JP2017003693A - Optical communication connector and optical communication harness - Google Patents

Optical communication connector and optical communication harness Download PDF

Info

Publication number
JP2017003693A
JP2017003693A JP2015115717A JP2015115717A JP2017003693A JP 2017003693 A JP2017003693 A JP 2017003693A JP 2015115717 A JP2015115717 A JP 2015115717A JP 2015115717 A JP2015115717 A JP 2015115717A JP 2017003693 A JP2017003693 A JP 2017003693A
Authority
JP
Japan
Prior art keywords
optical communication
bottom plate
communication connector
optical fiber
holding member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015115717A
Other languages
Japanese (ja)
Inventor
勇人 柚木
Isato Yunoki
勇人 柚木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Wiring Systems Ltd, AutoNetworks Technologies Ltd, Sumitomo Electric Industries Ltd filed Critical Sumitomo Wiring Systems Ltd
Priority to JP2015115717A priority Critical patent/JP2017003693A/en
Publication of JP2017003693A publication Critical patent/JP2017003693A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Coupling Of Light Guides (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical communication connector capable of suppressing an increase in propagation loss, avoiding occurrence of change in propagation mode, and reducing generation of optical noise by suppressing wraparound of light at butt-joints of optical fibers, and to provide an optical communication harness having the same.SOLUTION: An optical communication connector 1a is for connecting a plurality of plastic optical fiber cables 2 together by placing end faces of optical fibers 21 of one plastic optical fiber cable face-to-face with those of another, and comprises a clamp 11 consisting of a pair of halved tubular members 12 for linearly clamping an end of a plastic optical fiber cable 2 having optical fibers with exposed end faces, and a tubular holding member 10a for holding the fitted clamp 11 inside. The tubular members 12 each has a bottom plate 14, which covers an opening at one end, with a plurality of cutout portions 141, provided on a halved side of the bottom plate 14, obtained by cutting away semicircular portions of a size corresponding to a diameter of the plurality of optical fibers 21, and a protrusion 17 formed between the plurality of cutout portions 141 on an outer surface of the bottom plate 14.SELECTED DRAWING: Figure 1

Description

本発明は、プラスチック光ファイバ同士を接続するコネクタに関し、コネクタにおける伝搬損失及び伝搬モード変化を抑制し、更にコネクタ部に発生するノイズを抑制することができる光通信コネクタ及び光通信ハーネスに関する。   The present invention relates to a connector for connecting plastic optical fibers, and more particularly to an optical communication connector and an optical communication harness capable of suppressing propagation loss and propagation mode change in the connector and further suppressing noise generated in the connector portion.

車載LAN(Local Area Network)の分野においては、システム全体での機能の増大化要求に応えるべく、データ通信量の増加及び通信の高速化が求められている。更に車載LANの分野では、メタル通信におけるリンギング防止、EV(Electronic Vehicle)車両、HEV(Hybrid EV )車両における高電圧ケーブルとの間での電磁ノイズの抑制のため、これらの影響を受けない通信が求められている。これらの高速化及びノイズ排除を実現し得る光ファイバケーブルを用いた光通信の需要が増大している。   In the field of in-vehicle LAN (Local Area Network), an increase in the amount of data communication and an increase in communication speed are required in order to meet the demand for an increase in the functions of the entire system. Furthermore, in the field of in-vehicle LAN, in order to prevent ringing in metal communication, and to suppress electromagnetic noise between high voltage cables in EV (Electronic Vehicle) vehicles and HEV (Hybrid EV) vehicles, there is communication that is not affected by these. It has been demanded. There is an increasing demand for optical communication using an optical fiber cable capable of realizing such high speed and noise elimination.

車載LANの分野において光通信は、MOST(Media Oriented Systems Transport)通信で利用されている。MOST通信では、屈曲に強く軽量なプラスチック光ファイバ(以下、POF(Plastic Optical Fiber ))を使用したPOFケーブルが用いられており、更に上り下りでの長さを揃えるために2心POFケーブルが多用されている(IDB-1394)。また車載LANに利用されるため、POFのコア及びクラッドからなる心線には、構造が単純な短距離用のステップインデックス型ファイバが多用されている。このようなPOF固有の伝送帯域は限られており、NA(Numerical Aperture:開口数)を調整したとしても130MHz で100m程度の通信距離が限度である。しかも、130MHz で100mの通信距離を保証するには、POFケーブルの屈曲を可及的に少なくすることが必要である。屈曲部分では光が臨界角を超えてクラッドに突入し易くなって光の伝搬損失が増大すると共に、反射角度のずれによってコア内を進行する光の伝搬モードが高次側へ変化し易くなり、これによって広帯域光通信の実現が困難となるためである。   In the field of in-vehicle LAN, optical communication is used in MOST (Media Oriented Systems Transport) communication. In MOST communication, a POF cable using a plastic optical fiber (hereinafter referred to as POF (Plastic Optical Fiber)) that is strong against bending and light is used. (IDB-1394). In addition, since it is used for an in-vehicle LAN, a short-distance step index type fiber having a simple structure is frequently used for a core wire composed of a POF core and a clad. Such a transmission band unique to POF is limited, and even if NA (Numerical Aperture) is adjusted, a communication distance of about 100 m at 130 MHz is the limit. Moreover, in order to guarantee a communication distance of 100 m at 130 MHz, it is necessary to reduce the bending of the POF cable as much as possible. At the bent part, light easily enters the cladding beyond the critical angle and the propagation loss of light increases, and the propagation mode of light traveling in the core easily changes to the higher order side due to the deviation of the reflection angle, This is because it is difficult to realize broadband optical communication.

車両内に長い距離のPOFケーブルを屈曲させることなく配策することは困難である。車載LANにおけるPOFケーブルは、短距離のケーブルを複数直列に接続させ、メタルワイヤハーネスと同様に扱うことが可能な構成が求められている。   It is difficult to route a long distance POF cable without bending it in the vehicle. A POF cable in an in-vehicle LAN is required to have a configuration in which a plurality of short-distance cables are connected in series and can be handled in the same manner as a metal wire harness.

複数のPOFケーブルを直列に接続するためには、心線の端面同士を同軸に突き合わせるための光通信コネクタが使用される。ただし従来の車載LANにて2心POFケーブル(又は2本のPOFケーブル)を接続させる光通信コネクタは、コネクタ内で2心線間が所定距離で離隔されるように、2心POFケーブルの被覆を2つの心線の間で分岐させて、心線を夫々屈曲させる構成とされていた(特許文献1)。これは、光通信コネクタはPOFケーブル間を接続する中継用に使用する場合と、光トランシーバ(光電変換装置)へ接続するために使用する場合とで共通の構成としているためである。光トランシーバへ接続するためには、光トランシーバ内での光の廻りこみを防止すべく所定の距離を隔てて設けられている送信用コア(LED(Light Emitting Diode)及び駆動回路等)、並びに、受信用コア(PD(Photo Diode)及び増幅回路等)夫々に心線が向かうように2つの心線を前記所定の距離、即ちコア間ピッチで離隔させることが必要である。   In order to connect a plurality of POF cables in series, an optical communication connector for coaxially butting the end faces of the core wires is used. However, an optical communication connector for connecting a two-fiber POF cable (or two POF cables) in a conventional in-vehicle LAN covers the two-fiber POF cable so that the two fibers are separated from each other by a predetermined distance within the connector. Has been configured to bend between the two core wires and bend each of the core wires (Patent Document 1). This is because the optical communication connector has a common configuration when used for relaying between POF cables and when used for connecting to an optical transceiver (photoelectric conversion device). In order to connect to the optical transceiver, a transmission core (LED (Light Emitting Diode) and a drive circuit, etc.) provided at a predetermined distance to prevent the light from passing around in the optical transceiver, and It is necessary to separate the two core wires at the predetermined distance, that is, the pitch between the cores so that the core wires are directed to the receiving cores (PD (Photo Diode), amplifier circuit, etc.).

