JP2017003325A - Secondary battery inspection method - Google Patents

Secondary battery inspection method Download PDF

Info

Publication number
JP2017003325A
JP2017003325A JP2015115126A JP2015115126A JP2017003325A JP 2017003325 A JP2017003325 A JP 2017003325A JP 2015115126 A JP2015115126 A JP 2015115126A JP 2015115126 A JP2015115126 A JP 2015115126A JP 2017003325 A JP2017003325 A JP 2017003325A
Authority
JP
Japan
Prior art keywords
secondary battery
magnetic field
voltage
field strength
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015115126A
Other languages
Japanese (ja)
Inventor
正樹 関野
Masaki Sekino
正樹 関野
善弘 瀧山
Yoshihiro Takiyama
善弘 瀧山
まさえ 長瀬
Masae Nagase
まさえ 長瀬
雄三 三浦
Yuzo Miura
雄三 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Toyota Motor Corp
Original Assignee
University of Tokyo NUC
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC, Toyota Motor Corp filed Critical University of Tokyo NUC
Priority to JP2015115126A priority Critical patent/JP2017003325A/en
Publication of JP2017003325A publication Critical patent/JP2017003325A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a secondary battery inspection method capable of quickly and accurately inspecting whether minute short-circuiting occurs in a secondary battery.SOLUTION: In a first step, a magnetic field intensity of a secondary battery 701 is calculated when a voltage of the secondary battery 701 is a first voltage V1. In a second step, the voltage of the secondary battery 701 is changed to a second voltage V2 different from the first voltage V1. In a third step, the magnetic field intensity of the secondary battery 701 is calculated when the voltage of the secondary battery 701 is the second voltage V2. In a fourth step, it is determined whether short-circuiting occurs in the secondary battery 701 or not on the basis of the difference between the magnetic field intensity (first magnetic field intensity B1) of the secondary battery 701 calculated in the first step and the magnetic field intensity (second magnetic field intensity B2) of the second battery calculated in the third step.SELECTED DRAWING: Figure 4

Description

本発明は、特に二次電池の微小短絡に起因する不良を排除するための検査方法に関する。   The present invention particularly relates to an inspection method for eliminating defects resulting from a minute short circuit of a secondary battery.

二次電池の内部に導電性異物が混入しこの異物が二次電池内部のセパレータを貫くなどすると、二次電池の内部で正極と負極との短絡が生じることがある。このようなことにより二次電池の内部で正極と負極との短絡が生じると、二次電池の起電力を短絡部の内部抵抗で除した値の電流が二次電池内に流れるので二次電池の電圧が低下する。このため、内部において正極と負極との短絡が生じた二次電池は、出荷前の検査で排除する必要がある。   If a conductive foreign matter enters inside the secondary battery and the foreign matter penetrates the separator inside the secondary battery, a short circuit between the positive electrode and the negative electrode may occur inside the secondary battery. When a short circuit occurs between the positive electrode and the negative electrode inside the secondary battery due to such a thing, a current of a value obtained by dividing the electromotive force of the secondary battery by the internal resistance of the short-circuit portion flows into the secondary battery. Voltage drops. For this reason, the secondary battery in which the short circuit between the positive electrode and the negative electrode has occurred needs to be excluded by inspection before shipment.

特許文献1には、出荷前に二次電池をエージングし、エージング前後における端子電圧の変化量(端子電圧差)を算出し、この端子電圧差を予め定められた閾値と比較することにより、二次電池の内部における正極と負極との短絡の有無を判定する二次電池の検査方法が記載されている。   In Patent Document 1, the secondary battery is aged before shipment, the amount of change in terminal voltage (terminal voltage difference) before and after aging is calculated, and this terminal voltage difference is compared with a predetermined threshold value. A secondary battery inspection method for determining the presence or absence of a short circuit between the positive electrode and the negative electrode inside the secondary battery is described.

特開2004−132776号公報Japanese Patent Laid-Open No. 2004-13276

しかしながら、特許文献1に記載された二次電池の検査方法では、エージングのために数日間を要するため、検査に時間がかかるという問題があった。   However, the secondary battery inspection method described in Patent Document 1 has a problem that it takes time for inspection because it takes several days for aging.

本発明は、以上の問題点に鑑みてなされたものであり、二次電池の微小短絡の有無を迅速かつ精度良く検査することのできる二次電池の検査方法を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a secondary battery inspection method capable of quickly and accurately inspecting the presence or absence of a micro short circuit in a secondary battery.

