JP2017003387A - Method for evaluating response characteristics of internal structure of polymeric material - Google Patents

Method for evaluating response characteristics of internal structure of polymeric material Download PDF

Info

Publication number
JP2017003387A
JP2017003387A JP2015116638A JP2015116638A JP2017003387A JP 2017003387 A JP2017003387 A JP 2017003387A JP 2015116638 A JP2015116638 A JP 2015116638A JP 2015116638 A JP2015116638 A JP 2015116638A JP 2017003387 A JP2017003387 A JP 2017003387A
Authority
JP
Japan
Prior art keywords
measurement
polymer material
neutron
ray
dynamic viscoelasticity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015116638A
Other languages
Japanese (ja)
Other versions
JP6613637B2 (en
Inventor
典大 松本
Norihiro Matsumoto
典大 松本
岸本 浩通
Hiromichi Kishimoto
浩通 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2015116638A priority Critical patent/JP6613637B2/en
Publication of JP2017003387A publication Critical patent/JP2017003387A/en
Application granted granted Critical
Publication of JP6613637B2 publication Critical patent/JP6613637B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for evaluating response characteristics of the internal structure of a polymeric material precisely.SOLUTION: A method is provided in which response characteristics obtained by performing curve fitting is evaluated for a scattering strength curve obtained by performing X-ray scattering measurement or neutron scattering measurement by radiating an X-ray or a neutron ray onto a polymeric material while performing dynamic viscoelasticity measurement and response characteristics of the internal structure of a polymeric material is evaluated.SELECTED DRAWING: Figure 1

Description

本発明は、高分子材料の内部構造の応答特性を評価する方法に関する。 The present invention relates to a method for evaluating response characteristics of an internal structure of a polymer material.

ゴム材料などの高分子材料において、内部構造の応答特性は、エネルギーロスといった製品の様々な物性に影響を及ぼす重要な物理量であり、例えば、ゴム製品であるタイヤにおいて、内部構造の応答特性は、エネルギーロスと密接に関係し、さらにエネルギーロスは、燃費性能やグリップ性能に密接に関係している。 In a polymer material such as a rubber material, the response characteristic of the internal structure is an important physical quantity that affects various physical properties of the product such as energy loss. For example, in a tire that is a rubber product, the response characteristic of the internal structure is It is closely related to energy loss, and energy loss is closely related to fuel efficiency and grip performance.

高分子材料の内部構造自体は、これまで、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの電子顕微鏡を用いて観察することが可能であった。しかしながら、電子顕微鏡による観察では、内部構造の応答特性を評価することはできなかった。 Until now, the internal structure of the polymer material itself could be observed using an electron microscope such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). However, the response characteristics of the internal structure could not be evaluated by observation with an electron microscope.

また、高分子材料のエネルギーロスを測定する方法として、動的粘弾性測定から得られる損失正接(tanδ)の値を評価する手法が広く用いられている(特許文献1参照)。しかしながら、この手法は、誤差が大きく、tanδの値が同程度であっても、タイヤ転がり性能が相違する場合があり、測定精度が充分満足できるものではなかった。 As a method for measuring the energy loss of a polymer material, a method for evaluating the value of loss tangent (tan δ) obtained from dynamic viscoelasticity measurement is widely used (see Patent Document 1). However, this method has a large error, and even if the value of tan δ is approximately the same, the tire rolling performance may differ, and the measurement accuracy is not sufficiently satisfactory.

近年では、X線散乱測定や中性子散乱測定から高分子材料のエネルギーロスを評価する手法も提案されている(特許文献2,3参照)。しかしながら、この手法は、静的な状態の応答特性を評価するものであり、動的な状態の応答特性を評価するものではなかった。 In recent years, methods for evaluating energy loss of polymer materials from X-ray scattering measurement and neutron scattering measurement have also been proposed (see Patent Documents 2 and 3). However, this method evaluates the response characteristic in a static state, and does not evaluate the response characteristic in a dynamic state.

特開2009−46088号公報JP 2009-46088 A 国際公開第2013/065405号International Publication No. 2013/064405 特開2014−102210号公報JP 2014-102210 A

本発明は、前記課題を解決し、高分子材料の内部構造の応答特性を高精度に評価する方法を提供することを目的とする。 An object of the present invention is to solve the above-mentioned problems and to provide a method for evaluating the response characteristics of the internal structure of a polymer material with high accuracy.

本発明は、高分子材料に対して、動的粘弾性測定を実施しながら、X線又は中性子線を照射してX線散乱測定又は中性子散乱測定を実施することにより、高分子材料の内部構造の応答特性を評価する方法に関する。 The present invention provides an internal structure of a polymer material by performing X-ray scattering measurement or neutron scattering measurement by irradiating the polymer material with X-rays or neutron rays while performing dynamic viscoelasticity measurement. The present invention relates to a method for evaluating the response characteristics of a computer.

本発明では、粘弾性試験機から発信されたパルス信号に対し、X線検出装置又は中性子検出装置の露光を同期させることにより、パルス信号が最初に発信された時刻を基準として、上記動的粘弾性測定の1周期を任意の回数に分割し、上記X線散乱測定又は上記中性子散乱測定を実施することが好ましい。 In the present invention, by synchronizing the exposure of the X-ray detector or the neutron detector with the pulse signal transmitted from the viscoelasticity tester, the dynamic viscosity is determined based on the time when the pulse signal is first transmitted. It is preferable to divide one period of the elasticity measurement into an arbitrary number of times and perform the X-ray scattering measurement or the neutron scattering measurement.

上記X線散乱測定は小角X線散乱測定、上記中性子散乱測定は小角中性子散乱測定であることが好ましい。 The X-ray scattering measurement is preferably a small angle X-ray scattering measurement, and the neutron scattering measurement is preferably a small angle neutron scattering measurement.

上記高分子材料は、1種類以上の共役ジエン系化合物と1種類以上の充填剤とを含む複合材料であることが好ましい。 The polymer material is preferably a composite material including one or more conjugated diene compounds and one or more fillers.

本発明では、上記X線又は上記中性子線を用いて、下記(式1)で表されるqが10nm−1以下の領域で測定することが好ましい。

Figure 2017003387
In this invention, it is preferable to measure in the area | region whose q represented by the following (Formula 1) is 10 nm <-1> or less using the said X-ray or the said neutron beam.
Figure 2017003387

本発明では、上記X線散乱測定又は上記中性子散乱測定により得られた散乱強度曲線I(q)に対し、下記(式2)及び(式3)でカーブフィッティングして得られる1nm〜100μmの慣性半径Rを用いて応答特性を評価することが好ましい。

Figure 2017003387
In the present invention, inertia of 1 nm to 100 μm obtained by curve fitting with the following (Expression 2) and (Expression 3) to the scattering intensity curve I (q) obtained by the X-ray scattering measurement or the neutron scattering measurement. it is preferred to evaluate the response characteristic with a radius R g.
Figure 2017003387

本発明では、上記(式2)及び上記(式3)を用いて、上記動的粘弾性測定の延伸方向に対して水平な方向の散乱強度曲線I(horizontal)(q)から、上記動的粘弾性測定の延伸方向に対して水平な方向の慣性半径Rg(horizontal)を算出するとともに、上記動的粘弾性測定の延伸方向に対して垂直な方向の散乱強度曲線I(vertical)(q)から、上記動的粘弾性測定の延伸方向に対して垂直な方向の慣性半径Rg(vertical)を算出し、下記(式4)及び(式5)から得られるアスペクト比の変動と上記動的粘弾性測定の入力周波との位相差φを用いて応答特性を評価することが好ましい。

Figure 2017003387
In the present invention, using the above (Equation 2) and (Equation 3), from the scattering intensity curve I (horizontal) (q) in the direction horizontal to the stretching direction of the dynamic viscoelasticity measurement, the dynamic A radius of inertia R g (horizontal) in a direction horizontal to the stretching direction of the viscoelasticity measurement is calculated, and a scattering intensity curve I (vertical) (q ) in a direction perpendicular to the stretching direction of the dynamic viscoelasticity measurement is calculated. ) To calculate the inertial radius R g (vertical) in the direction perpendicular to the stretching direction of the dynamic viscoelasticity measurement, and the variation in the aspect ratio obtained from the following (formula 4) and (formula 5) It is preferable to evaluate the response characteristics using the phase difference φ with respect to the input frequency of the dynamic viscoelasticity measurement.
Figure 2017003387

本発明によれば、動的粘弾性測定を実施しながら、X線又は中性子線を照射してX線散乱測定又は中性子散乱測定を実施することで、動的な状態で内部構造の応答特性を測定することができるため、エネルギーロスなどを高い測定精度で評価できる。 According to the present invention, while performing dynamic viscoelasticity measurement, X-ray scattering or neutron scattering measurement is performed by irradiating X-rays or neutrons, so that the response characteristics of the internal structure can be obtained in a dynamic state. Since it can measure, energy loss etc. can be evaluated with high measurement accuracy.

