimosakon
峻志 下左近
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NBL TECHNOVATOR CO Ltd
Original Assignee
NBL TECHNOVATOR CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NBL TECHNOVATOR CO Ltd filed Critical NBL TECHNOVATOR CO Ltd
Priority to JP2015124422A priority Critical patent/JP2017008187A/en
Publication of JP2017008187A publication Critical patent/JP2017008187A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a resin which is a thermosetting resin used for an FRP-made oil well pipe, is formed by blending a plurality of resins having heat resistance of at least 150°C or higher and acid resistance of pH2 level and imparts a physical structural change such as tangling of a molecular structure without deterioration in characteristics, produces a synergistic effect, and has such a hybrid effect that heat resistance is improved by approximately 20% and elongation performance is improved by approximately 10%.SOLUTION: A hybridization thermosetting composition produces such a hybrid (synergistic effect) that high temperature characteristics equal to or more than an original mixed performance is improved by approximately 18% at the maximum and elongation is improved by approximately 19% at the maximum by mixing a plurality of resins of which physical characteristics of high temperature/low elongation and low temperature/high depth are inversely proportional to each other, and applying a hybridization condition; and can control necessary performance of heat resistance and elongation according to the ratio.SELECTED DRAWING: Figure 1

Description

油井管に用いる高温性・高伸度・耐酸性樹脂材料に関する。エポキシ変性熱硬化性樹脂の分子量異なる異種特性の混合による性能向上効果に関する。    The present invention relates to high temperature, high elongation and acid resistant resin materials used in oil well pipes. The present invention relates to an effect of improving performance by mixing different characteristics of epoxy-modified thermosetting resin with different molecular weights.

高温高圧領域の油井管用樹脂の開発において、例えば2種類の樹脂を単純に混合しても相分離して必要な性能特性が低下することが知られている。その解決方法として例えば相溶化剤を用いたり、化学結合を利用したりしてポリマーブレンド(ポリマーアロイ)を得る方法が知られているが、通常はそれぞれの機能を下回る(劣化)性能しか得られず、複合則に適応せず、それぞれの樹脂が有する耐熱性・伸び・耐食性等の添加量比例効果特性(複合則)を引き出すことは困難であると言われている。
市場は大量生産によるコストダウン効果から、特性の異なった樹脂を市場に供給するが、個別ユーザからの中間的な性質を要求する体制にはない。一方、単純に異なる樹脂をブレンドしても、目的成果は得られない。樹脂例えば耐熱性に優れるが伸び性能に劣る樹脂と、伸び性能は優れるが耐熱性の劣る樹脂との混合のように、最終硬化物(樹脂)の物理特性が比例する特性材をポリマーブレンドできる発明を必要としている。
すなわち、混合割合に応じて耐熱性・伸びの各性能がブレンドすることによる少なくとも劣化を防止して、理想はブレンドによる相乗効果(ここではハイブリッド効果と呼ぶ)樹脂が得られる発明である。
In the development of oil well pipe resins in the high temperature and high pressure region, for example, it is known that even if two types of resins are simply mixed, the required performance characteristics are deteriorated due to phase separation. As a solution, for example, a method of obtaining a polymer blend (polymer alloy) by using a compatibilizing agent or utilizing a chemical bond is known, but usually only performance (deterioration) lower than each function can be obtained. In other words, it is said that it is difficult to draw out the added amount proportional effect characteristics (composite rule) such as heat resistance, elongation and corrosion resistance of each resin without adapting to the compound rule.
The market supplies resins with different characteristics to the market due to the cost reduction effect due to mass production, but there is no system that requires intermediate properties from individual users. On the other hand, even if different resins are simply blended, the desired result cannot be obtained. An invention that allows polymer blending of characteristic materials in which the physical properties of the final cured product (resin) are proportional, such as mixing a resin with excellent heat resistance but poor elongation performance, and a resin with excellent elongation performance but poor heat resistance Need.
That is, according to the mixing ratio, the heat resistance and elongation performances are prevented from at least deterioration due to blending, and ideally, a synergistic effect (herein referred to as hybrid effect) resin by blending is obtained.

