JP2017004997A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2017004997A
JP2017004997A JP2015114157A JP2015114157A JP2017004997A JP 2017004997 A JP2017004997 A JP 2017004997A JP 2015114157 A JP2015114157 A JP 2015114157A JP 2015114157 A JP2015114157 A JP 2015114157A JP 2017004997 A JP2017004997 A JP 2017004997A
Authority
JP
Japan
Prior art keywords
heat
semiconductor integrated
interposer
semiconductor device
integrated circuits
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015114157A
Other languages
Japanese (ja)
Inventor
伸治 中村
Shinji Nakamura
伸治 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2015114157A priority Critical patent/JP2017004997A/en
Publication of JP2017004997A publication Critical patent/JP2017004997A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve heat dissipation of a semiconductor integrated circuit positioned at an intermediate part of a lamination layer on a semiconductor device formed by laminating a plurality of semiconductor integrated circuits.SOLUTION: The semiconductor device includes: a plurality of semiconductor integrated circuits 102, 103, 105 and 106 including a through conductor; a substrate 101 including a through conductor, on which the plurality of semiconductor integrated circuits are laminated; and a heat dissipation member 104, including the through conductor, laminated between at least part of the laminated semiconductor integrated circuits.SELECTED DRAWING: Figure 1

Description

本発明は、半導体装置の三次元実装に関する。   The present invention relates to three-dimensional mounting of semiconductor devices.

近年、電子機器の小型化、高機能化、省電力化の要求が強まっている。この要求を受けて、LSIのパッケージングにおいては、PoP (Package on Package)技術により、複数の半導体集積回路を三次元実装した構造にして、半導体装置の高集積化を実現する。   In recent years, there has been an increasing demand for downsizing, high functionality, and power saving of electronic devices. In response to this request, in packaging of LSIs, a highly integrated semiconductor device is realized by forming a structure in which a plurality of semiconductor integrated circuits are three-dimensionally mounted using PoP (Package on Package) technology.

さらに、高密度に集積された三次元実装においては、半導体集積回路を貫通する配線が可能なTSV (Through Silicon Via)の利用により、回路の高集積化、高機能化、低消費電力化を図ることが可能となった。例えば、LSIの上にメモリや他のLSIを、垂直方向に、三次元実装することで、電子機器のPCB (Printed Circuit Board)を小型化することができる。さらに、半導体集積回路を貫通する配線により配線長が短縮され、信号速度の向上や寄生容量の軽減が可能になり、低消費電力化を図ることができる。   Furthermore, in high-density three-dimensional packaging, the use of TSV (Through Silicon Via), which allows wiring to penetrate the semiconductor integrated circuit, achieves higher circuit integration, higher functionality, and lower power consumption. It became possible. For example, a PCB (Printed Circuit Board) of an electronic device can be miniaturized by three-dimensionally mounting a memory or other LSI on the LSI in the vertical direction. Further, the wiring length is shortened by the wiring penetrating the semiconductor integrated circuit, the signal speed can be improved and the parasitic capacitance can be reduced, and the power consumption can be reduced.

一方、TSVを用いる三次元実装は、LSIなどの半導体集積回路の薄型化により、垂直方向の熱抵抗が従来の実装方法に比べて非常に低くなる。その結果、半導体集積回路を垂直方向に積層した三次元実装においては、上下に積まれた半導体集積回路がお互いに発熱の影響を受け易く、熱の影響を受けた半導体集積回路が誤動作する虞がある。   On the other hand, in the three-dimensional mounting using TSV, the thermal resistance in the vertical direction becomes very low compared to the conventional mounting method due to the thinning of the semiconductor integrated circuit such as LSI. As a result, in the three-dimensional mounting in which the semiconductor integrated circuits are stacked vertically, the semiconductor integrated circuits stacked one above the other are easily affected by heat generation, and the semiconductor integrated circuits affected by the heat may malfunction. is there.

