JP2017006008A - Antibody and antiserum against mers - Google Patents

Antibody and antiserum against mers Download PDF

Info

Publication number
JP2017006008A
JP2017006008A JP2015121638A JP2015121638A JP2017006008A JP 2017006008 A JP2017006008 A JP 2017006008A JP 2015121638 A JP2015121638 A JP 2015121638A JP 2015121638 A JP2015121638 A JP 2015121638A JP 2017006008 A JP2017006008 A JP 2017006008A
Authority
JP
Japan
Prior art keywords
mers
antibody
recombinant protein
antibodies
ostrich
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015121638A
Other languages
Japanese (ja)
Inventor
康浩 塚本
Yasuhiro Tsukamoto
康浩 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSTRICH PHARMA KK
Original Assignee
OSTRICH PHARMA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSTRICH PHARMA KK filed Critical OSTRICH PHARMA KK
Priority to JP2015121638A priority Critical patent/JP2017006008A/en
Publication of JP2017006008A publication Critical patent/JP2017006008A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide antibodies and antisera against MERS because those that can directly act on and prevent infection of MERS virus have not been developed yet.SOLUTION: The antibodies are obtained by a process for producing antibodies against MERS, the process comprising the steps of: incorporating a spike protein gene of MERS virus into a baculovirus vector to produce a recombinant protein in Bombyx mori cells; immunizing a female ostrich with the recombinant protein; and purifying IgYs from an egg laid by the immunized female ostrich. The antibodies thus obtained react well with the surface protein of MERS virus.SELECTED DRAWING: None

Description

本発明は、中東呼吸器症候群コロナウイルス(Middle East respiratory syndrome coronavirus:MERS−CoV)と反応する抗体および抗血清に関するものである。   The present invention relates to antibodies and antisera that react with Middle East respiratory syndrome coronavirus (MERS-CoV).

MERSは、2012年に初めて確認されたウイルス性の感染症である。主な症状は、発熱、咳、息切れなどである。2002年から2003年に発見されたSARS(Severe Acute Respiratory Syndrome:重症急性呼吸器症候群)と症状は似ている。しかし、SARSの感染後の死亡率が9%程度であるのに対し、MERSの死亡率は40〜50%と高く、危険な病気であるといえる。   MERS is a viral infection that was first identified in 2012. The main symptoms are fever, cough, shortness of breath. Symptoms are similar to SARS (Severe Accurate Respiratory Syndrome), which was discovered in 2002-2003. However, the mortality rate after infection with SARS is about 9%, whereas the mortality rate of MERS is as high as 40 to 50%, which can be said to be a dangerous disease.

MERSはMERSコロナウイルス(Middle East respiratory syndrome coronavirus:MERS−CoV)によって引き起こされるということがわかっている。しかし、MERSの感染メカニズムについては、まだまだ不明な点が多く、直接作用する医薬組成物もまだ得られているとは言えない。   MERS has been found to be caused by MERS coronavirus (MERS-CoV). However, there are still many unclear points regarding the mechanism of MERS infection, and it cannot be said that a pharmaceutical composition that directly acts has been obtained.

特許文献1は、生体に広く分布しているCD26の抗体の特定部分のアミノ酸配列を認識する抗モノクロナール抗体がMERS−CoVとCD26発現細胞との結合を阻害することで、MERSへの感染予防又は治療剤を提供する。   Patent Document 1 discloses that anti-monoclonal antibody that recognizes an amino acid sequence of a specific portion of a CD26 antibody widely distributed in a living body inhibits binding between MERS-CoV and a CD26-expressing cell, thereby preventing infection with MERS. Alternatively, a therapeutic agent is provided.

特開2015−054824号公報Japanese Patent Laying-Open No. 2015-054824

特許文献1は、マウスから得たモノクロナール抗体を感染予防又は治療剤として用いる。しかし、特許文献1のモノクロナール抗体は、MERS−CoVに直接結合するものではなく、また感染予防の直接実施例がないため、CD26の発現細胞とMERS−CoVの結合が阻害されたということを示すに留まる。   Patent Document 1 uses a monoclonal antibody obtained from a mouse as a preventive or therapeutic agent for infection. However, the monoclonal antibody of Patent Document 1 does not directly bind to MERS-CoV, and since there is no direct example for preventing infection, the binding between CD26-expressing cells and MERS-CoV was inhibited. Stay on show.