特許文献1等に開示されている光通信コネクタを中継用に使用する場合、対になるプラグ型及びソケット型の光通信コネクタ夫々にて心線に屈曲部分が存在するので、伝搬損失の増大及び伝搬モードの変化が顕著になる。2心POFケーブルを3本以上直列に接続させるには、多くの光通信コネクタを使用する必要があり、伝搬損失の増大及び伝搬モードの変化がより顕著になって高速大容量通信を実現することが困難である。したがって、従来の光通信コネクタを中継用に使用する光通信ハーネスでは、光通信コネクタの数に上限が設けられていた。   When the optical communication connector disclosed in Patent Document 1 or the like is used for relaying, since there is a bent portion in the core wire in each of the plug-type and socket-type optical communication connectors to be paired, an increase in propagation loss and The change of the propagation mode becomes remarkable. To connect three or more two-fiber POF cables in series, it is necessary to use many optical communication connectors, and increase in propagation loss and change in propagation mode become more prominent to realize high-speed and large-capacity communication. Is difficult. Therefore, in an optical communication harness that uses a conventional optical communication connector for relaying, an upper limit is set on the number of optical communication connectors.

特許文献2では、心線の屈曲による悪影響を防止するため、心線同士を前記コア間ピッチに合わせて離隔させたファイバケーブルが開示されている。   In patent document 2, in order to prevent the bad influence by bending of a core wire, the fiber cable which spaced apart the core wires according to the said pitch between cores is disclosed.

特開平11−153727号公報Japanese Patent Laid-Open No. 11-153727 特開2006−139209号公報JP 2006-139209 A

特許文献2に開示されている技術により、光通信コネクタにおいて心線を屈曲させる必要がないため、伝搬損失の増大及び伝搬モードの変化などの悪影響を防止することは可能である。しかしながら、従来使用されている2心POFケーブルを、特許文献2に開示されているファイバケーブルに置換することは困難である。   With the technique disclosed in Patent Document 2, it is not necessary to bend the core wire in the optical communication connector, so that adverse effects such as an increase in propagation loss and a change in propagation mode can be prevented. However, it is difficult to replace the conventionally used two-core POF cable with the fiber cable disclosed in Patent Document 2.

更に、2心POFケーブル(又は2本のPOFケーブル)を接続する光通信コネクタにおいて心線の突き合わせ部分では2つの心線の端面が隣り合う。光通信コネクタにおける心線の端面の突き合わせ部分では、ある程度のギャップ(数百ミクロン以下)が生じるのは回避できない。したがって端面が対向する2組の心線の内の一方の組の心線の端面から出射した光が、該ギャップから漏れ出て反射を繰り返し、他方の組の心線の端面へ入射する可能性があり、これによって光ノイズが発生してクロストークが生ずる原因になる。   Furthermore, in the optical communication connector for connecting the two-core POF cable (or two POF cables), the end faces of the two core wires are adjacent to each other at the abutting portion of the core wires. It is unavoidable that a certain amount of gap (several hundred microns or less) is generated at the end portion of the end face of the core wire in the optical communication connector. Therefore, there is a possibility that light emitted from the end face of one set of the core wires of which two end faces face each other leaks from the gap and repeats reflection, and enters the end face of the other set of core wires. This causes optical noise and causes crosstalk.

本発明は斯かる事情に鑑みてなされたものであり、従来から使用されているPOFケーブルを使用しつつ、伝搬損失の増大を抑制し、伝搬モード変化を回避し、更に心線の突き合わせ部分における光の廻りこみを抑制して光ノイズの発生を低減させることが可能な光通信コネクタ及び光通信ハーネスを提供することを目的とする。   The present invention has been made in view of such circumstances, while suppressing the increase in propagation loss, avoiding a propagation mode change, and further using a POF cable that has been used in the past. It is an object of the present invention to provide an optical communication connector and an optical communication harness that can reduce the occurrence of optical noise by suppressing the wraparound of light.

本発明に係る光通信コネクタは、複数のプラスチック光ファイバケーブルを、夫々が保持する複数の心線の端面同士を突き合わせて接続させる光通信コネクタにおいて、前記複数の心線の端面が露出されている前記プラスチック光ファイバケーブルの端部を直線状に挟持する1対の半割型筒状部材を有する挟持具と、該挟持具を内側に嵌め合わせて保持する筒状の保持部材とを備え、前記筒状部材は、一端側に開口を覆う底板と、該底板の割面側を、前記複数の心線の径に対応する寸法の半円形状に切り欠いた複数の切り欠きと、前記底板の外面における前記複数の切り欠きの中間位置に形成された凸部とを有することを特徴とする。   The optical communication connector according to the present invention is an optical communication connector in which a plurality of plastic optical fiber cables are connected to each other by abutting end surfaces of a plurality of core wires held by each of the optical fiber connectors, and the end surfaces of the plurality of core wires are exposed. A clamping tool having a pair of half-shaped cylindrical members that linearly clamp the ends of the plastic optical fiber cable, and a cylindrical holding member that fits and holds the clamping tool inside, The cylindrical member includes a bottom plate that covers an opening on one end side, a plurality of cutouts in which a split surface side of the bottom plate is cut into a semicircular shape having a size corresponding to the diameter of the plurality of core wires, and the bottom plate And a convex portion formed at an intermediate position of the plurality of notches on the outer surface.

本発明に係る光通信コネクタは、前記凸部は、外側に凸の反射面を有して割面に到るまで連続して設けられていることを特徴とする。   The optical communication connector according to the present invention is characterized in that the convex portion has a convex reflective surface on the outside and is continuously provided until reaching the split surface.

本発明に係る光通信コネクタは、前記反射面は、割面に直交する方向に中心軸を有する円弧状の外面をなすことを特徴とする。   The optical communication connector according to the present invention is characterized in that the reflection surface has an arcuate outer surface having a central axis in a direction orthogonal to the split surface.

本発明に係る光通信コネクタは、前記凸部は、前記底板の外面に、割面に連続するように形成された凹部の底面に設けられており、前記凸部の高さは前記凹部の深さよりも低いことを特徴とする。   In the optical communication connector according to the present invention, the convex portion is provided on the outer surface of the bottom plate on the bottom surface of the concave portion formed so as to be continuous with the split surface, and the height of the convex portion is the depth of the concave portion. It is characterized by being lower than that.