以前から、ポリマーブレンド及びポリマーアロイと称される混合樹脂について数多くの研究が行われてきた(参考文献3−5)。しかしながら、石油掘削の一般用途のみならず、近年深井戸・EOR等耐熱性・耐食性の高いFRP油井管材料を指向したポリマーブレンド・ポリマーアロイの例はなく、また樹脂混合による相乗効果を得た成果の公開文献も見当たらない。    Many studies have been conducted on mixed resins called polymer blends and polymer alloys (References 3-5). However, in addition to general oil drilling applications, there are no examples of polymer blends and polymer alloys aimed at FRP oil well pipe materials with high heat resistance and corrosion resistance such as deep wells and EOR in recent years. There are no published documents.

特表2004−504446号公報JP-T-2004-504446

特開2008−531789号公報JP 2008-531789 A

稲田禎一、他著 「エポキシ樹脂/アクリルポリマアロイの相構造解析とダイボンディングフィルムへの応用」日立化成テクニカルレポートNo.47 日立化成工業株式会社 2006年Junichi Inada, et al. "Phase structure analysis of epoxy resin / acrylic polymer alloy and its application to die bonding film" Hitachi Chemical Technical Report No.47 Hitachi Chemical Co., Ltd. 2006

辰巳泰我、武西加奈子、他著 「EOR対応高温高圧用樹脂の耐酸性評価」グローバル経営学会 第5回シンポジウム 講演と論文集 2014年11月1日Yasuaki Tsuji, Kanako Takenishi, et al. “Evaluation of acid resistance of EOR-compatible high-temperature and high-pressure resins” 5th symposium of the Global Management Society Lecture and paper collection November 1, 2014

辰巳泰我、武西加奈子、他著 「GPI標準簡易耐食性劣化評価法」グローバル経営学会 第5回シンポジウム 講演と論文集 2014年11月1日Yasuaki Tsuji, Kanako Takenishi, et al. "GPI Standard Simple Corrosion Resistance Evaluation Method" Global Management Society 5th Symposium Lecture and Proceedings November 1, 2014

石油掘削用の油井管には、適用圧力に耐える強度を持ち圧力流体の耐熱・腐食に耐えうることが必要である。すなわち、管内高圧の腐食流体(石油ガス)に対する耐久性を持ち、使用箇所に応じた耐熱性・構成材料の腐食劣化(pH2)に対する耐久性能(10年以上)を保証する機能を構成する材料・構造が必要である。現在油井管として幅広く用いられている鋼管は、pH3より強い酸性条件の下では応力腐食割れ起こす等、耐食性に問題があるといわれている。耐サワー鋼等耐酸性の鋼管も用いられているものの高価なものが多く、このため安価で耐久性が高く、かつ耐食性を優れた油井管材料が求められている。    Oil well pipes for oil drilling need to be strong enough to withstand the applied pressure and to withstand the heat resistance and corrosion of the pressure fluid. In other words, a material that has durability against high-pressure corrosive fluids (petroleum gas) in the pipe, and has a function to guarantee heat resistance according to the location of use and durability against corrosion degradation (pH 2) of the constituent materials (more than 10 years) A structure is needed. Steel pipes currently widely used as oil well pipes are said to have problems in corrosion resistance, such as stress corrosion cracking under acidic conditions stronger than pH 3. Although acid-resistant steel pipes such as sour-resistant steel are also used, there are many expensive ones. Therefore, there is a demand for oil well pipe materials that are inexpensive, have high durability, and have excellent corrosion resistance.