本発明は、MERS−CoVに直接作用し、宿主細胞との結合を阻害する抗体および抗血清を提供するものである。   The present invention provides antibodies and antisera that act directly on MERS-CoV and inhibit binding to host cells.

より具体的に本発明に係るMERS用抗体の製造方法は、
バキュロウイルスベクターにMERSウイルスのスパイク蛋白質遺伝子を組み込み、カイコ細胞でリコンビナント蛋白質を得る工程と、
前記リコンビナント蛋白質を雌ダチョウに免疫する工程と、
前記免疫された雌ダチョウが産卵した卵からIgYを精製する工程を含むことを特徴とする。
More specifically, the method for producing an antibody for MERS according to the present invention includes:
Incorporating a MERS virus spike protein gene into a baculovirus vector to obtain a recombinant protein in silkworm cells;
Immunizing female ostrich with the recombinant protein;
The method includes the step of purifying IgY from eggs laid by the immunized female ostrich.

また、本発明に係るMERS用抗血清の製造方法は、
バキュロウイルスベクターにMERSウイルスのスパイク蛋白質遺伝子を組み込み、カイコ細胞でリコンビナント蛋白質を得る工程と、
前記リコンビナント蛋白質を雌ダチョウに免疫する工程と、
前記免疫された雌ダチョウから抗血清を取得する工程を含むことを特徴とする。
In addition, the method for producing an antiserum for MERS according to the present invention includes:
Incorporating a MERS virus spike protein gene into a baculovirus vector to obtain a recombinant protein in silkworm cells;
Immunizing female ostrich with the recombinant protein;
The method includes obtaining antiserum from the immunized female ostrich.

本発明に係るMERS用抗体およびMERS用工血清の製造方法では、MERSウイルスのスパイク蛋白質だけをカイコ細胞で作製し、抗原として利用するので、得られた抗体には毒性が混入する心配がない。   In the method for producing the MERS antibody and the MERS engineered serum according to the present invention, only the MERS virus spike protein is produced in silkworm cells and used as an antigen, so there is no concern that the obtained antibody is toxic.

また、本発明に係るMERS用抗体およびMERS用工血清の製造方法で作製される抗体および抗血清は、ダチョウを使用するので、大量に産生することができる。また、ダチョウは、抗原に対して反応性が高い抗体を産生するので、医薬組成物の生産性が高くなる。   Moreover, since the antibody and antiserum produced with the manufacturing method of the antibody for MERS and the engineering serum for MERS which concern on this invention use an ostrich, they can be produced in large quantities. In addition, ostriches produce antibodies that are highly reactive with antigens, which increases the productivity of pharmaceutical compositions.

以下に本発明に係るMERS用医薬組成物の製造方法について実施例を示し説明を行う。なお、以下の説明は、本発明の一実施形態および一実施例を例示するものであり、本発明が以下の説明に限定されるものではない。以下の説明は本発明の趣旨を逸脱しない範囲で改変することができる。   Examples of the method for producing a pharmaceutical composition for MERS according to the present invention will be described below. The following description exemplifies an embodiment and an example of the present invention, and the present invention is not limited to the following description. The following description can be modified without departing from the spirit of the present invention.

<抗原>
バキュロウイルスベクターにMERSウイルス (HCoV−EMC/2012)のスパイク蛋白遺伝子(Met1−Trp1297))を組み込み、カイコ細胞(Sf9細胞)で作製したリコンビナント蛋白質を用いた。
<Antigen>
A spike protein gene (Met1-Trp1297) of MERS virus (HCoV-EMC / 2012) was incorporated into a baculovirus vector, and a recombinant protein produced in silkworm cells (Sf9 cells) was used.

