JP2017002671A - Joint structure, joint, and installation method for joint structure - Google Patents

Joint structure, joint, and installation method for joint structure Download PDF

Info

Publication number
JP2017002671A
JP2017002671A JP2015120492A JP2015120492A JP2017002671A JP 2017002671 A JP2017002671 A JP 2017002671A JP 2015120492 A JP2015120492 A JP 2015120492A JP 2015120492 A JP2015120492 A JP 2015120492A JP 2017002671 A JP2017002671 A JP 2017002671A
Authority
JP
Japan
Prior art keywords
flange portion
joint member
pile
joint
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015120492A
Other languages
Japanese (ja)
Other versions
JP6569317B2 (en
Inventor
朗 渡辺
Akira Watanabe
朗 渡辺
直樹 増井
Naoki Masui
直樹 増井
敏明 三輪
Toshiaki Miwa
敏明 三輪
剛大 今坂
Takehiro Imasaka
剛大 今坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2015120492A priority Critical patent/JP6569317B2/en
Publication of JP2017002671A publication Critical patent/JP2017002671A/en
Application granted granted Critical
Publication of JP6569317B2 publication Critical patent/JP6569317B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a joint structure, a joint, and an installation method for the joint structure that resolve a problem with grout joining.SOLUTION: A joint structure 200 connects a flange 40 of a pile head part of a pile 400 with a tower flange 50 of a bottom tower 500, with a bolt 90 and a nut 91. The joint structure includes: a first joint member 110a having a first upper flange part 30a inclined by a joint member inclination angle α to a first lower flange part 10a connected to the flange 40 of the pile head part; and a second joint member 110b having a second upper flange part 30b inclined by the joint member inclination angle α to a second lower flange part 10b connected to the first upper flange part 30a. A first thickest phase (phase A) of the first joint member 110a and a second thickest phase (phase B) of the second joint member 110b are positioned symmetrically to each other on both sides of a virtual line in a pile inclination direction.SELECTED DRAWING: Figure 4

Description

本発明は、継手構造および継手並びに杭構造物の施工方法、特に、地盤に立設された杭と上部構造物とを接続した継手構造、および該継手構造を形成する継手、並びに該継手によって接続される杭構造物の施工方法に関する。   The present invention relates to a joint structure, a joint, and a method for constructing a pile structure, in particular, a joint structure in which a pile standing on a ground and an upper structure are connected, a joint forming the joint structure, and a connection by the joint It is related with the construction method of the pile structure to be done.

近年、クリーンエネルギ源として風力発電が注目され、設置場所の制約から洋上風力発電施設が建設されている。このとき、洋上風力発電施設は多数の基礎杭を精度良く打設すると共に、工期の短縮化や施工費の低減化を図る必要あることから、これに応えようとするモノパイル式基礎施工方法が開示されている(例えば、特許文献1参照)。   In recent years, wind power generation has attracted attention as a clean energy source, and offshore wind power generation facilities have been constructed due to restrictions on installation locations. At this time, the offshore wind power generation facility needs to place a large number of foundation piles with high accuracy, while shortening the construction period and reducing the construction cost. (For example, refer to Patent Document 1).

特開平2011−38247号公報(第5−6頁、第10図)Japanese Unexamined Patent Publication No. 2011-38247 (page 5-6, FIG. 10)

特許文献1に開示されたモノパイル式基礎施工方法は、海底に立設されたモノパイル基礎と風車タワー(以下「ボトムタワー」と称す)とを接続管(以下「ジョイントスリーブ」と称す)を用いて接続するものである。すなわち、ジョイントスリーブをモノパイル基礎に被せ、レベル調整部を介してジョイントスリーブの上端を水平にする。そして、ジョイントスリーブとモノパイル基礎との隙間にグラウト(例えば、水中不分解性高流動無収縮モルタル)を充填する「グラウト接合」である。このグラウト接合には、以下のような問題があった。   The monopile foundation construction method disclosed in Patent Document 1 uses a connecting pipe (hereinafter referred to as a “joint sleeve”) to connect a monopile foundation erected on the seabed and a wind turbine tower (hereinafter referred to as a “bottom tower”). To connect. In other words, the joint sleeve is put on the monopile foundation, and the upper end of the joint sleeve is made horizontal through the level adjusting section. Then, “grouting” is performed in which a gap between the joint sleeve and the monopile foundation is filled with grout (for example, an underwater indegradable high-flow non-shrink mortar). This grout bonding has the following problems.

(1)グラウトの強度発現等の養生時間を含めると日数を必要とし、工事の全体工程に影響する。
(2)また、ボトムタワーに風や波が繰り返し作用することで、グラウトとボトムタワーとの付着やグラウトとモノパイル基礎との付着が切れるリスクがある。このため、グラウトが崩壊し、グラウト接合箇所が構造上の「弱点」になり易く、長期間に渡るグラウトの品質管理が難しい。
(1) Including the curing time such as the strength expression of grout requires days and affects the whole construction process.
(2) Moreover, there is a risk that the adhesion between the grout and the bottom tower and the adhesion between the grout and the monopile foundation are cut off due to the repeated action of wind and waves on the bottom tower. For this reason, the grout collapses, and the grout joint is likely to be a structural “weak point”, making it difficult to control the quality of the grout over a long period of time.

本発明は、前記のようなグラウト接合に伴う問題を解消するものであって、施工時間を短縮すると共に、長期間に渡って所要の継手性能を有する、継手構造および該継手構造を形成する継手並びに該継手によって接続される杭構造物の施工方法を提供することにある。   The present invention solves the problems associated with grout bonding as described above, shortens the construction time, and has the required joint performance over a long period of time, and the joint forming the joint structure And it is providing the construction method of the pile structure connected by this joint.

本発明に係る継手構造は、地盤に立設された杭の頭部に設置された杭頭部フランジ部と、上部構造物に設けられた上部構造物フランジ部とを接続する継手構造であって、
第1継手部材および第2継手部材を具備し、前記第1継手部材および前記第2継手部材はそれぞれ、円筒部と、前記円筒部の一方の端部に設けられた円環状の下フランジ部と、前記円筒部の他方の端部に設けられた円環状の上フランジ部とを具備し、
前記第1継手部材の前記上フランジ部は前記第1継手部材の前記下フランジ部に対して傾斜し、前記第2継手部材の前記上フランジ部は前記第2継手部材の前記下フランジ部に対して傾斜し、それぞれの傾斜角度が同じであり、
前記杭頭部フランジ部に前記第1継手部材の前記下フランジ部が機械式接続手段によって接続され、前記第1継手部材の前記上フランジ部に前記第2継手部材の前記下フランジ部が機械式接続手段によって接続され、前記第2継手部材の前記上フランジ部に前記上部構造物フランジ部が機械式接続手段によって接続されていることを特徴とする。
The joint structure according to the present invention is a joint structure that connects a pile head flange portion installed at the head of a pile erected on the ground and an upper structure flange portion provided in the upper structure. ,
A first joint member and a second joint member, wherein each of the first joint member and the second joint member includes a cylindrical portion and an annular lower flange portion provided at one end of the cylindrical portion; And an annular upper flange portion provided at the other end of the cylindrical portion,
The upper flange portion of the first joint member is inclined with respect to the lower flange portion of the first joint member, and the upper flange portion of the second joint member is against the lower flange portion of the second joint member. Each tilt angle is the same,
The lower flange portion of the first joint member is connected to the pile head flange portion by mechanical connection means, and the lower flange portion of the second joint member is mechanically connected to the upper flange portion of the first joint member. The upper structure flange portion is connected to the upper flange portion of the second joint member by mechanical connection means.

また、本発明に係る継手構造は、前記第1継手部材の前記上フランジ部の中心と前記第2継手部材の前記下フランジ部の中心とは一致し、
前記杭の中心軸が鉛直のとき、前記第1継手部材の最も厚さの厚い位置に対応した第1最厚位相と、前記第2継手部材の最も厚さの厚い位置に対応した第2最厚位相とは、前記中心を通る仮想線上で、それぞれ前記中心に対する対称位置に配置されていることを特徴とする。
Further, in the joint structure according to the present invention, the center of the upper flange portion of the first joint member coincides with the center of the lower flange portion of the second joint member,
When the central axis of the pile is vertical, the first thickest phase corresponding to the thickest position of the first joint member and the second thickest position corresponding to the thickest position of the second joint member. The thickness phase is characterized by being arranged at symmetric positions with respect to the center on an imaginary line passing through the center.

また、本発明に係る継手構造は、前記第1継手部材の前記上フランジ部の中心と前記第2継手部材の前記下フランジ部の中心とが一致し、
前記杭の中心軸が鉛直に対して杭傾斜方向に傾斜するとき、前記第1継手部材の最も厚さの厚い位置に対応した第1最厚位相と、前記第2継手部材の最も厚さの厚い位置に対応した第2最厚位相とは、前記中心を通る前記杭傾斜方向の杭傾斜方向仮想線に対して互いに対称の位置に配置されていることを特徴とする。
Further, in the joint structure according to the present invention, the center of the upper flange portion of the first joint member coincides with the center of the lower flange portion of the second joint member,
When the central axis of the pile is inclined in the pile inclination direction with respect to the vertical, the first thickest phase corresponding to the thickest position of the first joint member and the thickest of the second joint member The second thickest phase corresponding to the thick position is characterized by being arranged at positions symmetrical to each other with respect to the pile inclination direction virtual line in the pile inclination direction passing through the center.

また、本発明に係る継手構造は、前記杭傾斜方向における前記杭の中心軸の鉛直に対して傾斜した杭傾斜角度が、前記第1継手部材の傾斜角度と前記第2継手部材の傾斜角度との和に等しいとき、前記第1最厚位相と前記第2最厚位相とは、前記杭傾斜方向仮想線上の同一位置に配置されていることを特徴とする。   Further, in the joint structure according to the present invention, the pile inclination angle inclined with respect to the vertical of the central axis of the pile in the pile inclination direction is the inclination angle of the first joint member and the inclination angle of the second joint member. The first thickest phase and the second thickest phase are arranged at the same position on the pile tilt direction imaginary line.

また、本発明に係る継手構造は、前記杭頭部フランジ部、前記上部構造物フランジ部および前記下フランジ部にはそれぞれ、少なくとも円周上で互いに等間隔のフランジ部貫通孔が形成され、前記上フランジ部には、前記フランジ部貫通孔と同一の位相に上フランジ部貫通孔が形成され、
前記機械式接続手段は、前記フランジ部貫通孔同士を貫通するボルトおよび該ボルトに螺合するナット、あるいは前記フランジ部貫通孔と前記上フランジ部貫通孔とを貫通するボルトおよび該ボルトに螺合するナットであることを特徴とする。
Further, in the joint structure according to the present invention, the pile head flange portion, the upper structure flange portion, and the lower flange portion are formed with flange portion through holes that are equidistant from each other at least on the circumference, In the upper flange portion, the upper flange portion through hole is formed in the same phase as the flange portion through hole,
The mechanical connection means includes a bolt that passes through the flange through holes and a nut that is screwed into the bolt, or a bolt that passes through the flange through hole and the upper flange through hole and is screwed into the bolt. It is characterized by being a nut.