本発明に係る光通信ハーネスは、複数本のプラスチック光ファイバケーブルと、該プラスチック光ファイバケーブル夫々の一端又は両端に設けられる光通信コネクタとを備える光通信ハーネスにおいて、前記光通信コネクタは夫々、複数の心線の端面が露出されている前記プラスチック光ファイバケーブルの端部を直線状に挟持する1対の半割型筒状部材を有する挟持具と、該挟持具を内側に嵌め合わせて保持する筒状の保持部材とを備え、前記筒状部材は、一端側に開口を覆う底板と、該底板の割面側を、前記複数の心線の径に対応する寸法の半円形状に切り欠いた複数の切り欠きと、前記底板の外面における前記複数の切り欠きの中間位置に形成された凸部とを有することを特徴とする。   An optical communication harness according to the present invention is an optical communication harness comprising a plurality of plastic optical fiber cables and optical communication connectors provided at one end or both ends of each of the plastic optical fiber cables. A holding tool having a pair of halved cylindrical members that linearly hold the end portion of the plastic optical fiber cable from which the end face of the core wire is exposed, and the holding tool is fitted inside and held. A cylindrical holding member, and the cylindrical member has a bottom plate that covers an opening on one end side, and a split surface side of the bottom plate is cut into a semicircular shape having a size corresponding to the diameter of the plurality of core wires. A plurality of cutouts, and a convex portion formed at an intermediate position of the plurality of cutouts on the outer surface of the bottom plate.

本発明では、複数心のPOFケーブル(複数の1心POFケーブル)は心線を露出させた端部が、1対の筒状部材を有する挟持具に直線状に挟持され、該挟持具が保持部材の内側に嵌め合わされて保持される。挟持具の一端の開口を塞ぐようにして設けられている底板には、被覆を取り除いて側面が露出した心線の側面を保持する切り欠きが設けられている。挟持具及び保持部材の2点という簡素な構成で、心線が屈曲されることなく端面同士が突き合わせられる。しかも切り欠き間に設けられている凸部によって、切り欠きに挟持される複数の心線のいずれかの端面から出射された光が漏れ出て他の心線の端面から入光する可能性が低減される。   In the present invention, a multi-core POF cable (a plurality of single-core POF cables) is linearly held at the end where the core wire is exposed by a holding tool having a pair of cylindrical members, and is held by the holding tool. It is fitted and held inside the member. The bottom plate provided so as to close the opening at one end of the holding tool is provided with a notch for holding the side surface of the core wire with the side surface exposed by removing the coating. With a simple configuration of two points of the holding tool and the holding member, the end faces are brought into contact with each other without bending the core wire. Moreover, there is a possibility that light emitted from one end face of a plurality of core wires sandwiched between the notches leaks and enters from the end face of another core wire by the convex portion provided between the notches. Reduced.

本発明では、凸部は外側に凸の反射面が割面に連続して有しており、これによって切り欠きに挟持される心線の端面の一方から出射した光が漏れ出ても反射されて元の心線側に再び戻る可能性が高まる。   In the present invention, the convex portion has an outwardly convex reflecting surface continuous with the split surface, and thus the light emitted from one of the end faces of the core wire held by the notch is reflected even if it leaks out. This increases the possibility of returning to the original core side again.

本発明では、凸部の反射面は割面に直交する方向に中心軸を有する円弧状の外面をなして割面に到るまで連続して形成されているから、対の筒状部材を向き合わせたときに反射面が連続した円弧状となり、切り欠きに挟持される心線の端面から漏れ出た光をより効率的に反射することが可能になる。   In the present invention, the reflecting surface of the convex portion is formed continuously from the arcuate outer surface having the central axis in the direction perpendicular to the dividing surface until reaching the dividing surface. When they are combined, the reflecting surface becomes a continuous arc shape, and it becomes possible to more efficiently reflect light leaking from the end face of the core wire sandwiched between the notches.

本発明では、筒状部材の底板の外面に設けられた凸部は、底板の外面における切り欠きの中間位置に形成された凹部の底面に設けられて、凸部の高さは凹部の深さよりも低い。これにより、筒状部材の底板同士を可及的に近づけて突き合わせた場合に、凸部が底板の外面よりも内奥に位置し、十分に反射の機能を果たすことが可能である。   In the present invention, the convex portion provided on the outer surface of the bottom plate of the cylindrical member is provided on the bottom surface of the concave portion formed at the middle position of the notch on the outer surface of the bottom plate, and the height of the convex portion is greater than the depth of the concave portion. Is also low. As a result, when the bottom plates of the cylindrical members are brought into close contact with each other as much as possible, the convex portion is located on the inner side of the outer surface of the bottom plate, and can sufficiently perform a reflection function.

本発明による場合、中継用に使用される光通信コネクタにおいて光ファイバの心線は屈曲させられることはない。したがって、複数の光ファイバケーブルを直列に接続する構成としても、光通信コネクタにおける伝搬損失の増大を抑制し、伝搬モード変化が回避される。また、光通信コネクタでは突き合わせ部分からの漏れ光が他方の心線へ入光する可能性が低減されるから、光の廻りこみを抑制して光ノイズの発生を低減させることが可能である。   According to the present invention, the core of the optical fiber is not bent in the optical communication connector used for relaying. Therefore, even if it is the structure which connects a some optical fiber cable in series, the increase in the propagation loss in an optical communication connector is suppressed and a propagation mode change is avoided. Further, in the optical communication connector, since the possibility that the leaked light from the butted portion enters the other core wire is reduced, it is possible to suppress the wraparound of light and reduce the generation of optical noise.

本実施の形態における光通信コネクタの分解斜視図である。It is a disassembled perspective view of the optical communication connector in this Embodiment. 本実施の形態における光通信コネクタの分解斜視図である。It is a disassembled perspective view of the optical communication connector in this Embodiment. プラグ側の光通信コネクタの外観斜視図である。It is an external appearance perspective view of the optical communication connector by the side of a plug. 図3中のA−A´線による縦断面図である。It is a longitudinal cross-sectional view by the AA 'line in FIG. ソケット側の光通信コネクタの外観斜視図である。It is an external appearance perspective view of the optical communication connector by the side of a socket. 図5中のB−B´線による縦断面図である。It is a longitudinal cross-sectional view by the BB 'line in FIG. 本実施の形態におけるプラグ側の光通信コネクタとソケット側の光通信コネクタとの接続状態を示す断面図である。It is sectional drawing which shows the connection state of the optical communication connector by the side of a plug in this Embodiment, and the optical communication connector by the side of a socket. 光通信コネクタを用いた光通信ハーネスの構成図である。It is a block diagram of the optical communication harness using an optical communication connector. 筒状部材の平面図である。It is a top view of a cylindrical member. 図9のC−C´線による断面図である。FIG. 10 is a cross-sectional view taken along the line CC ′ of FIG. 9. 筒状部材の鍔部側からの側面図である。It is a side view from the collar part side of a cylindrical member. 筒状部材の底板側からの側面図である。It is a side view from the baseplate side of a cylindrical member. 挟持具に挟持された光ファイバケーブルの縦断面図である。It is a longitudinal cross-sectional view of the optical fiber cable clamped by the clamping tool. 図13中のD−D´線による断面図である。It is sectional drawing by the DD 'line in FIG. 本実施の形態における接続状態の光通信コネクタにおける心線の突き合わせ部分の拡大図である。It is an enlarged view of the butting | matching part of the core wire in the optical communication connector of the connection state in this Embodiment.