耐酸性を示す油井管材料として以前よりFRPが用いられてきているが、80℃程度では18%もの許容伸度が得られる樹脂があるが、110℃以上の高温領域においては8%、150℃では2~3%、と高温になればなるほど伸びが減少、単一樹脂では高温性能と伸びに優れた樹脂はない。 さらに、高温性能樹脂は高価である課題を持つ。    Although FRP has been used as an oil well pipe material that shows acid resistance, there is a resin that can achieve an allowable elongation of 18% at around 80 ° C, but it is 8% and 150 ° C in the high temperature region above 110 ° C. In 2% to 3%, the elongation decreases as the temperature rises, and there is no single resin having excellent high temperature performance and elongation. Furthermore, high temperature performance resins have the problem of being expensive.

FRP製油井管などに使用される熱硬化性樹脂は、石油掘削量増加のために深井戸掘削・油田再生(EOR)を狙うため、耐熱性150℃・pH2 レベルの耐酸性が不可欠である。また破壊を防止するためにも、樹脂の伸び性能が約6%以上は必要である。さらに地熱利用のEORでは200℃を超える耐熱性も必要となる。
本発明では、これら必要な性能を、ハイブリッド効果による性能向上により汎用品を用いた低コストの樹脂を提供する。
そして、少なくとも必要十分な耐酸性を持つ高温特性の樹脂と高伸度特性を持つ樹脂を組み合わせてハイブリッド効果を得ることで、特性の異なる2種類以上の樹脂を得ることを可能にする発明である。
その基本は、混合を可能にする分子量が異なる同類の反応基を持ち、共通の過酸化物で反応速度を同じくした硬化反応ができ、異なった分子構造、長さが重合するときに、互いの分子が絡み合った状態で高密度を保ちながら重合することで、高温での変形(高温特性)を向上させると考える分子運動抑制効果を得ることができる。発明の実施成果からその効果は約10%近いことが確認された。同様にブレンドされた樹脂の分子量が増大したことから、破断伸びも増加する。その効果は複合則に従う。すなわち、科学的な反応基は同類で物理的特性が異なる、複数の樹脂を混合し、固化反応が短時間で終了すると同時に混合物の物理的な分離が起こらない固化をすることで、化学的なブレンド劣化効果を補う物理的な異分子による分子構造の絡まり効果を得ることで目的の高温・高伸度のハイブリッド効果が得られると考えることを発明した。
Thermosetting resins used in FRP oil well pipes, etc., aim for deep well drilling and oilfield regeneration (EOR) in order to increase the amount of oil drilling, so heat resistance at 150 ° C and pH2 level is indispensable. In order to prevent breakage, the resin must have an elongation performance of about 6% or more. Furthermore, geothermal EOR requires heat resistance exceeding 200 ° C.
In the present invention, a low-cost resin using a general-purpose product is provided by improving the required performance by the hybrid effect.
And, it is an invention that makes it possible to obtain two or more types of resins having different characteristics by combining a resin having a high temperature characteristic having at least necessary and sufficient acid resistance and a resin having a high elongation characteristic to obtain a hybrid effect. .
The basis is that they have similar reactive groups with different molecular weights that allow mixing, can cure with the same reaction rate with a common peroxide, and when different molecular structures and lengths polymerize, By polymerizing while maintaining a high density in a state where molecules are entangled, it is possible to obtain a molecular motion suppressing effect that is considered to improve deformation at high temperature (high temperature characteristics). The effect of the invention was confirmed to be nearly 10%. Similarly, the elongation at break increases due to the increased molecular weight of the blended resin. The effect follows a compound law. In other words, scientific reactive groups are similar and have different physical properties. Mixing multiple resins, the solidification reaction can be completed in a short time and at the same time solidified without physical separation of the mixture. We have invented the idea that the desired high-temperature / high-elongation hybrid effect can be obtained by obtaining the entanglement effect of the molecular structure by physical different molecules to compensate for the blend deterioration effect.