そのため、三次元実装されたパッケージ上部にヒートシンクを配置して放熱性を向上したり、半導体集積回路の間に断熱材を配置して熱の影響を抑える技術が知られている(特許文献1参照)。   Therefore, a technology is known in which a heat sink is arranged on the top of a three-dimensionally mounted package to improve heat dissipation, or a heat insulating material is arranged between semiconductor integrated circuits to suppress the influence of heat (see Patent Document 1). ).

しかし、パッケージ上部にヒートシンクを配置する技術や、半導体集積回路の間に断熱材を配置する技術は、半導体集積回路がさらに薄型化すると、積層の中間部に配置された半導体集積回路の熱が充分に拡散されない可能性がある。言い替えれば、複数の半導体集積回路を積層した三次元実装においては、積層の中間部に位置する半導体集積回路の放熱性を向上して、熱による半導体集積回路の誤動作を防ぐ必要がある。   However, the technology of arranging a heat sink on the top of the package and the technology of arranging a heat insulating material between the semiconductor integrated circuits, when the semiconductor integrated circuit is further thinned, the heat of the semiconductor integrated circuit arranged in the middle part of the stack is sufficient. May not be spread. In other words, in the three-dimensional mounting in which a plurality of semiconductor integrated circuits are stacked, it is necessary to improve the heat dissipation of the semiconductor integrated circuit located in the middle of the stack and prevent malfunction of the semiconductor integrated circuit due to heat.

特開2005-347390号公報JP 2005-347390 A

本発明は、複数の半導体集積回路が積層される半導体装置において、積層の中間部に位置する半導体集積回路の放熱性を向上することを目的とする。   An object of the present invention is to improve heat dissipation of a semiconductor integrated circuit located in an intermediate portion of a stacked layer in a semiconductor device in which a plurality of semiconductor integrated circuits are stacked.

本発明は、前記の目的を達成する一手段として、以下の構成を備える。   The present invention has the following configuration as one means for achieving the above object.

本発明にかかる半導体装置は、貫通導体を備える複数の半導体集積回路と、貫通導体を備え、前記複数の半導体集積回路が積層される基板と、貫通導体を備え、前記積層された半導体集積回路の少なくとも一部の間に積層される放熱部材とを有する。   A semiconductor device according to the present invention includes a plurality of semiconductor integrated circuits including through conductors, a substrate including through conductors on which the plurality of semiconductor integrated circuits are stacked, a through conductor, and the stacked semiconductor integrated circuits. And a heat dissipating member laminated between at least a part.

本発明によれば、複数の半導体集積回路が積層される半導体装置において、積層の中間部に位置する半導体集積回路の放熱性を向上することができる。   ADVANTAGE OF THE INVENTION According to this invention, the heat dissipation of the semiconductor integrated circuit located in the intermediate part of a lamination | stacking can be improved in the semiconductor device by which a several semiconductor integrated circuit is laminated | stacked.

実施例の半導体装置の構成例を示す図。FIG. 6 illustrates a configuration example of a semiconductor device according to an embodiment. 放熱用インターポーザを熱伝達層側から観察した一例を示す図。The figure which shows an example which observed the interposer for thermal radiation from the heat-transfer layer side. 半導体集積回路で発生した熱の放熱経路を説明する図。3A and 3B illustrate a heat dissipation path for heat generated in a semiconductor integrated circuit.

以下、本発明にかかる実施例の半導体装置を図面を参照して詳細に説明する。なお、実施例は特許請求の範囲にかかる本発明を限定するものではなく、また、実施例において説明する構成の組み合わせのすべてが本発明の解決手段に必須とは限らない。   DESCRIPTION OF EMBODIMENTS Hereinafter, a semiconductor device according to an embodiment of the present invention will be described in detail with reference to the drawings. In addition, an Example does not limit this invention concerning a claim, and all the combinations of the structure demonstrated in an Example are not necessarily essential for the solution means of this invention.