本発明は、二次電池の検査方法であって、二次電池の電圧が第一の電圧のときに、前記二次電池の磁場強度を算出する第一の工程と、前記二次電池の電圧を前記第一の電圧とは異なる第二の電圧に変更する第二の工程と、前記二次電池の電圧が前記第二の電圧のときに、前記二次電池の磁場強度を算出する第三の工程と、前記第一の工程で算出した前記二次電池の磁場強度と前記第三の工程で算出した前記二次電池の磁場強度との差に基づいて、前記二次電池の内部に短絡があるか否かを判定する第四の工程と、を有し、前記第一の工程及び前記第三の工程は、前記二次電池の周囲に配置され、前記二次電池の正極および負極を開放した状態の磁場強度を検知する磁気センサを介して検出した検出データを連続的に読み込みした読み込みデータ群をある区間幅で均等に分割し、それぞれの区間で区間内に含まれるデータ群についての平均値をそれぞれ算出し、区間ごとに得られた複数の平均値のばらつきが予め定められた基準値を超えているか否かを判断する第一のステップと、前記第一のステップにおいて前記複数の平均値のばらつきが前記基準値を超えていると判断された場合に、前記ある区間幅を広げるとともに、必要に応じて前記読み込みデータ群の範囲を広げて、再度、前記第一のステップを実行する第二のステップと、前記第一のステップにおいて前記複数の平均値のばらつきが前記基準値以下であると判断された場合に、前記読み込みデータ群に基づいて前記二次電池の磁気強度を算出する第三のステップと、をそれぞれ有するものである。   The present invention is a method for inspecting a secondary battery, the first step of calculating the magnetic field strength of the secondary battery when the voltage of the secondary battery is the first voltage, and the voltage of the secondary battery A second step of changing the second battery voltage to a second voltage different from the first voltage, and a third step of calculating the magnetic field strength of the secondary battery when the voltage of the secondary battery is the second voltage. And a short circuit inside the secondary battery based on the difference between the magnetic field intensity of the secondary battery calculated in the first process and the magnetic field intensity of the secondary battery calculated in the third process. A fourth step of determining whether or not there is, the first step and the third step are arranged around the secondary battery, and the positive electrode and the negative electrode of the secondary battery are Reading data obtained by continuously reading detection data detected via a magnetic sensor that detects the magnetic field strength in an open state Divide the group evenly with a certain section width, calculate the average value for each data group included in the section in each section, and the reference value for which the dispersion of multiple average values obtained for each section is predetermined A first step of determining whether or not the difference exceeds the reference value when the variation in the plurality of average values is determined to exceed the reference value in the first step; If necessary, the range of the read data group is expanded and the first step is performed again, and the variation of the plurality of average values in the first step is less than or equal to the reference value. And a third step of calculating the magnetic strength of the secondary battery based on the read data group when determined to be present.

本発明によれば、二次電池の微小短絡の有無を迅速かつ精度良く検査することのできる二次電池の検査方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the inspection method of a secondary battery which can test | inspect the presence or absence of the micro short circuit of a secondary battery rapidly and accurately can be provided.

実施の形態1にかかる二次電池の検査方法に用いる検査装置の概略構成を示す図である。1 is a diagram illustrating a schematic configuration of an inspection apparatus used in a secondary battery inspection method according to a first embodiment; 実施の形態1にかかる二次電池に短絡がない場合の二次電池内部の状態を示す図である。It is a figure which shows the state inside a secondary battery when the secondary battery concerning Embodiment 1 does not have a short circuit. 実施の形態1にかかる二次電池に短絡がある場合の二次電池内部の状態を示す図である。It is a figure which shows the state inside a secondary battery in case the secondary battery concerning Embodiment 1 has a short circuit. 実施の形態1にかかる二次電池の微小短絡の有無を判断する処理のフローチャートである。3 is a flowchart of a process for determining whether or not there is a micro short circuit in the secondary battery according to the first embodiment; 実施の形態1にかかる二次電池の検査方法において、区間幅を変更する前後で平均値群のばらつきが変わることについて説明する図である。In the inspection method of the secondary battery concerning Embodiment 1, it is a figure explaining change of variation of an average value group before and after changing section width. 実施の形態1にかかる二次電池の磁場強度を算出する処理のフローチャートである。3 is a flowchart of a process for calculating the magnetic field strength of the secondary battery according to the first embodiment.

以下、図面を参照して本発明の実施の形態について説明する。
まず、本実施形態にかかる二次電池の検査方法である、二次電池内部の短絡の有無を検査する方法に用いる検査装置について説明する。
Embodiments of the present invention will be described below with reference to the drawings.
First, an inspection apparatus used for a method for inspecting the presence or absence of a short circuit inside a secondary battery, which is an inspection method for a secondary battery according to this embodiment, will be described.

検査装置100は、二次電池701の磁場703の強度(以降、磁場強度ともいう)を算出することで導電性異物702などによる二次電池701の内部の短絡の有無を検査するものである。図1に示されるように、本実施形態にかかる二次電池の検査方法の検査装置100は、磁場を検知する磁気センサ101と、磁場算出部102と、良否判定部103と、記憶部104と、充放電装置110と、を備える。本実施形態にかかる二次電池の検査方法の検査対象である二次電池701は、例えばリチウムイオン二次電池、ニッケル水素二次電池等である。なお、検査対象の二次電池は、短絡時に磁場を発生する二次電池であればどのようなものであってもよい。   The inspection apparatus 100 inspects the presence or absence of a short circuit inside the secondary battery 701 due to the conductive foreign material 702 or the like by calculating the strength of the magnetic field 703 of the secondary battery 701 (hereinafter also referred to as magnetic field strength). As shown in FIG. 1, the inspection apparatus 100 of the secondary battery inspection method according to the present embodiment includes a magnetic sensor 101 that detects a magnetic field, a magnetic field calculation unit 102, a pass / fail determination unit 103, and a storage unit 104. The charging / discharging device 110 is provided. The secondary battery 701 to be inspected by the secondary battery inspection method according to the present embodiment is, for example, a lithium ion secondary battery, a nickel hydride secondary battery, or the like. The secondary battery to be inspected may be any secondary battery that generates a magnetic field when short-circuited.

磁気センサ101は、二次電池701の周囲に配置され二次電池701で生じた磁場703を検知する。磁気センサ101としては、例えば、SQUID(Superconducting Quantum Interference Device:超伝導量子干渉素子)センサや、MI(Magneto-Impedance:磁気インピーダンス)センサを用いる。磁気センサ101の感度は、電流が発生している箇所(換言すると、磁場が発生している箇所)からの距離に依存する。このため、磁気センサ101は、二次電池701にできるだけ近づけて配置することが好ましい。特に、二次電池701の表面に接するように磁気センサ101を配置すると、磁気センサ101の感度をより向上させることができる。   The magnetic sensor 101 is disposed around the secondary battery 701 and detects a magnetic field 703 generated by the secondary battery 701. As the magnetic sensor 101, for example, a SQUID (Superconducting Quantum Interference Device) sensor or an MI (Magneto-Impedance) sensor is used. The sensitivity of the magnetic sensor 101 depends on the distance from a location where a current is generated (in other words, a location where a magnetic field is generated). For this reason, it is preferable to arrange the magnetic sensor 101 as close to the secondary battery 701 as possible. In particular, if the magnetic sensor 101 is disposed so as to be in contact with the surface of the secondary battery 701, the sensitivity of the magnetic sensor 101 can be further improved.