さらに、本発明に係る継手は、地盤に立設された杭の頭部と上部構造物とを接続するための第1継手部材および第2継手部材を有し、
前記第1継手部材および前記第2継手部材は何れも、円筒部と、前記円筒部の一方の端部に設けられた円環状の下フランジ部と、前記円筒部の他方の端部に設けられた円環状の上フランジ部とを具備し、
前記第1継手部材の前記上フランジ部は前記第1継手部材の前記下フランジ部に対して傾斜し、前記第2継手部材の前記上フランジ部は前記第2継手部材の前記下フランジ部に対して傾斜し、それぞれの傾斜角度が同じであることを特徴とする。
さらに、本発明に係る継手は、前記第1継手部材の形状寸法が、前記第2継手部材の形状寸法に同じであることを特徴とする。
Furthermore, the joint according to the present invention has a first joint member and a second joint member for connecting the head of the pile erected on the ground and the upper structure,
Each of the first joint member and the second joint member is provided at the cylindrical portion, an annular lower flange portion provided at one end portion of the cylindrical portion, and the other end portion of the cylindrical portion. An annular upper flange portion,
The upper flange portion of the first joint member is inclined with respect to the lower flange portion of the first joint member, and the upper flange portion of the second joint member is against the lower flange portion of the second joint member. And the inclination angles are the same.
Furthermore, the joint according to the present invention is characterized in that a shape dimension of the first joint member is the same as a shape dimension of the second joint member.

さらに、本発明に係る杭構造物の施工方法は、地盤に立設された杭の頭部に設置された杭頭部フランジ部と、上部構造物に設けられた上部構造物フランジ部とを継手によって接続する杭構造物の施工方法であって、
前記継手は、第1継手部材および第2継手部材を具備し、前記第1継手部材および前記第2継手部材はそれぞれ、円筒部と、前記円筒部の一方の端部に設けられた円環状の下フランジ部と、前記下フランジ部に形成された複数の下貫通孔と、前記円筒部の他方の端部に設けられた円環状の上フランジ部と、前記上フランジ部に形成された複数の上貫通孔と、を具備し、前記第1継手部材の前記上フランジ部は前記第1継手部材の前記下フランジ部に対して傾斜し、前記第2継手部材の前記上フランジ部は前記第2継手部材の前記下フランジ部に対して傾斜し、それぞれの傾斜角度が同じであり、
前記杭が鉛直に対して傾斜した杭傾斜方向および杭傾斜角度を計測する工程(S1)と、
前記第1継手部材および前記第2継手部材について、前記円筒部の中心軸を含む仮想面と前記下フランジ部との交線である回転下位相線に対して、前記仮想面と前記上フランジ部との交線である回転上位相線がなす角度である回転位相傾斜角度が、前記計測された杭傾斜角度の1/2になる仮想面を特定する工程(S2)と、
前記杭頭部フランジ部に形成された複数の杭頭貫通孔のうち前記杭傾斜方向の杭傾斜方向仮想線に最も近い位置になっている杭頭貫通孔に、前記第1継手部材の複数の下貫通孔のうち前記特定された仮想面における前記回転下位相線に最も近い位置に配置された下貫通孔を重ねて、前記杭頭部フランジ部に前記第1継手部材の下フランジ部を機械式接続手段によって接続する工程(S3)と、
前記第1継手部材の複数の上貫通孔のうち前記特定された仮想面における前記回転上位相線に最も近い位置に配置された上貫通孔に、前記第2継手部材の複数の下貫通孔のうち前記特定された仮想面における前記回転下位相線に最も近い位置に配置された下貫通孔を、前記杭の傾斜が打ち消されるように重ねて、前記第1継手部材の上フランジ部に前記第2継手部材の下フランジ部を機械式接続手段によって接続する工程(S4)と、
前記第2継手部材の前記上フランジ部に前記上部構造物フランジ部を機械式接続手段によって接続する工程(S5)とを有することを特徴とする。
Furthermore, the construction method of the pile structure according to the present invention includes a pile head flange portion installed at the head of a pile erected on the ground and an upper structure flange portion provided in the upper structure. A construction method of a pile structure connected by
The joint includes a first joint member and a second joint member, and each of the first joint member and the second joint member is a cylindrical portion and an annular shape provided at one end of the cylindrical portion. A lower flange portion, a plurality of lower through holes formed in the lower flange portion, an annular upper flange portion provided at the other end of the cylindrical portion, and a plurality of holes formed in the upper flange portion An upper through hole, wherein the upper flange portion of the first joint member is inclined with respect to the lower flange portion of the first joint member, and the upper flange portion of the second joint member is the second It is inclined with respect to the lower flange portion of the joint member, and the respective inclination angles are the same,
Measuring the pile inclination direction and the pile inclination angle in which the pile is inclined with respect to the vertical (S1);
With respect to the first joint member and the second joint member, the virtual surface and the upper flange portion with respect to a rotation lower phase line that is a line of intersection between the virtual surface including the central axis of the cylindrical portion and the lower flange portion A step (S2) of specifying a virtual plane in which a rotation phase inclination angle, which is an angle formed by a rotation phase line that is an intersection line, becomes 1/2 of the measured pile inclination angle;
Among the plurality of pile head through holes formed in the pile head flange portion, a plurality of the first joint members are connected to the pile head through holes that are closest to the pile tilt direction virtual line in the pile tilt direction. A lower through hole arranged at a position closest to the rotation lower phase line in the identified virtual plane is overlapped among the lower through holes, and the lower flange portion of the first joint member is machined on the pile head flange portion. Connecting by means of a type connecting means (S3);
Of the plurality of upper through-holes of the first joint member, the upper through-holes disposed at the positions closest to the rotation upper phase line in the specified virtual plane, the plurality of lower through-holes of the second joint member Of these, the lower through-hole disposed at a position closest to the rotation lower phase line on the identified virtual plane is overlapped so that the inclination of the pile is canceled, and the first flange is placed on the upper flange portion of the first joint member. Connecting the lower flange part of the two joint members by mechanical connecting means (S4);
A step (S5) of connecting the upper structure flange portion to the upper flange portion of the second joint member by mechanical connection means.

本発明によれば、杭の傾斜を吸収可能であって、施工時間が短くなると共に、繰り返し作用する外力に対して長期間に渡って継手としての所要の性能を有する。   According to the present invention, the inclination of the pile can be absorbed, the construction time is shortened, and the required performance as a joint is obtained over a long period against an external force that repeatedly acts.

本発明の実施の形態1に係る継手を説明する、一部(第1継手部材)を示す縦断面図。The longitudinal cross-sectional view which shows a part (1st coupling member) explaining the coupling which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る継手を説明する、構成する部材のそれぞれについて一部を断面にして示す斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view illustrating a joint according to Embodiment 1 of the present invention, with a part of each of constituent members being shown in cross section. 本発明の実施の形態1に係る継手を説明する、構成する部材のそれぞれについて別方向に見た断面を示す横断面図である。It is a cross-sectional view which shows the cross section which looked at another direction about each of the member to demonstrate the coupling which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る継手構造を説明する、一部を断面にした側面図である。It is the side view which made the cross section partially explaining the joint structure which concerns on Embodiment 2 of this invention. 図4に説明する継手構造の実施例2を説明する一部(ボトムタワー)を省略して各部材を透視して示す斜視図である。FIG. 5 is a perspective view showing a perspective view of each member with a part (bottom tower) illustrating Example 2 of the joint structure illustrated in FIG. 4 omitted. 図4に説明する継手構造の実施例3を説明する一部(ボトムタワー)を省略して各部材を透視して示す斜視図である。FIG. 5 is a perspective view showing a perspective view of each member, omitting a part (bottom tower) for explaining a third embodiment of the joint structure described in FIG. 4. 図4に説明する継手構造の実施例4を説明する一部(ボトムタワー)を省略して各部材を透視して示す斜視図である。FIG. 5 is a perspective view illustrating each member with a part (bottom tower) illustrating Example 4 of the joint structure illustrated in FIG. 4 omitted. 本発明の実施の形態3に係る杭構造物の施工方法を説明するフローチャートである。It is a flowchart explaining the construction method of the pile structure which concerns on Embodiment 3 of this invention.

[実施の形態1:継手]
本発明を実施するための形態を、図面を参照して具体的に説明する。なお、以下の図面は模式的に描かれたものであり、本発明は描かれた形態に限定されるものではない。
図1〜図3は、本発明の実施の形態1に係る継手を説明するものであって、図1は一部(第1継手部材)を示す縦断面図、図2は構成する部材のそれぞれについて一部を断面にして示す斜視図、図3は構成する部材のそれぞれについて別方向に見た断面を示す横断面図である。なお、図2において、一部の部位(第1下外貫通孔等)についてはその一部を図示し、全数を図示していない。また、図3において、紙面下側に示す一方の部材(第1継手部材)については横断面を上方向に見たものであり、紙面上側に示す他方の部材(第2継手部材)については横断面を下方向に見たものである。
[Embodiment 1: Joint]
A mode for carrying out the present invention will be specifically described with reference to the drawings. In addition, the following drawings are drawn typically and this invention is not limited to the drawn form.
1 to 3 illustrate a joint according to Embodiment 1 of the present invention. FIG. 1 is a longitudinal sectional view showing a part (first joint member), and FIG. FIG. 3 is a cross-sectional view showing a cross section of the constituent members viewed in a different direction. In FIG. 2, some of the portions (first lower outer through-holes, etc.) are shown, and the total number is not shown. Further, in FIG. 3, one member (first joint member) shown on the lower side in the drawing is a cross section viewed from the upper side, and the other member (second joint member) shown on the upper side in the drawing is crossed. The surface is viewed downward.