[半導体装置の構成]
以下では、LSIやメモリなどの四つの半導体集積回路と、放熱部材であるインターポーザ(以下、放熱用インターボーザ)を積層した半導体装置を例に実施例を説明する。図1により実施例の半導体装置の構成例を示す。
[Configuration of semiconductor device]
Hereinafter, an embodiment will be described by taking as an example a semiconductor device in which four semiconductor integrated circuits such as an LSI and a memory and an interposer (hereinafter referred to as a heat dissipation interposer) as a heat dissipation member are stacked. FIG. 1 shows a configuration example of the semiconductor device of the embodiment.

実施例の半導体装置は、PCBとの接続側(以下、下側)から、モジュール基板101、LSI102、メモリ103、放熱用インターポーザ104、メモリ105、メモリ106を順に積層した構造を有する。つまり、モジュール基板101上にLSI102とメモリ103を積層し、放熱用インターポーザ104を挟んで、さらにメモリ105とメモリ106を積層した構成を有する。   The semiconductor device of the embodiment has a structure in which a module substrate 101, an LSI 102, a memory 103, a heat dissipating interposer 104, a memory 105, and a memory 106 are stacked in this order from the side connected to the PCB (hereinafter referred to as the lower side). In other words, the LSI 102 and the memory 103 are stacked on the module substrate 101, and the memory 105 and the memory 106 are further stacked with the heat dissipating interposer 104 interposed therebetween.

モジュール基板101は、貫通導体であるビア101aと、接続部であるモジュールバンプ112を介してLSI102に接続される。また、モジュール基板101は熱伝達層101bを有し、熱伝達層101bはビア101aとモジュールボール111を介してPCBのグラウンド電位に接続される。   The module substrate 101 is connected to the LSI 102 via vias 101a that are through conductors and module bumps 112 that are connection portions. Further, the module substrate 101 has a heat transfer layer 101b, and the heat transfer layer 101b is connected to the ground potential of the PCB through the via 101a and the module ball 111.

LSI102、メモリ103、放熱用インターポーザ104、メモリ105、メモリ106の間は、それら自体の貫通導体であるTSV102a、103a、104a、105a、106aと、接続部であるマイクロバンプ113を介して相互に接続される。なお、TSV構造の半導体集積回路を積層し、熱を伝達することができれば、デバイス間の接続にはマイクロバンプ113以外を用いてもよい。   The LSI 102, the memory 103, the heat dissipating interposer 104, the memory 105, and the memory 106 are connected to each other through TSVs 102a, 103a, 104a, 105a, and 106a that are their own through conductors, and micro bumps 113 that are connection portions. Is done. Note that other than the micro bumps 113 may be used for connection between devices as long as semiconductor integrated circuits having a TSV structure can be stacked and heat can be transferred.

放熱用インターポーザ104は、ベース部材104bとベース部材104bの少なくとも一面に配置された熱伝導層を有す。効率的な放熱にはベース部材104bの両面に熱伝導層を配置することが望ましく、図1の例は、ベース部材104bの表面に配置された熱伝達層104cと、ベース部材104bの裏面に配置された熱伝達層104dを示す。熱伝達層104c、104dは、ベース部材104aを貫通するTSV104aによって接続される。   The heat dissipating interposer 104 has a base member 104b and a heat conductive layer disposed on at least one surface of the base member 104b. For efficient heat dissipation, it is desirable to dispose heat conductive layers on both sides of the base member 104b. The example of FIG. 1 is arranged on the heat transfer layer 104c disposed on the surface of the base member 104b and on the back surface of the base member 104b. A heat transfer layer 104d is shown. The heat transfer layers 104c and 104d are connected by a TSV 104a penetrating the base member 104a.