実施例1におけるSAXS測定により得られた散乱強度曲線の一例。An example of the scattering intensity curve obtained by the SAXS measurement in Example 1. 実施例1におけるRg(horizontal)及びRg(vertical)の時間変化。The time change of R g (horizontal) and R g (vertical) in Example 1. 実施例1における動的粘弾性測定の入力周波とアスペクト比の時間変化。The input frequency of the dynamic viscoelasticity measurement in Example 1 and the time change of an aspect ratio.

本発明は、高分子材料に対し、動的粘弾性測定を実施しながら、X線又は中性子線を照射してX線散乱測定又は中性子散乱測定を実施することにより、高分子材料の内部構造の応答特性を評価する方法である。 The present invention performs X-ray scattering measurement or neutron scattering measurement by irradiating the polymer material with X-rays or neutron rays while performing dynamic viscoelasticity measurement. This is a method for evaluating response characteristics.

本発明では、動的粘弾性測定とともにX線散乱測定又は中性子散乱測定を同時に実施することで、高分子材料の内部構造の応答特性を、動的粘弾性測定で周期的な歪を加えている状態、すなわち、動的な状態で測定することができるため、特許文献1で示されている、動的粘弾性測定から得られる損失正接(tanδ)の値を評価する手法と比較して、エネルギーロスなどを高い測定精度で評価できる。 In the present invention, the X-ray scattering measurement or the neutron scattering measurement is performed simultaneously with the dynamic viscoelasticity measurement, thereby adding a periodic strain to the response characteristics of the internal structure of the polymer material by the dynamic viscoelasticity measurement. Since it can be measured in a state, that is, in a dynamic state, the energy compared with the technique for evaluating the value of loss tangent (tan δ) obtained from dynamic viscoelasticity measurement shown in Patent Document 1 Loss can be evaluated with high measurement accuracy.

また、特許文献2で提案されている、X線散乱測定や中性子散乱測定により、高分子材料中の充填剤が凝集して形成されたクラスターの慣性半径Rを算出し、このRを用いて高分子材料のエネルギーロスを評価する手法は、充填剤の分散状態からエネルギーロスを推定することになるため、充填剤の分散状態が同程度の高分子材料の場合、そのエネルギーロスの差を高精度に評価することは困難であった。これに対し、本発明では、動的な状態で内部構造の応答特性を測定することにより、充填剤の分散状態が同程度の高分子であっても、エネルギーロスの差を高精度に評価することができる。 Further, the radius of inertia R g of the cluster formed by agglomeration of the filler in the polymer material is calculated by X-ray scattering measurement or neutron scattering measurement proposed in Patent Document 2, and this R g is used. Therefore, the method of evaluating the energy loss of a polymer material estimates the energy loss from the dispersion state of the filler. Therefore, in the case of a polymer material having the same dispersion state of the filler, the difference in energy loss is calculated. It was difficult to evaluate with high accuracy. In contrast, in the present invention, by measuring the response characteristics of the internal structure in a dynamic state, the difference in energy loss can be evaluated with high accuracy even for polymers having the same dispersion state of the filler. be able to.

また、特許文献3で提案されている、X線散乱測定や中性子散乱測定により、ポリマーの架橋点間距離に相当すると推察される0.1nm〜100μmの相関長ξを算出し、このξを用いて高分子材料のエネルギーロスを評価する手法は、充填剤の有無などにかかわらず、任意の高分子材料についてエネルギーロスを精度良く評価できるものであった。しかしながら、静的な状態でエネルギーロスを測定するものであるため、高分子材料と充填剤の結合状態の硬さ(強度)を判断することができなかった。これに対し、本発明は、動的な状態で応答特性を測定するものであるため、高分子材料と充填剤の結合状態の硬さについても評価することができる。これにより、高分子材料と充填剤の結合状態の硬さを加味した応答特性の評価が可能となるため、静的な状態での測定と比較して、エネルギーロスの差をより高精度に評価することができる。 Further, the X-ray scattering measurement or neutron scattering measurement proposed in Patent Document 3 is used to calculate a correlation length ξ of 0.1 nm to 100 μm, which is presumed to correspond to the distance between the crosslinking points of the polymer, and this ξ is used. Therefore, the method for evaluating the energy loss of a polymer material can accurately evaluate the energy loss of any polymer material regardless of the presence or absence of a filler. However, since the energy loss is measured in a static state, the hardness (strength) of the bonded state between the polymer material and the filler cannot be determined. On the other hand, since the present invention measures response characteristics in a dynamic state, the hardness of the combined state of the polymer material and the filler can also be evaluated. This makes it possible to evaluate response characteristics that take into account the hardness of the bonded state of the polymer material and the filler, so that the difference in energy loss can be evaluated with higher accuracy compared to measurement in a static state. can do.

動的粘弾性測定と、X線散乱測定又は中性子散乱測定とを同時に実施する手法としては、例えば、粘弾性試験機から発信されたパルス信号に対して、X線検出装置又は中性子検出装置の露光を同期させることにより、パルス信号が最初に発信された時刻(t=0)を基準として、動的粘弾性測定の1周期を任意の回数に分割し、X線散乱測定又は中性子散乱測定を実施する手法が好適である。 As a method for simultaneously performing dynamic viscoelasticity measurement and X-ray scattering measurement or neutron scattering measurement, for example, exposure of an X-ray detection device or a neutron detection device to a pulse signal transmitted from a viscoelasticity tester By synchronizing the two, the period of dynamic viscoelasticity measurement is divided into an arbitrary number of times based on the time when the pulse signal was first transmitted (t = 0), and X-ray scattering measurement or neutron scattering measurement is performed. This technique is suitable.

パルス信号が最初に発信されるタイミングは、特に限定されるわけではないが、例えば、動的粘弾性測定における変位が0である点(起点となる歪を加えたとき)を用いるのが、解析上都合が良い。 The timing at which the pulse signal is first transmitted is not particularly limited. For example, the point where the displacement in the dynamic viscoelasticity measurement is 0 (when the starting strain is added) is used for analysis. Convenient.

動的粘弾性測定の1周期を分割する回数は、特に限定されるわけではないが、金属原子が凝集して形成されたクラスターや充填剤が凝集して形成されたクラスターの傾きを追従できる程度の回数であることが、解析上都合が良い。 The number of times of dividing one cycle of dynamic viscoelasticity measurement is not particularly limited, but can follow the inclination of clusters formed by aggregation of metal atoms and clusters formed by aggregation of fillers. The number of times is convenient for analysis.

動的粘弾性測定は、試料を周期的に歪ませた(変形させた)ときの応答を測定するものであり、変形(歪)のモードとして、引張(延伸)、圧縮、せん断、曲げなどがあるが、エネルギーロスの測定には、引張、圧縮が好適である。初期歪、周波数、動的歪振幅など、その他の条件については、測定対象とする高分子材料に応じて適宜設定可能である。 Dynamic viscoelasticity measurement measures the response when a sample is periodically distorted (deformed). Deformation (strain) modes include tension (stretching), compression, shear, and bending. However, tension and compression are suitable for measuring energy loss. Other conditions such as initial strain, frequency, and dynamic strain amplitude can be appropriately set according to the polymer material to be measured.