(継手部材)
図1〜図3において、継手100は、地盤(海底や湖底、川床等を含む)に立設された円筒状の杭の頭部と上部構造物(図4参照)とを接続するための第1継手部材110aおよび第2継手部材110bを有している。なお、第1継手部材110aと第2継手部材110bとは形状寸法が同一(共通部品)である。
したがって、以下、主に第1継手部材110aについて説明し、第2継手部材110bについては、第1継手部材110aの各部位の名称を修飾する「第1」を「第2」に、符号に付した「a」を「b」に、それぞれ読み替えるものとする。また、共通の内容の説明において、各部位の名称を修飾する「第1」または「第2」、および符号に付した「a」または「b」の記載を省略する場合がある。
(Fitting member)
1 to 3, a joint 100 is connected to a head of a cylindrical pile standing on the ground (including the seabed, lake bottom, riverbed, etc.) and an upper structure (see FIG. 4). It has 1 joint member 110a and 2nd joint member 110b. The first joint member 110a and the second joint member 110b have the same shape (common parts).
Therefore, hereinafter, the first joint member 110a will be mainly described, and for the second joint member 110b, “first”, which modifies the names of the respective parts of the first joint member 110a, will be referred to as “second”. “A” is replaced with “b”. In the description of the common contents, the description of “first” or “second” that modifies the name of each part and “a” or “b” attached to the reference may be omitted.

(円筒部)
第1継手部材110aは、第1円筒部20aと、第1円筒部20aの中心軸(以下「第1円筒部中心軸」と称す)29aに垂直で、第1円筒部20aの一方の端部(以下「第1円筒部下端」と称す)21aに設けられた円環状の第1下フランジ部10aと、第1円筒部20aの他方の端部(以下「第1円筒部上端」と称す)23aに設けられ、第1下フランジ部10aに対して「継手部材傾斜角度α(例えば、α=0.75°)」傾斜した円環状の第1上フランジ部30aとを具備している。
(Cylindrical part)
The first joint member 110a is perpendicular to the first cylindrical portion 20a and the central axis (hereinafter referred to as “first cylindrical portion central axis”) 29a of the first cylindrical portion 20a, and is one end of the first cylindrical portion 20a. (Hereinafter referred to as “first cylindrical portion lower end”) 21a, the annular first lower flange portion 10a provided on 21a, and the other end of the first cylindrical portion 20a (hereinafter referred to as “first cylindrical portion upper end”) And an annular first upper flange portion 30a which is provided at 23a and is inclined with respect to the first lower flange portion 10a by a “joint member inclination angle α (for example, α = 0.75 °)”.

そして、第1継手部材110aにおいて、第1円筒部20aの第1下フランジ部10aの下面と第1上フランジ部30aの上面との距離(以下「厚さ」と称す)が最も厚くなる位置に対応した円周方向の位相を「第1最厚位相22a」と称し、「位相A」にて示す。また、第1円筒部中心軸29aの位置を「中心O(オー)」として、位相Aと中心Oとを通過する仮想線を「第1仮想線28a」とする。また、第1円筒部20aの厚さが最も薄くなる位置に対応した円周方向の位相を「第1最薄位相24a」と称し、「位相P」にて示すと、位相Pは、第1仮想線28a上で、中心Oに対する位相Aの対称位置になる。
なお、説明の便宜上、位相Aおよび位相Pを第1上フランジ部30aに図示しているが、第1下フランジ部10aにおいて、第1最厚位相22aも位相Aであり、第1最薄位相24aも位相Pである。
In the first joint member 110a, the distance between the lower surface of the first lower flange portion 10a of the first cylindrical portion 20a and the upper surface of the first upper flange portion 30a (hereinafter referred to as “thickness”) is the thickest. The corresponding circumferential phase is referred to as “first thickest phase 22a” and is indicated by “phase A”. Further, the position of the first cylindrical portion central axis 29a is defined as “center O (O)”, and the virtual line passing through the phase A and the center O is defined as “first virtual line 28a”. Further, the circumferential phase corresponding to the position where the thickness of the first cylindrical portion 20a is the thinnest is referred to as “first thinnest phase 24a”. On the virtual line 28a, the phase A is symmetrical with respect to the center O.
For convenience of explanation, the phase A and the phase P are illustrated in the first upper flange portion 30a. However, in the first lower flange portion 10a, the first thickest phase 22a is also the phase A, and the first thinnest phase. 24 a is also the phase P.

また、以下の説明の便宜上、第1円筒部中心軸29aを含む第1最厚位相22a方向の仮想面を、第1円筒部中心軸29aを回転中心にして所定の角度(以下「回転角度θと称す」)回転したときの当該仮想面の位相を「第1回転位相25a」とする。そして、当該仮想面と第1下フランジ部10aの下面との交線を「第1回転下位相線26a」、当該仮想面と第1上フランジ部30aの上面との交線を「第1回転上位相線27a」とし、第1回転下位相線26aに対して第1回転上位相線27aがなす角度を「回転位相傾斜角度δ」とする。
なお、第2継手部材110bにおいては、第2下フランジ部10bの第2最厚位相22bを「位相B」にて示し、第2下フランジ部10bの第2最薄位相24bを「位相Q」にて図示しているが、第2上フランジ部30bにおいて、第2最厚位相22bも位相Bであり、第2最薄位相24bも「位相Q」である。
Further, for convenience of the following description, a virtual plane in the direction of the first thickest phase 22a including the first cylindrical portion central axis 29a is set to a predetermined angle (hereinafter referred to as “rotational angle θ”) with the first cylindrical portion central axis 29a as the rotational center. The phase of the virtual surface when rotated is referred to as “first rotation phase 25a”. The intersection line between the virtual surface and the lower surface of the first lower flange portion 10a is defined as “first rotation lower phase line 26a”, and the intersection line between the virtual surface and the upper surface of the first upper flange portion 30a is defined as “first rotation. The angle formed by the first rotation upper phase line 27a with respect to the first rotation lower phase line 26a is referred to as “rotation phase tilt angle δ”.
In the second joint member 110b, the second thinnest phase 22b of the second lower flange portion 10b is indicated by “phase B”, and the second thinnest phase 24b of the second lower flange portion 10b is indicated by “phase Q”. In the second upper flange portion 30b, the second thinnest phase 22b is also the phase B, and the second thinnest phase 24b is also the “phase Q”.

(下フランジ部、上フランジ部)
第1下フランジ部10aは円環であって、第1円筒部20aの外側に突出した第1下外フランジ部11aと、第1円筒部20aの内側に突出した第1下内フランジ部15aとを具備している。そして、第1下外フランジ部11aにおける第1下外周円12a上に、複数の第1下外貫通孔13aが等間隔に形成されている。同様に、第1下内フランジ部15aにおける第1下内周円16a上に、複数の第1下内貫通孔17aが等間隔に形成されている。
同様に、第1上フランジ部30aは円環であって、第1円筒部20aの外側に突出した第1上外フランジ部31aと、第1円筒部20aの内側に突出した第1上内フランジ部35aとを具備している。そして、第1上外フランジ部31aにおける第1上外周円32a上に、複数の第1上外貫通孔33aが等間隔に形成されている。また、第1上内フランジ部35aにおける第1上内周円36a上に、複数の第1上内貫通孔37aが等間隔に形成されている。
(Lower flange, upper flange)
The first lower flange portion 10a is a ring, and includes a first lower outer flange portion 11a that protrudes outside the first cylindrical portion 20a, a first lower inner flange portion 15a that protrudes inside the first cylindrical portion 20a, It has. A plurality of first lower outer through holes 13a are formed at equal intervals on the first lower outer circumference circle 12a in the first lower outer flange portion 11a. Similarly, a plurality of first lower inner through holes 17a are formed at equal intervals on the first lower inner circumferential circle 16a in the first lower inner flange portion 15a.
Similarly, the first upper flange portion 30a is a ring, and includes a first upper outer flange portion 31a projecting outside the first cylindrical portion 20a, and a first upper inner flange projecting inside the first cylindrical portion 20a. Part 35a. A plurality of first upper outer through holes 33a are formed at equal intervals on the first upper outer circumference circle 32a in the first upper outer flange portion 31a. A plurality of first upper inner through holes 37a are formed at equal intervals on the first upper inner circle 36a in the first upper inner flange portion 35a.

(貫通孔)
第1下外貫通孔13a、第1下内貫通孔17a、第1上外貫通孔33aおよび第1上内貫通孔37a(以下、それぞれを個別にまたはそれぞれをまとめて「貫通孔」と称す場合がある)はそれぞれ同数(例えば、32箇所、図3参照)であって、それぞれのうちの一つが、第1最厚位相22aに配置されている。このとき、第1最厚位相22aに配置された第1下外貫通孔13a(以下「第1最厚位相下外貫通孔14a」と称す)の中心と、第1最厚位相22aに配置された第1上外貫通孔33a(以下「第1最厚位相上外貫通孔34a」と称す)の中心とを結ぶ第1外仮想線114aは、第1円筒部中心軸29aに平行である。
同様に、第1最厚位相22aに配置された第1下内貫通孔17a(以下「第1最厚位相下内貫通孔18a」と称す)の中心と、第1最厚位相22aに配置された第1上内貫通孔37a(以下「第1最厚位相上内貫通孔38a」と称す)の中心とを結ぶ第1内仮想線118aは、第1円筒部中心軸29aに平行である。
(Through hole)
First lower outer through-hole 13a, first lower inner through-hole 17a, first upper outer through-hole 33a, and first upper inner through-hole 37a (hereinafter referred to as “through holes” individually or collectively, respectively) Are the same number (for example, 32 locations, see FIG. 3), one of which is arranged in the first thickest phase 22a. At this time, it is arranged at the center of the first lower outer through-hole 13a (hereinafter referred to as “first thickest phase lower outer through-hole 14a”) disposed in the first thickest phase 22a and the first thickest phase 22a. The first outer imaginary line 114a connecting the center of the first upper outer through-hole 33a (hereinafter referred to as “first thickest phase upper outer through-hole 34a”) is parallel to the first cylindrical portion central axis 29a.
Similarly, the center of the first lower inner through hole 17a (hereinafter referred to as “first thickest phase lower inner through hole 18a”) disposed in the first thickest phase 22a and the first thickest phase 22a. The first inner imaginary line 118a connecting the center of the first upper inner through-hole 37a (hereinafter referred to as “first thickest phase upper inner through-hole 38a”) is parallel to the first cylindrical portion central axis 29a.

なお、以上は、全ての貫通孔が等間隔に形成されているが、本発明はこれに限定するものではない。すなわち、全ての貫通孔が第1仮想線28aに対して対称に配置される限り、少なくとも幾つかの貫通孔を互いに等間隔に配置し、かかる等間隔に配置された貫通孔同士の間に、さらに貫通孔を追加してもよい。また、第1下外貫通孔13aと第1下内貫通孔17aとが同数であるが、両者の数が相違してもよい。このことは、第1上外貫通孔33aと第1上内貫通孔37aとにおいても同じである。   In the above, all the through holes are formed at equal intervals, but the present invention is not limited to this. That is, as long as all the through holes are arranged symmetrically with respect to the first imaginary line 28a, at least some through holes are arranged at equal intervals, and between the through holes arranged at equal intervals, Further, a through hole may be added. Further, the number of the first lower outer through holes 13a and the number of the first lower inner through holes 17a are the same, but the number of both may be different. This also applies to the first upper outer through hole 33a and the first upper inner through hole 37a.