モジュール基板101の熱伝達層101b、および、放熱用インターポーザ104の熱伝達層104c、104dは、熱伝導性が良好な物質で形成すればよく、例えば、銅などの金属が好適に用いられる。また、放熱用インターポーザ104のベース部材104bは、絶縁物であればよいが、例えば、半導体集積回路の基板と同様にシリコンなどが好適に用いられる。   The heat transfer layer 101b of the module substrate 101 and the heat transfer layers 104c and 104d of the heat dissipating interposer 104 may be formed of a material having good thermal conductivity. For example, a metal such as copper is preferably used. Further, the base member 104b of the heat dissipating interposer 104 may be an insulating material, but for example, silicon or the like is preferably used in the same manner as the substrate of the semiconductor integrated circuit.

[放熱用インターポーザ]
図2により放熱用インターポーザ104を熱伝達層104c側から観察した一例を示す。熱伝達層104cは、放熱用インターポーザ104の内側および外側の四辺に配置された、黒丸で示す接地用TSV104aと接続されている。一方、放熱用インターポーザ104の内側に配置された、白丸で示す信号用TSV104aは、熱伝達層104cから分離され、熱伝達層104cには接続されていない。また、放熱用インターポーザ104を熱伝達層104d側から観察した場合も同様である。なお、図2には信号用TSV104aの周囲の絶縁領域を矩形で示すが、当該絶縁領域は円形などでもよい。
[Interposer for heat dissipation]
FIG. 2 shows an example in which the heat dissipating interposer 104 is observed from the heat transfer layer 104c side. The heat transfer layer 104c is connected to the grounding TSV 104a indicated by black circles disposed on the inner and outer four sides of the heat dissipating interposer 104. On the other hand, the signal TSV 104a indicated by white circles arranged inside the heat dissipation interposer 104 is separated from the heat transfer layer 104c and is not connected to the heat transfer layer 104c. The same applies to the case where the heat dissipating interposer 104 is observed from the heat transfer layer 104d side. In FIG. 2, although the insulating region around the signal TSV 104a is shown as a rectangle, the insulating region may be circular.

放熱用インターポーザ104の面積は、半導体集積回路の面積より大きく、モジュール基板101の面積以下であればよく、とくに制限はない。例えば、LSIやメモリが9mm角の場合、放熱用インターポーザ104が18mm角、モジュール基板101が18mm角などである。メモリ105は、放熱用インターポーザ104の中央部に積層され、図2において一点鎖線の矩形は、放熱用インターポーザ104上に積層されるメモリ105の位置を示す。   The area of the heat dissipating interposer 104 may be larger than the area of the semiconductor integrated circuit and smaller than the area of the module substrate 101, and is not particularly limited. For example, when the LSI and the memory are 9 mm square, the heat dissipating interposer 104 is 18 mm square, the module substrate 101 is 18 mm square, and the like. The memory 105 is stacked at the center of the heat dissipating interposer 104. In FIG. 2, the dashed-dotted rectangle indicates the position of the memory 105 stacked on the heat dissipating interposer 104.

[放熱経路]
半導体集積回路の熱抵抗は、一般に、半導体集積回路の厚さ方向に小さく、半導体集積回路の面方向に大きい。従って、厚さ方向に熱を逃すことができない場合、半導体集積回路内に熱が籠もり、半導体集積回路の温度が上昇する。
[Heat dissipation path]
The thermal resistance of a semiconductor integrated circuit is generally small in the thickness direction of the semiconductor integrated circuit and large in the surface direction of the semiconductor integrated circuit. Accordingly, when heat cannot be released in the thickness direction, heat is trapped in the semiconductor integrated circuit, and the temperature of the semiconductor integrated circuit rises.

図3により半導体集積回路で発生した熱の放熱経路を説明する。図3はLSI102、メモリ103、メモリ105、メモリ106が同時に動作した場合の主な放熱経路を示す。   A heat dissipation path of heat generated in the semiconductor integrated circuit will be described with reference to FIG. FIG. 3 shows main heat dissipation paths when the LSI 102, the memory 103, the memory 105, and the memory 106 operate simultaneously.