本発明の基本成果は、図1、図2に示す複数の樹脂A(161℃*2.5%)と樹脂B(120℃*12.8%)を4:6比でブレンドして作られた樹脂の耐熱・伸び性能特性を示す。従来不可能とされていた添加量比例の複合則効果(143℃*6.7%)以上の加速する相乗効果(ハイブリッド効果)を発見、従来高温特性で高伸度樹脂ができなかった成果が、図1熱変形温度153℃(17.5%相乗効果)で図2破断伸度10.6%(22%相乗効果)のハイブリッド効果を持つ樹脂を発明した。さらに、樹脂A,Zは安価な素材から作られた樹脂のためハイブリッド効果(品質向上)を得ながら、価格が安価である。    The basic result of the present invention is the heat resistance of a resin made by blending a plurality of resins A (161 ° C. * 2.5%) and resin B (120 ° C. * 12.8%) shown in FIGS. 1 and 2 in a 4: 6 ratio. -Elongation performance characteristics are shown. The discovery of a synergistic effect (hybrid effect) accelerating beyond the compound law effect (143 ° C * 6.7%) proportional to the addition amount, which was previously impossible, and the results of a high-strength resin that could not be achieved with high-temperature properties 2. A resin having a hybrid effect with a heat deformation temperature of 153 ° C. (17.5% synergistic effect) and a breaking elongation of 10.6% (22% synergistic effect) was invented in FIG. Furthermore, since the resins A and Z are made of an inexpensive material, the price is low while obtaining a hybrid effect (quality improvement).

成果の1例を示す図1は、樹脂AとZが本来持つ特性が変化しないとの添加量比例の複合則の特性を破線直線で示し、2種ブレンドすれば界面劣化が作用する仮想特性を一点鎖線の劣化曲線で示し、今回発明したブレンドによる相乗性効果が複数生じるハイブリッド成果の想定曲線を点線で示す。この成果を出すために発明したハイブリッド化基本条件は、1:共通の反応基(この実施例はエポキシ基、エステル)と、2:異なる分子量(分子量・構造が異なる)と、3:重合反応速度が同等であること、4:適用反応触媒も同一であること、5:混合材料の比重分離が生じず・相和性が保てること、6:異種分子の混合状態を保持した状態で重合反応が速やかに完了すること、7:異種材料間のインターフェイス材(カップリング材)の必要な添加を行うことである。    Figure 1 shows an example of the results. The characteristic of the composite rule proportional to the amount of addition that the characteristics inherent to resins A and Z do not change is indicated by a broken line. It is indicated by a one-dot chain line deterioration curve, and an assumed curve of a hybrid result in which a plurality of synergistic effects by the blend invented this time is generated is indicated by a dotted line. The basic conditions for hybridization invented to produce this result are as follows: 1: common reactive group (in this example, epoxy group, ester), 2: different molecular weight (different in molecular weight and structure), 3: polymerization reaction rate 4: The applied reaction catalyst is the same, 5: Specific gravity separation of the mixed material does not occur, and the compatibility can be maintained, 6: The polymerization reaction is carried out while maintaining the mixed state of different molecules Completing promptly, 7: Necessary addition of interface material (coupling material) between different materials.

これらの条件を全てまたは過半数以上満足することでハイブリッド効果が生じることを発明した。その結果、本発明で開発した樹脂は、樹脂の硬化特性・粘度特性の変化がオリジナルと変化なく、FRP油井管のみならず、全てのFRP製品・FRP成形用製品及び成形用樹脂材に適した。    The inventors have invented that a hybrid effect is produced by satisfying all or more than half of these conditions. As a result, the resin developed in the present invention has no change in the curing characteristics and viscosity characteristics of the resin from the original, and is suitable not only for FRP oil well pipes but also for all FRP products, FRP molding products, and molding resin materials. .