二次電池701の周囲に複数の磁気センサ101を配置することにより、検出精度の向上や検出時間の短縮が可能となる。例えば、複数の磁気センサ101を同一平面に格子状に配置し、二次電池701の上面の磁場分布を一度に検出できるようにしてもよい。また、二次電池701周囲の各平面に磁気センサ101を設けてもよい。例えば二次電池701の上面及び下面にそれぞれ磁気センサ101を設けてもよい。また、短絡が発生しやすい箇所において、磁気センサ101を重点的に設けてもよい。   By disposing a plurality of magnetic sensors 101 around the secondary battery 701, detection accuracy can be improved and detection time can be shortened. For example, a plurality of magnetic sensors 101 may be arranged in a grid on the same plane so that the magnetic field distribution on the upper surface of the secondary battery 701 can be detected at a time. Further, the magnetic sensor 101 may be provided on each plane around the secondary battery 701. For example, you may provide the magnetic sensor 101 in the upper surface and lower surface of the secondary battery 701, respectively. Further, the magnetic sensor 101 may be provided with emphasis at a location where a short circuit is likely to occur.

磁場算出部102は、磁気センサ101を介して検出された検出データに基づいて、二次電池701の磁場強度を算出する。磁場算出部102により算出された二次電池701の磁場強度は、記憶部104において記憶される。   The magnetic field calculation unit 102 calculates the magnetic field strength of the secondary battery 701 based on the detection data detected via the magnetic sensor 101. The magnetic field strength of the secondary battery 701 calculated by the magnetic field calculation unit 102 is stored in the storage unit 104.

良否判定部103では、磁場算出部102による磁場の算出結果に基づいて、二次電池701の正極と負極とが短絡されているか否かを判定する。二次電池701の正極と負極とが短絡されているか否かを判定する具体的な判定方法については後述する。   The pass / fail determination unit 103 determines whether the positive electrode and the negative electrode of the secondary battery 701 are short-circuited based on the calculation result of the magnetic field by the magnetic field calculation unit 102. A specific determination method for determining whether the positive electrode and the negative electrode of the secondary battery 701 are short-circuited will be described later.

充放電装置110は、二次電池701の電圧を変更するものである。充放電装置110の端子を二次電池701の正極および負極に接続して二次電池701を充放電させることにより、二次電池701の電圧を変更することができる。二次電池701は、正極活物質を担持した正極材、負極活物質を担持した負極材、正極材と負極材との間に介在するセパレータ、非水電解液などを備えるものが一般的である。例えば、リチウムイオン二次電池では、充放電装置110の端子をリチウムイオン二次電池の正極および負極に接続して、非水電解液中に含まれるリチウムイオンを正極と負極との間で移動させることによりリチウムイオン二次電池の充放電がされる。   The charging / discharging device 110 changes the voltage of the secondary battery 701. By connecting the terminal of the charging / discharging device 110 to the positive electrode and the negative electrode of the secondary battery 701 to charge / discharge the secondary battery 701, the voltage of the secondary battery 701 can be changed. The secondary battery 701 generally includes a positive electrode material carrying a positive electrode active material, a negative electrode material carrying a negative electrode active material, a separator interposed between the positive electrode material and the negative electrode material, a non-aqueous electrolyte, and the like. . For example, in the lithium ion secondary battery, the terminal of the charging / discharging device 110 is connected to the positive electrode and the negative electrode of the lithium ion secondary battery, and the lithium ions contained in the non-aqueous electrolyte are moved between the positive electrode and the negative electrode. As a result, the lithium ion secondary battery is charged and discharged.

次に、二次電池701の内部において正極と負極との短絡が生じていると二次電池701の周囲に磁場が発生する理由について以下で説明する。
図2、図3に示されるように、二次電池701の内部には、正極材201、負極材202、正極材201と負極材202とに挟まれたセパレータ203などが設けられている。正極材201と負極材202との間はセパレータ203によって絶縁されていることから、図2に示されるように、二次電池701の内部において正極と負極との短絡が存在しない場合には、正極材201と負極材202との間に電流は流れない。
Next, the reason why a magnetic field is generated around the secondary battery 701 when a short circuit between the positive electrode and the negative electrode occurs in the secondary battery 701 will be described below.
As shown in FIGS. 2 and 3, the secondary battery 701 includes a positive electrode material 201, a negative electrode material 202, a separator 203 sandwiched between the positive electrode material 201 and the negative electrode material 202, and the like. Since the positive electrode material 201 and the negative electrode material 202 are insulated by the separator 203, as shown in FIG. 2, when there is no short circuit between the positive electrode and the negative electrode inside the secondary battery 701, the positive electrode No current flows between the material 201 and the negative electrode material 202.