LSI102の熱は、上方に発熱源としてメモリ103が存在するため、主に、モジュールバンプ112→ビア101a→熱伝達層101bの経路によりモジュール基板101に達する。モジュール基板101に到達した熱は、モジュール基板101から直接周囲へ拡散するとともに、モジュールボール111を介してPCBへ伝達する。   The heat of the LSI 102 reaches the module substrate 101 mainly through the path of the module bump 112 → the via 101a → the heat transfer layer 101b because the memory 103 exists as a heat source above. The heat that has reached the module substrate 101 diffuses directly from the module substrate 101 to the surroundings and is transmitted to the PCB via the module ball 111.

メモリ103の熱は、下方に発熱源としてLSI102が存在するため、主に、上方のマイクロバンプ113→熱伝達層104dの経路により放熱用インターポーザ104に到達する。放熱用インターポーザ104に到達した熱は、放熱用インターポーザ104から直接周囲へ拡散する。   The heat of the memory 103 reaches the heat dissipating interposer 104 mainly through the path of the upper micro bump 113 → the heat transfer layer 104d because the LSI 102 exists as a heat source below. The heat reaching the heat dissipating interposer 104 is diffused directly from the heat dissipating interposer 104 to the surroundings.

メモリ105の熱は、上方に発熱源としてメモリ106が存在するため、主に、下方のマイクロバンプ113→熱伝達層104cの経路により放熱用インターポーザ104に到達する。放熱用インターポーザ104に到達した熱は、放熱用インターポーザ104から直接周囲へ拡散する。   The heat of the memory 105 reaches the heat dissipating interposer 104 mainly through the path from the lower micro bump 113 to the heat transfer layer 104c because the memory 106 exists as a heat source above. The heat reaching the heat dissipating interposer 104 is diffused directly from the heat dissipating interposer 104 to the surroundings.

メモリ106の熱は、下方に発熱源としてメモリ105が存在するため、主に、メモリ106の上面から直接周囲へ拡散する。また、必要があれば、メモリ106の上面(積層の最上部)に、放熱用として、図示しないヒートシンクや放熱用インターポーザ104と同等の放熱用インターポーザを積層することができる。   The heat of the memory 106 is diffused directly from the upper surface of the memory 106 to the surroundings because the memory 105 exists as a heat source below. If necessary, a heat dissipating interposer equivalent to a heat sink or a heat dissipating interposer 104 (not shown) can be stacked on the upper surface (the uppermost part of the stack) of the memory 106 for heat dissipation.

●放熱用インターポーザの作用
メモリ103、105の間に放熱用インターポーザ104がなく、すべての半導体集積回路が動作して発熱する場合、上下に発熱源(メモリ106とLSI102)が存在するメモリ103、105の熱は、主に、それらの側面から周囲へ拡散することになる。この場合の放熱経路は、メモリ103、105の内部の熱抵抗が比較的高い面方向になり、放熱が難しい。さらに、上下の発熱源(メモリ106とLSI102)からの熱伝達もあり、積層の中間部に配置されたメモリ103、105の温度上昇が大きくなる。
● Effect of heat dissipation interposer When there is no heat dissipation interposer 104 between the memories 103 and 105 and all the semiconductor integrated circuits operate and generate heat, the memories 103 and 105 in which the heat sources (memory 106 and LSI102) exist above and below This heat will mainly diffuse from their sides to the surroundings. In this case, the heat dissipation path is in a plane direction in which the thermal resistance inside the memories 103 and 105 is relatively high, and heat dissipation is difficult. In addition, there is heat transfer from the upper and lower heat sources (memory 106 and LSI 102), and the temperature rise of the memories 103 and 105 arranged in the middle of the stack increases.

その結果、放熱用インターポーザ104がある場合に比べて、半導体装置の温度上昇は大きくなり、各半導体集積回路の温度上昇の差分も大きくなる。つまり、LSI102やメモリ106の温度上昇に比べてメモリ103、105の温度上昇が大きい。   As a result, the temperature rise of the semiconductor device is larger than when the heat dissipating interposer 104 is provided, and the difference in the temperature rise of each semiconductor integrated circuit is also increased. That is, the temperature rise of the memories 103 and 105 is larger than the temperature rise of the LSI 102 and the memory 106.