動的粘弾性測定に使用できる装置としては、特に限定されず、例えば、(株)上島製作所製のスペクトロメーターなど、一般的なものを使用できる。 An apparatus that can be used for dynamic viscoelasticity measurement is not particularly limited, and for example, a general apparatus such as a spectrometer manufactured by Ueshima Seisakusho Co., Ltd. can be used.

本発明では、高分子材料の内部構造の応答特性(特にエネルギーロス)をより精度よく評価するために、X線散乱測定として、高分子材料にX線を照射し散乱強度を測定するSAXS(Small Angle X−ray Scattering 小角X線散乱(散乱角:通常10度以下))測定を好適に採用できる。なお、小角X線散乱では、X線を物質に照射して散乱するX線のうち、散乱角が小さいものを測定することで物質の構造情報が得られ、高分子材料のミクロ相分離構造など、数ナノメートルレベルでの規則構造を分析できる。 In the present invention, in order to more accurately evaluate the response characteristics (particularly energy loss) of the internal structure of the polymer material, as X-ray scattering measurement, SAXS (Small) measures the scattering intensity by irradiating the polymer material with X-rays. Angle X-ray Scattering Small angle X-ray scattering (scattering angle: usually 10 degrees or less) measurement can be suitably employed. In small-angle X-ray scattering, structural information of a substance can be obtained by measuring X-rays that are scattered by irradiating the substance with X-rays, and having a small scattering angle. , Can analyze the regular structure at several nanometer level.

SAXS測定から詳細な分子構造情報を得るためには、高いS/N比のX線散乱プロファイルを測定できることが望ましい。そのため、シンクロトロンから放射されるX線は、少なくとも1010(photons/sec/mrad/mm/0.1%bw)以上の輝度を有することが好ましい。尚、bwはシンクロトロンから放射されるX線のband widthを示す。このようなシンクロトロンの例として、財団法人高輝度光科学研究センター所有の大型放射光施設SPring−8のビームラインBL03XU,BL08B2,BL20XUなどが挙げられる。 In order to obtain detailed molecular structure information from the SAXS measurement, it is desirable that an X-ray scattering profile with a high S / N ratio can be measured. Therefore, the X-rays emitted from the synchrotron preferably have a luminance of at least 10 10 (photons / sec / mrad 2 / mm 2 /0.1% bw) or more. Note that bw represents the band width of X-rays emitted from the synchrotron. Examples of such synchrotrons include beam lines BL03XU, BL08B2, and BL20XU of a large synchrotron radiation facility SPring-8 owned by the High Brightness Photoscience Research Center.

上記X線の輝度(photons/sec/mrad/mm/0.1%bw)は、好ましくは1010以上、より好ましくは1012以上である。上限は特に限定されないが、放射線ダメージがない程度以下のX線強度を用いることが好ましい。 The X-ray luminance (photons / sec / mrad 2 / mm 2 /0.1% bw) is preferably 10 10 or more, more preferably 10 12 or more. Although an upper limit is not specifically limited, It is preferable to use the X-ray intensity below the extent that there is no radiation damage.

上記X線の光子数(photons/sec)は、好ましくは10以上、より好ましくは10以上である。上限は特に限定されないが、放射線ダメージがない程度以下のX線強度を用いることが好ましい。 The number of photons (photons / sec) of the X-ray is preferably 10 7 or more, more preferably 10 9 or more. Although an upper limit is not specifically limited, It is preferable to use the X-ray intensity below the extent that there is no radiation damage.

同様に、本発明では、高分子材料の内部構造の応答特性(特にエネルギーロス)をより精度よく評価するために、中性子散乱測定として、高分子材料に中性子線を照射し散乱強度を測定するSANS(Small Angle Neutron Scattering 小角中性子散乱(散乱角:通常10度以下))測定を好適に採用できる。なお、小角中性子散乱測定では、中性子線を物質に照射して散乱する中性子線のうち、散乱角が小さいものを測定することで物質の構造情報が得られ、高分子材料のミクロ相分離構造など、数ナノメートルレベルでの規則構造を分析できる。 Similarly, in the present invention, in order to more accurately evaluate the response characteristics (particularly energy loss) of the internal structure of the polymer material, as a neutron scattering measurement, SANS that measures the scattering intensity by irradiating the polymer material with a neutron beam (Small Angle Neutron Scattering Small Angle Neutron Scattering (scattering angle: usually 10 degrees or less)) measurement can be suitably employed. In small-angle neutron scattering measurement, the structure information of a substance can be obtained by measuring the neutron beam that is scattered by irradiating the substance with a neutron beam, which has a small scattering angle. , Can analyze the regular structure at several nanometer level.

SAXS測定と同様に、高いS/N比の中性子散乱プロファイルが得られるという点から、上記中性子線の中性子束強度(neutrons/cm/s)は、好ましくは10以上、より好ましくは10以上である。上限は特に限定されないが、放射線ダメージがない程度以下の中性子束強度を用いることが好ましい。 Similar to the SAXS measurement, the neutron flux intensity (neutrons / cm 2 / s) of the neutron beam is preferably 10 3 or more, more preferably 10 4 in that a neutron scattering profile having a high S / N ratio can be obtained. That's it. Although an upper limit is not specifically limited, It is preferable to use the neutron flux intensity below the grade which does not have radiation damage.

このような中性子束強度が得られると言う点で、SANSなどの中性子散乱測定に使用される中性子線は、独立行政法人日本原子力研究開発機構所有のJRR−3研究炉のビームラインSANS−J、大強度陽子加速器施設J−PARC付属のSANS装置(BL15 TAIKAN, BL20 iMATERIAなど)、大韓民国のKAERI(Korea Atomic Energy Research Institute)所有の原子炉HANARO(High−flux Advanced Application Reactor)付属のSANS装置(40mSANS)などを用いることができる。 The neutron beam used for neutron scattering measurement such as SANS in terms of obtaining such neutron flux intensity is the beam line SANS-J of the JRR-3 research reactor owned by the Japan Atomic Energy Agency. High intensity proton accelerator facility J-PARC attached SANS equipment (BL15 TAIKAN, BL20 iMATERIA, etc.), South Korea KAERI (Korea Atomic Energy Research Institute) owned reactor HANARO (High-fluxSadAvS AdvancedAdSantSadS AdvancedAdvSantAdvS) ) Etc. can be used.

X線散乱測定又は中性子散乱測定においては、高分子材料のより微細な分子構造を測定する必要があるという点から、上記X線又は中性子線を用いて、下記(式1)で表されるqが10nm−1以下の領域で測定することが好ましい。前記q(nm−1)の領域は、数値が大きくなるほどより小さな情報が得られる点から望ましいので、該qの領域は、20nm−1以下であることがより好ましい。

Figure 2017003387
In the X-ray scattering measurement or the neutron scattering measurement, it is necessary to measure a finer molecular structure of the polymer material. Is preferably measured in a region of 10 nm −1 or less. The q (nm −1 ) region is desirable from the viewpoint that smaller information can be obtained as the numerical value increases. Therefore, the q region is more preferably 20 nm −1 or less.
Figure 2017003387

SAXS測定において散乱するX線は、X線検出装置によって検出され、該X線検出装置からのX線検出データを用いて画像処理装置などによって画像が生成される。 X-rays scattered in the SAXS measurement are detected by an X-ray detection device, and an image is generated by an image processing device or the like using X-ray detection data from the X-ray detection device.