一方、図3に示すように、二次電池701の内部において導電性異物702による正極と負極との短絡が生じている場合には、短絡部位に電流が流れる。二次電池701の持っている起電力をV、短絡部位の持つ電気抵抗をRとすると、オームの法則により正極材201と負極材202との間には起電力Vを電気抵抗Rで除した電流I(I=V/R)が流れる。正極と負極との短絡の度合いにより流れる短絡電流は変化するが、上述したリチウムイオン二次電池の場合、例えば、数百μA程度の微小な短絡電流でも、短絡部から数[cm]離れた場所には10−12[T]程度の磁場が発生する。 On the other hand, as shown in FIG. 3, when a short circuit between the positive electrode and the negative electrode occurs due to the conductive foreign matter 702 inside the secondary battery 701, a current flows through the short circuit portion. When the electromotive force of the secondary battery 701 is V and the electrical resistance of the short-circuit portion is R, the electromotive force V is divided by the electrical resistance R between the positive electrode material 201 and the negative electrode material 202 according to Ohm's law. A current I (I = V / R) flows. Although the short-circuit current that flows depends on the degree of short-circuit between the positive electrode and the negative electrode, in the case of the above-described lithium ion secondary battery, for example, even with a short circuit current of about several hundred μA, a location that is several [cm] away from the short-circuit portion Generates a magnetic field of about 10 −12 [T].

ここで、二次電池701の内部において正極と負極との短絡が生じているか否かを判定する方法の概略について以下で説明する。
二次電池701は、それ自体が固有の残留磁気を持っている。この残留磁気は、二次電池701の電圧を変化させても一定のままである。このため、二次電池701の内部において正極と負極との短絡が生じていなければ、二次電池701の磁場強度は一定に維持される。これに対し、二次電池701の内部において正極と負極との短絡が生じている場合、短絡箇所を流れる電流量は二次電池701の電圧に依存するので、二次電池701の電圧の変化に伴って二次電池701の磁場強度も変化する。二次電池701の電圧を変更する前と後とにおいて二次電池701の磁場強度が等しいか否かを判定することにより、二次電池の内部において正極と負極との短絡が生じているか否かを判定することができる。
Here, an outline of a method for determining whether or not a short circuit between the positive electrode and the negative electrode has occurred inside the secondary battery 701 will be described below.
The secondary battery 701 itself has a unique residual magnetism. This residual magnetism remains constant even when the voltage of the secondary battery 701 is changed. For this reason, unless the short circuit between the positive electrode and the negative electrode occurs in the secondary battery 701, the magnetic field strength of the secondary battery 701 is kept constant. On the other hand, when a short circuit between the positive electrode and the negative electrode occurs in the secondary battery 701, the amount of current flowing through the short circuit location depends on the voltage of the secondary battery 701. Along with this, the magnetic field strength of the secondary battery 701 also changes. Whether or not a short circuit between the positive electrode and the negative electrode occurs in the secondary battery by determining whether or not the magnetic field strength of the secondary battery 701 is equal before and after the voltage of the secondary battery 701 is changed. Can be determined.

次に、二次電池701の内部において正極と負極との短絡が生じているか否かを判定する処理フローについて以下で説明する。
図4に示されるように、まず、検査対象の二次電池701を、二次電池の検査装置100内に入れる(ステップS601)。続いて、二次電池701の正極および負極を開放した状態で、二次電池701の磁場強度(「第一の磁場強度B1」とする)を算出する(ステップS602)。第一の磁場強度B1の算出は、磁気センサ101を介して検出された磁場強度の検出データを連続的に読み込みした読み込みデータ群に基づいて行う。第一の磁場強度B1を算出する際の、二次電池701の電圧を「第一の電圧V1」とする。磁場強度の検出データの検出中は、二次電池701の電圧値は一定に維持する。磁場強度B1を算出する処理フローの詳細については後述する。
Next, a processing flow for determining whether or not a short circuit between the positive electrode and the negative electrode has occurred inside the secondary battery 701 will be described below.
As shown in FIG. 4, first, the secondary battery 701 to be inspected is placed in the secondary battery inspection apparatus 100 (step S601). Subsequently, the magnetic field strength of the secondary battery 701 (referred to as “first magnetic field strength B1”) is calculated in a state where the positive electrode and the negative electrode of the secondary battery 701 are opened (step S602). The calculation of the first magnetic field strength B1 is performed based on a read data group obtained by continuously reading magnetic field strength detection data detected via the magnetic sensor 101. The voltage of the secondary battery 701 at the time of calculating the first magnetic field strength B1 is defined as “first voltage V1”. During detection of magnetic field strength detection data, the voltage value of the secondary battery 701 is kept constant. Details of the processing flow for calculating the magnetic field strength B1 will be described later.

ステップS602に続いて、二次電池701と磁気センサとの位置関係を固定したままの状態で、二次電池701の正極および負極に充放電装置110を接続し、二次電池701の電圧を第一の電圧V1とは異なる電圧(「第二の電圧V2」とする)に変更する(ステップS603)。続いて、二次電池701の正極および負極を開放した状態で、二次電池701の磁場強度(「第二の磁場強度B2」とする)を算出する(ステップS604)。第二の磁場強度B2の算出は、第一の磁場強度B1の算出の場合と同様に磁気センサ101を介して検出した磁気強度の検出データを連続的に読み込みした読み込みデータ群に基づいて行う。磁場強度の検出データの検出中は、二次電池701の電圧値は一定に維持する。磁場強度B2を算出する処理フローの詳細については後述する。   Following step S602, with the positional relationship between the secondary battery 701 and the magnetic sensor fixed, the charging / discharging device 110 is connected to the positive electrode and the negative electrode of the secondary battery 701, and the voltage of the secondary battery 701 is changed to the first voltage. The voltage is changed to a voltage different from the first voltage V1 (referred to as “second voltage V2”) (step S603). Subsequently, the magnetic field strength (referred to as “second magnetic field strength B2”) of the secondary battery 701 is calculated in a state where the positive electrode and the negative electrode of the secondary battery 701 are opened (step S604). The calculation of the second magnetic field intensity B2 is performed based on the read data group obtained by continuously reading the magnetic intensity detection data detected via the magnetic sensor 101, as in the case of the calculation of the first magnetic field intensity B1. During detection of magnetic field strength detection data, the voltage value of the secondary battery 701 is kept constant. Details of the processing flow for calculating the magnetic field strength B2 will be described later.