なお、以上は、第1上フランジ部30aが円環であるが、第1上フランジ部30aを楕円状にしてもよい。
また、以上は、第1下フランジ部10aが第1円筒部20aの第1円筒部中心軸29aに対して垂直であるが、本発明はこれに限定するものではなく、第1下フランジ部10aおよび第1上フランジ部30aの両方が第1円筒部中心軸29aに対して傾斜してもよい。
さらに、第1下フランジ部10aは第1下外フランジ部11aまたは第1下内フランジ部15aの一方のみを具備し、第1上フランジ部30aは第1上外フランジ部31aまたは第1上内フランジ部35aの一方のみを具備してもよい。
In addition, although the 1st upper flange part 30a is an annular | circular shape above, you may make the 1st upper flange part 30a elliptical.
In the above, the first lower flange portion 10a is perpendicular to the first cylindrical portion central axis 29a of the first cylindrical portion 20a. However, the present invention is not limited to this, and the first lower flange portion 10a. Both the first upper flange portion 30a and the first cylindrical portion central axis 29a may be inclined.
Further, the first lower flange portion 10a has only one of the first lower outer flange portion 11a or the first lower inner flange portion 15a, and the first upper flange portion 30a is the first upper outer flange portion 31a or the first upper inner portion. Only one of the flange portions 35a may be provided.

(実施例1)
継手100の形状は限定されるものではなく、特に、継手100が設置される杭あるいは上部構造物の形状寸法によって、継手100の形状寸法は変動する。
例えば、外径6000mmで厚さ75mmの円形鋼管(図4に示す「杭400」参照)の上端に、400mm幅(外径6000mm、内径5200mm)で厚さ75mmのフランジ部(図4に示す「杭頭部フランジ部40」参照)が設置された杭の場合、継手100の形状は例えば以下になる。
Example 1
The shape of the joint 100 is not limited. In particular, the shape dimension of the joint 100 varies depending on the shape dimension of the pile or the upper structure on which the joint 100 is installed.
For example, at the upper end of a circular steel pipe having an outer diameter of 6000 mm and a thickness of 75 mm (see “Pile 400” shown in FIG. 4), a flange portion (an outer diameter of 6000 mm and an inner diameter of 5200 mm) and a thickness of 75 mm is formed (“ In the case of a pile in which a pile head flange portion 40 ”is installed, the shape of the joint 100 is, for example, as follows.

円筒部20は、外径5400mm、内径5280mmの円形鋼管であって、最厚位相22における厚さが922mmで、最薄位相24における厚さが852mmである。
下フランジ部10および上フランジ部30は、外径5636mm、内径5048mm、厚さ75mmの円環である。そして、下外周円12および上外周円32は直径5517mmで、その上に下外貫通孔13および上外貫通孔33が170箇所等間隔に形成されている。また、下内周円16および上内周円36は直径5163mmで、その上に下内貫通孔17および上内貫通孔37が32箇所等間隔に形成されている。
そして、上フランジ部30は下フランジ部10に対して「0.75°(α=0.75°)」傾斜している。そのため、上フランジ部30の上面と下フランジ部10の下面との距離(厚さ)は、最厚位相22(位相A)において1074mm、最薄位相24(位相P)において1000mmである。
The cylindrical portion 20 is a circular steel pipe having an outer diameter of 5400 mm and an inner diameter of 5280 mm, and has a thickness of 922 mm in the thickest phase 22 and a thickness of 852 mm in the thinnest phase 24.
The lower flange portion 10 and the upper flange portion 30 are circular rings having an outer diameter of 5636 mm, an inner diameter of 5048 mm, and a thickness of 75 mm. And the lower outer periphery circle | round | yen 12 and the upper outer periphery circle | round | yen 32 are 5517 mm in diameter, and the lower outer through-hole 13 and the upper outer through-hole 33 are formed in 170 places at equal intervals on it. Further, the lower inner circumferential circle 16 and the upper inner circumferential circle 36 have a diameter of 5163 mm, and the lower inner through-hole 17 and the upper inner through-hole 37 are formed at equal intervals in 32 places thereon.
The upper flange portion 30 is inclined “0.75 ° (α = 0.75 °)” with respect to the lower flange portion 10. Therefore, the distance (thickness) between the upper surface of the upper flange portion 30 and the lower surface of the lower flange portion 10 is 1074 mm in the thickest phase 22 (phase A) and 1000 mm in the thinnest phase 24 (phase P).

なお、以上は、第1継手部材110aと第2継手部材110bとの形状寸法が同一(共通部品)の場合であるが、本発明はこれに限定するものではない。それぞれ、円筒部(20a、20b)、下フランジ部(10a、10b)、上フランジ部(30a、30b)および貫通孔(13a、33b、17a、37b)を具備し、それぞれの継手部材傾斜角度αが同じである限り、それぞれの形状寸法が相違してもよい。   In addition, although the above is a case where the 1st joint member 110a and the 2nd joint member 110b have the same shape dimension (common component), this invention is not limited to this. Each includes a cylindrical portion (20a, 20b), a lower flange portion (10a, 10b), an upper flange portion (30a, 30b) and a through hole (13a, 33b, 17a, 37b), and each joint member inclination angle α As long as these are the same, the shape dimensions may be different.

[実施の形態2:継手構造]
本発明を実施するための形態を、図面を参照して具体的に説明する。なお、以下の図面は模式的に描かれ、一部の部位の記載を省略したものであり、本発明は描かれた形態に限定されるものではない。また、実施の形態1における部材と同じ部材については同じ符号を付し、説明を一部省略する。また、上部構造物として、風力発電機のボトムタワーを説明しているが、本発明はこれに限定するものではない。
図4〜図7は、本発明の実施の形態2に係る継手構造を説明するものであって、図4は一部を断面にした側面図、図5はその実施例2を一部(ボトムタワー)を省略して各部材を透視して示す斜視図 、図6はその実施例3を一部(ボトムタワー)を省略して各部材を透視して示す斜視図、図7はその実施例4を一部(ボトムタワー)を省略して各部材を透視して示す斜視図である。なお、図5〜7に貫通孔(図4等参照)を記載しない。
[Embodiment 2: Joint structure]
A mode for carrying out the present invention will be specifically described with reference to the drawings. In addition, the following drawings are drawn typically and the description of one part is abbreviate | omitted, and this invention is not limited to the drawn form. The same members as those in the first embodiment are denoted by the same reference numerals, and a part of the description is omitted. Moreover, although the bottom tower of a wind power generator is demonstrated as an upper structure, this invention is not limited to this.
4 to 7 illustrate a joint structure according to Embodiment 2 of the present invention. FIG. 4 is a side view of a part of the joint structure, and FIG. FIG. 6 is a perspective view showing a perspective view of each member with a part (bottom tower) omitted, and FIG. 7 is a perspective view thereof. FIG. 4 is a perspective view showing a part of FIG. In addition, a through-hole (refer FIG. 4 etc.) is not described in FIGS.

図4において、継手構造200は、継手100によって、地盤(図示しない)に立設された杭400の頭部に設置された杭頭部フランジ部40と、ボトムタワー(上部構造物に相当する)500に設置されたタワーフランジ部(上部構造物フランジ部に相当する)50とを接続するものである。
杭頭部フランジ部40は、第1継手部材110aの第1下フランジ部10aが当接するものであって、第1下外貫通孔13aおよび第1下内貫通孔17aと同位置に杭頭外貫通孔43および杭頭内貫通孔47がそれぞれ形成されている。そして、第1下外貫通孔13aおよび杭頭外貫通孔43を貫通したボルト90にナット91が螺合し、第1下内貫通孔17aおよび杭頭内貫通孔47を貫通したボルト90にナット91が螺合している(機械式接続手段に相当する)。
In FIG. 4, the joint structure 200 includes a pile head flange portion 40 installed on the head of a pile 400 erected on the ground (not shown) by the joint 100, and a bottom tower (corresponding to an upper structure). A tower flange portion (corresponding to an upper structure flange portion) 50 installed at 500 is connected.
The pile head flange portion 40 is in contact with the first lower flange portion 10a of the first joint member 110a, and is outside the pile head at the same position as the first lower outer through hole 13a and the first lower inner through hole 17a. A through hole 43 and a through hole 47 in the pile head are formed. Then, the nut 91 is screwed into the bolt 90 that has passed through the first lower outer through hole 13a and the pile head outer through hole 43, and the nut 90 is passed through the first lower inner through hole 17a and the pile head inner through hole 47. 91 is screwed (corresponding to a mechanical connection means).

また、第1継手部材110aと第2継手部材110bとの当接部において、第1上外貫通孔33aおよび第2下外貫通孔13bを貫通したボルト90にナット91が螺合し、第1上内貫通孔37aおよび第2下内貫通孔17bを貫通したボルト90にナット91が螺合している(機械式接続手段に相当する)。   Further, at the contact portion between the first joint member 110a and the second joint member 110b, the nut 91 is screwed into the bolt 90 penetrating the first upper outer through hole 33a and the second lower outer through hole 13b, and the first A nut 91 is screwed into a bolt 90 penetrating the upper inner through hole 37a and the second lower inner through hole 17b (corresponding to a mechanical connection means).

さらに、タワーフランジ部50は、第2継手部材110bの第2上フランジ部30bに当接するものであって、杭頭外貫通孔43および杭頭内貫通孔47と同様に、タワー外貫通孔53およびタワー内貫通孔57がそれぞれ形成されている。そして、第2上外貫通孔33bおよびタワー外貫通孔53を貫通したボルト90にナット91が螺合し、第2上内貫通孔37bおよびタワー内貫通孔57を貫通したボルト90にナット91が螺合している(機械式接続手段に相当する)。
以上は、全ての貫通孔にボルト90が挿入されているが、本発明はこれに限定するものではなく、幾つかの貫通孔にボルト90が挿入され、これを除く貫通孔にボルト90が挿入されなくてもよい。
Further, the tower flange portion 50 abuts on the second upper flange portion 30b of the second joint member 110b, and the tower outer through hole 53 is similar to the pile head outer through hole 43 and the pile head inner through hole 47. And the through-hole 57 in a tower is formed, respectively. Then, a nut 91 is screwed into the bolt 90 penetrating the second upper outer through hole 33b and the tower outer through hole 53, and the nut 91 is inserted into the bolt 90 penetrating the second upper inner through hole 37b and the tower inner through hole 57. They are screwed together (corresponding to mechanical connection means).
Although the bolts 90 are inserted into all the through holes as described above, the present invention is not limited to this, and the bolts 90 are inserted into some through holes and the bolts 90 are inserted into the other through holes. It does not have to be done.