X線検出装置としては、例えば、2次元検出器(X線フィルム、原子核乾板、X線撮像管、X線蛍光増倍管、X線イメージインテンシファイア、X線用イメージングプレート、X線用CCD、X線用非晶質体など)、ラインセンサー1次元検出器を使用できる。分析対象となる高分子材料の種類や状態などにより、適宜X線検出装置を選択すればよい。 Examples of the X-ray detector include a two-dimensional detector (X-ray film, nuclear dry plate, X-ray imaging tube, X-ray fluorescence intensifier tube, X-ray image intensifier, X-ray imaging plate, X-ray CCD. , Amorphous body for X-rays, etc.), a line sensor one-dimensional detector can be used. An X-ray detection device may be selected as appropriate depending on the type and state of the polymer material to be analyzed.

画像処理装置としては、X線検出装置によるX線検出データに基づき、通常のX線散乱画像を生成できるものを適宜使用できる。 As the image processing apparatus, an apparatus capable of generating a normal X-ray scattering image based on X-ray detection data obtained by the X-ray detection apparatus can be appropriately used.

SANS測定でもSAXS測定と同様の原理により測定可能であり、散乱する中性子線を中性子線検出装置により検出し、該中性子線検出装置からの中性子線検出データを用いて画像処理装置などによって画像が生成される。ここで、前記と同様、中性子線検出装置としては、公知の2次元検出器や1次元検出器、画像処理装置としては、公知の中性子線散乱画像を生成できるものを使用でき、適宜選択すればよい。 The SANS measurement can be measured by the same principle as the SAXS measurement. The scattered neutron beam is detected by the neutron beam detection device, and the image is generated by the image processing device using the neutron beam detection data from the neutron beam detection device. Is done. Here, as described above, as the neutron beam detection device, a known two-dimensional detector, a one-dimensional detector, and an image processing device that can generate a known neutron scattering image can be used. Good.

本発明では、X線散乱測定、中性子散乱測定のいずれを採用してもよいが、露光時間が短くても充分なS/N比を得られるという理由から、強度の高いX線を使用するX線散乱測定が好適である。 In the present invention, either X-ray scattering measurement or neutron scattering measurement may be adopted. However, since a sufficient S / N ratio can be obtained even if the exposure time is short, X using high intensity X-rays is used. Line scattering measurements are preferred.

本発明における高分子材料としては特に限定されず、従来公知のものが挙げられるが、例えば、1種類以上の共役ジエン系化合物と1種類以上の充填剤とを含む複合材料を適用できる。共役ジエン化合物としては特に限定されず、イソプレン、ブタジエンなどの公知の化合物が挙げられる。 Although it does not specifically limit as a polymeric material in this invention, A conventionally well-known thing is mentioned, For example, the composite material containing 1 or more types of conjugated diene type compounds and 1 or more types of filler is applicable. It does not specifically limit as a conjugated diene compound, Well-known compounds, such as isoprene and a butadiene, are mentioned.

このような共役ジエン系化合物としては、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、アクリロニトリルブタジエンゴム(NBR)、クロロプレンゴム(CR)、ブチルゴム(IIR)、ハロゲン化ブチルゴム(X−IIR)、スチレンイソプレンブタジエンゴム(SIBR)などの二重結合を有するポリマーが挙げられる。また、前記複合材料などの高分子材料は、水酸基、アミノ基などの変性基を1つ以上含むものでもよい。 Such conjugated diene compounds include natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), styrene butadiene rubber (SBR), acrylonitrile butadiene rubber (NBR), chloroprene rubber (CR), butyl rubber ( IIR), halogenated butyl rubber (X-IIR), styrene isoprene butadiene rubber (SIBR), and other polymers having a double bond. The polymer material such as the composite material may include one or more modifying groups such as a hydroxyl group and an amino group.

高分子材料としては、例えば、分子構造中に少なくとも1種の金属配位能を有する官能基を含む複合材料などを好適に適用できる。ここで、金属配位能を有する官能基としては、金属配位能を持つものであれば特に限定されず、例えば、酸素、窒素、硫黄などの金属配位性の原子を含む官能基が挙げられる。具体的には、ジチオカルバミン酸基、リン酸基、カルボン酸基、カルバミン酸基、ジチオ酸基、アミノ燐酸基、チオール基などが例示される。上記官能基は1種のみ含まれても、2種以上含まれてもよい。 As the polymer material, for example, a composite material including a functional group having at least one metal coordination ability in the molecular structure can be suitably applied. Here, the functional group having metal coordinating ability is not particularly limited as long as it has metal coordinating ability, and examples thereof include functional groups containing metal coordinating atoms such as oxygen, nitrogen, and sulfur. It is done. Specific examples include a dithiocarbamic acid group, a phosphoric acid group, a carboxylic acid group, a carbamic acid group, a dithioic acid group, an aminophosphoric acid group, and a thiol group. Only one type of the functional group may be included, or two or more types may be included.

なお、該官能基に対する配位金属としては、例えば、Fe,Cu,Ag,Co,Mn,Ni,Ti,V,Zn,Mo,W,Os,Mg,Ca,Sr,Ba,Al,Siなどが挙げられる。例えば、このような金属原子(M)を有する化合物が配合されかつ金属配位能を有する官能基(−COOなど)を含む高分子材料では、各−COOMが配位結合して多数の−COOMが重なることにより、金属原子が凝集したクラスターが形成される。
なお、上記金属原子(M)の配合量としては、高分子材料中のポリマー成分100質量部に対して、0.01〜200質量部が好ましい。
As the coordination metal for the functional group, for example, Fe, Cu, Ag, Co, Mn, Ni, Ti, V, Zn, Mo, W, Os, Mg, Ca, Sr, Ba, Al, Si, etc. Is mentioned. For example, in a polymer material containing a compound having such a metal atom (M 1 ) and containing a functional group having a metal coordination ability (such as —COO), each —COOM is coordinated to form a large number of — When COOM 1 overlaps, a cluster in which metal atoms are aggregated is formed.
As the amount of the metal atom (M 1), with respect to 100 parts by mass of the polymer components in the polymer material, preferably 0.01 to 200 parts by weight.

上記充填剤としては、カーボンブラック、シリカ;mM・xSiOy・zHO(式中、Mはアルミニウム、カルシウム、マグネシウム、チタン及びジルコニウムよりなる群より選択された少なくとも1種の金属、又は該金属の酸化物、水酸化物、水和物若しくは炭酸塩を示し、mは1〜5、xは0〜10、yは2〜5、zは0〜10の範囲の数値を示す。)、などが挙げられる。 Examples of the filler include carbon black, silica; mM 2 · xSiOy · zH 2 O (wherein M 2 is at least one metal selected from the group consisting of aluminum, calcium, magnesium, titanium, and zirconium, or A metal oxide, hydroxide, hydrate or carbonate; m is 1 to 5, x is 0 to 10, y is 2 to 5, and z is a numerical value in the range of 0 to 10). Etc.