第二の電圧V2は、第一の電圧V1より大きくてもよいし、小さくてもよい。第一の電圧V1を二次電池701の使用下限電圧とし、第二の電圧V2を二次電池701の使用上限電圧とすることもできる。二次電池701の内部において正極と負極との短絡が生じている場合、第一の電圧V1と第二の電圧V2の差を大きくすれば電圧を変更する前後における短絡電流の差が大きくなる。このため、二次電池701の電圧が、第一の電圧V1であるときの二次電池701の磁場強度と第二の電圧V2であるときの二次電池701の磁場強度との差が大きくなり、二次電池701の内部における正極と負極との短絡の検出感度が向上する。また、短絡の検出感度を向上させるために、検査時に限り、使用上限電圧より大きい電圧や使用下限電圧より小さい電圧を用いてもよい。   The second voltage V2 may be larger or smaller than the first voltage V1. The first voltage V <b> 1 can be the lower limit voltage for use of the secondary battery 701, and the second voltage V <b> 2 can be the upper limit voltage for use of the secondary battery 701. When a short circuit between the positive electrode and the negative electrode occurs in the secondary battery 701, increasing the difference between the first voltage V1 and the second voltage V2 increases the difference in the short circuit current before and after the voltage change. For this reason, the difference between the magnetic field strength of the secondary battery 701 when the voltage of the secondary battery 701 is the first voltage V1 and the magnetic field strength of the secondary battery 701 when the voltage is the second voltage V2 becomes large. The detection sensitivity of the short circuit between the positive electrode and the negative electrode inside the secondary battery 701 is improved. Moreover, in order to improve the detection sensitivity of a short circuit, you may use a voltage larger than a use upper limit voltage or a voltage smaller than a use lower limit voltage only at the time of a test | inspection.

ステップS604に続いて、良否判定部103が、ステップS602で算出された第一の磁場強度B1と、ステップS604で算出された第二の磁場強度B2とが等しい(B1≒B2)か否かを判定する(ステップS605)。ここで、第一の磁場強度B1と第二の磁場強度B2とが等しいとは、第一の磁場強度B1と第二の磁場強度B2の差の絶対値が予め定められた基準値以下であることを意味する。   Following step S604, the pass / fail judgment unit 103 determines whether or not the first magnetic field strength B1 calculated in step S602 is equal to the second magnetic field strength B2 calculated in step S604 (B1≈B2). Determination is made (step S605). Here, the fact that the first magnetic field strength B1 and the second magnetic field strength B2 are equal means that the absolute value of the difference between the first magnetic field strength B1 and the second magnetic field strength B2 is not more than a predetermined reference value. Means that.

ステップS605で第一の磁場強度B1と第二の磁場強度B2とが等しいと判定された場合、検査対象の二次電池701は良品であると判定しこの二次電池701を次工程へと送る(ステップS606)。一方、ステップS605で第一の磁場強度B1と第二の磁場強度B2とが等しくないと判定された場合、検査対象の二次電池701は、内部に短絡箇所を有する不良品であると判定する(ステップS607)。不良品と判定された二次電池701は、次工程には送られない。   When it is determined in step S605 that the first magnetic field strength B1 and the second magnetic field strength B2 are equal, it is determined that the secondary battery 701 to be inspected is a non-defective product, and this secondary battery 701 is sent to the next process. (Step S606). On the other hand, if it is determined in step S605 that the first magnetic field strength B1 and the second magnetic field strength B2 are not equal, the secondary battery 701 to be inspected is determined to be a defective product having a short-circuited portion inside. (Step S607). The secondary battery 701 determined to be defective is not sent to the next process.

ここで、第一の磁場強度B1及び第二の磁場強度B2の算出における、外乱の変化の影響を均すために必要な検出データ数について以下で説明する。
環境磁場などの外乱は時々刻々と変化する。このため、磁気センサ101を介して異なる時刻に検出された検出データに含まれる外乱成分の大きさはそれぞれ異なる。磁気センサ101を介して検出された検出データを連続的に読み込みする読み込みデータ群において、検出データの数を増やしてこれらを平均することにより、外乱の変化の影響を均すことができる。しかし、読み込みデータ群における検出データの数を無尽蔵に増やすことはできない。検出データの数を増やせば増やすほど、二次電池701における短絡の有無の検査に要する時間が長くなる。このため、検出データの数をどの程度増やせば外乱の変化の影響を均すことができるか、についての判断基準が必要になる。
Here, the number of detection data necessary for leveling the influence of the change in disturbance in the calculation of the first magnetic field strength B1 and the second magnetic field strength B2 will be described below.
Disturbances such as environmental magnetic fields change from moment to moment. For this reason, the magnitudes of the disturbance components included in the detection data detected at different times via the magnetic sensor 101 are different. In the read data group in which the detection data detected via the magnetic sensor 101 is continuously read, the influence of changes in disturbance can be leveled by increasing the number of detection data and averaging them. However, the number of detected data in the read data group cannot be increased without limit. As the number of detection data increases, the time required for the inspection of the presence or absence of a short circuit in the secondary battery 701 becomes longer. For this reason, a criterion for determining how much the number of detected data can be increased to equalize the influence of changes in disturbance is necessary.