図3、図4は樹脂B(175℃*2.5%)と樹脂Zのブレンドで、ハイブリッド化条件の3:反応速度が異なり、6:の硬化時間を長く、7:無添加の場合の結果である。図3の高温特性に相乗効果17.5%があるが、図4の伸びは−5.5%の減少効果となった。    Figures 3 and 4 are blends of resin B (175 ° C * 2.5%) and resin Z. Hybridization conditions 3: different reaction rates, 6: longer curing time, 7: no addition results is there. The high temperature characteristic of FIG. 3 has a synergistic effect of 17.5%, but the elongation of FIG. 4 is a reduction effect of −5.5%.

図5、図6は樹脂Y(112℃、9%)と樹脂Zのブレンドで、ハイブリッド化条件2:の異なる分子量・構造が類似品を使用した場合の結果である。図5から高温特性に相乗効果が約19%みられるが、図6から伸びは−5%と減少効果となった。    FIG. 5 and FIG. 6 are the results when a blend of resin Y (112 ° C., 9%) and resin Z and similar products having different molecular weights and structures under hybridization condition 2: are used. From FIG. 5, there is a synergistic effect of about 19% on the high temperature characteristics, but from FIG. 6, the elongation is reduced by -5%.

図7、図8は樹脂X(210℃*2.5%)、樹脂Yのブレンドで、ハイブリッド化条件の5・6の混合状態維持硬化条件と7:添加に適合しなかった場合の結果である。図7から高温特性は相乗効果が約8.3%あるが、図8から伸びは−5%減少効果となった。    FIG. 7 and FIG. 8 show the results when a blend of Resin X (210 ° C. * 2.5%) and Resin Y did not meet the hybrid condition 5 · 6 mixed state maintenance curing conditions and 7: addition. FIG. 7 shows that the high temperature characteristic has a synergistic effect of about 8.3%, but FIG. 8 shows that the elongation is reduced by -5%.

図1は樹脂A/Z熱変形温度ハイブリッド特性図。Figure 1 is a resin A / Z heat distortion temperature hybrid characteristic diagram. 図2は樹脂A/Z破断伸度ハイブリッド特性図。FIG. 2 is a resin A / Z break elongation hybrid characteristic diagram. 図3は樹脂B/Z熱変形温度ハイブリッド特性図。Fig. 3 is a characteristic diagram of resin B / Z heat distortion temperature hybrid. 図4は樹脂B/Z破断伸度ハイブリッド特性図。FIG. 4 is a resin B / Z fracture elongation hybrid characteristic diagram. 図5は樹脂Y/Z熱変形温度ハイブリッド特性図。FIG. 5 is a characteristic diagram of resin Y / Z heat distortion temperature hybrid. 図6は樹脂Y/Z破断伸度ハイブリッド特性図。FIG. 6 is a hybrid characteristic diagram of resin Y / Z breaking elongation. 図7は樹脂X/Y熱変形温度ハイブリッド特性図。FIG. 7 is a resin X / Y heat distortion temperature hybrid characteristic diagram. 図8は樹脂X/Y破断伸度ハイブリッド特性図。FIG. 8 is a resin X / Y breaking elongation hybrid characteristic diagram.

図1、図2に示す発明成果は、複数の特性がともに向上しているハイブリッド効果を提供していることが示されている。この時に使用した樹脂はAとZで適用したハイブリッド化条件は、1〜7であり、これらの条件が発明を実施するための最良の形態である。
1、 共通の反応基(この実施例はエポキシ基、エステル)。
2、 異なる分子量(分子量・構造が異なる)。
3、 重合反応速度が同等である。
4、 適用反応触媒も同一である。
5、 混合材料の比重分離が生じず・相和性が保てる。
6、 異種分子の混合状態を保持した状態で重合反応が速やかに完了する。
7、 異種材料間のインターフェイス材(カップリング材)を必要な添加を行う。
The results of the invention shown in FIG. 1 and FIG. 2 show that a hybrid effect is provided in which a plurality of characteristics are improved together. The resin used at this time has a hybridization condition of 1 to 7 applied by A and Z, and these conditions are the best mode for carrying out the invention.
1. Common reactive group (this example is epoxy group, ester).
2. Different molecular weights (different molecular weights and structures).
3. The polymerization reaction rate is equivalent.
4. The applied reaction catalyst is the same.
5. Specific gravity separation of the mixed material does not occur and compatibility is maintained.
6. The polymerization reaction is completed quickly while maintaining the mixed state of different types of molecules.
7. Add necessary interface material (coupling material) between different materials.