上記mM・xSiO・zHOで表される充填剤の具体例としては、水酸化アルミニウム(Al(OH))、アルミナ(Al、Al・3HO(水和物))、クレー(Al・2SiO)、カオリン(Al・2SiO・2HO)、パイロフィライト(Al・4SiO・HO)、ベントナイト(Al・4SiO・2HO)、ケイ酸アルミニウム(AlSiO、Al(SiO・5HOなど)、ケイ酸アルミニウムカルシウム(Al・CaO・2SiO)、水酸化カルシウム(Ca(OH))、酸化カルシウム(CaO)、ケイ酸カルシウム(CaSiO)、ケイ酸マグネシウムカルシウム(CaMgSiO)、水酸化マグネシウム(Mg(OH))、酸化マグネシウム(MgO)、タルク(MgO・4SiO・HO)、アタパルジャイト(5MgO・8SiO・9HO)、酸化アルミニウムマグネシウム(MgO・Al)、チタン白(TiO)、チタン黒(Ti2n−1)などが挙げられる。このような充填剤を含む高分子材料では、充填剤が凝集したクラスターが形成される。なお、上記充填剤の配合量としては、高分子材料中のポリマー成分100質量部に対して、10〜200質量部が好ましい。 Specific examples of the filler represented by the above mM 2 · xSiO y · zH 2 O include aluminum hydroxide (Al (OH) 3 ), alumina (Al 2 O 3 , Al 2 O 3 .3H 2 O (water Japanese)), clay (Al 2 O 3 .2SiO 2 ), kaolin (Al 2 O 3 .2SiO 2 .2H 2 O), pyrophyllite (Al 2 O 3 .4SiO 2 .H 2 O), bentonite ( Al 2 O 3 · 4SiO 2 · 2H 2 O), aluminum silicate (Al 2 SiO 5 , Al 4 (SiO 2 ) 3 · 5H 2 O, etc.), aluminum calcium silicate (Al 2 O 3 · CaO · 2SiO 2) ), calcium hydroxide (Ca (OH) 2), calcium oxide (CaO), calcium silicate (Ca 2 SiO 4), magnesium calcium silicate (CaMgSiO 4 , Magnesium hydroxide (Mg (OH) 2), magnesium oxide (MgO), talc (MgO · 4SiO 2 · H 2 O), attapulgite (5MgO · 8SiO 2 · 9H 2 O), magnesium aluminum oxide (MgO · Al 2 O 3 ), titanium white (TiO 2 ), titanium black (Ti n O 2n-1 ) and the like. In a polymer material containing such a filler, a cluster in which the filler is aggregated is formed. In addition, as a compounding quantity of the said filler, 10-200 mass parts is preferable with respect to 100 mass parts of polymer components in a polymeric material.

上記複合材料は、ゴム工業分野で汎用されている他の配合剤(シランカップリング剤、酸化亜鉛、ステアリン酸、各種老化防止剤、オイル、ワックス、加硫剤、加硫促進剤、架橋剤など)を含むものでもよい。このような複合材料は、公知の混練方法などを用いて製造できる。このような複合材料としては、例えば、タイヤ用ゴム材料として使用されるものが挙げられる。 The above composite materials include other compounding agents (silane coupling agents, zinc oxide, stearic acid, various anti-aging agents, oils, waxes, vulcanizing agents, vulcanization accelerators, crosslinking agents, etc. that are widely used in the rubber industry. ) May be included. Such a composite material can be manufactured using a known kneading method or the like. Examples of such composite materials include those used as tire rubber materials.

次に、高分子材料のX線散乱測定又は中性子散乱測定で得られた散乱強度曲線の解析法について具体的に説明する。金属原子を含みかつ金属配位能を有する官能基を含む高分子材料やシリカなどの充填剤を含む複合材料について、SAXS測定やSANS測定を実施した場合、例えば、得られた散乱強度曲線を以下の方法で解析することにより、1nm〜100μmのクラスター(散乱体)の慣性半径(Rg)を求めることができる。 Next, a method for analyzing a scattering intensity curve obtained by X-ray scattering measurement or neutron scattering measurement of a polymer material will be specifically described. When a SAXS measurement or a SANS measurement is performed on a polymer material containing a functional group containing a metal atom and having a metal coordination ability or a composite material containing a filler such as silica, for example, the obtained scattering intensity curve is as follows: By analyzing by this method, the inertia radius (Rg) of the cluster (scatterer) of 1 nm to 100 μm can be obtained.

図1などのSAXS測定、SANS測定により得られた散乱強度曲線I(q)に対して、下記(式2)〜(式3)を用いてカーブフィッティングを行い、フィッティングパラメーターを最小2乗法で求める。

Figure 2017003387
Curve fitting is performed using the following (Expression 2) to (Expression 3) on the scattering intensity curve I (q) obtained by SAXS measurement and SANS measurement in FIG. 1 and the like, and the fitting parameter is obtained by the least square method. .
Figure 2017003387

求められたフィッティングパラメーターのうち、1nm〜100μmのサイズの分子構造の慣性半径Rgが、金属原子が凝集して形成されたクラスターや充填剤が凝集して形成されたクラスターに相当すると推定される。 Among the obtained fitting parameters, it is presumed that the inertia radius Rg of the molecular structure having a size of 1 nm to 100 μm corresponds to a cluster formed by aggregation of metal atoms and a cluster formed by aggregation of filler.

動的粘弾性測定と、X線散乱測定又は中性子散乱測定とを同時に実施すると、慣性半径Rは、動的粘弾性測定における変形の周期に合わせて変化することになる。ここで、前記の(式2)及び(式3)を用いて、動的粘弾性測定の延伸方向に対して水平な方向の散乱強度曲線I(horizontal)(q)から、動的粘弾性測定の延伸方向に対して水平な方向の慣性半径Rg(horizontal)を算出するとともに、動的粘弾性測定の延伸方向に対して垂直な方向の散乱強度曲線I(vertical)(q)から、動的粘弾性測定の延伸方向に対して垂直な方向の慣性半径Rg(vertical)を算出し、下記(式4)及び(式5)を用いることで、アスペクト比の変動と動的粘弾性測定の入力周波との位相差φを算出することができる。

Figure 2017003387
A dynamic viscoelasticity measuring and implementing an X-ray scattering measurement or neutron scattering measurements simultaneously, radius of gyration R g will vary in accordance with the cycle of variations in the dynamic viscoelasticity measurement. Here, the dynamic viscoelasticity measurement is performed from the scattering intensity curve I (horizontal) (q) in the direction horizontal to the stretching direction of the dynamic viscoelasticity measurement using the above (formula 2) and (formula 3). Is calculated from the scattering intensity curve I (vertical) (q) in the direction perpendicular to the stretching direction of the dynamic viscoelasticity measurement. Of inertia ratio R g (vertical) in a direction perpendicular to the stretching direction of dynamic viscoelasticity measurement, and by using the following (formula 4) and (formula 5), variation in aspect ratio and dynamic viscoelasticity measurement The phase difference φ from the input frequency can be calculated.
Figure 2017003387

なお、散乱強度曲線I(horizontal)(q)は、Azimuthal Angleを動的粘弾性測定の延伸方向に対して水平な方向にとって、部分平均することによって算出することができる。同様に、散乱強度曲線I(vertical)(q)は、Azimuthal Angleを動的粘弾性測定の延伸方向に対して垂直な方向にとって、部分平均することによって算出することができる。
具体的には、散乱強度曲線I(horizontal)(q)を算出する際のAzimuthal Angleは、動的粘弾性測定の延伸方向に完全に水平な方向を0°としたとき、0°を含み−45°〜45°のうちの任意角度範囲、及び/又は、180°を含み135°〜225°のうちの任意角度範囲とすればよい。また、散乱強度曲線I(vertical)(q)を算出する際のAzimuthal Angleは、90°を含み45°〜135°のうちの任意角度範囲、及び/又は、270°を含み225°〜315°のうちの任意角度範囲とすればよい。
The scattering intensity curve I (horizontal) (q) can be calculated by partially averaging the azimuthal angle in a direction horizontal to the stretching direction of the dynamic viscoelasticity measurement. Similarly, the scattering intensity curve I (vertical) (q) can be calculated by partially averaging the azimuthal angle in a direction perpendicular to the stretching direction of the dynamic viscoelasticity measurement.
Specifically, Azimuthal Angle when calculating the scattering intensity curve I (horizontal) (q) includes 0 ° when the completely horizontal direction is 0 ° in the stretching direction of the dynamic viscoelasticity measurement − What is necessary is just to set it as the arbitrary angle range of 135 degrees-225 degrees including the arbitrary angle range of 45 degrees-45 degrees, and / or 180 degrees. In addition, Azimuthal Angle when calculating the scattering intensity curve I (vertical) (q) includes 90 °, an arbitrary angle range of 45 ° to 135 °, and / or 270 ° and 225 ° to 315 °. Any angle range may be used.