第一の磁場強度B1及び第二の磁場強度B2の算出において、磁気センサ101を介して検出された検出データ群をある区間幅(区間幅は、時間幅またはデータ点数で規定する)で均等に区切り、それぞれの区間で区間内に含まれるデータ群についての平均値をそれぞれ算出する。一区間に含まれる検出データ数が、外乱の変化の影響を均すために十分な検出データ数であるとすると、区間ごとに得られた複数の平均値のばらつき(以下、「平均値群のばらつき」という)は無視できる程度に小さくなる。これに対し、一区間に含まれる検出データ数が、外乱の変化の影響を均すために十分な検出データ数よりも少ないと、平均値群のばらつきは無視できる程度には小さくならない。つまり、平均値群のばらつきの大きさを判断することにより、外乱の変化の影響が十分に均されているか否かを判断することができる。   In the calculation of the first magnetic field strength B1 and the second magnetic field strength B2, the detection data group detected via the magnetic sensor 101 is evenly divided by a certain section width (the section width is defined by a time width or the number of data points). The average value is calculated for each data group included in the section. Assuming that the number of detected data included in one section is sufficient to equalize the influence of changes in disturbance, the variation in the average values obtained for each section (hereinafter referred to as “average value group Variation ”) is small enough to be ignored. On the other hand, if the number of detected data included in one section is smaller than the number of detected data sufficient to equalize the influence of changes in disturbance, the variation of the average value group does not become so small that it can be ignored. That is, by determining the magnitude of variation in the average value group, it can be determined whether or not the influence of the change in disturbance is sufficiently leveled.

ある読み込みデータ群を、区間幅Waで均等に区切った場合を図5(a)に、区間幅Wbで均等に区切った場合を図5(b)にそれぞれ示す。図5(a)、図5(b)において、それぞれの区間で区間内に含まれるデータ群の平均値を算出したものを、それぞれ平均値Lan(n=1、2、・・、10)、平均値Lbn(n=1、2)とする。   FIG. 5A shows a case where a certain read data group is equally divided by the section width Wa, and FIG. 5B shows a case where the read data group is equally divided by the section width Wb. 5 (a) and 5 (b), the average values of the data groups included in the sections in the sections are calculated as average values Lan (n = 1, 2,..., 10), respectively. The average value is Lbn (n = 1, 2).

図5(b)に示される区間幅Wbは、図5(a)に示される区間幅Waよりも広い。つまり、区間幅を広げると、一区間に含まれる検出データの数が増えるので、算出された区間の平均値における外乱の変化の影響はより小さくなる。このため、図5(b)の平均値群(Lb1、Lb2)のばらつきは、図5(a)の平均値群(La1、La2、・・、La10)のばらつきより小さくなる。   The section width Wb shown in FIG. 5B is wider than the section width Wa shown in FIG. In other words, when the section width is increased, the number of detection data included in one section increases, so that the influence of a change in disturbance on the calculated average value of the section becomes smaller. For this reason, the variation of the average value group (Lb1, Lb2) in FIG. 5B is smaller than the variation of the average value group (La1, La2,..., La10) of FIG.

区間幅を徐々に広げてゆき、平均値群のばらつきが予め定められた基準値以下になったとき、そのときの区間幅に含まれる検出データ数が外乱の変化の影響を均すために十分な検出データ数であると判断できる。   When the interval width is gradually increased and the variation in the average value group falls below a predetermined reference value, the number of detected data included in the interval width at that time is sufficient to smooth out the influence of the change in disturbance. It can be determined that the number of detected data is large.

次に、第一の磁場強度B1及び第二の磁場強度B2を算出する処理フローについて以下で説明する。なお、第一の磁場強度B1及び第二の磁場強度B2を算出する処理フローはいずれも同じである。
図6に示されるように、ます、磁気センサ101を介して検出された検出データを連続的に読み込みする読み込みデータ群の幅、及び、読み込みデータ群を均等に分割する区間幅について、それぞれ初期値の設定をする(ステップS701)。読み込みデータ群の幅及び区間幅は、時間幅またはデータ点数にて規定する。読み込みデータ群の幅及び区間幅の初期値をそれぞれ設定するにあたって、サンプリングレート等も考慮する。続いて、読み込みデータ群の幅分だけ検出データを読み込む(ステップS702)。検出データの読み込みにおいて、事前に検出を完了したデータを読み込むようにしても、現在検出中のデータを読み込むようにしてもよい。
Next, a processing flow for calculating the first magnetic field strength B1 and the second magnetic field strength B2 will be described below. Note that the processing flow for calculating the first magnetic field strength B1 and the second magnetic field strength B2 is the same.
As shown in FIG. 6, the initial values are respectively set for the width of the read data group for continuously reading the detection data detected via the magnetic sensor 101 and the section width for equally dividing the read data group. Is set (step S701). The width and interval width of the read data group are defined by the time width or the number of data points. In setting the initial values of the read data group width and section width, the sampling rate and the like are also taken into consideration. Subsequently, the detection data is read by the width of the read data group (step S702). In reading detection data, data that has been detected in advance may be read, or data that is currently being detected may be read.

ステップS702に続いて、それぞれの区間で区間内に含まれるデータ群についての平均値をそれぞれ算出し、算出により得られた平均値群について、そのばらつき(以下、「平均値群のばらつき」という)を算出する(ステップS703)。なお、ばらつきの指標として、例えば、「標準偏差」や「最大値と最小値の差」を用いることができる。続いて、ステップS703で算出した、平均値群のばらつきが、予め定めた基準値以内か否かを判断する(ステップS704)。   Subsequent to step S702, an average value for each data group included in each section is calculated in each section, and the average value group obtained by the calculation varies (hereinafter referred to as "average value group variation"). Is calculated (step S703). For example, “standard deviation” or “difference between maximum value and minimum value” can be used as an index of variation. Subsequently, it is determined whether or not the variation of the average value group calculated in step S703 is within a predetermined reference value (step S704).