以下、本発明をその実施形態を示す図面に基づいて具体的に説明する。なお、以下に示す実施の形態は例示であって、本発明は以下の構成に限られないことは勿論である。   Hereinafter, the present invention will be specifically described with reference to the drawings illustrating embodiments thereof. In addition, the embodiment shown below is an illustration, and of course, the present invention is not limited to the following configuration.

図1及び図2は、本実施の形態における光通信コネクタの分解斜視図である。図1はプラグ側の光通信コネクタを示し、図2は、ソケット側の光通信コネクタを示している。図1中の符号1aはプラグ側の光通信コネクタを示している。プラグ側の光通信コネクタ1aは、符号2で示す光ファイバケーブルの一端部に設けられ、挟持具11と、保持部材10aとを備えている。   1 and 2 are exploded perspective views of the optical communication connector according to the present embodiment. FIG. 1 shows an optical communication connector on the plug side, and FIG. 2 shows an optical communication connector on the socket side. Reference numeral 1a in FIG. 1 denotes an optical communication connector on the plug side. The optical communication connector 1a on the plug side is provided at one end of an optical fiber cable indicated by reference numeral 2, and includes a holding tool 11 and a holding member 10a.

光ファイバケーブル2は、断面眼鏡型の2心POF(Plastic Optical Fiber)ケーブルである。光ファイバケーブル2は、アクリル等の透明樹脂製のコアの外周をフッ素系樹脂のクラッドで覆ってなる2本の心線21と、2本の心線21を並列させて共に覆うポリエチレン(PE:Polyethylene)製の被覆22とを備える。なお光ファイバケーブル2は、2本の心線21を各々被覆22で覆った1対のPOFケーブルであってもよい。   The optical fiber cable 2 is a two-fiber POF (Plastic Optical Fiber) cable having a cross-sectional glasses type. The optical fiber cable 2 includes two core wires 21 in which the outer periphery of a core made of a transparent resin such as acrylic is covered with a fluorine-based resin clad, and polyethylene (PE: Polyethylene) coating 22. The optical fiber cable 2 may be a pair of POF cables in which the two core wires 21 are each covered with a coating 22.

挟持具11は、断面がコの字状である1対の半割型の筒状部材12,12を有する。筒状部材12は液晶ポリマ、ABS(Acrylonitrile Butadiene Styrene )樹脂、PBT(PolyButylene Terephthalate)樹脂等の樹脂製であり、光ファイバケーブル2の心線21と少なくとも硬度及び熱膨張率が同等であることが望ましい。筒状部材12の一端には、割面を除く三方の外周から外向きに張り出す鍔部13が設けられている。筒状部材12の他端には開口を覆う底板14が取り付けられ、また、筒状部材12の内部には後述する突起部15が設けられている。底板14には、割面側の2箇所に半円状の切り欠き141,141が形成されている。切り欠き141,141の径は、光ファイバケーブル2の心線21の径と略同一である。底板14の外面には、切り欠き141,141の中間の位置に凹部が設けられている。該凹部の底面には、割面と直交する方向に中心軸を有して外向きに凸である円弧形の断面の凸部17が設けられている。凸部17の高さは、底板の外面からの凹部の深さよりも低い。   The holding tool 11 has a pair of half-shaped cylindrical members 12 and 12 having a U-shaped cross section. The cylindrical member 12 is made of resin such as liquid crystal polymer, ABS (Acrylonitrile Butadiene Styrene) resin, PBT (PolyButylene Terephthalate) resin, and the like, and at least the hardness and the thermal expansion coefficient are equal to the core wire 21 of the optical fiber cable 2. desirable. One end of the cylindrical member 12 is provided with a flange portion 13 that protrudes outward from three outer circumferences excluding the split surface. A bottom plate 14 that covers the opening is attached to the other end of the cylindrical member 12, and a projection 15 described later is provided inside the cylindrical member 12. The bottom plate 14 is formed with semicircular cutouts 141 and 141 at two locations on the split surface side. The diameters of the notches 141 and 141 are substantially the same as the diameter of the core wire 21 of the optical fiber cable 2. On the outer surface of the bottom plate 14, a recess is provided at an intermediate position between the notches 141 and 141. On the bottom surface of the concave portion, a convex portion 17 having an arc-shaped cross section having a central axis in a direction orthogonal to the split surface and convex outward is provided. The height of the convex portion 17 is lower than the depth of the concave portion from the outer surface of the bottom plate.

保持部材10aは例えば液晶ポリマ等の樹脂製であって角筒状をなす。保持部材10aには外周側を減肉して形成された薄肉部が一端部から略半長に亘って設けてある。薄肉部には外面から突出する係合突起16aが設けられている。係合突起16aはバネにより外向きに付勢してあり、外側からの押圧により付勢に抗して没することができる。図1中には1つの係合突起16aが示されているが、相対向する面にも同様の係合突起16aが設けられている(図4,7参照)。   The holding member 10a is made of a resin such as a liquid crystal polymer and has a rectangular tube shape. The holding member 10a is provided with a thin part formed by reducing the outer peripheral side from one end part to a substantially half length. The thin portion is provided with an engaging protrusion 16a protruding from the outer surface. The engaging protrusion 16a is urged outward by a spring, and can be sunk against the urging by pressing from the outside. Although one engagement protrusion 16a is shown in FIG. 1, similar engagement protrusions 16a are also provided on opposite surfaces (see FIGS. 4 and 7).

次に図2に示すソケット側の光通信コネクタについて説明する。図2中の符号1bにより、ソケット側の光通信コネクタを示している。ソケット側の光通信コネクタ1bは、プラグ側の光通信コネクタ1aと共通の挟持具11と、光通信コネクタ1aとは異なる保持部材10bとを備えている。   Next, the optical communication connector on the socket side shown in FIG. 2 will be described. An optical communication connector on the socket side is indicated by reference numeral 1b in FIG. The optical communication connector 1b on the socket side includes a holding tool 11 common to the optical communication connector 1a on the plug side and a holding member 10b different from the optical communication connector 1a.

保持部材10bは、保持部材10aと同一の素材で同様に角筒状をなす。保持部材10bはプラグ側の光通信コネクタ1aの保持部材10aと外径が略一致し、内周の減肉により形成された薄肉部が一端部から略半長に亘って設けてある。該薄肉部の相対向する側板に、係合孔16bが夫々開設されている。   The holding member 10b is similarly formed of the same material as the holding member 10a and has a rectangular tube shape. The holding member 10b has an outer diameter substantially the same as that of the holding member 10a of the optical communication connector 1a on the plug side, and a thin portion formed by thinning of the inner circumference is provided from one end to a substantially half length. Engagement holes 16b are formed in the opposing side plates of the thin portion.