この位相差φ及びその正接tanφは、高分子材料のエネルギーロスと相関性が高く、φ及びtanφが小さいほど、エネルギーロスも小さい。よって、動的粘弾性測定とX線散乱測定又は中性子散乱測定とを同時に実施し、(式2)〜(式5)を用いてφ及びtanφを求めることにより、高分子材料のエネルギーロスの評価が可能となる。 The phase difference φ and its tangent tan φ are highly correlated with the energy loss of the polymer material, and the smaller the φ and tan φ, the smaller the energy loss. Therefore, the dynamic viscoelasticity measurement and the X-ray scattering measurement or the neutron scattering measurement are performed at the same time, and φ and tan φ are obtained using (Expression 2) to (Expression 5), thereby evaluating the energy loss of the polymer material. Is possible.

なお、φ及びtanφとエネルギーロスとに相関性がある理由は必ずしも明らかでないが、以下のように推測される。
シリカを含む複合材料を例にして説明すると、シリカのクラスターは、ラグビーボール型の凝集構造を有しており、動的粘弾性測定で歪が加えられると、凝集構造の傾き(形状)が変わるため、アスペクト比が変動することになる。φは、このアスペクト比の変動の波と、動的粘弾性測定の入力周波とのずれであり、φ及びtanφが小さければ、複合材料の粘弾性における粘性の寄与が小さく、エネルギーロスが少ないことを意味すると推測される。
The reason why there is a correlation between φ and tan φ and energy loss is not necessarily clear, but is estimated as follows.
The composite material containing silica will be described as an example. Silica clusters have a rugby ball-type aggregate structure, and the inclination (shape) of the aggregate structure changes when strain is applied by dynamic viscoelasticity measurement. Therefore, the aspect ratio varies. φ is the difference between the fluctuation wave of the aspect ratio and the input frequency of dynamic viscoelasticity measurement. If φ and tanφ are small, the contribution of viscosity in the viscoelasticity of the composite material is small and the energy loss is small. Is presumed to mean.

実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。 The present invention will be specifically described based on examples, but the present invention is not limited to these examples.

以下、実施例及び比較例で使用した各種薬品について、まとめて説明する。
イソプレンゴム(IR):日本ゼオン(株)製のニッポールIR2200
ブタジエンゴム(BR):JSR(株)製のBR730
シリカ:東ソー・シリカ(株)製のNipol VN3
シランカップリング剤A〜C:試作品
ステアリン酸:日油(株)製のステアリン酸「椿」
硫黄:軽井沢硫黄(株)製の粉末硫黄
加硫促進剤1:大内新興化学工業(株)製のノクセラーCZ(N−シクロヘキシル−2−ベンゾチアゾリルスルフェンアミド)
加硫促進剤2:大内新興化学工業(株)製のノクセラーD(1,3−ジフェニルグアニジン)
Hereinafter, various chemicals used in Examples and Comparative Examples will be described together.
Isoprene rubber (IR): Nippon IR2200 made by Nippon Zeon Co., Ltd.
Butadiene rubber (BR): BR730 manufactured by JSR Corporation
Silica: Nipol VN3 manufactured by Tosoh Silica Corporation
Silane coupling agents A to C: prototype
Stearic acid: Stearic acid “椿” manufactured by NOF Corporation
Sulfur: Powder sulfur vulcanization accelerator manufactured by Karuizawa Sulfur Co., Ltd. 1: Noxeller CZ (N-cyclohexyl-2-benzothiazolylsulfenamide) manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.
Vulcanization accelerator 2: Noxeller D (1,3-diphenylguanidine) manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.

(実施例1、比較例1,2で使用する成型品の製造方法)
表1に示す配合処方にしたがい、バンバリー混練機及びロール混練機にて混練し、次いで、混練した材料を170℃で20分間プレス成型して成型品を得た。得られた成型品(サンプル)を以下に示す試験方法により評価した。結果を表2に示した。

Figure 2017003387
(Manufacturing method of the molded product used in Example 1 and Comparative Examples 1 and 2)
According to the formulation shown in Table 1, the mixture was kneaded with a Banbury kneader and a roll kneader, and the kneaded material was press-molded at 170 ° C. for 20 minutes to obtain a molded product. The obtained molded product (sample) was evaluated by the following test method. The results are shown in Table 2.
Figure 2017003387

[実施例1:動的粘弾性測定及びSAXS測定の同時実施]
<動的粘弾性測定>
60℃にセットした粘弾性試験機((株)上島製作所製のスペクトロメーター)内で、10mm×10mmのサンプルを、チャックでつかみ固定した。そして、このサンプルに対し、引張モードで、10%の初期歪を加えた後、周波数10Hz、動的歪振幅5%の歪を繰り返し加えることで、動的粘弾性測定を実施した。
[Example 1: Simultaneous implementation of dynamic viscoelasticity measurement and SAXS measurement]
<Dynamic viscoelasticity measurement>
In a viscoelasticity testing machine (spectrometer manufactured by Ueshima Seisakusho Co., Ltd.) set at 60 ° C., a 10 mm × 10 mm sample was held and fixed with a chuck. Then, after applying an initial strain of 10% to this sample in a tensile mode, a dynamic viscoelasticity measurement was performed by repeatedly applying a strain of a frequency of 10 Hz and a dynamic strain amplitude of 5%.

<SAXS測定>
粘弾性測定中のサンプルに対し、動的粘弾性測定の変位が0となる点を規準とし、10msecごとにX線を照射し、下記条件で小角X線散乱(SAXS)測定を実施することで、成型品の内部構造の構造変化を観察した。粘弾性の1周期は10分割とした。得られた散乱強度曲線の一例を図1に示す。
(SAXS測定の条件)
X線の輝度:5x1012photons/sec/mrad/mm/0.1%bw
X線の光子数:2x10photons/sec
X線のエネルギー:8keV(BL08B2),23keV(BL20XU)
試料から検出器までの距離:3m(BL08B2),160m(BL20XU)
(SAXSの検出器)
2次元検出器:イメージング・インテンシファイア及びCCDカメラ
<SAXS measurement>
By irradiating X-rays every 10 msec with respect to a sample during viscoelasticity measurement, where the displacement of dynamic viscoelasticity measurement is 0, and performing small angle X-ray scattering (SAXS) measurement under the following conditions The structural change of the internal structure of the molded product was observed. One period of viscoelasticity was divided into 10 parts. An example of the obtained scattering intensity curve is shown in FIG.
(Conditions for SAXS measurement)
X-ray luminance: 5 × 10 12 photons / sec / mrad 2 / mm 2 /0.1% bw
X-ray photon count: 2 × 10 9 photons / sec
X-ray energy: 8 keV (BL08B2), 23 keV (BL20XU)
Distance from sample to detector: 3m (BL08B2), 160m (BL20XU)
(SAXS detector)
Two-dimensional detector: Imaging intensifier and CCD camera

<SAXSのデータ処理>
BL08B2での測定から得られた、動的粘弾性測定の延伸方向に対して水平な方向の散乱強度曲線I(horizontal)(q)と、BL20XUでの測定から得られた同方向の散乱強度曲線I(horizontal)(q)とを、最小2乗法にて結合させた。動的粘弾性測定の延伸方向に対して垂直な方向の散乱強度曲線I(vertical)(q)についても同様にした。2つの曲線の結合は、広角側のBL08B2から得られる散乱強度曲線を固定し、小角側のBL20XUから得られる散乱強度曲線をシフトさせることで行った。
<SAXS data processing>
The scattering intensity curve I (horizontal) (q) in the direction horizontal to the stretching direction of the dynamic viscoelasticity measurement obtained from the measurement with BL08B2, and the scattering intensity curve in the same direction obtained from the measurement with BL20XU I (horizontal) (q) was combined by the method of least squares. The same was applied to the scattering intensity curve I (vertical) (q) in the direction perpendicular to the stretching direction of the dynamic viscoelasticity measurement. The two curves were combined by fixing the scattering intensity curve obtained from BL08B2 on the wide angle side and shifting the scattering intensity curve obtained from BL20XU on the small angle side.