ステップS704で平均値群のばらつきが、予め定めた基準値以内であると判断された場合は、二次電池701の磁場強度を算出する(ステップS705)。具体的には、読み込みデータ群に含まれる全ての検出データの平均値を算出し、これを二次電池701周囲の磁場強度とする。ステップS705の後、処理を終了する。   If it is determined in step S704 that the variation of the average value group is within a predetermined reference value, the magnetic field strength of the secondary battery 701 is calculated (step S705). Specifically, an average value of all detection data included in the read data group is calculated, and this is used as the magnetic field strength around the secondary battery 701. After step S705, the process ends.

ステップS704で平均値群のばらつきが、予め定めた基準値を超えていると判断された場合は、予め定められた幅分だけ区間幅を広げたものを新たな区間幅とする(ステップS706)。続いて、平均値群のサンプル数(得られる平均値の数)が予め定められた必要サンプル数以上であるか否かについて判断する(ステップS707)。読み込みデータ群の幅及び区間幅を時間幅で規定する場合、平均値群のサンプル数は、読み込みデータ群の時間幅を一区間の時間幅で除した商になる。読み込みデータ群の幅及び区間幅をデータ点数で規定する場合、平均値群のサンプル数は、読み込みデータ群に含まれる全ての検出データ点数を一区間のデータ点数で除した商になる。また、必要サンプル数とは、平均値群のばらつきの大小を適切に判断するために最低限必要なサンプル数を意味する。必要サンプル数は2以上とする。必要サンプル数の決定は統計的な観点から行うのが好ましい。   If it is determined in step S704 that the variation in the average value group exceeds a predetermined reference value, a new section width is obtained by expanding the section width by a predetermined width (step S706). . Subsequently, it is determined whether or not the number of samples in the average value group (the number of average values to be obtained) is equal to or greater than a predetermined required number of samples (step S707). When the width and interval width of the read data group are defined by the time width, the number of samples in the average value group is a quotient obtained by dividing the time width of the read data group by the time width of one interval. When the width and interval width of the read data group are defined by the number of data points, the number of samples of the average value group is a quotient obtained by dividing all the detected data points included in the read data group by the data points of one interval. The necessary number of samples means the minimum number of samples necessary for appropriately determining the magnitude of variation in the average value group. The required number of samples is 2 or more. The required number of samples is preferably determined from a statistical point of view.

ステップS707で平均値群のサンプル数は必要サンプル数以上であると判断された場合、処理をステップS703に戻す。一方、ステップS707で平均値群のサンプル数は必要サンプル数未満であると判断された場合、読み込みデータ群の幅を予め定められた幅分だけ広げ(ステップS708)、処理をステップS702に戻す。検出データの読み込みにおいて、現在検出中の検出データを読み込むようにする場合、ステップS707の判断時までに検出したデータを全て読み込むようにしてもよい。
以上で説明した第一の磁場強度B1及び第二の磁場強度B2を算出する処理フローによれば、環境磁場などの外乱の影響にかかわらず二次電池701の磁気強度を精度良く算出することができる。
If it is determined in step S707 that the number of samples in the average value group is equal to or greater than the required number of samples, the process returns to step S703. On the other hand, if it is determined in step S707 that the number of samples in the average value group is less than the required number of samples, the width of the read data group is increased by a predetermined width (step S708), and the process returns to step S702. When reading the detection data, when reading the detection data currently being detected, all the data detected up to the time of determination in step S707 may be read.
According to the processing flow for calculating the first magnetic field strength B1 and the second magnetic field strength B2 described above, the magnetic strength of the secondary battery 701 can be accurately calculated regardless of the influence of disturbance such as an environmental magnetic field. it can.

以上で説明した本発明にかかる二次電池の検査方法によれば、二次電池の微小短絡の有無を迅速かつ精度良く検査することができる。   According to the inspection method of the secondary battery according to the present invention described above, it is possible to quickly and accurately inspect the presence or absence of the micro short circuit of the secondary battery.

なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。本実施の形態では、二次電池の磁場強度(第一の磁場強度B1及び第二の磁場強度B2)の算出において、読み込みデータ群に含まれる全ての検出データの平均値を算出しこれを二次電池の磁場強度とするが、これに限るものではない。例えば、読み込みデータ群のうちの最初の区間に含まれる検出データの平均値を二次電池の磁場強度としてもよい。または、読み込みデータ群のうちのある区間に含まれる検出データの平均値を二次電池の磁場強度としてもよい。   Note that the present invention is not limited to the above-described embodiment, and can be changed as appropriate without departing from the spirit of the present invention. In the present embodiment, in the calculation of the magnetic field strength (first magnetic field strength B1 and second magnetic field strength B2) of the secondary battery, an average value of all detection data included in the read data group is calculated and this is calculated. Although it is set as the magnetic field intensity of a secondary battery, it is not restricted to this. For example, an average value of detection data included in the first section of the read data group may be used as the magnetic field strength of the secondary battery. Alternatively, the average value of the detection data included in a certain section of the read data group may be used as the magnetic field strength of the secondary battery.

100 検査装置
101 磁気センサ
102 磁場算出部
103 良否判定部
104 記憶部
110 充放電装置
120 磁気シールドボックス
201 正極材
202 負極材
203 セパレータ
701 二次電池
702 導電性異物
703 磁場
DESCRIPTION OF SYMBOLS 100 Inspection apparatus 101 Magnetic sensor 102 Magnetic field calculation part 103 Pass / fail judgment part 104 Storage part 110 Charging / discharging apparatus 120 Magnetic shield box 201 Positive electrode material 202 Negative electrode material 203 Separator 701 Secondary battery 702 Conductive foreign material 703 Magnetic field

Claims (1)