信号路の抵抗値の増加は温度上昇に比例し、抵抗値が高いほど電流が流れ難くなるため、信号の立ち上がりや立ち下がりが遅くなる。つまり、メモリ間に温度差があると、信号路の抵抗値が異なり、メモリ間において、信号の立ち上り時間の差や立ち下り時間の差が生じて、誤動作の原因になる。   The increase in the resistance value of the signal path is proportional to the temperature rise, and the higher the resistance value, the more difficult the current flows, so that the rise and fall of the signal is delayed. That is, if there is a temperature difference between the memories, the resistance value of the signal path is different, and a difference in signal rise time or fall time occurs between the memories, causing malfunction.

一方、実施例の半導体装置においては、積層の中間部に配置されたメモリ103、105の熱は、放熱用インターポーザ104を介して周囲に拡散することができる。この場合の放熱経路は、メモリ103、105の内部の熱抵抗が比較的低い厚さ方向になり、放熱が容易である。その結果、メモリ間に温度差が抑制され、信号の立ち上り時間の差や立ち下り時間の差に起因する誤動作を防ぐことができる。   On the other hand, in the semiconductor device of the embodiment, the heat of the memories 103 and 105 arranged in the intermediate portion of the stack can be diffused to the surroundings through the heat dissipating interposer 104. In this case, the heat dissipation path is in the thickness direction where the internal thermal resistance of the memories 103 and 105 is relatively low, and heat dissipation is easy. As a result, a temperature difference between the memories is suppressed, and a malfunction caused by a difference in signal rise time or a fall time can be prevented.

なお、上記では、半導体集積回路を四つ、放熱用インターポーザを一つ積層する構成例を説明した。放熱用インターポーザは、各半導体集積回路の発熱量に応じて、複数の半導体集積回路の少なくとも一部の間に積層されていればよく、半導体集積回路の数、放熱用インターポーザの数、積層の順に制限はない。勿論、発熱量が大きい半導体集積回路を二つの放熱用インターポーザで挟んだり、放熱用インターポーザを二つ以上重ねて使用してもよい。   In the above description, the configuration example in which four semiconductor integrated circuits and one heat dissipating interposer are stacked has been described. The heat dissipating interposer only needs to be stacked between at least some of the plurality of semiconductor integrated circuits in accordance with the amount of heat generated by each semiconductor integrated circuit. The number of semiconductor integrated circuits, the number of heat dissipating interposers, and the order of stacking There is no limit. Of course, a semiconductor integrated circuit that generates a large amount of heat may be sandwiched between two heat dissipating interposers, or two or more heat dissipating interposers may be stacked.

このように、複数の半導体集積回路を積層した三次元実装において、積層の中間部に位置する半導体集積回路の放熱性を向上して、熱による半導体集積回路の誤動作を防ぐことができる。   As described above, in the three-dimensional mounting in which a plurality of semiconductor integrated circuits are stacked, the heat dissipation of the semiconductor integrated circuit located in the middle of the stack can be improved, and malfunction of the semiconductor integrated circuit due to heat can be prevented.

101 … モジュール基板、102、103、105、106 … 半導体集積回路、104 … 放熱用インターボーザ   101… module substrate, 102, 103, 105, 106… semiconductor integrated circuit, 104… heat dissipation interposer

Claims (7)