図3は、プラグ側の光通信コネクタ1aの外観斜視図であり、図4は図3中のA−A´線による縦断面図である。プラグ側の光通信コネクタ1aは、2つの心線21が夫々適長露出された光ファイバケーブル2の端部を挟持具11により挟持し、これらを保持部材10aの厚肉部側から鍔部13が保持部材10aの端面に突き当たるまで挿入して構成される。このとき光ファイバケーブル2の心線21は、挟持具11の底板14の切り欠き141,141の内周面で挟持され、心線21の端面と底板14の外面とが一致する(詳細は後述)。また被覆22は挟持具11の突起部15で挟持されている(図14参照)。挟持具11の筒状部材12の外周は保持部材10aの内周に等しく、光ファイバケーブル2を挟持した状態で保持部材10aの厚肉部側から挿入したときに、挟持具11が保持部材10aの内側に嵌め合わされて保持される。   3 is an external perspective view of the optical communication connector 1a on the plug side, and FIG. 4 is a longitudinal sectional view taken along the line AA 'in FIG. The optical communication connector 1a on the plug side sandwiches the end portions of the optical fiber cable 2 from which the two core wires 21 are exposed at appropriate lengths by the sandwiching tool 11, and these from the thick portion side of the holding member 10a to the flange portion 13 Is inserted and configured until it hits the end surface of the holding member 10a. At this time, the core wire 21 of the optical fiber cable 2 is held between the inner peripheral surfaces of the notches 141 and 141 of the bottom plate 14 of the holding tool 11, and the end surface of the core wire 21 and the outer surface of the bottom plate 14 coincide (details will be described later). ). Moreover, the coating | cover 22 is clamped by the projection part 15 of the clamping tool 11 (refer FIG. 14). The outer periphery of the cylindrical member 12 of the holding tool 11 is equal to the inner periphery of the holding member 10a. When the optical fiber cable 2 is held, the holding tool 11 is inserted into the holding member 10a from the thick portion side. It is fitted inside and held.

図5は、ソケット側の光通信コネクタ1bの外観斜視図であり、図6は、図5中のB−B´線による縦断面図である。ソケット側の光通信コネクタ1bはプラグ側の光通信コネクタ1a同様に、2つの心線21が夫々適長に露出された光ファイバケーブル2の端部を挟持具11により挟持し、これらを保持部材1bの厚肉部側から鍔部13が保持部材10bの端面に突き当たるまで挿入して構成される。ソケット側の光通信コネクタ1bにおいてもプラグ側同様に、光ファイバケーブル2の心線21は、挟持具11の底板14の切り欠き141,141の内周面で挟持され、心線21の端面と底板14の外面とが一致する。また被覆22は挟持具11の突起部15で挟持されている(図14参照)。挟持具11の筒状部材12の外周は保持部材10bの厚肉部の内周に等しく、光ファイバケーブル2を挟持した状態で保持部材10bの厚肉部側から挿入したときに、挟持具11が保持部材10bの内側に嵌め合わされて保持される。   FIG. 5 is an external perspective view of the optical communication connector 1b on the socket side, and FIG. 6 is a longitudinal sectional view taken along line BB ′ in FIG. The optical communication connector 1b on the socket side, like the optical communication connector 1a on the plug side, holds the end portions of the optical fiber cable 2 with the two core wires 21 exposed at appropriate lengths by the holding tool 11, and holds them. It is configured to be inserted from the thick portion side of 1b until the flange portion 13 abuts against the end surface of the holding member 10b. Also in the optical communication connector 1b on the socket side, similarly to the plug side, the core wire 21 of the optical fiber cable 2 is sandwiched between the inner peripheral surfaces of the notches 141 and 141 of the bottom plate 14 of the sandwiching tool 11, and the end surface of the core wire 21 The outer surface of the bottom plate 14 coincides. Moreover, the coating | cover 22 is clamped by the projection part 15 of the clamping tool 11 (refer FIG. 14). The outer periphery of the cylindrical member 12 of the holding tool 11 is equal to the inner periphery of the thick part of the holding member 10b, and when inserted from the thick part side of the holding member 10b while holding the optical fiber cable 2, the holding tool 11 Is fitted and held inside the holding member 10b.

図3及び図4、並びに図5及び図6に示すように、挟持具11の長さは保持部材10a又は保持部材10bの長さより短く、底板14の外面と一致する心線21の端面は、保持部材10a又は保持部材10bの端面よりも内奥に位置する。保持部材10a又は保持部材10bの開口に例えば組み立て作業者の指が接触したとしても、指先が心線21の端面に接触しないようにするためである。挟持具11、及び、保持部材10a又は保持部材10bの長さは例えば、保持部材10a又は保持部材10bの開口に直径10mmの球を当接させたときに、底板14の外面即ち光ファイバケーブル2の心線21の端面に球面が達しないように設計される。   As shown in FIGS. 3 and 4, and FIGS. 5 and 6, the length of the holding tool 11 is shorter than the length of the holding member 10 a or the holding member 10 b, and the end surface of the core wire 21 that coincides with the outer surface of the bottom plate 14 is It is located inward from the end surface of the holding member 10a or the holding member 10b. This is to prevent the fingertip from coming into contact with the end surface of the core wire 21 even if, for example, the finger of the assembly operator contacts the opening of the holding member 10a or the holding member 10b. The length of the holding tool 11 and the holding member 10a or the holding member 10b is, for example, the outer surface of the bottom plate 14, that is, the optical fiber cable 2 when a sphere having a diameter of 10 mm is brought into contact with the opening of the holding member 10a or the holding member 10b. It is designed so that the spherical surface does not reach the end face of the core wire 21.

図7は、本実施の形態におけるプラグ側の光通信コネクタ1aとソケット側の光通信コネクタ1bとの接続状態を示す断面図である。プラグ側の光通信コネクタ1a及びソケット側の光通信コネクタ1bの寸法関係は以下である。プラグ側の保持部材10aの薄肉部の長さはソケット側の光通信コネクタ1bの保持部材10bの薄肉部の長さと略同一であり、プラグ側の保持部材10aにおける係合突起16aの薄肉部の開口端からの距離は、ソケット側の保持部材10bの係合孔16bの開設位置の内面の段差からの距離と略同一である。また、プラグ側の保持部材10aの薄肉部の開口端から、内側に保持されている挟持具11の端面までの距離は、ソケット側の保持部材10bの内面の段差位置から、内側に保持されている挟持具11の端面までの距離と略同一である。以上のような寸法関係により、図7に示す如く、プラグ側の光通信コネクタ1aにおける2つの心線21の端面と、ソケット側の光通信コネクタ1bにおける2つの心線21の端面との間は夫々、所定の間隙(数百ミクロン)を設けて同軸に突き合わせられる。なおプラグ側の保持部材10aの外面及びソケット側の保持部材10bの厚肉部の外面の寸法は略同一に構成されており、接続状態において各々外面が連続するようにしてある。   FIG. 7 is a cross-sectional view showing a connection state between the optical communication connector 1a on the plug side and the optical communication connector 1b on the socket side in the present embodiment. The dimensional relationship between the optical communication connector 1a on the plug side and the optical communication connector 1b on the socket side is as follows. The length of the thin part of the holding member 10a on the plug side is substantially the same as the length of the thin part of the holding member 10b of the optical communication connector 1b on the socket side, and the length of the thin part of the engagement protrusion 16a in the holding member 10a on the plug side. The distance from the opening end is substantially the same as the distance from the step on the inner surface of the opening position of the engagement hole 16b of the holding member 10b on the socket side. Further, the distance from the opening end of the thin portion of the holding member 10a on the plug side to the end surface of the holding tool 11 held on the inner side is held on the inner side from the step position on the inner surface of the holding member 10b on the socket side. It is substantially the same as the distance to the end surface of the holding tool 11 that is present. Due to the above dimensional relationship, as shown in FIG. 7, the gap between the end faces of the two core wires 21 in the plug-side optical communication connector 1a and the end faces of the two core wires 21 in the socket-side optical communication connector 1b is as follows. Each of them is abutted coaxially with a predetermined gap (several hundred microns). The dimensions of the outer surface of the plug-side holding member 10a and the outer surface of the thick-walled portion of the socket-side holding member 10b are substantially the same, and the outer surfaces are continuous in the connected state.