結合後の散乱強度曲線I(q)に対して、(式2)及び(式3)を用いてカーブフィッティンングを行い、フィッティングパラメーターRg(1nm〜100μmの慣性半径)を、動的粘弾性測定の延伸方向に水平な方向、垂直な方向のそれぞれに対して、最小2乗法で求めた。Rg(horizontal)及びRg(vertical)の時間変化を図2に示す。 Curve fitting is performed on the combined scattering intensity curve I (q) using (Equation 2) and (Equation 3), and the fitting parameter Rg (inertial radius of 1 nm to 100 μm) is measured by dynamic viscoelasticity. The minimum square method was used for each of a horizontal direction and a vertical direction in the stretching direction. FIG. 2 shows changes over time in R g (horizontal) and R g (vertical) .

得られたRg(horizontal)及びRg(vertical)を、(式4)及び(式5)を用いて解析することで、動的粘弾性測定の入力周波に対するRgのアスペクト比の変動の位相差φと、その正接tanφとを算出した。動的粘弾性測定の入力周波とアスペクト比の時間変化とを図3に示す。算出した位相差φは0.34551[rad]、tanφは0.35995であった。 By analyzing the obtained R g (horizontal) and R g (vertical) using (Equation 4) and (Equation 5), the degree of variation in the aspect ratio of Rg with respect to the input frequency of dynamic viscoelasticity measurement The phase difference φ and its tangent tan φ were calculated. FIG. 3 shows the input frequency of the dynamic viscoelasticity measurement and the time change of the aspect ratio. The calculated phase difference φ was 0.34551 [rad], and tan φ was 0.35995.

[比較例1:走査型電子顕微鏡(SEM)測定]
室温にて、サンプルを走査型電子顕微鏡(日本FEI(株)製のXL30)で観察した。
[Comparative Example 1: Scanning Electron Microscope (SEM) Measurement]
At room temperature, the sample was observed with a scanning electron microscope (XL30 manufactured by Nippon FEI Co., Ltd.).

[比較例2:透過型電子顕微鏡(TEM)測定]
ミクロトーム(LEICA社製のウルトラミクロトームEM VC6)でサンプルを50nm厚に切削し、透過型電子顕微鏡(日本電子(株)製のJEM2100F)で観察した。
[Comparative Example 2: Transmission electron microscope (TEM) measurement]
The sample was cut to a thickness of 50 nm with a microtome (LEICA ultramicrotome EM VC6) and observed with a transmission electron microscope (JEM2100F, manufactured by JEOL Ltd.).

Figure 2017003387
Figure 2017003387

表2から、動的粘弾性測定及びSAXS測定を同時実施した実施例1では、内部構造の測定だけでなく、SEM測定を行った比較例1や、TEM測定を行った比較例2では不可能な、内部構造の応答特性であるエネルギーロスまでもが測定できることが明らかとなった。 From Table 2, in Example 1 in which dynamic viscoelasticity measurement and SAXS measurement were simultaneously performed, it was not possible in Comparative Example 1 in which not only internal structure measurement but also SEM measurement was performed, and in Comparative Example 2 in which TEM measurement was performed. It became clear that even energy loss, which is a response characteristic of the internal structure, can be measured.

(実施例2、比較例3,4で使用する成型品の製造方法)
表3に示す配合処方にしたがい、バンバリー混練機及びロール混練機にて混練し、次いで、混練した材料を170℃で20分間プレス成型して成型品(サンプル)A〜Cを得た。
(Manufacturing method of the molded product used in Example 2 and Comparative Examples 3 and 4)
According to the formulation shown in Table 3, kneading was carried out with a Banbury kneader and a roll kneader, and then the kneaded material was press-molded at 170 ° C. for 20 minutes to obtain molded products (samples) A to C.

[実施例2:動的粘弾性測定及びSAXS測定の同時実施]
実施例1と同様の手法によりφ及びtanφを算出し、それらの逆数を、サンプルAを100として指数表示した。数値が大きいほど、エネルギーロスが小さいことを示す。
[Example 2: Simultaneous implementation of dynamic viscoelasticity measurement and SAXS measurement]
Φ and tan φ were calculated by the same method as in Example 1, and their reciprocals were displayed as an index with sample A as 100. It shows that energy loss is so small that a numerical value is large.

[比較例3:動的粘弾性測定]
実施例1と同様の条件で動的粘弾性測定を実施してtanδを測定し、その逆数を、サンプルAを100として指数表示した。数値が大きいほど、エネルギーロスが小さいことを示す。
[Comparative Example 3: Dynamic Viscoelasticity Measurement]
The dynamic viscoelasticity measurement was carried out under the same conditions as in Example 1 to measure tan δ, and the reciprocal number was expressed as an index with Sample A as 100. It shows that energy loss is so small that a numerical value is large.

[比較例4:タイヤ転がり性能測定]
サンプルA〜Cの各配合をタイヤ部材に適用した試供タイヤについて、転がり抵抗試験機を用い、リム(15×6JJ)、内圧(230kPa)、荷重(3.43kN)、速度(80km/h)で走行させたときの転がり抵抗を測定し、サンプルAを100として指数で表示した。数値が大きいほど、タイヤの転がり性能が良く、エネルギーロスが小さいことを示す。
[Comparative example 4: tire rolling performance measurement]
For a sample tire in which each composition of Samples A to C was applied to a tire member, using a rolling resistance tester, with a rim (15 × 6JJ), internal pressure (230 kPa), load (3.43 kN), speed (80 km / h) The rolling resistance at the time of running was measured, and Sample A was set as 100 and displayed as an index. The larger the value, the better the rolling performance of the tire and the smaller the energy loss.

Figure 2017003387
Figure 2017003387

表3から、動的粘弾性測定及びSAXS測定を同時に実施した実施例2において、φ及びtanφを求めることにより、エネルギーロスを評価できることが立証された。また、実施例2から得られたφ及びtanφは、比較例3から得られたtanδと比較して、比較例4で得られたタイヤ転がり性能との相関性が高く、従来の測定で得られるtanδでは性能差を評価しにくいものでも、精度よく性能差を評価できることが明らかとなった。 From Table 3, it was proved that energy loss can be evaluated by obtaining φ and tan φ in Example 2 in which dynamic viscoelasticity measurement and SAXS measurement were simultaneously performed. Further, φ and tan φ obtained from Example 2 have a high correlation with the tire rolling performance obtained in Comparative Example 4 as compared with tan δ obtained from Comparative Example 3, and are obtained by conventional measurement. Even if it is difficult to evaluate the performance difference with tan δ, it has become clear that the performance difference can be accurately evaluated.

Claims (7)