(実施例2)
図5において、杭400が鉛直方向490に立設されている場合について説明する。すなわち、杭傾斜角度φが「0.00°(φ=0.00°)」である。
このとき、第1継手部材110aの位相A(第1最厚位相22a)と第2継手部材110bの位相Q(第2最薄位相24b)とは一致している(このとき、位相P(第1最薄位相24a)と位相B(第2最厚位相22b)とは一致している)。
したがって、第1仮想線28aと第2仮想線28bとは同一線上にあって、第1継手部材110aの位相A(第1最厚位相22a)と第2継手部材110bの位相B(第2最厚位相22b)とは、中心Oに対する対角位置に配置されている(∠AOB=180°)。
このとき、第1継手部材110aの継手部材傾斜角度αと第2継手部材110bの継手部材傾斜角度αとは互いに打ち消しあっているから、第1下フランジ部10aと第2上フランジ部30bとは平行になっている(β=0.00°)。
したがって、杭頭部フランジ部40が水平の場合に継手100を用いても、タワーフランジ部50を水平にする(ボトムタワー500を鉛直に立設する)ことができる。
なお、以上は、第1上フランジ部30aと第2下フランジ部10bとが当接しているが、第2継手部材110bを裏返して、第1上フランジ部30aに第2上フランジ部30bを当接してもよい。
(Example 2)
In FIG. 5, a case where the pile 400 is erected in the vertical direction 490 will be described. That is, the pile inclination angle φ is “0.00 ° (φ = 0.00 °)”.
At this time, the phase A (first thinnest phase 22a) of the first joint member 110a and the phase Q (second thinnest phase 24b) of the second joint member 110b coincide with each other (at this time, the phase P (first phase) 1 thinnest phase 24a) and phase B (second thinnest phase 22b) coincide).
Accordingly, the first imaginary line 28a and the second imaginary line 28b are on the same line, and the phase A (first thickest phase 22a) of the first joint member 110a and the phase B (second maximum thickness) of the second joint member 110b. The thickness phase 22b) is arranged at a diagonal position with respect to the center O (∠AOB = 180 °).
At this time, since the joint member inclination angle α of the first joint member 110a and the joint member inclination angle α of the second joint member 110b cancel each other, the first lower flange portion 10a and the second upper flange portion 30b are They are parallel (β = 0.00 °).
Therefore, even when the joint head 100 is used when the pile head flange portion 40 is horizontal, the tower flange portion 50 can be leveled (the bottom tower 500 is erected vertically).
Although the first upper flange portion 30a and the second lower flange portion 10b are in contact with each other, the second joint member 110b is turned over so that the second upper flange portion 30b contacts the first upper flange portion 30a. You may touch.

(実施例3)
図6において、杭400が杭傾斜方向410(太矢印にて示す)に杭傾斜角度「1.50°(φ=1.50°)」傾斜している場合について説明する。なお、継手部材傾斜角度αは「0.75°(α=0.75°)」で、杭傾斜角度φは継手部材傾斜角度αの2倍になっている(φ=2・α)。
このとき、第1継手部材110aの位相A(第1最厚位相22a)と第2継手部材110bの位相B(第2最厚位相22b)とは、杭中心軸409を通過する杭傾斜方向410の仮想線(以下「杭傾斜方向仮想線408」と称す)上で一致している。したがって、杭傾斜方向仮想線408と第1仮想線28aと第2仮想線28bとは互いに重なっている(∠AOB=0°)。このとき、位相P(第1最薄位相24a)と位相Q(第2最薄位相24b)とは、杭傾斜方向仮想線408上で一致している。
(Example 3)
In FIG. 6, the case where the pile 400 is inclined at a pile inclination angle “1.50 ° (φ = 1.50 °)” in the pile inclination direction 410 (indicated by a thick arrow) will be described. The joint member inclination angle α is “0.75 ° (α = 0.75 °)”, and the pile inclination angle φ is twice the joint member inclination angle α (φ = 2 · α).
At this time, the phase A (first thickest phase 22a) of the first joint member 110a and the phase B (second thickest phase 22b) of the second joint member 110b are the pile inclination direction 410 passing through the pile center axis 409. On the virtual line (hereinafter referred to as “pile inclination direction virtual line 408”). Therefore, the pile inclination direction imaginary line 408, the first imaginary line 28a, and the second imaginary line 28b overlap each other (∠AOB = 0 °). At this time, the phase P (first thinnest phase 24a) and the phase Q (second thinnest phase 24b) coincide with each other on the pile tilt direction virtual line 408.

すなわち、杭傾斜方向410において、第1継手部材110aの継手部材傾斜角度αと第2継手部材110bの継手部材傾斜角度αとは単純に重ね合わされているから、継手傾斜角度βは、両者の継手部材傾斜角度αを合計した角度である「1.50°」になり、杭傾斜角度φに一致している(β=φ=1.50°)。また、杭傾斜方向410に対して垂直な方向については、第1下フランジ部10aに対する第1上フランジ部30aの傾斜と、第2下フランジ部10bに対する第2上フランジ部30bの傾斜とが、互いに打ち消し合うため水平になっている。
したがって、杭400の傾斜(φ=1.50°)が継手100によって吸収され、タワーフランジ部50は水平になっている。よって、杭400が斜めに立設された場合、継手100を用いることによって、ボトムタワー500を鉛直方向490に設置可能になる。
すなわち、例えば継手部材傾斜角度αを「0.75°(α=0.75°)」にした場合、継手100は、杭400が杭傾斜方向410に最大「1.50°」傾くまで、ボトムタワー500を略鉛直方向490に設置可能である。
なお、以上は、第1上フランジ部30aと第2下フランジ部10bとが当接しているが、第2継手部材110bを裏返して、第1上フランジ部30aに第2上フランジ部30bを当接してもよい。
That is, in the pile inclination direction 410, since the joint member inclination angle α of the first joint member 110a and the joint member inclination angle α of the second joint member 110b are simply overlapped, the joint inclination angle β The sum of the member inclination angles α is “1.50 °”, which coincides with the pile inclination angle φ (β = φ = 1.50 °). Also, for the direction perpendicular to the pile inclination direction 410, the inclination of the first upper flange part 30a with respect to the first lower flange part 10a and the inclination of the second upper flange part 30b with respect to the second lower flange part 10b are: They are horizontal to cancel each other.
Therefore, the inclination (φ = 1.50 °) of the pile 400 is absorbed by the joint 100, and the tower flange portion 50 is horizontal. Therefore, when the pile 400 is erected obliquely, the bottom tower 500 can be installed in the vertical direction 490 by using the joint 100.
That is, for example, when the joint member inclination angle α is set to “0.75 ° (α = 0.75 °)”, the joint 100 is bottomed until the pile 400 is tilted by the maximum “1.50 °” in the pile inclination direction 410. The tower 500 can be installed in a substantially vertical direction 490.
Although the first upper flange portion 30a and the second lower flange portion 10b are in contact with each other, the second joint member 110b is turned over so that the second upper flange portion 30b contacts the first upper flange portion 30a. You may touch.

(実施例4)
図7において、杭400が杭傾斜方向410(太矢印にて示す)に杭傾斜角度φ(例えば、φ=0.75°)傾斜している場合について説明する。
このとき、回転位相傾斜角度δが杭傾斜角度φの1/2(δ=φ/2=0.375°)になる第1回転下位相線26aおよび第1回転上位相線27a(第1回転位相25a、図2参照)と、第2回転下位相線26b(第2回転位相25b、図2参照)とが、それぞれ杭傾斜方向仮想線408に一致し、杭400の傾斜を打ち消すように、第1継手部材110aと第2継手部材110bとは接続されている。
Example 4
In FIG. 7, a case where the pile 400 is inclined in a pile inclination direction 410 (indicated by a thick arrow) with a pile inclination angle φ (for example, φ = 0.75 °) will be described.
At this time, the first rotation lower phase line 26a and the first rotation upper phase line 27a (first rotation) in which the rotation phase inclination angle δ is 1/2 of the pile inclination angle φ (δ = φ / 2 = 0.375 °). Phase 25a, see FIG. 2) and the second rotation lower phase line 26b (second rotation phase 25b, see FIG. 2) respectively coincide with the pile inclination direction virtual line 408, and cancel the inclination of the pile 400, The first joint member 110a and the second joint member 110b are connected.

このとき、継手部材傾斜角度αを「0.75°」とすると、第1継手部材110aの時計周り方向の回転角度θは「45°(θ=45°)」で、第2継手部材110bの反時計周り方向の回転角度θは「45°(θ=45°)」である(∠AOB=90°)。
また、杭傾斜方向410に対して垂直な方向については、第1下フランジ部10aに対する第1上フランジ部30aの傾斜と、第2下フランジ部10bに対する第2上フランジ部30bの傾斜とが、互いに打ち消し合うため水平になっている。
したがって、杭400の傾斜が継手100によって吸収され、タワーフランジ部50は略水平になっている。よって、杭400が斜めに立設された場合、継手100を用いることによって、杭傾斜角度φは近似的に吸収され、ボトムタワー500は略鉛直になる。
At this time, if the joint member inclination angle α is “0.75 °”, the clockwise rotation angle θ of the first joint member 110a is “45 ° (θ = 45 °)”, and the second joint member 110b The rotation angle θ in the counterclockwise direction is “45 ° (θ = 45 °)” (∠AOB = 90 °).
Also, for the direction perpendicular to the pile inclination direction 410, the inclination of the first upper flange part 30a with respect to the first lower flange part 10a and the inclination of the second upper flange part 30b with respect to the second lower flange part 10b are: They are horizontal to cancel each other.
Therefore, the inclination of the pile 400 is absorbed by the joint 100, and the tower flange portion 50 is substantially horizontal. Therefore, when the pile 400 is erected obliquely, by using the joint 100, the pile inclination angle φ is approximately absorbed and the bottom tower 500 becomes substantially vertical.