なお図7に示すように、プラグ側の保持部材10aにおける係合突起16aと、ソケット側の保持部材10bに設けられている係合孔16bとによって、フリクションロックが構成されている。係合突起16a及び係合孔16bは、前述の構造には限定されないことは勿論である。係合突起16aは例えば内側にバネを備えない構成としてもよい。係合突起16a及び係合孔16bによってプラグ側の保持部材10aとソケット側の保持部材10bとが、長さ方向にずれないように強固に係合する構成であればよい。例えば保持部材10a及び保持部材10bの薄肉部は円筒状に構成されるようにして、ネジ式に係合するようにしてもよい。   As shown in FIG. 7, a friction lock is configured by the engagement protrusion 16a in the plug-side holding member 10a and the engagement hole 16b provided in the socket-side holding member 10b. Of course, the engagement protrusion 16a and the engagement hole 16b are not limited to the above-described structure. For example, the engagement protrusion 16a may be configured not to include a spring inside. The plug-side holding member 10a and the socket-side holding member 10b may be firmly engaged by the engagement protrusions 16a and the engagement holes 16b so as not to shift in the length direction. For example, the thin portions of the holding member 10a and the holding member 10b may be configured in a cylindrical shape and engaged in a screw manner.

図8は、光通信コネクタを用いた光通信ハーネス30の構成図である。接続状態の光通信コネクタ内で心線21を屈曲させることなく、図8の構成図に示すように、光ファイバケーブル2を直列に接続した光通信ハーネス30を構成することが可能になる。したがって、POFケーブルを用いて伝搬損失及び伝搬モード変化を抑制した光通信ハーネス30を実現することが可能である。光通信コネクタ1aと光通信コネクタ1bとの接続状態では前述したように外面が連続して全体として直方体状をなすから、これによって車両内への配策が容易になる。   FIG. 8 is a configuration diagram of an optical communication harness 30 using an optical communication connector. As shown in the block diagram of FIG. 8, the optical communication harness 30 in which the optical fiber cables 2 are connected in series can be configured without bending the core wire 21 in the optical communication connector in the connected state. Therefore, it is possible to realize the optical communication harness 30 in which the propagation loss and the propagation mode change are suppressed using the POF cable. In the connection state between the optical communication connector 1a and the optical communication connector 1b, as described above, the outer surface is continuously formed into a rectangular parallelepiped shape as a whole, which facilitates the arrangement in the vehicle.

次に挟持具11の詳細な構造、及び挟持具11を用いた光通信コネクタ1a,1bの製法の詳細な手順について説明する。まず挟持具11を構成する筒状部材12の構造について詳細を説明する。図9は、筒状部材12の平面図であり、図10は、図9のC−C´線による断面図である。図11は、筒状部材12の鍔部13側からの側面図であり、図12は、筒状部材12の底板14側からの側面図である。図9乃至図12に示すように、筒状部材12の内面には、例えば断面が二等辺三角形状の突起部15が全長に亘って設けられている。更に突起部15の斜面上に、筒状部材12を横断するように突起152が複数、軸方向に並設されている。なお突起152は夫々、中央側が底板14から離れる向きに斜行して設けられている。また突起152夫々は、図10に示すように、鍔部13側を傾斜辺とし、底板14側は筒状部材12の側板に対して略直交する線を一辺とする三角形状の断面を有している。図13は、挟持具11に挟持された光ファイバケーブル2の縦断面図であり、図14は、図13中のD−D´線による断面図である。なお図13は図9のC−C´線による断面図に対応する。図13、14に示されるように複数の突起152が被覆22に外側から食い込む。更に突起152は、図9に示したように中央側が底板14から離れる向きに斜行しているから、光ファイバケーブル2を引き抜こうとした場合に、心線21同士が近接する方向に分力が発生し、光ファイバケーブル2を引き抜く方向の力が弱まって引き抜きが困難になる。このように、筒状部材12の内面にはケーブルを固定するように突起部15の形状が設計されている。なお、突起152は複数の突起152が斜行して、軸方向に並設されている構成には限られないことは勿論である。複数の突起152は斜行せずに軸方向に直交する向きに設けられていてもよいし、2心の心線21に対応させるように1つずつ横断するように突起152が設けられている構成であってもよい。また突起152自体が設けられていない構成であってもよい。   Next, the detailed structure of the holding tool 11 and the detailed procedure of the manufacturing method of the optical communication connectors 1a and 1b using the holding tool 11 will be described. First, details of the structure of the cylindrical member 12 constituting the holding tool 11 will be described. 9 is a plan view of the cylindrical member 12, and FIG. 10 is a cross-sectional view taken along the line CC 'in FIG. 11 is a side view of the tubular member 12 from the flange 13 side, and FIG. 12 is a side view of the tubular member 12 from the bottom plate 14 side. As shown in FIGS. 9 to 12, for example, a protrusion 15 having an isosceles triangular cross section is provided on the inner surface of the cylindrical member 12 over the entire length. Further, a plurality of protrusions 152 are arranged in parallel in the axial direction on the slope of the protrusion 15 so as to cross the cylindrical member 12. Each of the protrusions 152 is provided so as to be inclined so that the center side is away from the bottom plate 14. As shown in FIG. 10, each of the protrusions 152 has a triangular cross section with the flange 13 side as an inclined side and the bottom plate 14 side with a line substantially perpendicular to the side plate of the cylindrical member 12 as one side. ing. FIG. 13 is a longitudinal sectional view of the optical fiber cable 2 sandwiched by the sandwiching tool 11, and FIG. 14 is a sectional view taken along the line DD 'in FIG. FIG. 13 corresponds to a cross-sectional view taken along the line CC ′ of FIG. As shown in FIGS. 13 and 14, the plurality of protrusions 152 bite into the coating 22 from the outside. Further, as shown in FIG. 9, the protrusion 152 is inclined in the direction in which the center side is away from the bottom plate 14, so that when the optical fiber cable 2 is pulled out, the component force is applied in the direction in which the core wires 21 are close to each other. And the force in the direction of pulling out the optical fiber cable 2 weakens, making it difficult to pull out. Thus, the shape of the protrusion 15 is designed on the inner surface of the cylindrical member 12 so as to fix the cable. Needless to say, the protrusion 152 is not limited to the configuration in which the plurality of protrusions 152 are obliquely arranged in parallel in the axial direction. The plurality of protrusions 152 may be provided in a direction orthogonal to the axial direction without being skewed, and the protrusions 152 are provided so as to cross one by one so as to correspond to the two core wires 21. It may be a configuration. Moreover, the structure in which protrusion 152 itself is not provided may be sufficient.