従来不可能とされていた添加量比例の複合則効果(143℃*6.7%)以上の加速する相乗効果(ハイブリッド効果)を発見し、ハイブリッド効果を持つ発明した。この樹脂は安価な素材から作られているため、ハイブリッド効果(品質向上)を得ながら、価格が安価となる。これにより産業上の利用が十分に考えられる。    We discovered an accelerating synergistic effect (hybrid effect) over the combined rule effect (143 ° C * 6.7%) proportional to the addition amount, which was previously impossible, and invented it with a hybrid effect. Since this resin is made of an inexpensive material, the price is low while obtaining a hybrid effect (quality improvement). As a result, industrial use is sufficiently conceivable.

pH2 酸性・アルカリ性の表示指標。
℃ 摂氏温度表示。
樹脂A 熱変形温度162℃、破断伸び3%、ノボラック・エステル系変性樹脂。
樹脂B 熱変形温度175℃、破断伸び2.5%、ノボラック・エステル系変性樹脂。
樹脂X 熱変形温度112℃、破断伸び9%、エポキシ・ウレタン・エステル変性樹脂。
樹脂Y 熱変形温度210℃、破断伸び2%、ノボラック・エステル変性樹脂。
樹脂Z 熱変形温度120℃、破断伸び12.8%、エポキシ・ウレタン・エステル変性樹脂。
pH2 An indicator for acidity and alkalinity.
℃ Celsius temperature display.
Resin A Thermal deformation temperature 162 ° C, elongation at break 3%, novolac ester modified resin.
Resin B Thermal deformation temperature 175 ° C, elongation at break 2.5%, novolak ester-based modified resin.
Resin X Thermal deformation temperature 112 ° C, elongation at break 9%, epoxy / urethane / ester modified resin.
Resin Y Heat deformation temperature 210 ° C, elongation at break 2%, novolak ester modified resin.
Resin Z Thermal deformation temperature 120 ℃, elongation at break 12.8%, epoxy / urethane / ester modified resin.

Claims (4)