貫通導体を備える複数の半導体集積回路と、
貫通導体を備え、前記複数の半導体集積回路が積層される基板と、
貫通導体を備え、前記積層された半導体集積回路の少なくとも一部の間に積層される放熱部材とを有する半導体装置。
A plurality of semiconductor integrated circuits comprising through conductors;
A substrate including a through conductor, on which the plurality of semiconductor integrated circuits are stacked;
A semiconductor device comprising a through conductor and a heat dissipation member laminated between at least a part of the laminated semiconductor integrated circuits.
前記放熱部材は、少なくとも、その一面に前記貫通導体に接続された熱伝導層を有する請求項1に記載された半導体装置。   2. The semiconductor device according to claim 1, wherein the heat radiating member has a heat conductive layer connected to the through conductor on at least one surface thereof. 前記放熱部材の熱伝導層は接地される請求項2に記載された半導体装置。   3. The semiconductor device according to claim 2, wherein the heat conductive layer of the heat radiating member is grounded. 前記放熱部材は、前記基板の面積以下、かつ、前記半導体集積回路の面積よりも広い面積を有する請求項1から請求項3の何れか一項に記載された半導体装置。   4. The semiconductor device according to claim 1, wherein the heat dissipation member has an area that is equal to or smaller than an area of the substrate and larger than an area of the semiconductor integrated circuit. 前記基板は、前記貫通導体に接続された熱伝導層を有する請求項1から請求項4の何れか一項に記載された半導体装置。   5. The semiconductor device according to claim 1, wherein the substrate has a heat conductive layer connected to the through conductor. 前記基板の熱伝導層は接地される請求項5に記載された半導体装置。   6. The semiconductor device according to claim 5, wherein the heat conductive layer of the substrate is grounded. さらに、前記積層の最上部にヒートシンクまたは前記放熱部材を有する請求項1から請求項6の何れか一項に記載された半導体装置。   7. The semiconductor device according to claim 1, further comprising a heat sink or the heat radiating member at an uppermost portion of the stack.
JP2015114157A 2015-06-04 2015-06-04 Semiconductor device Pending JP2017004997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015114157A JP2017004997A (en) 2015-06-04 2015-06-04 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015114157A JP2017004997A (en) 2015-06-04 2015-06-04 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2017004997A true JP2017004997A (en) 2017-01-05

Family

ID=57754619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015114157A Pending JP2017004997A (en) 2015-06-04 2015-06-04 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2017004997A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018115114A (en) * 2017-01-16 2018-07-26 フマキラー株式会社 Insecticidal aerosol product
JP2018115112A (en) * 2017-01-16 2018-07-26 フマキラー株式会社 Insecticidal aerosol product

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018115114A (en) * 2017-01-16 2018-07-26 フマキラー株式会社 Insecticidal aerosol product
JP2018115112A (en) * 2017-01-16 2018-07-26 フマキラー株式会社 Insecticidal aerosol product

Similar Documents

Publication Publication Date Title
US11037852B2 (en) 3DIC packaging with hot spot thermal management features
JP6584258B2 (en) Semiconductor package
US10290620B2 (en) Package with SoC and integrated memory
US9129929B2 (en) Thermal package with heat slug for die stacks
US10211123B2 (en) Semiconductor memory device and a chip stack package having the same
KR20130007049A (en) Package on package using through silicon via technique
JP2002176137A (en) Laminated semiconductor device
KR20190094542A (en) Semiconductor package
US9443815B2 (en) Embedded die redistribution layers for active device
EP3028547B1 (en) Electronic module
US9530714B2 (en) Low-profile chip package with modified heat spreader
US11152333B2 (en) Semiconductor device packages with enhanced heat management and related systems
US20210118863A1 (en) Semiconductor apparatus
JP2017004997A (en) Semiconductor device
US9917066B2 (en) Semiconductor device having stacked chips, a re-distribution layer, and penetration electrodes
JP2006324646A (en) Module substrate
TWI525787B (en) Thermally-enhanced package of chip 3d-stack cube
JP2010245269A (en) Semiconductor device
KR101153222B1 (en) Stacked chip package, semiconductor module including the same and method of manufacturing stacked chip package
JP2020167181A (en) Electronic apparatus
KR20160010968A (en) Package of semiconductor and method for manufacturing the same
US8890303B2 (en) Three-dimensional integrated circuit
US10679919B2 (en) High thermal release interposer
JP2020088213A (en) Semiconductor package
JP2019075423A (en) Semiconductor device