なお図9乃至図14に示した挟持具11を用いた光通信コネクタ1a,1bは以下のような手順で製造される。光ファイバケーブル2の一端の被覆22を、心線21と直交する面で心線21に到らない深さに切り込み、被覆22を切り込みにより取り除いて心線21を露出させる。このとき心線21の露出長さは、筒状部材12の底板14の板厚よりも長くしておく。挟持具11の一方の筒状部材12に、心線21の露出部分と被覆部分との境界を底板14の内面に合わせるようにして光ファイバケーブル2を載置する。次に、他方の筒状部材12を一方の筒状部材12に合わせ、図13に示したように筒状部材12,12で光ファイバケーブル2を挟持させる。このとき、上述したように心線21の露出長さは底板14の板厚分よりも長くしてあるから、心線21の端面は底板14の外面よりも突出する。挟持具11を外側から更に他の治具で挟持して、挟持具11の底板14と光ファイバケーブル2の心線21の端面とを共に、図13中のE線(心線21の軸と直交する面に相当)に沿って2心同時に切削する。切削には単結晶ダイヤ付のカッター及びバイトを用いることで、切削によって心線21の端面を研磨する効果をも得られる。ダイヤ付のカッター等を用いることで、直交面で高精度に切削することができるから、2本の心線21の端面の特性を同一化することができる。なお、底板14の凸部17は予め設けられており、切削時のE線は凸部17の頭頂部よりも外側に設定されている。これにより、切削研磨後も凸部17は底板14の外面よりも内奥に位置する。   The optical communication connectors 1a and 1b using the holding tool 11 shown in FIGS. 9 to 14 are manufactured by the following procedure. The coating 22 at one end of the optical fiber cable 2 is cut to a depth that does not reach the core wire 21 in a plane orthogonal to the core wire 21, and the coating 22 is removed by cutting to expose the core wire 21. At this time, the exposed length of the core wire 21 is set longer than the thickness of the bottom plate 14 of the tubular member 12. The optical fiber cable 2 is placed on one cylindrical member 12 of the holding tool 11 so that the boundary between the exposed portion and the covered portion of the core wire 21 is aligned with the inner surface of the bottom plate 14. Next, the other cylindrical member 12 is aligned with the one cylindrical member 12, and the optical fiber cable 2 is sandwiched between the cylindrical members 12, 12 as shown in FIG. At this time, since the exposed length of the core wire 21 is longer than the thickness of the bottom plate 14 as described above, the end surface of the core wire 21 protrudes from the outer surface of the bottom plate 14. The clamp 11 is further clamped from the outside with another jig, and both the bottom plate 14 of the clamp 11 and the end surface of the core 21 of the optical fiber cable 2 are connected to the E line (the axis of the core 21 in FIG. 13). 2 cores are cut at the same time along an orthogonal plane. By using a cutter with a single crystal diamond and a cutting tool for cutting, it is possible to obtain an effect of polishing the end face of the core wire 21 by cutting. By using a diamond cutter or the like, it is possible to cut with high precision on an orthogonal plane, so that the characteristics of the end faces of the two core wires 21 can be made identical. In addition, the convex part 17 of the baseplate 14 is provided previously, and the E line at the time of cutting is set outside the top part of the convex part 17. Thereby, even after cutting and polishing, the convex portion 17 is located inward from the outer surface of the bottom plate 14.

次に心線21と共に切削研磨した挟持具11を、保持部材10a又は保持部材10bの内側に嵌め合わせて保持させる。挟持具11は弾性を有する被覆22を挟持しており、挟持具11を構成する筒状部材12,12にはそれらを相互に分離する力が加わるから、挟持具11は保持部材10a又は保持部材10bに強固に保持される。なおこのとき、筒状部材12と保持部材10a又は保持部材10bとは、接着剤により固定されてもよい。   Next, the holding tool 11 cut and polished together with the core wire 21 is fitted and held inside the holding member 10a or the holding member 10b. Since the holding tool 11 holds an elastic coating 22 and the cylindrical members 12 and 12 constituting the holding tool 11 are subjected to a force for separating them from each other, the holding tool 11 is used as the holding member 10a or the holding member. 10b is firmly held. At this time, the cylindrical member 12 and the holding member 10a or the holding member 10b may be fixed by an adhesive.

図15は、本実施の形態における接続状態における光通信コネクタの心線21の突き合わせ部分の拡大図である。図15に示すように、プラグ側の光通信コネクタ1aとソケット側の光通信コネクタ1bを接続させた状態において、挟持具11及び心線21の端面間には、間隙が不可避に生じる。心線21内を進行して端面から出射する光は、最大角度(図中θmax )で出射し、漏れ光となる。しかしながら本実施の形態における光通信コネクタ1a,1bでは、挟持具11の端面に円弧状の断面を有する凸部17が設けられている。凸部17は、最大角度で心線21端面から出射した光の反射の向きをかえ、出射光を戻すように作用するから、向き合う1組の心線21間の間隙からの漏れ光が他方の組の心線21へ廻りこむことを抑制することができる。したがって光ノイズの発生を低減し、通信時のクロストークを抑制することができる。なお凸部17の形状は、外側に凸の曲面を有していれば本実施の形態の形状には限定されないことは勿論であり、例えば外面が球面状をなしてもよいし、鼓状の曲面をなすようにしてもよい。 FIG. 15 is an enlarged view of the butted portion of the core wire 21 of the optical communication connector in the connected state in the present embodiment. As shown in FIG. 15, in the state where the plug-side optical communication connector 1a and the socket-side optical communication connector 1b are connected, a gap is inevitably generated between the end surfaces of the holding tool 11 and the core wire 21. Light that travels through the core wire 21 and exits from the end face exits at the maximum angle (θ max in the figure) and becomes leaked light. However, in the optical communication connectors 1a and 1b according to the present embodiment, a convex portion 17 having an arc-shaped cross section is provided on the end surface of the holding tool 11. Since the convex portion 17 changes the direction of reflection of light emitted from the end face of the core wire 21 at the maximum angle and acts to return the emitted light, leakage light from the gap between the pair of facing core wires 21 is reflected on the other side. It is possible to suppress the winding around the core wire 21 of the set. Therefore, generation of optical noise can be reduced and crosstalk during communication can be suppressed. Of course, the shape of the convex portion 17 is not limited to the shape of the present embodiment as long as it has a convex curved surface on the outside. For example, the outer surface may have a spherical shape or a drum shape. You may make it make a curved surface.

このようにして、心線21を屈曲させることなく突き合わせて接続させることが可能な光通信コネクタを構成することができる。しかもプラグ側の光通信コネクタ1aとソケット側の光通信コネクタ1bは、共通の挟持具11を保持部材10a及び保持部材10bの各々の内側に嵌め合わせて保持させるという簡易な構成で作製可能である。プラグ側の光通信コネクタ1a及びソケット側の光通信コネクタ1bではいずれにおいても、心線21は屈曲させられないので、屈曲分だけコネクタを短く、幅を小さくして小型化させることができ、光通信ハーネス30の取り回し作業が容易になる。しかも、突き合わせ部分に光ノイズの発生を抑制する構造を有するからクロストークの発生を防止することができる。   In this way, an optical communication connector that can be connected to each other without bending the core wire 21 can be configured. Moreover, the optical communication connector 1a on the plug side and the optical communication connector 1b on the socket side can be manufactured with a simple configuration in which the common holding tool 11 is fitted and held inside the holding member 10a and the holding member 10b. . Since neither the optical communication connector 1a on the plug side nor the optical communication connector 1b on the socket side can be bent, the core wire 21 cannot be bent. The handling work of the communication harness 30 becomes easy. In addition, the occurrence of crosstalk can be prevented because the butted portion has a structure that suppresses the generation of optical noise.