高分子材料に対して、動的粘弾性測定を実施しながら、X線又は中性子線を照射してX線散乱測定又は中性子散乱測定を実施することにより、高分子材料の内部構造の応答特性を評価する方法。 While conducting dynamic viscoelasticity measurement for polymer material, X-ray scattering measurement or neutron scattering measurement is performed by irradiating with X-ray or neutron beam, thereby improving the response characteristics of the internal structure of the polymer material. How to evaluate. 粘弾性試験機から発信されたパルス信号に対し、X線検出装置又は中性子検出装置の露光を同期させることにより、パルス信号が最初に発信された時刻を基準として、動的粘弾性測定の1周期を任意の回数に分割し、X線散乱測定又は中性子散乱測定を実施する請求項1記載の高分子材料の内部構造の応答特性を評価する方法。 By synchronizing the exposure of the X-ray detector or neutron detector with the pulse signal transmitted from the viscoelasticity tester, one period of dynamic viscoelasticity measurement is based on the time when the pulse signal was first transmitted. The method of evaluating the response characteristics of the internal structure of the polymer material according to claim 1, wherein X-ray scattering measurement or neutron scattering measurement is carried out by dividing the number of X線散乱測定が小角X線散乱測定、中性子散乱測定が小角中性子散乱測定である請求項1又は2記載の高分子材料の内部構造の応答特性を評価する方法。 The method for evaluating response characteristics of the internal structure of the polymer material according to claim 1 or 2, wherein the X-ray scattering measurement is small-angle X-ray scattering measurement and the neutron scattering measurement is small-angle neutron scattering measurement. 高分子材料が、1種類以上の共役ジエン系化合物と1種類以上の充填剤とを含む複合材料である請求項1〜3のいずれかに記載の高分子材料の内部構造の応答特性を評価する方法。 The polymer material is a composite material containing one or more kinds of conjugated diene compounds and one or more kinds of fillers. The response characteristic of the internal structure of the polymer material according to any one of claims 1 to 3 is evaluated. Method. X線又は中性子線を用いて、下記(式1)で表されるqが10nm−1以下の領域で測定する請求項1〜4のいずれかに記載の方法。
Figure 2017003387
The method according to any one of claims 1 to 4, wherein q represented by the following (Formula 1) is measured in an area of 10 nm -1 or less using X-rays or neutron rays.
Figure 2017003387
X線散乱測定又は中性子散乱測定により得られた散乱強度曲線I(q)に対し、下記(式2)及び(式3)でカーブフィッティングして得られる1nm〜100μmの慣性半径Rを用いて応答特性を評価する請求項1〜5のいずれかに記載の高分子材料の内部構造の応答特性を評価する方法。
Figure 2017003387
With respect to the X-ray scattering measurement or scattered obtained by neutron scattering intensity curve I (q), by using the radius of gyration R g of 1nm~100μm obtained by curve fitting by the following (Equation 2) and (Equation 3) The method for evaluating the response characteristics of the internal structure of the polymer material according to claim 1, wherein the response characteristics are evaluated.
Figure 2017003387
(式2)及び(式3)を用いて、動的粘弾性測定の延伸方向に対して水平な方向の散乱強度曲線I(horizontal)(q)から、動的粘弾性測定の延伸方向に対して水平な方向の慣性半径Rg(horizontal)を算出するとともに、動的粘弾性測定の延伸方向に対して垂直な方向の散乱強度曲線I(vertical)(q)から、動的粘弾性測定の延伸方向に対して垂直な方向の慣性半径Rg(vertical)を算出し、
下記(式4)及び(式5)から得られるアスペクト比の変動と動的粘弾性測定の入力周波との位相差φを用いて応答特性を評価する請求項6に記載の高分子材料の内部構造の応答特性を評価する方法。
Figure 2017003387
Using (Equation 2) and (Equation 3), from the scattering intensity curve I (horizontal) (q) in the direction horizontal to the stretching direction of dynamic viscoelasticity measurement, with respect to the stretching direction of dynamic viscoelasticity measurement In addition, the inertial radius R g (horizontal) in the horizontal direction is calculated, and from the scattering intensity curve I (vertical) (q) in the direction perpendicular to the stretching direction of the dynamic viscoelasticity measurement, Calculate the inertial radius R g (vertical) in the direction perpendicular to the stretching direction,
The inside of the polymer material according to claim 6, wherein the response characteristic is evaluated using a phase difference φ between an aspect ratio variation obtained from the following (formula 4) and (formula 5) and an input frequency of dynamic viscoelasticity measurement. A method for evaluating the response characteristics of structures.
Figure 2017003387
JP2015116638A 2015-06-09 2015-06-09 Method for evaluating response characteristics of internal structure of polymer materials Active JP6613637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015116638A JP6613637B2 (en) 2015-06-09 2015-06-09 Method for evaluating response characteristics of internal structure of polymer materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015116638A JP6613637B2 (en) 2015-06-09 2015-06-09 Method for evaluating response characteristics of internal structure of polymer materials

Publications (2)

Publication Number Publication Date
JP2017003387A true JP2017003387A (en) 2017-01-05
JP6613637B2 JP6613637B2 (en) 2019-12-04

Family

ID=57754369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015116638A Active JP6613637B2 (en) 2015-06-09 2015-06-09 Method for evaluating response characteristics of internal structure of polymer materials

Country Status (1)

Country Link
JP (1) JP6613637B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018184515A (en) * 2017-04-25 2018-11-22 住友ゴム工業株式会社 Rubber composition for tire, method for producing rubber composition for tire, and tire
KR20190064298A (en) * 2017-11-30 2019-06-10 한국과학기술연구원 Method for analysing the source of soots using ultra small angle(usans) and small angle scattering(sans)
JP2019113488A (en) * 2017-12-26 2019-07-11 Toyo Tire株式会社 Method for evaluating reinforcement agent hierarchical structure of high polymer material
CN111307572A (en) * 2020-04-03 2020-06-19 中国工程物理研究院核物理与化学研究所 Small-angle neutron scattering-based filled rubber structure network evolution determination method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013065405A1 (en) * 2011-11-01 2013-05-10 住友ゴム工業株式会社 Method for evaluating modulus of repulsion elasticity, hardness and energy loss of polymer material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013065405A1 (en) * 2011-11-01 2013-05-10 住友ゴム工業株式会社 Method for evaluating modulus of repulsion elasticity, hardness and energy loss of polymer material

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
鈴木翔、外2名: "時分割超小角X線散乱法による変形下におけるゴム中フィラーの分散状態の変化に関する研究", 一般社団法人日本ゴム協会 研究発表講演会 講演要旨2015, JPN6019007572, 21 May 2015 (2015-05-21), pages 7 - 5, ISSN: 0003992079 *
雨宮 慶幸、外2名: "長期利用課題報告2 2次元極小角・小角X線散乱法を用いたゴム中ナノ粒子凝集構造の観察", SPRING-8 INFORMATION, vol. 14, no. 2, JPN6019007574, May 2009 (2009-05-01), pages 149 - 153, ISSN: 0003992080 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018184515A (en) * 2017-04-25 2018-11-22 住友ゴム工業株式会社 Rubber composition for tire, method for producing rubber composition for tire, and tire
JP7069564B2 (en) 2017-04-25 2022-05-18 住友ゴム工業株式会社 Rubber composition for tires, manufacturing method of rubber composition for tires and tires
KR20190064298A (en) * 2017-11-30 2019-06-10 한국과학기술연구원 Method for analysing the source of soots using ultra small angle(usans) and small angle scattering(sans)
KR101987973B1 (en) * 2017-11-30 2019-06-11 한국과학기술연구원 Method for analysing the source of soots using ultra small angle(usans) and small angle scattering(sans)
JP2019113488A (en) * 2017-12-26 2019-07-11 Toyo Tire株式会社 Method for evaluating reinforcement agent hierarchical structure of high polymer material
JP7037935B2 (en) 2017-12-26 2022-03-17 Toyo Tire株式会社 Reinforcing agent for polymer materials Hierarchical structure evaluation method
CN111307572A (en) * 2020-04-03 2020-06-19 中国工程物理研究院核物理与化学研究所 Small-angle neutron scattering-based filled rubber structure network evolution determination method

Also Published As

Publication number Publication date
JP6613637B2 (en) 2019-12-04

Similar Documents

Publication Publication Date Title
JP5969494B2 (en) Method for evaluating rebound resilience, hardness and energy loss of polymer materials
JP5658219B2 (en) Method for evaluating energy loss, chipping resistance and wear resistance of polymer materials
US9395314B2 (en) Method of evaluating neutron scattering length density
JP6408906B2 (en) Method for evaluating energy loss and anti-wear performance of polymeric materials
JP6613637B2 (en) Method for evaluating response characteristics of internal structure of polymer materials
JP2018178016A (en) Mechanical physical property measuring method
JP2018096905A (en) Abrasion proof performance prediction method
JP2018179643A (en) Method for evaluating dispersion of silica aggregate
JP6822160B2 (en) Evaluation method for sheet scraping of polymer composite materials
JP2020027084A (en) Crosslinked structure visualization method
JP2023128031A (en) Evaluation method
JP6460730B2 (en) Vulcanized rubber composition for tire and pneumatic tire
JP2017053760A (en) Chemical dispersion evaluation method
JP2017219438A (en) Method of evaluating degree of orientation of polymer in polymer composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191021

R150 Certificate of patent or registration of utility model

Ref document number: 6613637

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250