以上のように、第1継手部材110aと第2継手部材110bとを、回転位相傾斜角度δが杭傾斜角度φの1/2になる回転角度θを特定し(図2参照)、特定された回転角度θにある第1回転上位相線27aの上に配置された貫通孔および特定された回転角度θにある第2回転下位相線26bの上に配置された貫通孔(または、かかる第1回転上位相線27aの最も近くに配置された貫通孔およびかかる第2回転下位相線26bの最も近くに配置された貫通孔)が、杭400の杭傾斜方向仮想線408上にある杭頭貫通孔(または、杭傾斜方向仮想線408に最も近い位置にある杭貫通孔)、すなわち、最も低い位置にある杭頭貫通孔の直上になるようにして、杭400の傾斜を打ち消すように接続するから、継手構造200は杭400の傾斜を略吸収することが可能になる。
このとき、第1継手部材110aと第2継手部材110bとは、杭傾斜方向仮想線408に対して互いに反対方向に回転され、対称に配置されたことに同じである。
なお、最も低い位置になっている杭頭貫通孔に代えて、最も高い位置になっている杭頭貫通孔基準にしてもよい。
As described above, the first joint member 110a and the second joint member 110b are identified by specifying the rotation angle θ at which the rotation phase inclination angle δ is ½ of the pile inclination angle φ (see FIG. 2). A through-hole arranged on the first rotation upper phase line 27a at the rotation angle θ and a through-hole arranged on the second rotation lower phase line 26b at the specified rotation angle θ (or the first The pile head penetration in which the through hole arranged closest to the rotation upper phase line 27a and the through hole arranged closest to the second rotation lower phase line 26b are on the pile tilt direction virtual line 408 of the pile 400 It connects so that the inclination of the pile 400 may be negated so that it may be right above the hole (or the pile through hole in the position closest to the pile inclination direction virtual line 408), that is, the pile head through hole in the lowest position. From the above, the joint structure 200 is an inclination of the pile 400 Can be substantially absorbed.
At this time, the first joint member 110a and the second joint member 110b are the same as being rotated symmetrically with respect to the pile inclination direction virtual line 408 and arranged symmetrically.
In addition, it may replace with the pile head through-hole which is the lowest position, and may use the pile head through-hole standard which is the highest position.

以上のように、継手構造200は、第1継手部材110aの第1上フランジ部30aと第2継手部材110bの第2下フランジ部10bとの当接面において、第1仮想線28aと第2仮想線28bとのなす角度(∠AOB)を変更することによって、すなわち、回転角度θを変更することによって、回転位相傾斜角度δ(図2参照)を変更可能であるから、第1継手部材110aの第1下フランジ部10aの下面と第2継手部材110bの第2上フランジ部30bの上面とがなす継手傾斜角度β(β=2・δ)を変更可能である。さらに、グラウト接合でなく、機械式接続手段(ボルト90/ナット91)を用いる。したがって、以下の作用効果が得られる。
(1)杭400が傾斜する場合、杭傾斜角度φを吸収してボトムタワー500を鉛直または略鉛直にすることができる。
(2)グラウトのような強度発現等の養生時間が不要であるから工期が短くなる。
(3)また、ボトムタワー500に風や波が繰り返し作用しても、長期間に渡って継手としての所要の性能を有する。
As described above, the joint structure 200 includes the first imaginary line 28a and the second imaginary line 28a on the contact surface between the first upper flange portion 30a of the first joint member 110a and the second lower flange portion 10b of the second joint member 110b. Since the rotation phase inclination angle δ (see FIG. 2) can be changed by changing the angle (∠AOB) formed with the virtual line 28b, that is, by changing the rotation angle θ, the first joint member 110a. The joint inclination angle β (β = 2 · δ) formed by the lower surface of the first lower flange portion 10a and the upper surface of the second upper flange portion 30b of the second joint member 110b can be changed. Furthermore, mechanical connection means (bolt 90 / nut 91) is used instead of grout bonding. Therefore, the following effects can be obtained.
(1) When the pile 400 is inclined, the bottom tower 500 can be made vertical or substantially vertical by absorbing the pile inclination angle φ.
(2) Since a curing time such as strength development like grout is unnecessary, the construction period is shortened.
(3) Moreover, even if wind and waves repeatedly act on the bottom tower 500, it has the required performance as a joint for a long period of time.

[実施の形態3:杭構造物の施工方法]
本発明を実施するための形態を、フローチャートを参照して具体的に説明する。なお、各工程を実施する順番は示された順番に限定するものではなく、適宜変更可能である。また、実施の形態1または実施の形態2における部材と同じ部材については同じ符号を付し、説明を一部省略する。
図8は、本発明の実施の形態3に係る杭構造物の施工方法を説明するフローチャートである。なお、各部位の名称および符号については図2を参照する。
[Embodiment 3: Construction method of pile structure]
The form for implementing this invention is demonstrated concretely with reference to a flowchart. In addition, the order which implements each process is not limited to the order shown, It can change suitably. The same members as those in the first embodiment or the second embodiment are denoted by the same reference numerals, and a part of the description is omitted.
FIG. 8 is a flowchart illustrating a method for constructing a pile structure according to Embodiment 3 of the present invention. In addition, FIG. 2 is referred for the name and code | symbol of each site | part.

(フローチャート)
図8において、杭構造物の施工方法は、以下の工程を有する。
杭400の杭傾斜角度φを計測する工程(S1)と、
第1継手部材110aについて、回転位相傾斜角度δが計測された杭傾斜角度φの1/2になる第1回転下位相線26aおよび第1回転上位相線27aを特定すると共に、第2継手部材110bについて、回転位相傾斜角度δが計測された杭傾斜角度φの1/2になる第2回転下位相線26bおよび第2回転上位相線27bを特定する工程(S2)と、
最も低い位置になっている杭頭外貫通孔43および杭頭内貫通孔47に、特定された第1回転下位相線26aに最も近い位置に配置された第1下外貫通孔13aおよび第1下内貫通孔17aを重ねて、杭頭部フランジ部40に第1継手部材110aの第1下フランジ部10aをボルト90/ナット91によって接続する工程(S3)と、
特定された第1回転上位相線27aに最も近い位置に配置された第1上外貫通孔33aおよび第1上内貫通孔37aに、特定された第2回転下位相線26bに最も近い位置に配置された第2下外貫通孔13bおよび第2下内貫通孔17bを、杭400の傾斜を打ち消すように重ねて、第1継手部材110aの第1上フランジ部30aに第2継手部材110bの第2下フランジ部10bをボルト90/ナット91によって接続する工程(S4)と、
第2継手部材110bの第2上フランジ部30bにタワーフランジ部50をボルト90/ナット91によって接続する工程(S5)。
(flowchart)
In FIG. 8, the construction method of a pile structure has the following processes.
Measuring the pile inclination angle φ of the pile 400 (S1);
For the first joint member 110a, the first rotation lower phase line 26a and the first rotation upper phase line 27a that are 1/2 the pile inclination angle φ of which the rotation phase inclination angle δ is measured are specified, and the second joint member For 110b, a step (S2) of identifying the second rotation lower phase line 26b and the second rotation upper phase line 27b, which are ½ of the measured pile inclination angle φ, for the rotation phase inclination angle δ,
The first lower outer through hole 13a and the first first hole arranged at positions closest to the identified first rotation lower phase line 26a in the pile head outer through hole 43 and the pile head inner through hole 47 which are at the lowest position. A step of overlapping the lower inner through hole 17a and connecting the first lower flange portion 10a of the first joint member 110a to the pile head flange portion 40 with the bolt 90 / nut 91 (S3);
The first upper outer through-hole 33a and the first upper inner through-hole 37a disposed at the position closest to the identified first rotation upper phase line 27a are positioned closest to the identified second rotation lower phase line 26b. The second lower outer through-hole 13b and the second lower inner through-hole 17b that are arranged are overlapped so as to cancel the inclination of the pile 400, and the second joint member 110b is placed on the first upper flange portion 30a of the first joint member 110a. Connecting the second lower flange portion 10b with a bolt 90 / nut 91 (S4);
A step of connecting the tower flange portion 50 to the second upper flange portion 30b of the second joint member 110b with the bolt 90 / nut 91 (S5).

すなわち、第2継手部材110bが杭傾斜方向仮想線408に対して第1継手部材110aの対称位置(位相B(第2仮想線28b)が杭傾斜方向仮想線408に対して位相A(第1仮想線28a)の対称位置)になっている(図7参照)。
したがって、かかる杭構造物の施工方法は、継手構造200を有し、継手構造200が前記のように杭400の傾斜を吸収可能であると共に、ボルト90/ナット91(機械式接続手段)を用いるから、前記作用効果が得られる。
なお、以上は、杭頭部フランジ部40に接続された第1継手部材110aに、第2継手部材110bを接続するものであるが、本発明はこれに限定するものではない。例えば、第1仮想線28aと第2仮想線28bとのなす角度が回転角度θの2倍になった状態で、予め、第1継手部材110aと第2継手部材110bとを一体にしておき、かかる一体になったものを杭頭部フランジ部40に接続してもよい。
なお、最も低い位置になっている杭頭外貫通孔43および杭頭内貫通孔47に代えて、最も高い位置になっている杭頭外貫通孔43および杭頭内貫通孔47を基準にして、前記工程に準じた工程を実施してもよい。
That is, the second joint member 110b is symmetrical with respect to the pile inclination direction imaginary line 408 (the phase B (second imaginary line 28b) is phase A (first (The symmetric position of the virtual line 28a)) (see FIG. 7).
Therefore, the construction method of this pile structure has the joint structure 200, and while the joint structure 200 can absorb the inclination of the pile 400 as described above, the bolt 90 / nut 91 (mechanical connection means) is used. Thus, the above-mentioned effect can be obtained.
In addition, although the above is connecting the 2nd coupling member 110b to the 1st coupling member 110a connected to the pile head flange part 40, this invention is not limited to this. For example, in a state where the angle formed by the first virtual line 28a and the second virtual line 28b is twice the rotation angle θ, the first joint member 110a and the second joint member 110b are previously integrated, You may connect this integrated thing to the pile head flange part 40. FIG.
In addition, it replaces with the pile-head outer through-hole 43 and the pile-head inner through-hole 47 which are the lowest positions, and is based on the pile-head outer through-hole 43 and the pile-head inner through-hole 47 which are the highest positions. A process according to the above process may be performed.

本発明を、実施の形態をもとに説明したが、この実施の形態は例示であり、それらの各構成要素の組み合わせ等にいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。   Although the present invention has been described based on the embodiment, this embodiment is an exemplification, and various modifications can be made to combinations of the respective components, and such modifications are also included in the present invention. It will be understood by those skilled in the art that it is in the range.

以上のように、本発明の継手構造および継手並びに杭構造物の施工方法は、杭の傾斜を吸収可能であると共に、グラウトの使用に伴う問題を解消するから、杭と風力発電機のボトムタワーとの接続に限定されることなく、各種下部構造物と各種上部構造物とを接続する継手構造および継手並びに構造物の施工方法として広く利用可能である。   As described above, the joint structure of the present invention, the joint, and the method of constructing the pile structure can absorb the inclination of the pile and solve the problems associated with the use of the grout. It is not limited to the connection with, and can be widely used as a joint structure for connecting various substructures and various superstructures, a joint, and a construction method for the structure.