FRP製油井管などに使用される熱硬化樹脂において、少なくとも必要十分な耐酸性を持つ異なる特性の2種類以上の樹脂を、例えばエポキシ基をエステル結合する低温高伸度特性を持つ変性ウレタン樹脂(エポキシ・ウレタン樹脂)と、例えば分子量が異なる同類の反応基を持つエポキシ基とエステル結合する高温低伸度特性を持つ変性ノボラック樹脂(エポキシ・ノボラック樹脂)など複数種を用いて、選択する条件が共通する反応基エポキシ基とエステル結合機能を持つが異なった特性と分子量、エポキシ基を持ち、さらに、例えば100℃でBPO系過酸化物など共通の触媒で少なくとも30分以内のできるだけ短時間硬化をして異なった分子が絡み合い状態で固化、さらに混合物が比重分離など生じないで互いの樹脂反応速度も同じとする条件で、均一体を保ち硬化反応を行うことができる条件によりブレンドした樹脂で、複合則の添加量比例支配以下となる一般特性に反する、少なくとも5%以上耐熱性能が向上し許容伸びがマイナス5%以上となるハイブリッド効果特性が得られる特徴を持つ樹脂と製造法。    In thermosetting resins used for FRP oil well pipes, etc., at least two kinds of resins having different and sufficient acid resistance, for example, modified urethane resins having low-temperature and high-elongation properties by ester-bonding epoxy groups ( Epoxy / urethane resin) and modified novolak resin (epoxy / novolak resin) with high temperature and low elongation properties that ester-bond with epoxy groups having similar reactive groups with different molecular weights. Although it has a common reactive group epoxy group and ester bond function but has different characteristics and molecular weight, epoxy group, and further, for example, at 100 ° C, it can be cured as short as possible within 30 minutes with a common catalyst such as BPO-based peroxide. As a result, different molecules solidify in an entangled state, and the mixture does not cause specific gravity separation and the resin reaction rate is the same. This is a resin blended under conditions that allow a curing reaction while maintaining a uniform body.Contrary to the general characteristics that are less than the proportional control of the addition amount of the composite rule, the heat resistance is improved by at least 5% and the allowable elongation is minus 5 Resin and production method with characteristics that can achieve hybrid effect characteristics of over%. ハイブリッド効果を得る樹脂にあって、ビニルエステル樹脂(ビスフェノール系・ノボラック系等を含む)、不飽和ポリエステル樹脂(イソフタル酸系・ビスフェノール系等を含む)、エポキシ樹脂(修飾構造を有するものを含む)、エポキシビニルエステル樹脂(ビスフェノール系・ノボラック系等を含む)・エポキシ変性樹脂(ポリイミド偏性、アクリル偏性樹脂)、等を少なくとも2種以上を同種反応系と反応速度を持ち、ブレンド分離が生じないハイブリッド効果が生じる目的で配合したことを特徴としたFRP成形用樹脂。    Resins that have a hybrid effect, including vinyl ester resins (including bisphenol and novolac), unsaturated polyester resins (including isophthalic acid and bisphenol), and epoxy resins (including those having a modified structure) , Epoxy vinyl ester resins (including bisphenol-based and novolak-based resins), epoxy-modified resins (polyimide-biased and acrylic-biased resins), etc. have a reaction rate with the same reaction system and blend separation occurs. A resin for molding FRP, characterized in that it is formulated for the purpose of producing no hybrid effect. 複数の樹脂を用いてハイブリッド効果成形製品を得るために、異なった樹脂は共通の反応基と、異なる分子量と、重合反応速度が同等で、適用反応触媒が同一で、混合材料の比重分離が生じず・相和性が保て、異種分子の混合状態を保持した状態で重合反応が速やかに完了、異種材料間のインターフェイス材(カップリング材)添加、など少なくともこれらの過半数以上の条件を適合させて生成した複合樹脂による成形製品    In order to obtain a hybrid effect molded product using multiple resins, different resins have the same reactive groups, different molecular weights, the same polymerization reaction rate, the same applied reaction catalyst, and the specific gravity separation of the mixed material occurs. The polymerization reaction is completed quickly while maintaining the compatibility and compatibility of different molecules, and the addition of interface materials (coupling materials) between different materials, etc. Molded products made of composite resin 複数の異なった分子量の共通の反応触媒使用可能なエポキシ基を持つエステル基本反応系樹脂においてのハイブリッド効果を得るための添加剤として、例えばシラン系カップリング剤を0.5部から1部添加し界面活性剤等の相溶化を図り、例えばBPOなど約20分以内に短時間中温で即硬化する触媒を0.5〜1.5部使用、触媒の効果促進が図れる例えばジメチルアニリンなど反応促進剤等を0.05〜0.3%硬化温度の反応速度調整に添加してなるハイブリッド樹脂とする添加剤の構成特徴を持つ樹脂。    As an additive for obtaining a hybrid effect in an ester basic reaction resin having an epoxy group that can use a plurality of common reaction catalysts having different molecular weights, for example, 0.5 to 1 part of a silane coupling agent is added to obtain surface activity. For example, 0.5-1.5 parts of a catalyst that quickly cures at medium temperature within a short time of about 20 minutes, such as BPO, can be used to promote the effect of the catalyst, such as dimethylaniline, 0.05-0.3%. A resin having a constitutional characteristic of an additive that is a hybrid resin added to adjust the reaction rate of the curing temperature.
JP2015124422A 2015-06-22 2015-06-22 Resin having hybrid characteristic improving thermal deformation temperature and breaking elongation Pending JP2017008187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015124422A JP2017008187A (en) 2015-06-22 2015-06-22 Resin having hybrid characteristic improving thermal deformation temperature and breaking elongation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015124422A JP2017008187A (en) 2015-06-22 2015-06-22 Resin having hybrid characteristic improving thermal deformation temperature and breaking elongation