二次電池の電圧が第一の電圧のときに、前記二次電池の磁場強度を算出する第一の工程と、
前記二次電池の電圧を前記第一の電圧とは異なる第二の電圧に変更する第二の工程と、
前記二次電池の電圧が前記第二の電圧のときに、前記二次電池の磁場強度を算出する第三の工程と、
前記第一の工程で算出した前記二次電池の磁場強度と前記第三の工程で算出した前記二次電池の磁場強度との差に基づいて、前記二次電池の内部に短絡があるか否かを判定する第四の工程と、を有し、
前記第一の工程及び前記第三の工程は、
前記二次電池の周囲に配置され、前記二次電池の正極および負極を開放した状態の磁場強度を検知する磁気センサを介して検出した検出データを連続的に読み込みした読み込みデータ群をある区間幅で均等に分割し、それぞれの区間で区間内に含まれるデータ群についての平均値をそれぞれ算出し、区間ごとに得られた複数の平均値のばらつきが予め定められた基準値を超えているか否かを判断する第一のステップと、
前記第一のステップにおいて前記複数の平均値のばらつきが前記基準値を超えていると判断された場合に、前記ある区間幅を広げるとともに、必要に応じて前記読み込みデータ群の範囲を広げて、再度、前記第一のステップを実行する第二のステップと、
前記第一のステップにおいて前記複数の平均値のばらつきが前記基準値以下であると判断された場合に、前記読み込みデータ群に基づいて前記二次電池の磁気強度を算出する第三のステップと、をそれぞれ有する二次電池の検査方法。
A first step of calculating the magnetic field strength of the secondary battery when the voltage of the secondary battery is the first voltage;
A second step of changing the voltage of the secondary battery to a second voltage different from the first voltage;
A third step of calculating the magnetic field strength of the secondary battery when the voltage of the secondary battery is the second voltage;
Whether there is a short circuit inside the secondary battery based on the difference between the magnetic field strength of the secondary battery calculated in the first step and the magnetic field strength of the secondary battery calculated in the third step. A fourth step of determining whether or not
The first step and the third step are:
A section width of a read data group that is continuously read from detection data detected through a magnetic sensor that is arranged around the secondary battery and detects a magnetic field intensity in a state where the positive electrode and the negative electrode of the secondary battery are opened. Is divided evenly, and the average value for each data group included in the section is calculated for each section, and whether or not the variation of the plurality of average values obtained for each section exceeds a predetermined reference value The first step of determining whether
When it is determined that the variation of the plurality of average values exceeds the reference value in the first step, the width of the certain section is increased, and the range of the read data group is expanded as necessary. Again, a second step of performing the first step;
A third step of calculating the magnetic strength of the secondary battery based on the read data group when it is determined in the first step that the variation of the plurality of average values is equal to or less than the reference value; Secondary battery inspection method comprising:
JP2015115126A 2015-06-05 2015-06-05 Secondary battery inspection method Pending JP2017003325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015115126A JP2017003325A (en) 2015-06-05 2015-06-05 Secondary battery inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015115126A JP2017003325A (en) 2015-06-05 2015-06-05 Secondary battery inspection method

Publications (1)

Publication Number Publication Date
JP2017003325A true JP2017003325A (en) 2017-01-05

Family

ID=57754047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015115126A Pending JP2017003325A (en) 2015-06-05 2015-06-05 Secondary battery inspection method

Country Status (1)

Country Link
JP (1) JP2017003325A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110346627A (en) * 2018-04-04 2019-10-18 胜美达集团株式会社 Weak current detection device
US12009484B2 (en) 2019-09-20 2024-06-11 Lg Energy Solution, Ltd. Battery cell comprising separator having magnetic body formed therein and method for evaluating battery cell safety against internal short circuit by using same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110346627A (en) * 2018-04-04 2019-10-18 胜美达集团株式会社 Weak current detection device
JP2019184296A (en) * 2018-04-04 2019-10-24 スミダコーポレーション株式会社 Minute current detector
US12009484B2 (en) 2019-09-20 2024-06-11 Lg Energy Solution, Ltd. Battery cell comprising separator having magnetic body formed therein and method for evaluating battery cell safety against internal short circuit by using same

Similar Documents

Publication Publication Date Title
JP5349810B2 (en) Storage device abnormality detection device, method, and program
JP5071747B2 (en) Secondary battery inspection device, secondary battery inspection method, secondary battery manufacturing method
US11686699B2 (en) System and method for anomaly detection and total capacity estimation of a battery
WO2014167920A1 (en) Battery state determination device
EP2755274A1 (en) Apparatus and method for evaluating sheet-like battery
CN105518473B (en) The accurate detector of the charging current of charge and discharge device
Schmid et al. Early detection of internal short circuits in series-connected battery packs based on nonlinear process monitoring
US20180011144A1 (en) Electricity storage device production method and structure body inspection device
JP2014002009A (en) Method of inspecting secondary battery
CN107144790A (en) A kind of method of predicting cycle life of lithium ion battery
Reichl et al. Capacity detection of internal short circuit
JP6167917B2 (en) Secondary battery inspection method and inspection device
WO2018032557A1 (en) Method and apparatus for metering remaining electric quantity of lithium-ion battery
JP2017003325A (en) Secondary battery inspection method
KR101431952B1 (en) Short inspecting method for nonaqueous electrolyte secondary battery
Ank et al. Influence analysis of production defects of lithium-ion cells using single-cell and multi-cell characterization
EP3951412B1 (en) Method for inspecting insulation of a secondary battery
US20180031637A1 (en) Battery testing device and method thereof
CN112151899A (en) Method and device for detecting lithium separation of battery
KR102043645B1 (en) Method and System for Calculating Low Voltage Expression Level of a Secondary Battery
Park et al. Simultaneous diagnosis of cell aging and internal short circuit faults in lithium-ion batteries using average leakage interval
US20240094301A1 (en) Battery measurement
WO2019096362A1 (en) Device and method for testing a solid state elektrolyte and system
KR20130052065A (en) Precise detector of charge voltage for charge-discharge device
Pettinger Production test procedures