10a:第1下フランジ部
10b:第2下フランジ部
11a:第1下外フランジ部
11b:第2下外フランジ部
12a:第1下外周円
12b:第2下外周円
13a:第1下外貫通孔
13b:第2下外貫通孔
14a:第1最厚位相下外貫通孔
14b:第2最厚位相下外貫通孔
15a:第1下内フランジ部
15b:第2下内フランジ部
16a:第1下内周円
16b:第2下内周円
17a:第1下内貫通孔
17b:第2下内貫通孔
18a:第1最厚位相下内貫通孔
18b:第2最厚位相下内貫通孔
20a:第1円筒部
20b:第2円筒部
21a:第1円筒部下端
21b:第2円筒部下端
22a:第1最厚位相
22b:第2最厚位相
23a:第1円筒部上端
23b:第2円筒部上端
24a:第1最薄位相
24b:第2最薄位相
25a:第1回転位相
25b:第2回転位相
26a:第1回転下位相線
26b:第2回転下位相線
27a:第1回転上位相線
27b:第2回転上位相線
28a:第1仮想線
28b:第2仮想線
29a:第1円筒部中心軸
29b:第2円筒部中心軸
30a:第1上フランジ部
30b:第2上フランジ部
31a:第1上外フランジ部
31b:第2上外フランジ部
32a:第1上外周円
33a:第1上外貫通孔
33b:第2上外貫通孔
34a:第1最厚位相上外貫通孔
35a:第1上内フランジ部
35b:第2上内フランジ部
36a:第1上内周円
37a:第1上内貫通孔
37b:第2上内貫通孔
38a:第1最厚位相上内貫通孔
40 :杭頭部フランジ部
43 :杭頭外貫通孔
47 :杭頭内貫通孔
50 :タワーフランジ部
53 :タワー外貫通孔
57 :タワー内貫通孔
90 :ボルト
91 :ナット
100 :継手
110a:第1継手部材
110b:第2継手部材
114a:第1外仮想線
118a:第1内仮想線
200 :継手構造
400 :杭
408 :杭傾斜方向仮想線
409 :杭中心軸
410 :杭傾斜方向
490 :鉛直方向
500 :ボトムタワー
α :継手部材傾斜角度
β :継手傾斜角度
δ :回転位相傾斜角度
θ :回転角度
φ :杭傾斜角度
A :第1最厚位相
B :第2最厚位相
P :第1最薄位相
Q :第2最薄位相
O :中心
10a: first lower flange portion 10b: second lower flange portion 11a: first lower outer flange portion 11b: second lower outer flange portion 12a: first lower outer circumferential circle 12b: second lower outer circumferential circle 13a: first lower outer Through hole 13b: second lower outer through hole 14a: first thickest phase lower outer through hole 14b: second thickest phase lower outer through hole 15a: first lower inner flange portion 15b: second lower inner flange portion 16a: First lower inner circumference circle 16b: Second lower inner circumference circle 17a: First lower inner through hole 17b: Second lower inner through hole 18a: First thickest phase lower inner through hole 18b: Second thickest phase lower inner Through hole 20a: first cylindrical portion 20b: second cylindrical portion 21a: first cylindrical portion lower end 21b: second cylindrical portion lower end 22a: first thickest phase 22b: second thickest phase 23a: first cylindrical portion upper end 23b : Second cylindrical portion upper end 24a: first thinnest phase 24b: second thinnest phase 25a: first rotational phase 2 b: second rotation phase 26a: first rotation lower phase line 26b: second rotation lower phase line 27a: first rotation upper phase line 27b: second rotation upper phase line 28a: first imaginary line 28b: second imaginary line 29a: first cylindrical portion central axis 29b: second cylindrical portion central axis 30a: first upper flange portion 30b: second upper flange portion 31a: first upper outer flange portion 31b: second upper outer flange portion 32a: first Upper outer circle 33a: first upper outer through hole 33b: second upper outer through hole 34a: first thickest phase upper outer through hole 35a: first upper inner flange portion 35b: second upper inner flange portion 36a: first Upper inner circle 37a: first upper inner through hole 37b: second upper inner through hole 38a: first thickest phase upper inner through hole 40: pile head flange 43: pile head outer through hole 47: pile head inside Through hole 50: Tower flange portion 53: Tower outer through hole 57: Tower inner through hole 90 Bolt 91: Nut 100: Joint 110a: First joint member 110b: Second joint member 114a: First outer imaginary line 118a: First inner imaginary line 200: Joint structure 400: Pile 408: Pile inclination direction imaginary line 409: Pile Central axis 410: Pile inclination direction 490: Vertical direction 500: Bottom tower α: Joint member inclination angle β: Joint inclination angle δ: Rotation phase inclination angle θ: Rotation angle φ: Pile inclination angle A: First thickest phase B: Second thinnest phase P: First thinnest phase Q: Second thinnest phase O: Center

Claims (8)