<抗体作製方法>
成熟したメス鳥(ダチョウ、ニワトリ、ウズラ)を用いた。上記MERSスパイク蛋白液(蛋白量100μg)をフロイントの完全アジュバント0.2mLと混和し、ダチョウに初回免疫した。各抗原を個別に5羽のダチョウ、5羽のニワトリ、5羽のウズラに接種した。ダチョウもニワトリもウズラも同量の抗原を接種したことになる。
<Antibody production method>
Mature female birds (ostrich, chicken, quail) were used. The MERS spike protein solution (protein amount 100 μg) was mixed with 0.2 mL of Freund's complete adjuvant, and the ostrich was first immunized. Each antigen was individually inoculated into 5 ostriches, 5 chickens and 5 quails. Ostriches, chickens and quails have been vaccinated with the same amount of antigen.

初回免疫後、2週目と4週目に50μgの抗原とフロイントの不完全アジュバントの混和液を、各鳥に追加免疫した。初回免疫後8週目に得られた各鳥からの血清分離、および卵黄から卵黄抗体(IgY)を精製した。   After the first immunization, each bird was boosted with a mixture of 50 μg of antigen and Freund's incomplete adjuvant at 2 and 4 weeks. Serum separation from each bird obtained 8 weeks after the first immunization, and yolk antibody (IgY) was purified from the yolk.

<ELISA法>
得られた血清およびIgYのMERSスパイク蛋白対する反応性をELISAにより検証した。 96穴ELISAプレートの各穴にMERSスパイク蛋白(リコンビナント蛋白)をそれぞれ2μgを別々に固層化した(室温で4時間)。
<ELISA method>
The reactivity of the obtained serum and IgY to the MERS spike protein was verified by ELISA. 2 μg of MERS spike protein (recombinant protein) was separately solidified in each hole of the 96-well ELISA plate (4 hours at room temperature).

その後、ダチョウ抗体(各5羽のダチョウから得た卵黄からの抗体の混合物)、ニワトリ抗体(各5羽のニワトリから得た卵黄からの抗体の混合物)、ウズラ抗体(各5羽のウズラから得た卵黄からの抗体の混合物)の段階希釈液(血清は原液)(IgY原液は2mg/mL)を各穴に滴下し、室温で1時間反応させた。   Then ostrich antibody (mixture of antibodies from egg yolk obtained from each of five ostriches), chicken antibody (mixture of antibodies from egg yolk obtained from each of five chickens), quail antibody (obtained from five quail each) A mixture of antibodies from egg yolk) was added dropwise to each well (serum was a stock solution) (IgY stock solution was 2 mg / mL) and allowed to react at room temperature for 1 hour.

洗浄後、各抗体に対するHRP標識2次抗体を室温で1時間反応させた。十分な洗浄後、ペルオキシダーゼ用発色キット(S−Bio SUMILON)を用いてプレートリーダーにて吸光度(450nm)を測定した。免疫前の各鳥種の卵黄抗体の2倍以上の吸光度値を示す最大希釈倍率をELISA値として示した。表1に結果を示す。   After washing, an HRP-labeled secondary antibody for each antibody was reacted at room temperature for 1 hour. After sufficient washing, absorbance (450 nm) was measured with a plate reader using a peroxidase coloring kit (S-Bio SUMILON). The maximum dilution factor showing the absorbance value of 2 times or more of the yolk antibody of each bird species before immunization was shown as the ELISA value. Table 1 shows the results.

表1を参照して、MERSのスパイクタンパク質( リコンビナント蛋白)を免疫することにより、ダチョウ、ニワトリ、ウズラに高感度の抗血清および卵黄IgY抗体が作製されることが判明した。特に、各鳥種類には同量の抗原を免疫したのにもかかわらず、巨大なダチョウが最も反応性が高い抗体が産生されている。これは、少量の抗原でも高感度の抗体が産生できることを意味する。   Referring to Table 1, it was found that immunization with MERS spike protein (recombinant protein) produced highly sensitive antiserum and egg yolk IgY antibody in ostrich, chicken and quail. In particular, despite the immunization of the same amount of antigen in each bird species, the most reactive antibody is produced by the giant ostrich. This means that a highly sensitive antibody can be produced even with a small amount of antigen.

本発明に係る抗体および抗血清は、MERSの感染予防・治療薬(点鼻薬、ネブライザー液、注射薬)、MERSの感染予防用スプレー剤、MERSの感染予防用マスク、MERSの感染予防用エアコンフィルターおよび噴霧剤、MERSの感染予防防疫服、MERSの感染予防用の食品(キャンディーやガムなど)、MERSの診断薬に利用することができる。   The antibody and antiserum according to the present invention include MERS infection preventive / therapeutic drugs (nasal drops, nebulizer solution, injection), MERS infection preventive spray, MERS infection preventive mask, MERS infection preventive air conditioner filter Further, it can be used for sprays, MERS infection prevention and prevention clothing, MERS infection prevention foods (candy, gum, etc.), and MERS diagnostic agents.

Claims (2)

バキュロウイルスベクターにMERSウイルスのスパイク蛋白質遺伝子を組み込み、カイコ細胞でリコンビナント蛋白質を得る工程と、
前記リコンビナント蛋白質を雌ダチョウに免疫する工程と、
前記免疫された雌ダチョウが産卵した卵からIgYを精製する工程を含むことを特徴とするMERS用抗体の製造方法。
Incorporating a MERS virus spike protein gene into a baculovirus vector to obtain a recombinant protein in silkworm cells;
Immunizing female ostrich with the recombinant protein;
A method for producing an antibody for MERS, comprising the step of purifying IgY from an egg laid by the immunized female ostrich.
バキュロウイルスベクターにMERSウイルスのスパイク蛋白質遺伝子を組み込み、カイコ細胞でリコンビナント蛋白質を得る工程と、
前記リコンビナント蛋白質を雌ダチョウに免疫する工程と、
前記免疫された雌ダチョウから抗血清を取得する工程を含むことを特徴とするMERS用抗血清の製造方法。
Incorporating a MERS virus spike protein gene into a baculovirus vector to obtain a recombinant protein in silkworm cells;
Immunizing female ostrich with the recombinant protein;
A method for producing antiserum for MERS, comprising the step of obtaining antiserum from the immunized female ostrich.
JP2015121638A 2015-06-17 2015-06-17 Antibody and antiserum against mers Pending JP2017006008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015121638A JP2017006008A (en) 2015-06-17 2015-06-17 Antibody and antiserum against mers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015121638A JP2017006008A (en) 2015-06-17 2015-06-17 Antibody and antiserum against mers

Publications (1)

Publication Number Publication Date
JP2017006008A true JP2017006008A (en) 2017-01-12

Family

ID=57760309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015121638A Pending JP2017006008A (en) 2015-06-17 2015-06-17 Antibody and antiserum against mers

Country Status (1)

Country Link
JP (1) JP2017006008A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019087372A1 (en) * 2017-11-02 2019-05-09 オーストリッチファーマ株式会社 Ostrich antibody for bacterial infectious diseases
CN112625123A (en) * 2020-02-19 2021-04-09 南京蛋球球生物医学技术合伙企业(有限合伙) Yolk antibody for inhibiting new coronavirus SARS-CoV-2 and its preparation method and application
US11131672B1 (en) 2021-01-29 2021-09-28 King Abdulaziz University Method for detecting MERS-CoV in Camilidae
US11319382B1 (en) * 2021-06-28 2022-05-03 King Abdulaziz University Methods for producing and using IgY antibodies targeting the middle east respiratory syndrome coronavirus spike protein to treat or prevent MERS-CoV infection

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007026689A1 (en) * 2005-08-29 2007-03-08 Japan Science And Technology Agency Antibody produced using ostrich and method for production thereof
JP2009023985A (en) * 2007-01-11 2009-02-05 Osaka Prefecture Univ Method for producing antibody against influenza virus
JP2010013361A (en) * 2008-07-01 2010-01-21 Ostrich Pharma Kk Antibody for norovirus, and method for producing the same
WO2013027356A1 (en) * 2011-08-19 2013-02-28 オーストリッチファーマ株式会社 Antibody and antibody-containing composition
WO2015042373A1 (en) * 2013-09-19 2015-03-26 Novavax, Inc. Immunogenic middle east respiratory syndrome coronavirus (mers-cov) compositions and methods