Publications (1)

Publication Number Publication Date
JP2017008187A true JP2017008187A (en) 2017-01-12

Family

ID=57760945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015124422A Pending JP2017008187A (en) 2015-06-22 2015-06-22 Resin having hybrid characteristic improving thermal deformation temperature and breaking elongation

Country Status (1)

Country Link
JP (1) JP2017008187A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101940092B1 (en) 2018-03-22 2019-01-18 신준호 A portable menstrual cup sterilizer
US10584031B2 (en) 2016-03-08 2020-03-10 Sciocs Company Limited Nitride crystal substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10584031B2 (en) 2016-03-08 2020-03-10 Sciocs Company Limited Nitride crystal substrate
KR101940092B1 (en) 2018-03-22 2019-01-18 신준호 A portable menstrual cup sterilizer

Similar Documents

Publication Publication Date Title
TWI491683B (en) Graphene composite coating layer
Bozkurt et al. Effect of basalt fiber hybridization on the vibration‐damping behavior of carbon fiber/epoxy composites
CN106594413B (en) A kind of layer of structure resistant to corrosion rubber liner
CN108699321A (en) Strengthening and Toughening composition epoxy resin
CN106753131A (en) A kind of PVDF hyperfiltration membrane assemblies end-blocking epoxy radicals casting glue and preparation method thereof
CN102746621A (en) Low-viscosity epoxy resin system for rapid repair and reinforcement and preparation method of low-viscosity epoxy resin system
CN109486001A (en) A kind of corrosion-resistant MPP power cable protecting pipe material and preparation method thereof
CN106047254A (en) Epoxy sticky steel glue with high strength and high breaking elongation and preparation method of epoxy sticky steel glue
JP2017008187A (en) Resin having hybrid characteristic improving thermal deformation temperature and breaking elongation
CN102585746A (en) Metal wear resistant repairing composite coating material and preparation method of metal wear resistant repairing composite coating material
CN103865001A (en) Environment-friendly modified polyurethane chemical grouting material and preparation method thereof
CN103936927B (en) Response type asphalt mixture additive and compound, its preparation method and application
CN103965820A (en) High-strength underwater structure adhesive and preparation method thereof
Yong et al. The effects of polyamic acid on curing behavior, thermal stability, and mechanical properties of epoxy/DDS system
CN111040586A (en) Wear-resistant anticorrosive repair coating for circulating pump impeller
CN106052465A (en) Heat exchange plate for plate heat exchanger
CN100549115C (en) The oil-pipe coating of hydrogen sulfide corrosion resistant and manufacture method
CN104845482B (en) A kind of high adhesion force shock resistance corrosion-resistant machinery coating
CN107778774A (en) A kind of epoxy resin glued membrane and preparation method thereof
CN109232896A (en) A kind of epoxy resin toughener and its preparation method and application
CN112341908B (en) High-wear-resistance powder coating for gas well oil pipe
CN104559813B (en) A kind of dual curing adhesive that is applicable to ultra-low temperature surroundings and preparation method thereof
CN101899623A (en) Special impeller for high-pressure corrosion-resistant high-power mud pump
CN105949962A (en) Self-luminous epoxy resin liquid, preparation method of self-luminous epoxy resin liquid, self-luminous epoxy resin composite and self-luminous carbon fiber prepreg
CN104297101A (en) Mud density measurement instrument for well drilling and preparation method thereof