今回開示された実施形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上記した意味ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。   It should be thought that embodiment disclosed this time is an illustration and restrictive at no points. The scope of the present invention is defined by the terms of the claims, rather than the meanings described above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1a,1b 光通信コネクタ
10a,10b 保持部材
11 挟持具
12 筒状部材
14 底板
141 切り欠き
15 突起部
152 突起
16a 係合突起
16b 係合孔
17 凸部
2 光ファイバケーブル
21 心線
22 被覆
30 光通信ハーネス
DESCRIPTION OF SYMBOLS 1a, 1b Optical communication connector 10a, 10b Holding member 11 Clamping tool 12 Cylindrical member 14 Bottom plate 141 Notch 15 Protrusion part 152 Protrusion 16a Engagement protrusion 16b Engagement hole 17 Protrusion part 2 Optical fiber cable 21 Core wire 22 Covering 30 Light Communication harness

Claims (5)

複数のプラスチック光ファイバケーブルを、夫々が保持する複数の心線の端面同士を突き合わせて接続させる光通信コネクタにおいて、
前記複数の心線の端面が露出されている前記プラスチック光ファイバケーブルの端部を直線状に挟持する1対の半割型筒状部材を有する挟持具と、
該挟持具を内側に嵌め合わせて保持する筒状の保持部材と
を備え、
前記筒状部材は、
一端側に開口を覆う底板と、
該底板の割面側を、前記複数の心線の径に対応する寸法の半円形状に切り欠いた複数の切り欠きと、
前記底板の外面における前記複数の切り欠きの中間位置に形成された凸部と
を有することを特徴とする光通信コネクタ。
In an optical communication connector for connecting a plurality of plastic optical fiber cables by connecting the end faces of a plurality of core wires held by each,
A holding tool having a pair of halved cylindrical members that linearly hold the ends of the plastic optical fiber cable from which end faces of the plurality of core wires are exposed;
A cylindrical holding member that fits and holds the holding tool inside,
The cylindrical member is
A bottom plate covering the opening on one end side;
A plurality of cutouts in which the split surface side of the bottom plate is cut into a semicircular shape having a size corresponding to the diameter of the plurality of core wires;
And a convex portion formed at an intermediate position of the plurality of notches on the outer surface of the bottom plate.
前記凸部は、外側に凸の反射面を有して割面に到るまで連続して設けられている
ことを特徴とする請求項1に記載の光通信コネクタ。
The optical communication connector according to claim 1, wherein the convex portion has a convex reflective surface on the outside and is continuously provided until reaching the split surface.
前記反射面は、割面に直交する方向に中心軸を有する円弧状の外面をなす
ことを特徴とする請求項2に記載の光通信コネクタ。
The optical communication connector according to claim 2, wherein the reflection surface has an arcuate outer surface having a central axis in a direction orthogonal to the split surface.
前記凸部は、前記底板の外面に、割面に連続するように形成された凹部の底面に設けられており、前記凸部の高さは前記凹部の深さよりも低い
ことを特徴とする請求項1乃至3のいずれか1つに記載の光通信コネクタ。
The convex portion is provided on a bottom surface of a concave portion formed on the outer surface of the bottom plate so as to be continuous with the split surface, and the height of the convex portion is lower than the depth of the concave portion. Item 4. The optical communication connector according to any one of Items 1 to 3.
複数本のプラスチック光ファイバケーブルと、該プラスチック光ファイバケーブル夫々の一端又は両端に設けられる光通信コネクタとを備える光通信ハーネスにおいて、
前記光通信コネクタは夫々、
複数の心線の端面が露出されている前記プラスチック光ファイバケーブルの端部を直線状に挟持する1対の半割型筒状部材を有する挟持具と、
該挟持具を内側に嵌め合わせて保持する筒状の保持部材と
を備え、
前記筒状部材は、
一端側に開口を覆う底板と、
該底板の割面側を、前記複数の心線の径に対応する寸法の半円形状に切り欠いた複数の切り欠きと、
前記底板の外面における前記複数の切り欠きの中間位置に形成された凸部と
を有することを特徴とする光通信ハーネス。
In an optical communication harness comprising a plurality of plastic optical fiber cables and optical communication connectors provided at one or both ends of the plastic optical fiber cables,
The optical communication connectors are respectively
A holding tool having a pair of halved cylindrical members that linearly hold the ends of the plastic optical fiber cable from which end faces of a plurality of core wires are exposed;
A cylindrical holding member that fits and holds the holding tool inside,
The cylindrical member is
A bottom plate covering the opening on one end side;
A plurality of cutouts in which the split surface side of the bottom plate is cut into a semicircular shape having a size corresponding to the diameter of the plurality of core wires;
An optical communication harness comprising: a convex portion formed at an intermediate position of the plurality of notches on an outer surface of the bottom plate.
JP2015115717A 2015-06-08 2015-06-08 Optical communication connector and optical communication harness Pending JP2017003693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015115717A JP2017003693A (en) 2015-06-08 2015-06-08 Optical communication connector and optical communication harness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015115717A JP2017003693A (en) 2015-06-08 2015-06-08 Optical communication connector and optical communication harness

Publications (1)

Publication Number Publication Date
JP2017003693A true JP2017003693A (en) 2017-01-05

Family

ID=57751645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015115717A Pending JP2017003693A (en) 2015-06-08 2015-06-08 Optical communication connector and optical communication harness

Country Status (1)

Country Link
JP (1) JP2017003693A (en)

Similar Documents

Publication Publication Date Title
JP7167014B2 (en) Optical connector and optical connector connection structure
JP2019053285A (en) Optical connector
EP3084491B1 (en) Multimode optical connector
JP2019032547A (en) Optical communication assembly
EP3640692B9 (en) Optical connector module
US10025050B2 (en) Receptacle ferrules with monolithic lens system and fiber optic connectors using same
JP5919313B2 (en) Adapter and method for cleaning optical junctions and reducing optical back reflection
US20120189252A1 (en) Receptacle ferrule assemblies with gradient index lenses and fiber optic connectors using same
US8061904B1 (en) Fiber optic connector microlens with self-aligning optical fiber cavity
JP2007011060A (en) Optical connector and electronic equipment
US9022669B2 (en) Gradient index lens assemblies, fiber optic connectors, and fiber optic cable assemblies employing lens alignment channels
WO2012160878A1 (en) Optical connector
JP2750966B2 (en) Optical fiber multi-core connector
US11307366B2 (en) Optical connector
US20110200283A1 (en) Fiber Optic Cable with High Interface Mismatch Tolerance
JP7370185B2 (en) Epoxy-free plastic optical fiber splice design and manufacturing process
JP5543293B2 (en) Small-diameter bending optical connector
JP2017003693A (en) Optical communication connector and optical communication harness
JP2017003692A (en) Method of manufacturing optical communication connector
JP3879521B2 (en) Optical element and optical transceiver and other optical apparatus using the optical element
JP2017003691A (en) Optical communication connector and optical communication harness
JP5657944B2 (en) Optical connector with lens
US20230400641A1 (en) Optical connection device, composite optical connection device, and manufacturing method of optical connection device
JPH10274721A (en) Method of connecting optical fibers, optical fiber connector, and method of grinding optical fiber
JP2005316295A (en) Optical fiber module