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007026689A1 (en) * 2005-08-29 2007-03-08 Japan Science And Technology Agency Antibody produced using ostrich and method for production thereof
JP2009023985A (en) * 2007-01-11 2009-02-05 Osaka Prefecture Univ Method for producing antibody against influenza virus
JP2010013361A (en) * 2008-07-01 2010-01-21 Ostrich Pharma Kk Antibody for norovirus, and method for producing the same
WO2013027356A1 (en) * 2011-08-19 2013-02-28 オーストリッチファーマ株式会社 Antibody and antibody-containing composition
WO2015042373A1 (en) * 2013-09-19 2015-03-26 Novavax, Inc. Immunogenic middle east respiratory syndrome coronavirus (mers-cov) compositions and methods

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019087372A1 (en) * 2017-11-02 2019-05-09 オーストリッチファーマ株式会社 Ostrich antibody for bacterial infectious diseases
WO2019088230A1 (en) * 2017-11-02 2019-05-09 オーストリッチファーマ株式会社 Ostrich antibody for bacterial infectious diseases
CN112625123A (en) * 2020-02-19 2021-04-09 南京蛋球球生物医学技术合伙企业(有限合伙) Yolk antibody for inhibiting new coronavirus SARS-CoV-2 and its preparation method and application
US11131672B1 (en) 2021-01-29 2021-09-28 King Abdulaziz University Method for detecting MERS-CoV in Camilidae
US11307202B1 (en) 2021-01-29 2022-04-19 King Abdulaziz University Antibody binding detection method for detecting MERS-CoV
US11319382B1 (en) * 2021-06-28 2022-05-03 King Abdulaziz University Methods for producing and using IgY antibodies targeting the middle east respiratory syndrome coronavirus spike protein to treat or prevent MERS-CoV infection

Similar Documents

Publication Publication Date Title
Abbas et al. IgY antibodies for the immunoprophylaxis and therapy of respiratory infections
CN104602709B (en) Novel HA binding reagents
JP2017006008A (en) Antibody and antiserum against mers
CN112094341A (en) IgY neutralizing antibody for resisting novel coronavirus, and preparation method, preparation and application thereof
JP2020172497A (en) Ebola virus treating agents
JP2011020927A (en) Antibody produced from ostrich and filter using the same
Nurpeisova et al. Safety and immunogenicity of the first Kazakh inactivated vaccine for COVID-19
JP2019043937A (en) Method for producing influenza ha split vaccine
JP2013147471A (en) Aqueous solution of ostrich antibody
ES2670095T3 (en) Vaccines against Chlamydia
JP6498612B2 (en) ANTIBODY, COMPOSITION, AND PRODUCTION METHOD USING AN AGENT
JP2023541094A (en) improved coronavirus vaccine
EA030004B1 (en) Immunogenic peptide conjugate and method for inducing an anti-influenza therapeutic antibody response therewith
Sudjarwo et al. Purification and characterization protein of anti-dengue specific immunoglobulin Y for diagnostic kit of dengue
DE102011118015A1 (en) IgY composition for use in celiac disease
Lancaster The control of Newcastle disease
JP2016199511A (en) Production method of antibodies preventing infection of chickens
US20060153855A1 (en) Prevention and treatment of the porcine reproductive and respiratory syndrome (PRRS)
JP6482237B2 (en) Antibodies against tobacco extract
US20240218056A1 (en) Nucleocapsid-specific antibodies and methods for the treatment and prevention of sars-cov-2 infection therewith
Lee et al. Production of egg yolk antibodies specific to house dust mite proteins
US11319382B1 (en) Methods for producing and using IgY antibodies targeting the middle east respiratory syndrome coronavirus spike protein to treat or prevent MERS-CoV infection
JP2011231107A (en) Therapeutic drug of highly pathogenic avian influenza virus h5n1 infection aiming at endothelin receptor
ZA200103124B (en) A new composition and method for increasing production yield of agriculturally useful species.
Velázquez et al. Monoclonal antibody generated against Nile tilapia (Oreochromis niloticus) IgT heavy chain using a peptide-based strategy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190315

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190827

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191028

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200303