地盤に立設された杭の頭部に設置された杭頭部フランジ部と、上部構造物に設けられた上部構造物フランジ部とを接続する継手構造であって、
第1継手部材および第2継手部材を具備し、前記第1継手部材および前記第2継手部材はそれぞれ、円筒部と、前記円筒部の一方の端部に設けられた円環状の下フランジ部と、前記円筒部の他方の端部に設けられた円環状の上フランジ部とを具備し、
前記第1継手部材の前記上フランジ部は前記第1継手部材の前記下フランジ部に対して傾斜し、前記第2継手部材の前記上フランジ部は前記第2継手部材の前記下フランジ部に対して傾斜し、それぞれの傾斜角度が同じであり、
前記杭頭部フランジ部に前記第1継手部材の前記下フランジ部が機械式接続手段によって接続され、前記第1継手部材の前記上フランジ部に前記第2継手部材の前記下フランジ部が機械式接続手段によって接続され、前記第2継手部材の前記上フランジ部に前記上部構造物フランジ部が機械式接続手段によって接続されていることを特徴とする継手構造。
It is a joint structure that connects a pile head flange portion installed at the head of a pile erected on the ground and an upper structure flange portion provided in the upper structure,
A first joint member and a second joint member, wherein each of the first joint member and the second joint member includes a cylindrical portion and an annular lower flange portion provided at one end of the cylindrical portion; And an annular upper flange portion provided at the other end of the cylindrical portion,
The upper flange portion of the first joint member is inclined with respect to the lower flange portion of the first joint member, and the upper flange portion of the second joint member is against the lower flange portion of the second joint member. Each tilt angle is the same,
The lower flange portion of the first joint member is connected to the pile head flange portion by mechanical connection means, and the lower flange portion of the second joint member is mechanically connected to the upper flange portion of the first joint member. A joint structure connected by connection means, wherein the upper structure flange portion is connected to the upper flange portion of the second joint member by mechanical connection means.
前記第1継手部材の前記上フランジ部の中心と前記第2継手部材の前記下フランジ部の中心とは一致し、
前記杭の中心軸が鉛直のとき、前記第1継手部材の最も厚さの厚い位置に対応した第1最厚位相と、前記第2継手部材の最も厚さの厚い位置に対応した第2最厚位相とは、前記中心を通る仮想線上で、それぞれ前記中心に対する対称位置に配置されていることを特徴とする請求項1記載の継手構造。
The center of the upper flange portion of the first joint member is coincident with the center of the lower flange portion of the second joint member,
When the central axis of the pile is vertical, the first thickest phase corresponding to the thickest position of the first joint member and the second thickest position corresponding to the thickest position of the second joint member. 2. The joint structure according to claim 1, wherein the thickness phase is arranged at a symmetric position with respect to the center on an imaginary line passing through the center.
前記第1継手部材の前記上フランジ部の中心と前記第2継手部材の前記下フランジ部の中心とは一致し、
前記杭の中心軸が鉛直に対して杭傾斜方向に傾斜するとき、前記第1継手部材の最も厚さの厚い位置に対応した第1最厚位相と、前記第2継手部材の最も厚さの厚い位置に対応した第2最厚位相とは、前記中心を通る前記杭傾斜方向の杭傾斜方向仮想線に対して互いに対称の位置に配置されていることを特徴とする請求項1記載の継手構造。
The center of the upper flange portion of the first joint member is coincident with the center of the lower flange portion of the second joint member,
When the central axis of the pile is inclined in the pile inclination direction with respect to the vertical, the first thickest phase corresponding to the thickest position of the first joint member and the thickest of the second joint member 2. The joint according to claim 1, wherein the second thickest phase corresponding to the thick position is disposed at a position symmetrical to each other with respect to a pile tilt direction virtual line of the pile tilt direction passing through the center. Construction.
前記杭傾斜方向における前記杭の中心軸の鉛直に対して傾斜した杭傾斜角度が、前記第1継手部材の傾斜角度と前記第2継手部材の傾斜角度との和に等しいとき、前記第1最厚位相と前記第2最厚位相とは、前記杭傾斜方向仮想線上の同一位置に配置されていることを特徴とする請求項3記載の継手構造。   When the pile inclination angle inclined with respect to the vertical of the central axis of the pile in the pile inclination direction is equal to the sum of the inclination angle of the first joint member and the inclination angle of the second joint member, the first maximum 4. The joint structure according to claim 3, wherein the thickness phase and the second thickest phase are arranged at the same position on the pile tilt direction virtual line. 前記杭頭部フランジ部、前記上部構造物フランジ部および前記下フランジ部にはそれぞれ、少なくとも円周上で互いに等間隔のフランジ部貫通孔が形成され、前記上フランジ部には、前記フランジ部貫通孔と同一の位相に上フランジ部貫通孔が形成され、
前記機械式接続手段は、前記フランジ部貫通孔同士を貫通するボルトおよび該ボルトに螺合するナット、あるいは前記フランジ部貫通孔と前記上フランジ部貫通孔とを貫通するボルトおよび該ボルトに螺合するナットであることを特徴とする請求項1〜4の何れか一項に記載の継手構造。
The pile head flange portion, the upper structure flange portion, and the lower flange portion are formed with flange portions through holes that are equidistant from each other at least on the circumference, and the upper flange portion passes through the flange portion. The upper flange part through hole is formed in the same phase as the hole,
The mechanical connection means includes a bolt that passes through the flange through holes and a nut that is screwed into the bolt, or a bolt that passes through the flange through hole and the upper flange through hole and is screwed into the bolt. The joint structure according to claim 1, wherein the joint structure is a nut.
地盤に立設された杭の頭部と上部構造物とを接続するための第1継手部材および第2継手部材を有し、
前記第1継手部材および前記第2継手部材は何れも、円筒部と、前記円筒部の一方の端部に設けられた円環状の下フランジ部と、前記円筒部の他方の端部に設けられた円環状の上フランジ部とを具備し、
前記第1継手部材の前記上フランジ部は前記第1継手部材の前記下フランジ部に対して傾斜し、前記第2継手部材の前記上フランジ部は前記第2継手部材の前記下フランジ部に対して傾斜し、それぞれの傾斜角度が同じであることを特徴とする継手。
A first joint member and a second joint member for connecting the head of the pile erected on the ground and the upper structure;
Each of the first joint member and the second joint member is provided at the cylindrical portion, an annular lower flange portion provided at one end portion of the cylindrical portion, and the other end portion of the cylindrical portion. An annular upper flange portion,
The upper flange portion of the first joint member is inclined with respect to the lower flange portion of the first joint member, and the upper flange portion of the second joint member is against the lower flange portion of the second joint member. The joint is characterized in that the inclination angle is the same and the inclination angle is the same.
前記第1継手部材の形状寸法は、前記第2継手部材の形状寸法に同じであることを特徴とする請求項6記載の継手。   The joint dimension according to claim 6, wherein a shape dimension of the first joint member is the same as a shape dimension of the second joint member. 地盤に立設された杭の頭部に設置された杭頭部フランジ部と、上部構造物に設けられた上部構造物フランジ部とを継手によって接続する杭構造物の施工方法であって、
前記継手は、第1継手部材および第2継手部材を具備し、前記第1継手部材および前記第2継手部材はそれぞれ、円筒部と、前記円筒部の一方の端部に設けられた円環状の下フランジ部と、前記下フランジ部に形成された複数の下貫通孔と、前記円筒部の他方の端部に設けられた円環状の上フランジ部と、前記上フランジ部に形成された複数の上貫通孔と、を具備し、前記第1継手部材の前記上フランジ部は前記第1継手部材の前記下フランジ部に対して傾斜し、前記第2継手部材の前記上フランジ部は前記第2継手部材の前記下フランジ部に対して傾斜し、それぞれの傾斜角度が同じであり、
前記杭が鉛直に対して傾斜した杭傾斜方向および杭傾斜角度を計測する工程(S1)と、
前記第1継手部材および前記第2継手部材について、前記円筒部の中心軸を含む仮想面と前記下フランジ部との交線である回転下位相線に対して、前記仮想面と前記上フランジ部との交線である回転上位相線がなす角度である回転位相傾斜角度が、前記計測された杭傾斜角度の1/2になる仮想面を特定する工程(S2)と、
前記杭頭部フランジ部に形成された複数の杭頭貫通孔のうち前記杭傾斜方向の杭傾斜方向仮想線に最も近い位置になっている杭頭貫通孔に、前記第1継手部材の複数の下貫通孔のうち前記特定された仮想面における前記回転下位相線に最も近い位置に配置された下貫通孔を重ねて、前記杭頭部フランジ部に前記第1継手部材の下フランジ部を機械式接続手段によって接続する工程(S3)と、
前記第1継手部材の複数の上貫通孔のうち前記特定された仮想面における前記回転上位相線に最も近い位置に配置された上貫通孔に、前記第2継手部材の複数の下貫通孔のうち前記特定された仮想面における前記回転下位相線に最も近い位置に配置された下貫通孔を、前記杭の傾斜が打ち消されるように重ねて、前記第1継手部材の上フランジ部に前記第2継手部材の下フランジ部を機械式接続手段によって接続する工程(S4)と、
前記第2継手部材の前記上フランジ部に前記上部構造物フランジ部を機械式接続手段によって接続する工程(S5)とを有することを特徴とする杭構造物の施工方法。
It is a construction method of a pile structure in which a pile head flange portion installed at the head of a pile erected on the ground and an upper structure flange portion provided in the upper structure are connected by a joint,
The joint includes a first joint member and a second joint member, and each of the first joint member and the second joint member is a cylindrical portion and an annular shape provided at one end of the cylindrical portion. A lower flange portion, a plurality of lower through holes formed in the lower flange portion, an annular upper flange portion provided at the other end of the cylindrical portion, and a plurality of holes formed in the upper flange portion An upper through hole, wherein the upper flange portion of the first joint member is inclined with respect to the lower flange portion of the first joint member, and the upper flange portion of the second joint member is the second It is inclined with respect to the lower flange portion of the joint member, and the respective inclination angles are the same,
Measuring the pile inclination direction and the pile inclination angle in which the pile is inclined with respect to the vertical (S1);
With respect to the first joint member and the second joint member, the virtual surface and the upper flange portion with respect to a rotation lower phase line that is a line of intersection between the virtual surface including the central axis of the cylindrical portion and the lower flange portion A step (S2) of specifying a virtual plane in which a rotation phase inclination angle, which is an angle formed by a rotation phase line that is an intersection line, becomes 1/2 of the measured pile inclination angle;
Among the plurality of pile head through holes formed in the pile head flange portion, a plurality of the first joint members are connected to the pile head through holes that are closest to the pile tilt direction virtual line in the pile tilt direction. A lower through hole arranged at a position closest to the rotation lower phase line in the identified virtual plane is overlapped among the lower through holes, and the lower flange portion of the first joint member is machined on the pile head flange portion. Connecting by means of a type connecting means (S3);
Of the plurality of upper through-holes of the first joint member, the upper through-holes disposed at the positions closest to the rotation upper phase line in the specified virtual plane, the plurality of lower through-holes of the second joint member Of these, the lower through-hole disposed at a position closest to the rotation lower phase line on the identified virtual plane is overlapped so that the inclination of the pile is canceled, and the first flange is placed on the upper flange portion of the first joint member. Connecting the lower flange part of the two joint members by mechanical connecting means (S4);
A method for constructing a pile structure comprising: connecting the upper structure flange portion to the upper flange portion of the second joint member by a mechanical connection means (S5).
JP2015120492A 2015-06-15 2015-06-15 Construction method for pile structures Expired - Fee Related JP6569317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015120492A JP6569317B2 (en) 2015-06-15 2015-06-15 Construction method for pile structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015120492A JP6569317B2 (en) 2015-06-15 2015-06-15 Construction method for pile structures

Publications (2)

Publication Number Publication Date
JP2017002671A true JP2017002671A (en) 2017-01-05
JP6569317B2 JP6569317B2 (en) 2019-09-04

Family

ID=57752539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015120492A Expired - Fee Related JP6569317B2 (en) 2015-06-15 2015-06-15 Construction method for pile structures

Country Status (1)

Country Link
JP (1) JP6569317B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200060951A (en) * 2018-11-23 2020-06-02 주식회사 포스코 Steel pipe framework and tunnel type soundproofing wall having thereof
JP2020165183A (en) * 2019-03-29 2020-10-08 旭化成建材株式会社 Joint structure, plate, and pile-column joint body

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0885968A (en) * 1994-09-14 1996-04-02 Nippon Steel Corp Adjusting method for horizontal installation of apparatus
JP2003293938A (en) * 2002-04-02 2003-10-15 Tetra Co Ltd Construction method of wind power generating device
JP2013112953A (en) * 2011-11-28 2013-06-10 Jfe Steel Corp Steel pipe pile connection structure
EP2749697A2 (en) * 2012-12-13 2014-07-02 Gravitas Offshore Limited Levelling for offshore structures
JP2014159674A (en) * 2013-02-19 2014-09-04 Nippon Steel & Sumikin Engineering Co Ltd Oceanic structure, and installation method for the same
JP2015034411A (en) * 2013-08-09 2015-02-19 株式会社大林組 Pile and method of structuring pile

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0885968A (en) * 1994-09-14 1996-04-02 Nippon Steel Corp Adjusting method for horizontal installation of apparatus
JP2003293938A (en) * 2002-04-02 2003-10-15 Tetra Co Ltd Construction method of wind power generating device
JP2013112953A (en) * 2011-11-28 2013-06-10 Jfe Steel Corp Steel pipe pile connection structure
EP2749697A2 (en) * 2012-12-13 2014-07-02 Gravitas Offshore Limited Levelling for offshore structures
JP2014159674A (en) * 2013-02-19 2014-09-04 Nippon Steel & Sumikin Engineering Co Ltd Oceanic structure, and installation method for the same
JP2015034411A (en) * 2013-08-09 2015-02-19 株式会社大林組 Pile and method of structuring pile

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200060951A (en) * 2018-11-23 2020-06-02 주식회사 포스코 Steel pipe framework and tunnel type soundproofing wall having thereof
KR102296587B1 (en) * 2018-11-23 2021-09-02 주식회사 포스코 Steel pipe framework and tunnel type soundproofing wall having thereof
JP2020165183A (en) * 2019-03-29 2020-10-08 旭化成建材株式会社 Joint structure, plate, and pile-column joint body

Also Published As

Publication number Publication date
JP6569317B2 (en) 2019-09-04

Similar Documents

Publication Publication Date Title
JP5993756B2 (en) Offshore structure and installation method of offshore structure
US20130202447A1 (en) segmented jacket construction, in particular for a foundation for a wind turbine installation
JP2009013602A (en) Structure and method for joining steel pipe pile and steel column
JP6041906B2 (en) Floating wind power generator assembly method and floating wind power generator
JP2014516137A (en) Wind turbine tower
JP2017203305A (en) Foundation of offshore facility, offshore facility, and foundation construction method of offshore facility
JP6569317B2 (en) Construction method for pile structures
KR20120034723A (en) Wind turbine foundation for variable water depth
JP2013241911A (en) Oceanic wind power generation facility, support device thereof and design method thereof
JP2023178169A (en) jacket structure
JP6226176B2 (en) Steel pipe joint structure
JP2013076240A (en) Marine structure, and installation structure and installation method of the same
JP2013072264A (en) Beam retaining rotary piece
JP2017066613A (en) Support part structure of structure
JP2011226098A (en) Joint structure of precast concrete pile and floor slab
CN104234950A (en) Base of wind driven generator used for deep-water area
JP2009221769A (en) Pile head base isolation structure
CN103205981A (en) Positioning structure for installation and grouting of jacket basis of offshore wind turbine
JP2017128998A (en) Levee body
JP6233752B2 (en) Pile head structure
JP2024002488A (en) transition piece
JP2012207410A (en) Connection structure for column member, and construction method for tower-like structure
JP2017197984A (en) Joining structure of phc pile and steel column
JP6368758B2 (en) Foundation structure and foundation structure
CN205591262U (en) Voice test pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190722

R150 Certificate of patent or registration of utility model

Ref document number: 6569317

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees