JP2017002269A - Mixed coating material, blade, and ice preventing system - Google Patents

Mixed coating material, blade, and ice preventing system Download PDF

Info

Publication number
JP2017002269A
JP2017002269A JP2015179067A JP2015179067A JP2017002269A JP 2017002269 A JP2017002269 A JP 2017002269A JP 2015179067 A JP2015179067 A JP 2015179067A JP 2015179067 A JP2015179067 A JP 2015179067A JP 2017002269 A JP2017002269 A JP 2017002269A
Authority
JP
Japan
Prior art keywords
water
coating film
paint
repellent
icing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015179067A
Other languages
Japanese (ja)
Other versions
JP6170531B2 (en
Inventor
太朗 田中
Taro Tanaka
太朗 田中
剛士 吉田
Takeshi Yoshida
剛士 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to US15/172,014 priority Critical patent/US10351247B2/en
Priority to EP16174417.2A priority patent/EP3115299B1/en
Priority to CN201610425348.4A priority patent/CN106243952B/en
Publication of JP2017002269A publication Critical patent/JP2017002269A/en
Application granted granted Critical
Publication of JP6170531B2 publication Critical patent/JP6170531B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Paints Or Removers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a mixed coating material capable of forming a water-repellent coating film which is reacted and cured at a room temperature and has high durability; and a blade and an ice preventing system capable of efficiently preventing ice.SOLUTION: There are provided a mixed coating material obtained by mixing a room temperature reactive and curable resin and a particulate fluorine resin with a component ratio of the particulate fluorine resin in the coating film of 43 wt.% to 82 wt.%; a blade 110 which has the outermost layer of a water droplet collision area P of a blade front edge portion that is made from a non-water-repellent coating film 112, and has the outermost layer of a water-repellent area Q adjacent to the water droplet collision area P that is formed of a water-repellent coating film 113 formed of the mixed coating material; an ice preventing system 100 having the blade 110 and heating means (heat generation body 120) for heating the water droplet collision area P.SELECTED DRAWING: Figure 1

Description

本発明は、混合塗料、翼、および防除氷システムに関し、特に航空機等の翼の防除氷に有用な技術に関する。   The present invention relates to a mixed paint, a wing, and a deicing system, and more particularly to a technique useful for deicing a wing of an aircraft or the like.

従来の技術において、航空機には、機体への着氷や着氷の成長を防ぐための防除氷装置が設けられており、この防除氷装置には、エンジン抽気又は電気による熱防除氷装置、デアイサブーツによる空気式除氷装置、アルコールによる化学的除氷装置などがある。航空機の防除氷装置の役割は、機体への着氷や着氷の成長を防ぐことによって、着氷による機体のスムーズな空気の流れの妨げや、さらに翼の揚力の減少による空気抵抗の増加によって発生する航行中の機体燃料の無駄な消費を低減させることにある。   In the prior art, an aircraft is provided with an anti-icing device for preventing icing on the fuselage and the growth of icing. This anti-icing device includes an engine bleed or electric thermal deicing device, deisa boots. Pneumatic deicing device by chemical and chemical deicing device by alcohol. The role of aircraft anti-icing equipment is to prevent icing on the aircraft and the growth of icing, to prevent smooth air flow through the aircraft due to icing, and to increase air resistance by reducing wing lift. It is to reduce the wasteful consumption of aircraft fuel during navigation.

しかし、実際は、防除氷装置を備えた航空機であっても、防除氷装置によって完全に着氷を防除することができない部分、すなわち、防除氷装置の能力の及ばない部分に着氷がある。この機体の防除氷装置の能力の及ばない部分で着氷や成長する着氷を防除氷できないことは、防除氷装置の能力の及ばない部分で航行中の抵抗が増大するため無駄な航空機の燃料の消費に繋がるという大きなマイナス要因となる。   However, in fact, even an aircraft equipped with an anti-icing device has icing in a portion where the icing device cannot completely prevent icing, that is, where the ability of the anti-icing device does not reach. The fact that icing and growing icing cannot be controlled at the part where the capacity of the aircraft's anti-icing device cannot be achieved is because the resistance during navigation increases at the part where the capacity of the anti-icing device cannot be applied, and fuel for useless aircraft. It becomes a big negative factor that leads to consumption.

これを解決するために、機体の防除氷装置の及ばない部分であるアンテナ、フラップヒンジ、コントロールホーンなどまで、防除氷装置の増設や防除氷装置の高稼働運転などによって防除氷させることが考えられる。しかし、この防除氷装置の能力の及ばない部分にまで防除氷装置による防除氷効果を適用させようとすることは、防除氷装置の増設による機体の重量の増加や防除氷装置の高稼働運転による機体燃料の消費によって、却って有限な機体燃料をより消費することに繋がるため、困難であるのが現状である。   In order to solve this problem, it is conceivable that the ice, such as the antenna, flap hinge, control horn, etc., which is not covered by the anti-icing device of the aircraft, can be deiced by adding an anti-icing device or operating the anti-icing device at high operation. . However, trying to apply the deicing effect by the deicing device to the part where the capacity of the deicing device does not reach is due to the increase in the weight of the aircraft due to the addition of the deicing device or the high operation of the deicing device. The current situation is difficult because the consumption of airframe fuel leads to more finite airframe fuel consumption.

このため、機体の防除氷装置の及ばない部分にも、すなわち機体表面全体に対して、防除氷効果の適用が容易で、かつ適用した場合に機体の重量増加が少なく、航行中の燃料を無駄に消費しない、防除氷効果の高い塗料が産業界において渇望され、研究されている。   For this reason, it is easy to apply the ice prevention effect to parts of the aircraft that are not covered by the ice prevention device, that is, to the entire surface of the aircraft, and when applied, the weight of the aircraft is small and the fuel during navigation is wasted. In the industry, paints with a high anti-icing effect are craved and studied.

このような防除氷効果の高い塗料として、高撥水性の塗膜を形成できる混合塗料、具体的には、例えば、紫外線硬化樹脂と四フッ化エチレン樹脂との混合樹脂と、ハイドロフルオロカーボンを含む有機溶剤とを混合してなり、塗膜硬度1H以上である混合塗料(以下「AIS」という。)が提案されている(特許文献1参照)。また、AISを塗装材料として用いた翼と、当該翼に取り付けられた加熱手段と、を備える翼構造体(防除氷システム)が提案されている(特許文献2参照)。   As such a paint having a high anti-icing effect, a mixed paint capable of forming a highly water-repellent coating film, specifically, for example, an organic resin containing a mixed resin of an ultraviolet curable resin and a tetrafluoroethylene resin, and a hydrofluorocarbon. There has been proposed a mixed paint (hereinafter referred to as “AIS”) having a coating film hardness of 1H or more by mixing with a solvent (see Patent Document 1). A wing structure (anti-icing system) including a wing using AIS as a coating material and a heating unit attached to the wing has been proposed (see Patent Document 2).

特許第3848334号公報Japanese Patent No. 3848334 特開2010−234989号公報Japanese Unexamined Patent Publication No. 2010-234989

しかしながら、AISは、紫外線硬化型の塗料であるため、航空機のような大型の構造物用の塗料としては使いづらいという問題がある。また、AISにより形成された塗膜は、耐久性が低い、具体的にはエロージョンによって撥水性能が低下しやすいという問題もある。   However, since AIS is an ultraviolet curable paint, there is a problem that it is difficult to use as a paint for large structures such as aircraft. In addition, a coating film formed by AIS has a problem that durability is low, specifically, water repellency is likely to be lowered by erosion.

そこで、本発明の課題は、常温で硬化する耐久性の高い撥水性塗膜を形成することが可能な混合塗料、効率よく防除氷を行うことのできる翼および防除氷システムを提供することを目的とする。   Accordingly, an object of the present invention is to provide a mixed paint capable of forming a highly durable water-repellent coating film that cures at room temperature, a wing capable of efficiently performing deicing, and a deicing system. And

前記の問題を解決するために、請求項1に記載の発明は、混合塗料において、
常温で反応硬化する常温反応硬化型樹脂と、粒子状フッ素樹脂と、を混合してなり、
塗膜における前記粒子状フッ素樹脂の構成比率が43重量%以上82重量%以下であることを特徴とする。
In order to solve the above problem, the invention according to claim 1 is a mixed paint,
A mixture of a room temperature reaction curable resin that cures at room temperature and a particulate fluororesin,
The composition ratio of the particulate fluororesin in the coating film is 43 wt% or more and 82 wt% or less.

請求項2に記載の発明は、請求項1に記載の混合塗料において、
前記粒子状フッ素樹脂は、四フッ化エチレン樹脂であることを特徴とする。
The invention described in claim 2 is the mixed paint according to claim 1,
The particulate fluororesin is a tetrafluoroethylene resin.

請求項3に記載の発明は、請求項1または2に記載の混合塗料において、
前記常温反応硬化型樹脂は、フッ素樹脂であることを特徴とする。
The invention according to claim 3 is the mixed paint according to claim 1 or 2,
The room temperature reaction curable resin is a fluororesin.

請求項4に記載の発明は、請求項1から請求項3のいずれかに記載の混合塗料において、
前記粒子状フッ素樹脂の平均粒子径は、1.5μm未満であることを特徴とする。
The invention according to claim 4 is the mixed paint according to any one of claims 1 to 3,
The particulate fluororesin has an average particle size of less than 1.5 μm.

請求項5に記載の発明は、請求項4に記載の混合塗料において、
前記粒子状フッ素樹脂の平均粒子径は、1.0μm未満であることを特徴とする。
The invention according to claim 5 is the mixed paint according to claim 4,
The particulate fluororesin has an average particle size of less than 1.0 μm.

請求項6に記載の発明は、翼において、
翼前縁部の水滴衝突領域の最表層は、非撥水性塗膜からなり、
前記水滴衝突領域に隣接する撥水性領域の最表層は、請求項1から請求項5のいずれかに記載の混合塗料によって形成された撥水性塗膜からなることを特徴とする。
The invention according to claim 6 is the wing,
The outermost layer of the water droplet collision area at the wing leading edge consists of a non-water-repellent coating film,
The outermost layer of the water-repellent region adjacent to the water droplet collision region is formed of a water-repellent coating film formed by the mixed paint according to any one of claims 1 to 5.

請求項7に記載の発明は、請求項6に記載の翼において、
前記非撥水性塗膜は、前記水滴衝突領域から前記撥水性領域にまたがって形成されており、
前記撥水性塗膜は、前記非撥水性塗膜上に形成されていることを特徴とする。
The invention according to claim 7 is the wing according to claim 6,
The non-water-repellent coating film is formed across the water-repellent region from the water droplet collision region,
The water-repellent coating film is formed on the non-water-repellent coating film.

請求項8に記載の発明は、防除氷システムにおいて、
請求項6または請求項7に記載の翼と、
前記水滴衝突領域を加熱するための加熱手段と、
を備えることを特徴とする。
The invention according to claim 8 is an anti-icing system,
The wing according to claim 6 or 7,
Heating means for heating the water droplet collision area;
It is characterized by providing.

請求項9に記載の発明は、請求項8に記載の防除氷システムにおいて、
前記加熱手段は、前記撥水性領域のうちの、少なくとも前記水滴衝突領域側の一部も加熱可能であることを特徴とする。
The invention described in claim 9 is the ice prevention system according to claim 8,
The heating means can heat at least a part of the water-repellent region on the side of the water droplet collision region.

本発明の混合塗料によれば、常温で硬化するため、航空機のような大型の構造物用の塗料として好適に用いることができる。また、形成される塗膜には耐久性の高い常温反応硬化型樹脂が含まれているため、紫外線硬化樹脂と四フッ化エチレン樹脂とを混合した従来の塗料(AIS)よりも、耐久性の高い撥水性塗膜を得ることができる。
また、本発明の翼および防除氷システムによれば、翼前縁部の水滴衝突領域の最表層は、非撥水性塗膜からなり、水滴衝突領域に隣接する撥水性領域の最表層は、本発明の混合塗料によって形成された撥水性塗膜からなるため、効率よく防除氷を行うことができる。
According to the mixed paint of the present invention, since it is cured at room temperature, it can be suitably used as a paint for large structures such as aircraft. In addition, since the coating film to be formed contains a highly durable room temperature reaction curable resin, it is more durable than a conventional paint (AIS) in which an ultraviolet curable resin and a tetrafluoroethylene resin are mixed. A high water-repellent coating film can be obtained.
Further, according to the wing and anti-icing system of the present invention, the outermost layer of the water droplet collision area at the leading edge of the wing is made of a non-water-repellent coating film, and the outermost layer of the water repellency area adjacent to the water droplet collision area is Since it consists of a water-repellent coating film formed by the mixed paint of the invention, it is possible to efficiently prevent and remove ice.

(a)は、本実施形態の翼および防除氷システムの一例を説明するための断面図であり、(b)は、その要部拡大図である。(A) is sectional drawing for demonstrating an example of the wing | blade and anti-icing system of this embodiment, (b) is the principal part enlarged view. (a)は、実施例2の塗料を塗布して形成した塗膜表面のSEM写真であり、(b)は、比較例3の塗料(AIS)を塗布して形成した塗膜表面のSEM写真である。(A) is the SEM photograph of the coating-film surface formed by apply | coating the coating material of Example 2, (b) is the SEM photograph of the coating-film surface formed by apply | coating the coating material (AIS) of Comparative Example 3. It is. (a)は、レインエロージョン試験に用いた供試体の模式図であり、(b)は、レインエロージョン試験に用いたレインエロージョン試験装置の模式図である。(A) is a schematic diagram of the specimen used for the rain erosion test, (b) is a schematic diagram of the rain erosion test apparatus used for the rain erosion test. レインエロージョン試験前後に撮影した供試体の写真である。It is a photograph of a specimen taken before and after the rain erosion test. レインエロージョン試験前後に撮影した供試体の写真である。It is a photograph of a specimen taken before and after the rain erosion test. 着氷風洞試験に用いた翼型供試体および動的着氷成長装置の模式図である。It is a schematic diagram of an airfoil specimen and a dynamic icing growth apparatus used for an icing wind tunnel test. 防除氷性能の評価結果を示す図である。It is a figure which shows the evaluation result of anti-icing performance. 撥水性および滑水性の評価結果を示す図である。It is a figure which shows the evaluation result of water repellency and water slidability.

以下、本発明にかかる混合塗料、翼、および防除氷システムの実施形態について説明する。   Hereinafter, embodiments of a mixed paint, a wing, and an anti-icing system according to the present invention will be described.

〔混合塗料〕
本実施形態の混合塗料は、常温硬化型の塗料である。具体的には、本実施形態の混合塗料は、常温反応硬化型樹脂と、粒子状フッ素樹脂と、を混合してなり、常温で反応硬化する塗料である。塗膜は、常温反応硬化型樹脂と粒子状フッ素樹脂とにより構成される。なお、本発明で「塗膜」とは、硬化した状態の塗膜を指す。
[Mixed paint]
The mixed paint of this embodiment is a room temperature curable paint. Specifically, the mixed paint of the present embodiment is a paint that is obtained by mixing a room temperature reaction curable resin and a particulate fluororesin and is reactively cured at room temperature. The coating film is composed of a room temperature reaction curable resin and a particulate fluororesin. In the present invention, “coating film” refers to a cured coating film.

上記の常温反応硬化型樹脂としては、ポリウレタン樹脂、フッ素樹脂、アクリルウレタン樹脂、アクリル樹脂、エポキシ樹脂等が例示できる。これらの樹脂のいずれか1種または複数混合を用いることによって、混合塗料の塗膜強度を向上させることができ、エロージョンによっても被塗装体の表面の塗膜が剥離されにくくなる。   Examples of the room temperature reaction curable resin include polyurethane resin, fluororesin, acrylic urethane resin, acrylic resin, and epoxy resin. By using any one or a mixture of these resins, the coating film strength of the mixed paint can be improved, and the coating film on the surface of the object to be coated is hardly peeled even by erosion.

粒子状フッ素樹脂としては、例えば、四フッ化エチレン樹脂(以下「PTFE」という。)を好ましく用いることができる。
PTFEは、例えば、特許第1937532号の製造方法によって調製されたものである。このPTFEは、前記製造方法によって調製されるものに限定されるものではなく、常温反応硬化型樹脂と良好に混合できるものであればよい。特に、PTFEは、高撥水効果を有し、常温反応硬化型樹脂と混合させることが良好であるため、低分子量のもの、具体的には平均分子量500から5,000までのものが好ましい。
なお、粒子状フッ素樹脂は、PTFEに限定されるものではなく、適宜任意に変更可能であるが、PTFEと同等またはそれ以上の高撥水効果を有し、常温反応硬化型樹脂と良好に混合できるものが好ましい。
As the particulate fluororesin, for example, tetrafluoroethylene resin (hereinafter referred to as “PTFE”) can be preferably used.
PTFE is prepared, for example, by the manufacturing method of Japanese Patent No. 1937532. The PTFE is not limited to those prepared by the above manufacturing method, and any PTFE may be used as long as it can be mixed well with a room temperature reaction curable resin. In particular, PTFE has a high water-repellent effect and is preferably mixed with a room temperature reaction curable resin. Therefore, those having a low molecular weight, specifically those having an average molecular weight of 500 to 5,000 are preferable.
The particulate fluororesin is not limited to PTFE, and can be arbitrarily changed as appropriate. However, the particulate fluororesin has a high water repellency effect equivalent to or higher than that of PTFE and is well mixed with a room temperature reaction curable resin. What can be done is preferred.

ここで、高撥水性の塗膜であるというためには、塗膜の水接触角は100°以上が好ましく、120°以上がより好ましい。さらに、塗膜は、高撥水性に加えて、高滑水性(すなわち、水が滑りやすい性質)を有していると、より高い防除氷効果が期待できる。高滑水性の塗膜であるというためには、塗膜の水転落角が10°以下が好ましい。しかし、塗料に含まれる樹脂成分全体(常温反応硬化型樹脂+粒子状フッ素樹脂)に対する粒子状フッ素樹脂の混合比率が小さいと、高撥水性の塗膜、高滑水性の塗膜を得ることができなくなる。一方、粒子状フッ素樹脂の混合比率が大きいと、塗料に含まれる樹脂成分全体に対する常温反応硬化型樹脂の混合比率が小さくなるため、塗膜の耐久性が低下して、必要な耐久性を有することができなくなる。
よって、塗料に含まれる樹脂成分全体に対する粒子状フッ素樹脂の混合比率の好ましい範囲は、水接触角が100°以上の塗膜を得ることができ、かつ、塗布作業を円滑に行うことができるとともに必要な耐久性を有する塗膜を得ることができる範囲であり、より好ましい範囲は、水接触角が120°以上の塗膜を得ることができ、かつ、塗布作業を円滑に行うことができるとともに必要な耐久性を有する塗膜を得ることができる範囲であり、さらに好ましい範囲は、水接触角が120°以上で水転落角が10°以下の塗膜を得ることができ、かつ、塗布作業を円滑に行うことができるとともに必要な耐久性を有する塗膜を得ることができる範囲である。
Here, in order to be a highly water-repellent coating film, the water contact angle of the coating film is preferably 100 ° or more, and more preferably 120 ° or more. In addition to high water repellency, the coating film can be expected to have a higher anti-icing effect if it has high water slidability (that is, water is slippery). In order to be a highly lubricious coating film, the water falling angle of the coating film is preferably 10 ° or less. However, if the mixing ratio of the particulate fluororesin to the whole resin component (room temperature reaction curable resin + particulate fluororesin) contained in the paint is small, a highly water-repellent coating film and a highly lubricious coating film can be obtained. become unable. On the other hand, if the mixing ratio of the particulate fluororesin is large, the mixing ratio of the room temperature reaction curable resin with respect to the entire resin component contained in the coating becomes small, so that the durability of the coating film is lowered and the required durability is obtained. I can't do that.
Therefore, the preferable range of the mixing ratio of the particulate fluororesin with respect to the entire resin component contained in the paint can obtain a coating film having a water contact angle of 100 ° or more, and can smoothly perform the coating operation. It is a range in which a coating film having the required durability can be obtained, and a more preferable range is that a coating film having a water contact angle of 120 ° or more can be obtained, and the coating operation can be performed smoothly. The range in which a coating film having the required durability can be obtained, and a more preferable range is a coating film having a water contact angle of 120 ° or more and a water falling angle of 10 ° or less, and a coating operation. Is a range in which a coating film having a required durability can be obtained.

同様に、塗膜における粒子状フッ素樹脂の構成比率の好ましい範囲は、当該塗膜の水接触角が100°以上であり、かつ、当該塗膜が必要な耐久性を有することができる範囲であり、より好ましい範囲は、当該塗膜の水接触角が120°以上であり、かつ、当該塗膜が必要な耐久性を有することができる範囲であり、さらに好ましい範囲は、当該塗膜の水接触角が120°以上で水転落角が10°以下であり、かつ、当該塗膜が必要な耐久性を有することができる範囲である。   Similarly, the preferable range of the constituent ratio of the particulate fluororesin in the coating film is a range where the water contact angle of the coating film is 100 ° or more and the coating film can have the required durability. A more preferable range is a range in which the water contact angle of the coating film is 120 ° or more, and the coating film can have a required durability, and a more preferable range is a water contact of the coating film. The angle is 120 ° or more and the water falling angle is 10 ° or less, and the coating film can have a required durability.

以下に、本実施形態の混合塗料の製造方法を説明する。ただし、これに限定されるものではない。   Below, the manufacturing method of the mixed coating material of this embodiment is demonstrated. However, it is not limited to this.

常温反応硬化型樹脂と粒子状フッ素樹脂とを一般的な混合方法によって混合する。これにより、液状の混合塗料を得ることができる。   The room temperature reaction curable resin and the particulate fluororesin are mixed by a general mixing method. Thereby, a liquid mixed paint can be obtained.

得られた混合塗料は、アルミ、鉄、銅などの単体又はこれらの合金の金属、タイルなどの陶器類、PETなどのプラスチック類、その他として紙、布、不織布、塗膜面などに塗布することができる。具体的には、航空機等の輸送機器、風力タービンブレード、アンテナ、電線、建築物などの、防水や防氷が求められる構造物に塗布すると効果的である。   Apply the resulting mixed paint to a single piece of metal such as aluminum, iron, or copper, or a metal of these alloys, ceramics such as tiles, plastics such as PET, etc., paper, cloth, non-woven fabric, coating surface, etc. Can do. Specifically, it is effective to apply to structures such as transport equipment such as aircraft, wind turbine blades, antennas, electric wires, and buildings that require waterproofing and anti-icing.

本発明の混合塗料は、常温で硬化する、すなわち塗布後に放置するだけで硬化するため、航空機のような大型の構造物用の塗料として好適に用いることができる。また、従来、常温反応硬化型塗料によって形成される塗膜は、常温反応硬化型樹脂を含んでいるため耐久性に優れていることが知られているが、本発明の混合塗料によって形成される塗膜にも常温反応硬化型樹脂が含まれているため、紫外線硬化樹脂とPTFEとを混合した従来の塗料(AIS)よりも、耐久性の高い撥水性塗膜を得ることができる。   The mixed paint of the present invention can be suitably used as a paint for large structures such as aircraft because it is cured at room temperature, that is, it is cured by simply leaving it after application. Conventionally, a coating film formed with a room temperature reaction curable coating is known to have excellent durability because it contains a room temperature reaction curable resin, but is formed with the mixed coating of the present invention. Since the coating film also includes a room temperature reaction curable resin, it is possible to obtain a water-repellent coating film having higher durability than a conventional paint (AIS) in which an ultraviolet curable resin and PTFE are mixed.

〔翼および防除氷システム〕
図1(a)は、本実施形態の翼110および防除氷システム100の一例を説明するための断面図であり、図1(b)は、その要部拡大図である。
本実施形態の翼110は、航空機の翼であり、翼本体部111の表面には、非撥水性塗膜112および撥水性塗膜113が形成されている。なお、翼110は、航空機の翼に限らず、風力タービンブレード、航空機エンジンのファンブレード、車両等にダウンフォースを発生させるウイング等であっても良い。
また、本実施形態の防除氷システム100は、本実施形態の翼110と、水滴衝突領域Pを加熱するための加熱手段としての発熱体120と、を備えて構成される。
[Wings and deicing system]
Fig.1 (a) is sectional drawing for demonstrating an example of the wing | blade 110 and the anti-icing system 100 of this embodiment, FIG.1 (b) is the principal part enlarged view.
The wing 110 of the present embodiment is an aircraft wing, and a non-water-repellent coating film 112 and a water-repellent coating film 113 are formed on the surface of the wing body 111. The wings 110 are not limited to aircraft wings, but may be wind turbine blades, aircraft engine fan blades, wings for generating downforce in vehicles, and the like.
The ice prevention system 100 according to the present embodiment includes the blade 110 according to the present embodiment and a heating element 120 as a heating unit for heating the water droplet collision region P.

通常、航空機の離着陸時において、翼110は、相対的な空気の流れに対して一定の角度(仰角)をもって対峙しており、このとき、着氷の原因となる過冷却状態の水滴の多くは、翼前縁部の一定領域に衝突する。この水滴の衝突が予想される領域(水滴衝突領域P)は、航空機の飛行速度、相対的な空気の流れに対する翼の角度、水滴の大きさ、翼型等に依存するが、これらを特定することによって、水滴衝突領域Pを一意的に決定することができる。
図1(a),(b)では、翼110の前縁から翼弦長の0〜5%の部分の表面を、水滴衝突領域Pとした態様を例示している。
Normally, during take-off and landing of an aircraft, the wing 110 is opposed to the relative air flow at a certain angle (elevation angle), and at this time, many of the supercooled water droplets that cause icing are , Collide with a certain area of the wing leading edge. The region where water droplet collision is expected (water droplet collision region P) depends on the flight speed of the aircraft, the angle of the wing relative to the air flow, the size of the water droplet, the wing shape, etc., but these are specified. Thus, the water droplet collision area P can be uniquely determined.
FIGS. 1A and 1B exemplify a mode in which the surface of the portion of 0 to 5% of the chord length from the leading edge of the blade 110 is the water droplet collision region P.

本実施形態においては、水滴衝突領域Pを加熱することができるように、少なくとも水滴衝突領域Pに対応する翼前縁部の内側の所定位置に、電熱ヒータなどで構成される発熱体120(加熱手段)が設けられている。発熱体120は、当該発熱体120の温度を制御する温度制御装置(図6参照)などに接続されている。   In the present embodiment, at least a predetermined position inside the blade leading edge corresponding to the water droplet collision area P so that the water droplet collision area P can be heated, the heating element 120 (heating) Means). The heating element 120 is connected to a temperature control device (see FIG. 6) that controls the temperature of the heating element 120.

図1(a),(b)では、発熱体120として、前縁から上面にかけて翼弦長の0〜20%の部分と、前縁から下面にかけて翼弦長の0〜15%の部分とを加熱可能な態様を例示している。すなわち、図1(a),(b)に示す例においては、発熱体120は、水滴衝突領域Pだけでなく、水滴衝突領域Pに隣接する撥水性領域Qのうちの、水滴衝突領域P側の部分も加熱可能に配置されている。このように、加熱手段(発熱体120)によって、撥水性領域Qのうちの、少なくとも水滴衝突領域P側の一部も加熱することで、より確実な防除氷が可能となる。
なお、発熱体120の設置範囲や個数などは、図1(a),(b)に限定されるものではなく、発熱体120によって少なくとも水滴衝突領域Pを加熱できるのであれば、適宜任意に変更可能である。
1 (a) and 1 (b), as the heating element 120, a portion of 0 to 20% of the chord length from the leading edge to the upper surface and a portion of 0 to 15% of the chord length from the leading edge to the lower surface are shown. The embodiment which can be heated is illustrated. That is, in the example illustrated in FIGS. 1A and 1B, the heating element 120 is not only the water droplet collision region P but also the water repellent region Q adjacent to the water droplet collision region P side. These parts are also arranged to be heatable. In this way, by heating at least a part of the water-repellent region Q on the side of the water droplet collision region P by the heating means (heating element 120), more reliable deicing can be performed.
Note that the installation range and the number of the heating elements 120 are not limited to those shown in FIGS. 1A and 1B, and can be arbitrarily changed as long as at least the water droplet collision area P can be heated by the heating elements 120. Is possible.

本実施形態の翼110の表面には、撥水性領域Qが形成されている。撥水性領域Qは、母材(常温反応硬化型樹脂)に微小の粉粒(粒子状フッ素樹脂)を混入してなる撥水性塗料(本実施形態の混合塗料)を塗布することによって、塗布面の表面粗さを増大させて、その撥水性を実現している。
図1(a),(b)では、前縁から翼弦長の5〜40%の部分の上面および下面を、最表層が撥水性塗膜113からなる撥水性領域Qとした態様を例示している。
A water-repellent region Q is formed on the surface of the wing 110 of the present embodiment. The water-repellent region Q is formed by applying a water-repellent paint (mixed paint of this embodiment) obtained by mixing fine powder particles (particulate fluororesin) into a base material (room temperature reaction curable resin). The surface roughness is increased to achieve the water repellency.
1A and 1B exemplify a mode in which the upper and lower surfaces of a portion of 5 to 40% of the chord length from the leading edge are formed as a water-repellent region Q whose outermost layer is a water-repellent coating film 113. ing.

本実施形態においては、図1(b)に示すように、翼前縁部の水滴衝突領域Pに、撥水性塗膜113を形成しない。これは、大きな表面粗さを有する表面構造が、動的な着氷に対しては、着氷の付着強度を強める作用を示すという知見に基づいて採用された着氷防止構造である。本実施形態の翼110は当該着氷防止構造を採用しているため、過冷却水滴が衝突して翼前縁部に形成された氷核は、発熱体120からの熱によって融解し水となった後、撥水性領域Qに達すると、その表面の撥水構造によって弾かれて、最終的には空気抵抗の作用で離脱し除去される。ここで、「動的な着氷」とは、離着陸時の航空機の翼における着氷現象のように水滴が速度を持って物体に衝突して氷化する場合のことである。   In this embodiment, as shown in FIG.1 (b), the water-repellent coating film 113 is not formed in the water droplet collision area | region P of a blade front edge part. This is an anti-icing structure adopted based on the knowledge that a surface structure having a large surface roughness exhibits an action of increasing the adhesion strength of icing against dynamic icing. Since the wing 110 of the present embodiment employs the anti-icing structure, the ice core formed at the leading edge of the wing by collision of the supercooled water droplets is melted by the heat from the heating element 120 to become water. After that, when the water-repellent region Q is reached, it is repelled by the water-repellent structure on the surface, and finally detached and removed by the action of air resistance. Here, “dynamic icing” refers to a case where a water droplet collides with an object at a speed like a icing phenomenon on an aircraft wing during take-off and landing and ices.

一般的に撥水性塗膜は非撥水性塗膜よりも耐摩耗性や耐エロージョン性が低いため、大気中の水分やゴミや昆虫などの衝突に起因する撥水性塗膜の侵食が問題となる。この点につき、本実施形態の翼110においては、大気中のゴミなどの衝突頻度が最も高いと予想される水滴衝突領域Pに、撥水性塗膜113を形成しないため、撥水性塗膜113の侵食が回避され、その結果、保守コストを低減することができる。   In general, water-repellent coatings have lower abrasion resistance and erosion resistance than non-water-repellent coatings, so erosion of water-repellent coatings caused by collisions with moisture, dust, insects, etc. in the atmosphere becomes a problem. . In this regard, in the wing 110 of the present embodiment, the water-repellent coating film 113 is not formed in the water droplet collision region P that is expected to have the highest collision frequency such as dust in the atmosphere. Erosion is avoided, and as a result, maintenance costs can be reduced.

なお、本実施形態の翼110において、撥水性塗膜113を形成しない水滴衝突領域Pの最表層は、航空機の翼体表面の塗装材料として一般的に使用されるポリウレタン塗料などの非撥水性塗膜112によって形成することができる。動的な着氷において、大きな表面粗さを有する表面構造が着氷の付着強度を強める作用を示す理由について、相対速度40〜100m/s程度で水滴が撥水性塗膜に衝突する場合には、水滴がその表面で弾かれることなくその表面に形成された凹凸構造の内部に入り込んで凍結するという現象が起こり、その結果、表面粗さの大きい構造ほど、そのアンカー効果により付着強度が大きくなるためと推察される。したがって、翼前縁部の水滴衝突領域Pの最表層は、ポリウレタン塗料などの非撥水性塗膜112、すなわち撥水性塗膜113よりも表面粗さの小さい塗膜によって形成することが好ましく、ポリウレタン塗料などの従来塗膜よりもさらに表面粗さの小さい塗膜によって形成することがより好ましい。
すなわち、本実施形態の翼110においては、翼前縁部の水滴衝突領域Pの最表層が、非撥水性塗膜112からなり、水滴衝突領域Pに隣接する撥水性領域Qの最表層が、本実施形態の混合塗料によって形成された撥水性塗膜113からなっている。
In the wing 110 of the present embodiment, the outermost layer in the water droplet collision area P that does not form the water-repellent coating 113 is a non-water-repellent coating such as a polyurethane paint generally used as a coating material on the surface of an aircraft wing body. The film 112 can be formed. In the case of dynamic icing, the reason why the surface structure having a large surface roughness has the effect of increasing the adhesion strength of icing is that when water droplets collide with the water-repellent coating film at a relative speed of about 40 to 100 m / s. The phenomenon that water droplets enter the concavo-convex structure formed on the surface without being bounced on the surface and freeze, and as a result, the larger the surface roughness, the greater the adhesion strength due to the anchor effect. This is probably because of this. Accordingly, it is preferable that the outermost layer of the water droplet collision region P at the leading edge of the blade is formed by a non-water-repellent coating film 112 such as polyurethane paint, that is, a coating film having a surface roughness smaller than that of the water-repellent coating film 113. It is more preferable to form a coating film having a smaller surface roughness than a conventional coating film such as a paint.
That is, in the wing 110 of the present embodiment, the outermost layer of the water droplet collision region P at the leading edge of the wing is made of the non-water-repellent coating film 112, and the outermost layer of the water repellency region Q adjacent to the water droplet collision region P is It consists of a water-repellent coating film 113 formed by the mixed paint of this embodiment.

また、本実施形態の翼110の撥水性領域Qについては、その撥水性(表面性状)を維持するために、極力、機械的接触を回避することが要請される。そのため、点検・整備に係る作業性向上の観点から、撥水性領域Qを、できる限り(すなわち、必要な防除氷性能を有することのできる範囲内で)狭くすることが好ましい。
なお、撥水性領域Qに隣接する翼後縁部までの領域の最表層は、非撥水性塗膜112などによって形成することができる。
Further, with respect to the water repellent region Q of the wing 110 of the present embodiment, it is required to avoid mechanical contact as much as possible in order to maintain the water repellency (surface property). Therefore, from the viewpoint of improving workability related to inspection / maintenance, it is preferable to make the water-repellent region Q as narrow as possible (that is, within a range where necessary anti-icing performance can be obtained).
The outermost layer in the region up to the blade trailing edge adjacent to the water-repellent region Q can be formed by the non-water-repellent coating film 112 or the like.

本実施形態の翼110は、翼本体部111の全体にポリウレタン塗料等を塗布して非撥水性塗膜112を形成した後に、撥水性領域Qとなる部分のみに本実施形態の混合塗料を塗布して撥水性塗膜113を形成することによって作製することができる。すなわち、図1(a),(b)に示すように、本実施形態の翼110において、非撥水性塗膜112は、水滴衝突領域Pから撥水性領域Qにまたがって形成されており、撥水性塗膜113は、非撥水性塗膜112上に形成されている。   The wing 110 of the present embodiment is formed by applying a polyurethane paint or the like to the entire wing main body 111 to form the non-water-repellent coating film 112, and then applying the mixed paint of the present embodiment only to the portion that becomes the water-repellent region Q. Then, it can be produced by forming the water repellent coating film 113. That is, as shown in FIGS. 1A and 1B, in the wing 110 of the present embodiment, the non-water-repellent coating film 112 is formed to extend from the water droplet collision area P to the water-repellent area Q. The aqueous coating film 113 is formed on the non-water-repellent coating film 112.

なお、撥水性領域Qには非撥水性塗膜112が形成されないよう、特許文献2(特開2010−234989号)のように塗料を塗り分ける、具体的には、ポリウレタン塗料等を撥水性領域Qとなる部分以外の部分に塗布し、撥水性領域Qとなる部分にはポリウレタン塗料等を塗布せずに本実施形態の混合塗料のみを塗布することも可能である。しかし、本実施形態のように塗料を塗り分けない方が、翼本体部111の塗装をより簡単に行うことができる。
また、塗料を塗り分けた場合、撥水性塗膜113が侵食されると翼本体部111が露出してしまうが、本実施形態のように塗料を塗り分けない場合は、万が一、撥水性塗膜113が侵食されても、撥水性塗膜113の下地(非撥水性塗膜112)が露出するだけなので、翼本体部111が露出してしまうことが防止され、その結果、保守コストを低減することができる。
In order to prevent the non-water-repellent coating film 112 from being formed in the water-repellent region Q, paints are applied separately as in Patent Document 2 (Japanese Patent Application Laid-Open No. 2010-234899). Specifically, polyurethane paint or the like is applied to the water-repellent region. It is also possible to apply only the mixed paint of the present embodiment without applying polyurethane paint or the like to the part to be the water-repellent region Q, and apply to the part other than the part to be Q. However, if the paint is not applied separately as in the present embodiment, the wing body 111 can be more easily applied.
When the paint is applied separately, the wing body 111 is exposed when the water-repellent paint film 113 is eroded. However, if the paint is not applied separately as in this embodiment, the water-repellent paint film should be used. Even if the erosion 113 is eroded, the base of the water-repellent coating 113 (non-water-repellent coating 112) is only exposed, so that the wing body 111 is prevented from being exposed, thereby reducing maintenance costs. be able to.

本発明の翼110および防除氷システム100は、翼前縁部の水滴衝突領域Pの最表層が、非撥水性塗膜112からなり、水滴衝突領域Pに隣接する撥水性領域Qの最表層が、本実施形態の混合塗料によって形成された撥水性塗膜113からなる。したがって、高速の過冷却水滴が曝露される環境下において、着氷を効果的に防止できるため、効率よく防除氷を行うことができる。   In the wing 110 and the anti-icing system 100 of the present invention, the outermost layer of the water droplet collision area P at the leading edge of the wing is composed of a non-water-repellent coating film 112, and the outermost layer of the water repellency area Q adjacent to the water droplet collision area P is The water-repellent coating film 113 is formed by the mixed paint of this embodiment. Therefore, icing can be effectively prevented in an environment where high-speed supercooled water droplets are exposed, so that deicing can be performed efficiently.

以下に、本発明の実施例を説明する。本発明は、これに限定されるものではない。   Examples of the present invention will be described below. The present invention is not limited to this.

<実施例1>
塗膜における常温反応硬化型樹脂の構成比率が56.4重量%となり粒子状フッ素樹脂の構成比率が43.6重量%となるように、常温反応硬化型樹脂であるポリウレタン樹脂と、粒子状フッ素樹脂であるPTFE(低分子量PTFE)と、を混合して、実施例1の塗料を得た。実施例1の塗料では、平均粒子径が1.15μmの粒子状フッ素樹脂を用いた。
<Example 1>
The polyurethane resin which is a room temperature reaction curable resin and the particulate fluorine so that the composition ratio of the room temperature reaction curable resin in the coating film is 56.4% by weight and the component ratio of the particulate fluorine resin is 43.6% by weight. Resin PTFE (low molecular weight PTFE) was mixed to obtain the coating material of Example 1. In the paint of Example 1, a particulate fluororesin having an average particle diameter of 1.15 μm was used.

<実施例2>
塗膜におけるポリウレタン樹脂の構成比率が32.7重量%となり粒子状フッ素樹脂の構成比率が67.3重量%となるように、実施例1の塗料と同様の手法で、実施例2の塗料を得た。実施例2の塗料では、平均粒子径が1.15μmの粒子状フッ素樹脂を用いた。
<Example 2>
The coating material of Example 2 was applied in the same manner as the coating material of Example 1 so that the constituent ratio of the polyurethane resin in the coating film was 32.7% by weight and the constituent ratio of the particulate fluororesin was 67.3% by weight. Obtained. In the paint of Example 2, a particulate fluororesin having an average particle diameter of 1.15 μm was used.

<実施例3>
塗膜における常温反応硬化型樹脂の構成比率が34.2重量%となり粒子状フッ素樹脂の構成比率が65.8重量%となるように、常温反応硬化型樹脂であるフッ素樹脂と、粒子状フッ素樹脂であるPTFE(低分子量PTFE)と、を混合して、実施例3の塗料を得た。実施例3の塗料では、平均粒子径が0.96μmの粒子状フッ素樹脂を用いた。
<Example 3>
The fluororesin that is a room temperature reaction curable resin and the particulate fluorine so that the composition ratio of the room temperature reaction curable resin in the coating film is 34.2 wt% and the composition ratio of the particulate fluororesin is 65.8 wt%. Resin PTFE (low molecular weight PTFE) was mixed to obtain a paint of Example 3. In the paint of Example 3, a particulate fluororesin having an average particle diameter of 0.96 μm was used.

<比較例1>
比較例1の塗料として、市販のポリウレタン塗料を用意した。
<Comparative Example 1>
A commercially available polyurethane paint was prepared as the paint of Comparative Example 1.

<比較例2>
塗膜におけるポリウレタン樹脂の構成比率が74.4重量%となり粒子状フッ素樹脂の構成比率が25.6重量%となるように、実施例1の塗料と同様の手法で、比較例2の塗料を得た。
<Comparative example 2>
The paint of Comparative Example 2 was prepared in the same manner as the paint of Example 1 so that the constituent ratio of the polyurethane resin in the coating film was 74.4% by weight and the constituent ratio of the particulate fluororesin was 25.6% by weight. Obtained.

<比較例3>
塗膜硬度が5Hであるアクリル樹脂(UV-75、オリジン電気(株))10gと乾燥PTFE11gとを混合させた。混合させた両樹脂に、ハイドロフルオロカーボン(三井デュポンフロロケミカル)24gとイソプロピルアルコール55gとを混合させた有機溶剤を添加させた。添加後、室温で、これらをディスペーザーにより5分間攪拌させ、さらにモーターミル(アイガージャパン)により15分間攪拌させることにより、比較例3の塗料としてAISを得た。
<Comparative Example 3>
10 g of acrylic resin (UV-75, Origin Electric Co., Ltd.) having a coating film hardness of 5H and 11 g of dry PTFE were mixed. An organic solvent obtained by mixing 24 g of hydrofluorocarbon (Mitsui Dupont Fluorochemical) and 55 g of isopropyl alcohol was added to both the mixed resins. After the addition, these were stirred at room temperature for 5 minutes with a disperser and further stirred for 15 minutes with a motor mill (Eiger Japan) to obtain AIS as a paint of Comparative Example 3.

<比較例4>
比較例4の塗料として、既存の撥水性塗料を用意した。この撥水性塗料は、塗布面の表面粗さを増大させることなく撥水性を実現する塗膜を形成できる。
<Comparative example 4>
As the paint of Comparative Example 4, an existing water-repellent paint was prepared. This water-repellent coating can form a coating film that achieves water repellency without increasing the surface roughness of the coated surface.

〔撥水性および滑水性の評価〕
実施例1の塗料を、必要に応じてシンナー等の溶剤で希釈し、エアースプレーガン(アネスト岩田社製)を用いてアルミ合金表面に塗布し、常温で硬化させて、実施例1の塗料を塗布して作製した試料を得た。エアースプレーガンによる塗布条件として、重ね塗り回数を3回(膜厚:30μm〜50μm)とした。
また、実施例1の塗料を塗布して作製した試料と同様の手法で、実施例2の塗料を塗布して作製した試料、比較例1の塗料(ポリウレタン塗料)を塗布して作製した試料、および比較例2の塗料を塗布して作製した試料を得た。
また、比較例3の塗料(AIS)については、紫外線を照射することによって硬化させた。その点以外は、実施例1の塗料を塗布して作製した試料と同様の手法で、比較例3の塗料(AIS)を塗布して作製した試料を得た。
そして、撥水性および滑水性の評価のために、各試料について、水接触角および水転落角を、接触角計(協和界面科学社製)を用いて室温で測定した。
その結果を表1および表2に示す。なお、比較例1の塗料(ポリウレタン塗料)を塗布して作製した試料については、水転落角の測定を行わなかった。
[Evaluation of water repellency and water slidability]
The paint of Example 1 is diluted with a solvent such as thinner as necessary, applied to the aluminum alloy surface using an air spray gun (manufactured by Anest Iwata Co., Ltd.), cured at room temperature, and the paint of Example 1 is obtained. A sample prepared by coating was obtained. As application conditions using an air spray gun, the number of times of overcoating was 3 times (film thickness: 30 μm to 50 μm).
In addition, a sample prepared by applying the paint of Example 2 and a sample prepared by applying the paint (polyurethane paint) of Comparative Example 1 in the same manner as the sample prepared by applying the paint of Example 1, And the sample produced by applying the paint of Comparative Example 2 was obtained.
Moreover, about the coating material (AIS) of the comparative example 3, it was hardened by irradiating an ultraviolet-ray. Except for this point, a sample prepared by applying the paint (AIS) of Comparative Example 3 was obtained in the same manner as the sample prepared by applying the paint of Example 1.
Then, for the evaluation of water repellency and water slidability, the water contact angle and the water falling angle of each sample were measured at room temperature using a contact angle meter (manufactured by Kyowa Interface Science Co., Ltd.).
The results are shown in Tables 1 and 2. In addition, about the sample produced by apply | coating the coating material (polyurethane coating material) of the comparative example 1, the water fall angle was not measured.

表1に示す結果から、粒子状フッ素樹脂の含有量(塗膜における粒子状フッ素樹脂の構成比率)が多くなるほど、水接触角が大きくなり、粒子状フッ素樹脂の含有量が43.6重量%以上であれば、水接触角が100°以上になることが分かった。
水接触角が120°以上であるとより好ましいが、表1に示す結果から、粒子状フッ素樹脂の含有量が約50重量%以上であれば、水接触角が120°以上になると推測される。
水接触角が120°以上で水転落角が10°以下であるとさらに好ましいが、表1に示す結果から、粒子状フッ素樹脂の含有量が約55重量%以上であれば、水接触角が120°以上で水転落角が10°以下になると推測される。
From the results shown in Table 1, as the content of the particulate fluororesin (the composition ratio of the particulate fluororesin in the coating film) increases, the water contact angle increases and the content of the particulate fluororesin becomes 43.6% by weight. If it was above, it turned out that a water contact angle becomes 100 degrees or more.
The water contact angle is more preferably 120 ° or more, but from the results shown in Table 1, if the content of the particulate fluororesin is about 50% by weight or more, the water contact angle is estimated to be 120 ° or more. .
More preferably, the water contact angle is 120 ° or more and the water falling angle is 10 ° or less. From the results shown in Table 1, when the content of the particulate fluororesin is about 55% by weight or more, the water contact angle is It is estimated that the water falling angle becomes 10 ° or less at 120 ° or more.

表2には、実施例2の塗料を塗布して作製した試料と、比較例3の塗料(AIS)を塗布して作製した試料と、をそれぞれ複数個用意し、各試料の水接触角および水転落角を測定した結果を示す。
表2に示す結果から、実施例2の塗料は、比較例3の塗料、すなわち防除氷効果の高い塗料であるAISと同等の性能を有することが分かった。
また、実施例2の塗料を塗布して作製した試料は、比較例3の塗料(AIS)を塗布して作製した試料よりも水接触角のバラツキおよび水転落角のバラツキが小さいことが分かった。これは、実施例2の塗料を塗布して形成した塗膜の方が、比較例3の塗料(AIS)を塗布して形成した塗膜よりも、フラクタルな表層構造を有し、また、PTFEが表面に均一に分布しているためであると考えられる。
In Table 2, a plurality of samples prepared by applying the paint of Example 2 and a sample prepared by applying the paint (AIS) of Comparative Example 3 are prepared. The result of measuring the water falling angle is shown.
From the results shown in Table 2, it was found that the paint of Example 2 had the same performance as the paint of Comparative Example 3, that is, AIS which is a paint having a high anti-icing effect.
In addition, it was found that the sample produced by applying the paint of Example 2 had smaller variations in water contact angle and water fall angle than the sample produced by applying the paint (AIS) of Comparative Example 3. . This is because the coating film formed by applying the coating material of Example 2 has a fractal surface layer structure than the coating film formed by applying the coating material (AIS) of Comparative Example 3, and PTFE. This is considered to be due to the uniform distribution on the surface.

ここで、図2(a)に、実施例2の塗料を塗布して形成した塗膜の表面のSEM写真を示し、図2(b)に、比較例3の塗料(AIS)を塗布して形成した塗膜の表面のSEM写真を示す。
これらのSEM写真から、実施例2の塗料を塗布して形成した塗膜(図2(a)参照)の方が、比較例3の塗料(AIS)を塗布して形成した塗膜(図2(b)参照)よりも、フラクタルな表層構造を有することが確認できる。また、SEM写真中の粒状のものがPTFEであるが、実施例2の塗料を塗布して形成した塗膜(図2(a)参照)の方が、比較例3の塗料(AIS)を塗布して形成した塗膜(図2(b)参照)よりも、PTFEが表面に均一に分布していることが確認できる。
Here, FIG. 2 (a) shows a SEM photograph of the surface of the coating film formed by applying the paint of Example 2, and FIG. 2 (b) shows the application of the paint (AIS) of Comparative Example 3. The SEM photograph of the surface of the formed coating film is shown.
From these SEM photographs, the coating film formed by applying the paint of Example 2 (see FIG. 2A) was formed by applying the paint (AIS) of Comparative Example 3 (FIG. 2). (See (b)), it can be confirmed that it has a fractal surface layer structure. Moreover, although the granular thing in a SEM photograph is PTFE, the direction of the coating film (refer FIG. 2 (a)) formed by apply | coating the coating material of Example 2 applies the coating material (AIS) of the comparative example 3. FIG. Thus, it can be confirmed that PTFE is uniformly distributed on the surface of the coating film (see FIG. 2B) formed.

〔耐久性の評価〕
塗膜の耐久性を評価するために、レインエロージョン試験を行った。
図3(a)に、レインエロージョン試験に用いた供試体Sの模式図を示し、図3(b)に、レインエロージョン試験に用いたレインエロージョン試験装置10の模式図を示す。
供試体Sは、図3(a)に示すように、D字状をなしている。以下、D字を形成する曲面のうちの曲率が大きい部分を部分S1と称し、曲率が小さい部分の一方側を部分S2と称する。
[Evaluation of durability]
In order to evaluate the durability of the coating film, a rain erosion test was conducted.
FIG. 3A shows a schematic diagram of the specimen S used in the rain erosion test, and FIG. 3B shows a schematic diagram of the rain erosion test apparatus 10 used in the rain erosion test.
The specimen S has a D shape as shown in FIG. Hereinafter, a portion having a large curvature in the D-shaped curved surface is referred to as a portion S1, and one side of the portion having a small curvature is referred to as a portion S2.

レインエロージョン試験装置10は、図3(b)に示すように、円筒状の本体内に設けられた、所定量の水粒子を噴霧するためのスプレーノズル11,11と、供試体Sを回転させるための回転軸12と、回転軸12と供試体Sとを接続するための接続部材13と、を備えて構成される。回転時に供試体Sの部分S1が回転方向を向き、部分S2が上側(スプレーノズル11側)を向くように供試体Sを接続部材13に取り付け、レインエロージョン試験装置10の本体内下部で供試体Sを回転させ、レインエロージョン試験装置10の本体内上部に設けられたスプレーノズル11,11から水滴を落とし、水滴を供試体Sの表面に衝突させることによって、レインエロージョン試験を行った。試験条件として、降水量を毎時25mm、供試体速度を毎秒120mmとした。   As shown in FIG. 3B, the rain erosion test apparatus 10 rotates spray nozzles 11 and 11 for spraying a predetermined amount of water particles provided in a cylindrical main body, and a specimen S. And a connecting member 13 for connecting the rotating shaft 12 and the specimen S to each other. At the time of rotation, the specimen S is attached to the connecting member 13 so that the part S1 of the specimen S faces the rotation direction and the part S2 faces the upper side (spray nozzle 11 side). The rain erosion test was performed by rotating S, dropping water droplets from the spray nozzles 11, 11 provided in the upper part of the main body of the rain erosion test apparatus 10, and causing the water droplets to collide with the surface of the specimen S. As test conditions, the precipitation was 25 mm / hour and the specimen speed was 120 mm / second.

実施例2の塗料を、エアースプレーガン(アネスト岩田社製)を用いて、化成被膜処理後に脱脂したアルミ製の供試体本体の表面に塗布し、常温で硬化させて、実施例2の塗料を塗布して作製した供試体Sを得た。エアースプレーガンによる塗布条件として、重ね塗り回数を3回(膜厚:30μm〜50μm)とした。
また、実施例2の塗料を塗布して作製した供試体Sと同様の手法で、比較例1の塗料(ポリウレタン塗料)を塗布して作製した供試体Sを得た。
また、比較例3の塗料(AIS)については、紫外線を照射することによって硬化させた。その点以外は、実施例2の塗料を塗布して作製した供試体Sと同様の手法で、比較例3の塗料(AIS)を塗布して作製した供試体Sを得た。
そして、各供試体Sについて、レインエロージョン試験前後における写真を撮影した。その結果を、図4および図5に示す。
The paint of Example 2 was applied to the surface of the aluminum specimen body degreased after the chemical conversion coating treatment using an air spray gun (manufactured by Anest Iwata Co., Ltd.) and cured at room temperature. A specimen S produced by coating was obtained. As application conditions using an air spray gun, the number of times of overcoating was 3 times (film thickness: 30 μm to 50 μm).
In addition, a specimen S produced by applying the paint (polyurethane paint) of Comparative Example 1 was obtained in the same manner as the specimen S produced by applying the paint of Example 2.
Moreover, about the coating material (AIS) of the comparative example 3, it was hardened by irradiating an ultraviolet-ray. Except for this point, the specimen S produced by applying the paint (AIS) of Comparative Example 3 was obtained in the same manner as the specimen S produced by applying the paint of Example 2.
For each specimen S, photographs were taken before and after the rain erosion test. The results are shown in FIG. 4 and FIG.

図4に示すように、実施例2の塗料を塗布して作製した供試体Sと、比較例3の塗料(AIS)を塗布して作製した供試体Sとでは、レインエロージョン試験を行うと、エロージョンを受けやすい部分、具体的には部分S1の塗膜が剥離していることが分かった。一方で、比較例1の塗料(ポリウレタン塗料)を塗布して作製した供試体Sは、レインエロージョン試験を行っても、塗膜の剥離が生じないことが分かった。   As shown in FIG. 4, in the specimen S produced by applying the paint of Example 2 and the specimen S produced by applying the paint (AIS) of Comparative Example 3, a rain erosion test was performed. It turned out that the part which is easy to receive erosion, specifically the coating film of part S1, has peeled. On the other hand, it was found that the specimen S produced by applying the paint (polyurethane paint) of Comparative Example 1 did not peel off the coating film even when the rain erosion test was performed.

しかし、図5に示すように、実施例2の塗料を塗布して作製した供試体Sでは、レインエロージョン試験を行っても、エロージョンを受けにくい部分、具体的には部分S2の撥水性はほとんど低下しないのに対し、比較例3の塗料(AIS)を塗布して作製した供試体Sでは、レインエロージョン試験を行うと、エロージョンを受けにくい部分、具体的には部分S2の撥水性が低下することが分かった。すなわち、比較例3の塗料(AIS)を塗布して形成した塗膜は、エロージョンが進んで膜厚が薄くなっていくと撥水性能が低下していくのに対し、実施例2の塗料を塗布して形成した塗膜は、エロージョンが進んで膜厚が薄くなっても撥水性能がほとんど低下せず、耐久性が高いことが分かった。これは、実施例2の塗料に耐久性のある常温反応硬化型樹脂としてポリウレタン樹脂を用いたことで、塗膜の耐久性が向上したためであると考えられる。   However, as shown in FIG. 5, in the specimen S produced by applying the paint of Example 2, even when the rain erosion test is performed, the portion that is not easily subjected to erosion, specifically, the water repellency of the portion S2 is almost the same. On the other hand, in the specimen S produced by applying the paint (AIS) of Comparative Example 3 when subjected to the rain erosion test, the water repellency of the portion that is not easily subjected to erosion, specifically, the portion S2 is lowered. I understood that. That is, the coating film formed by applying the coating material (AIS) of Comparative Example 3 decreases in water repellency as the erosion progresses and the film thickness decreases, whereas the coating material of Example 2 decreases. The coating film formed by coating was found to have high durability with little deterioration in water repellency even when the erosion progressed and the film thickness decreased. This is considered to be because the durability of the coating film was improved by using a polyurethane resin as a durable room temperature reaction curable resin in the paint of Example 2.

〔防除氷性能の評価〕
翼および防除氷システムの防除氷性能を評価するために、航空機の飛行環境を模擬した着氷風洞試験を行った。
図6に、着氷風洞試験に用いた翼型供試体Tおよび動的着氷成長装置200の模式図を示す。
[Evaluation of anti-icing performance]
In order to evaluate the deicing performance of the wing and deicing system, an icing wind tunnel test simulating the flight environment of the aircraft was conducted.
FIG. 6 shows a schematic diagram of the airfoil specimen T and the dynamic icing growth apparatus 200 used in the icing wind tunnel test.

比較例1の塗料を、エアースプレーガンを用いて、化成被膜処理およびプライマー塗装を施したアルミ製の供試体本体の表面全体に、膜厚が50μmとなるよう塗布し、常温で硬化させて翼型供試体Tを得た。以下、これを「サンプル1」という。
また、実施例3の塗料を、エアースプレーガンを用いて、サンプル1の前縁から翼弦長の5〜40%の部分(図1(b)において撥水性塗膜113が形成されている部分と同じ部分)に、膜厚が50μmとなるよう塗布し、常温で硬化させて翼型供試体Tを得た。以下、これを「サンプル2」という。
また、サンプル2と同様の手法で、比較例4の塗料を塗布して翼型供試体Tを得た。以下、これを「サンプル3」という。
Using the air spray gun, the coating material of Comparative Example 1 was applied to the entire surface of the specimen body made of aluminum and subjected to chemical coating treatment and primer coating so as to have a film thickness of 50 μm, and cured at room temperature. A mold specimen T was obtained. Hereinafter, this is referred to as “sample 1”.
Moreover, the coating material of Example 3 was used for the part 5 to 40% of chord length from the front edge of the sample 1 using an air spray gun (the part in which the water-repellent coating film 113 is formed in FIG.1 (b)). To the same part), and a film thickness of 50 μm was applied and cured at room temperature to obtain an airfoil specimen T. Hereinafter, this is referred to as “sample 2”.
Moreover, the coating material of the comparative example 4 was apply | coated by the method similar to the sample 2, and the wing type specimen T was obtained. Hereinafter, this is referred to as “sample 3”.

まず、実施例3の塗料および比較例1,4の塗料により形成した各塗膜(膜厚:50μm)について、表面粗さ、水接触角、および水転落角を、室温にて測定した。
その結果を表3に示す。
First, for each coating film (film thickness: 50 μm) formed with the paint of Example 3 and the paints of Comparative Examples 1 and 4, the surface roughness, water contact angle, and water drop angle were measured at room temperature.
The results are shown in Table 3.

表3に示す結果から、実施例3の塗料によって、水接触角が120°以上で水転落角が10°以下の塗膜、すなわち高撥水性かつ高滑水性の塗膜を形成できることが分かった。
次いで、サンプル1〜3のそれぞれに、発熱体120を装着した。
From the results shown in Table 3, it was found that the paint of Example 3 can form a coating film having a water contact angle of 120 ° or more and a water falling angle of 10 ° or less, that is, a highly water-repellent and highly slippery coating film. .
Next, the heating element 120 was attached to each of the samples 1 to 3.

また、大気中の過冷却水滴が高速で物体に衝突して起こる着氷を再現するために、図6に示すような動的着氷成長装置200を作製した。動的着氷成長装置200に形成された空気流路202内の下流側にサンプル(翼型供試体T)を翼前縁部が上流側を向くようにセットし、空気流路202内の温度を一定に保持した状態で、上流側から整流された空気を一定の風速で送風するとともに、上流側に配設された噴霧器204から一定のLWCおよびMVDでミストを噴霧することによって、着氷風洞試験を行った。試験条件として、温度を−15℃、風速を95m/s、LWCを0.3g/m、MVDを18μmとした。ここで、「MVD:Median Volume Diameter」とは、動的着氷成長装置200内を飛散する水滴粒子の体積の分布の中央値における直径であり、「LWC:Liquid Water Content」とは、体積当たりの水分含有量である。 Further, in order to reproduce icing caused by supercooled water droplets in the atmosphere colliding with an object at high speed, a dynamic icing growth apparatus 200 as shown in FIG. 6 was produced. A sample (airfoil specimen T) is set on the downstream side in the air flow path 202 formed in the dynamic ice growth apparatus 200 so that the blade leading edge faces the upstream side, and the temperature in the air flow path 202 is set. The air rectified from the upstream side is blown at a constant wind speed, and the mist is sprayed from the sprayer 204 disposed on the upstream side with a constant LWC and MVD. A test was conducted. As test conditions, the temperature was −15 ° C., the wind speed was 95 m / s, LWC was 0.3 g / m 3 , and MVD was 18 μm. Here, “MVD: Median Volume Diameter” is the diameter at the median value of the volume distribution of the water droplet particles scattered in the dynamic ice growth apparatus 200, and “LWC: Liquid Water Content” is per volume. Is the water content.

サンプルに電力計206および温度制御装置208を接続し、温度制御装置208によって、サンプルに装着した発熱体120の設定温度を変化させ、電力計206によって、その際における発熱体120の消費電力量を計測した。設定温度は10℃,15℃,20℃,30℃,50℃,60℃とした。
なお、本実施例では、発熱体120によって、翼弦長の0〜15%の部分を加熱した。そして、各設定温度それぞれについて、試験開始から10分後にサンプルの表面に着氷が生じていないか確認した。
The power meter 206 and the temperature control device 208 are connected to the sample, the set temperature of the heating element 120 attached to the sample is changed by the temperature control device 208, and the power consumption of the heating element 120 at that time is changed by the power meter 206. Measured. The set temperatures were 10 ° C, 15 ° C, 20 ° C, 30 ° C, 50 ° C and 60 ° C.
In this example, the heating element 120 heated a portion of 0 to 15% of the chord length. Then, for each set temperature, it was confirmed whether icing had occurred on the surface of the sample 10 minutes after the start of the test.

サンプル1(すなわち、撥水性領域を有さないサンプル)において、着氷が生じない最も低い設定温度は、60℃であった。
また、サンプル2(すなわち、実施例3の塗料による撥水性領域を有するサンプル)において、着氷が生じない最も低い設定温度は、15℃であった。
また、サンプル3(すなわち、比較例4の塗料による撥水性領域を有するサンプル)において、着氷が生じない最も低い設定温度は、50℃であった。
In sample 1 (that is, a sample having no water-repellent region), the lowest set temperature at which icing did not occur was 60 ° C.
Further, in sample 2 (that is, a sample having a water-repellent region by the paint of Example 3), the lowest set temperature at which icing did not occur was 15 ° C.
Further, in Sample 3 (that is, a sample having a water-repellent region by the paint of Comparative Example 4), the lowest set temperature at which icing did not occur was 50 ° C.

ここで、翼前縁部を発熱体で加熱することによって着氷を融解・除去する従来の防除氷システムにおいて、過冷却水滴が衝突することによって翼前縁部に形成された氷核は、その翼前縁部の内側に設けられた発熱体から発生する熱によって融解して液相の水となる。しかしながら、この融解水は、空気抵抗によって翼表面を伝って翼弦方向に流れる間に再び凍結し、翼体に固着してしまう。加熱温度を高くして、発熱体により直接加熱される加熱領域(翼前縁部側の領域)からの伝熱によって直接加熱されない非加熱領域(翼後縁部側の領域)の温度を上昇させたり、融解水を蒸発させたりする手法もあるが、消費電力が極めて高くなるという問題点がある。なるべく消費電力を抑えて再凍結を防止するためには、融解水を翼弦方向に流れる間に撥水構造によって弾く必要がある。   Here, in a conventional anti-icing system that melts and removes icing by heating the blade leading edge with a heating element, ice nuclei formed on the blade leading edge due to collision of supercooled water droplets It is melted by the heat generated from the heating element provided inside the blade leading edge and becomes liquid phase water. However, this molten water freezes again while flowing in the chord direction along the blade surface due to air resistance, and is fixed to the wing body. Increase the heating temperature to increase the temperature of the non-heated area (blade trailing edge side area) that is not directly heated by heat transfer from the heating area (blade leading edge side area) that is directly heated by the heating element. Although there is a method of evaporating the molten water, there is a problem that the power consumption becomes extremely high. In order to suppress power consumption as much as possible and prevent refreezing, it is necessary to play the molten water with a water-repellent structure while flowing in the chord direction.

サンプル1は、融解水を翼弦方向に流れる間に弾くための撥水性領域を有さないので、再凍結を防止するには、発熱体の設定温度を60℃まで上げて、発熱体によって直接加熱されない非加熱領域の温度を十分に上昇させる必要がある。
一方、サンプル2,3は、融解水を翼弦方向に流れる間に弾くための撥水性領域を有するので、着氷が生じない設定温度がサンプル1よりも低く、着氷が生じない設定温度が最も低いのはサンプル2であることが分かった。これは、サンプル2が有する撥水性領域の撥水性能が高く、融解水を確実に弾くことができるため、発熱体によって直接加熱されない非加熱領域の温度を上昇させなくても、再凍結を防止できるためと考えられる。
Since sample 1 does not have a water-repellent region for repelling molten water while flowing in the chord direction, in order to prevent refreezing, the set temperature of the heating element is raised to 60 ° C. and directly by the heating element. It is necessary to sufficiently raise the temperature of the non-heated area that is not heated.
On the other hand, samples 2 and 3 have a water-repellent region for repelling molten water while flowing in the chord direction. Therefore, the set temperature at which no icing occurs is lower than that at sample 1 and the set temperature at which no icing occurs The lowest was found to be Sample 2. This is because the water-repellent performance of the water-repellent area of sample 2 is high and the molten water can be repelled reliably, preventing re-freezing without increasing the temperature of the non-heated area that is not directly heated by the heating element. This is thought to be possible.

次いで、各サンプルそれぞれについて、着氷が生じない最も低い設定温度のときの、発熱体120の消費電力量(10分間の消費電力量)を積算した積算消費電力量を算出した。
その結果を図7に示す。
図7に示すように、サンプル1の積算消費電力量が最も多く、サンプル2の積算消費電力量が最も少ないことが分かった。具体的には、サンプル1の積算消費電力量を100%とした場合に、サンプル2は30.7%、サンプル3は58.8%であった。
これにより、サンプル2は、サンプル1に比べて、積算消費電力量を7割カットできることが分かった。
Next, for each sample, an integrated power consumption was calculated by integrating the power consumption (power consumption for 10 minutes) of the heating element 120 at the lowest set temperature at which icing did not occur.
The result is shown in FIG.
As shown in FIG. 7, it was found that the integrated power consumption of sample 1 was the largest, and the integrated power consumption of sample 2 was the smallest. Specifically, when the integrated power consumption of sample 1 was 100%, sample 2 was 30.7% and sample 3 was 58.8%.
As a result, it was found that Sample 2 can cut the integrated power consumption by 70% compared to Sample 1.

<実施例4>
塗膜における粒子状フッ素樹脂の構成比率が74重量%となるように、常温反応硬化型樹脂であるポリウレタン樹脂と、粒子状フッ素樹脂であるPTFE(低分子量PTFE)と、を混合して、実施例4の塗料を得た。実施例4の塗料では、常温反応硬化型樹脂として、主剤(赤色のポリウレタン塗料)と硬化剤とからなり、混合比率が主剤:硬化剤=1:1であるポリウレタン樹脂塗料を用いた。また、実施例4の塗料では、平均粒子径が0.96μmの粒子状フッ素樹脂を用いた。
<Example 4>
Implemented by mixing polyurethane resin, which is a room temperature reaction curable resin, and PTFE (low molecular weight PTFE), which is a particulate fluororesin, so that the composition ratio of the particulate fluororesin in the coating film is 74% by weight. The paint of Example 4 was obtained. In the coating material of Example 4, a polyurethane resin coating material composed of a main agent (red polyurethane coating material) and a curing agent and having a mixing ratio of main agent: curing agent = 1: 1 was used as the room temperature reaction curable resin. In the paint of Example 4, a particulate fluororesin having an average particle size of 0.96 μm was used.

<実施例5>
塗膜における粒子状フッ素樹脂の構成比率が77重量%となるように、実施例4の塗料と同様の手法で、実施例5の塗料を得た。実施例5の塗料では、平均粒子径が0.96μmの粒子状フッ素樹脂を用いた。
<Example 5>
The paint of Example 5 was obtained in the same manner as the paint of Example 4 so that the constituent ratio of the particulate fluororesin in the coating film was 77% by weight. In the paint of Example 5, a particulate fluororesin having an average particle size of 0.96 μm was used.

<実施例6>
塗膜における粒子状フッ素樹脂の構成比率が82重量%となるように、実施例4の塗料と同様の手法で、実施例6の塗料を得た。実施例6の塗料では、平均粒子径が0.96μmの粒子状フッ素樹脂を用いた。
<Example 6>
The paint of Example 6 was obtained in the same manner as the paint of Example 4 so that the constituent ratio of the particulate fluororesin in the coating film was 82% by weight. In the paint of Example 6, a particulate fluororesin having an average particle size of 0.96 μm was used.

〔撥水性および滑水性の評価〕
実施例4の塗料を、必要に応じてシンナー等の溶剤で希釈し、ヘラを用いてアルミ合金表面に塗布し、常温で硬化させて、実施例4の塗料を塗布して作製した試料を得た。
また、実施例4の塗料を塗布して作製した試料と同様の手法で、実施例5の塗料を塗布して作製した試料および実施例6の塗料を塗布して作製した試料を得た。
そして、各試料について、水接触角、水転落角、および表面粗さを、室温で測定した。
その結果を図8に示す。なお、実施例6の塗料を塗布して作製した試料については、水接触角および水転落角の測定を行わなかった。また、実施例5の塗料を塗布して作製した試料については、表面粗さの測定を行わなかった。
[Evaluation of water repellency and water slidability]
The paint of Example 4 is diluted with a solvent such as thinner as necessary, applied to the surface of the aluminum alloy with a spatula, cured at room temperature, and a sample prepared by applying the paint of Example 4 is obtained. It was.
In addition, a sample prepared by applying the paint of Example 5 and a sample prepared by applying the paint of Example 6 were obtained in the same manner as the sample prepared by applying the paint of Example 4.
And about each sample, the water contact angle, the water fall angle, and the surface roughness were measured at room temperature.
The result is shown in FIG. In addition, about the sample produced by apply | coating the coating material of Example 6, the measurement of the water contact angle and the water fall angle was not performed. Further, the surface roughness of the sample prepared by applying the paint of Example 5 was not measured.

図8に示す結果から、実施例4〜6の塗料によって、水接触角が120°以上の塗膜、すなわち高撥水性の塗膜を形成できることが分かった。
また、図8に示す結果から、実施例4の塗料によって形成された塗膜に比べて、実施例6の塗料によって形成された塗膜の方が、表面粗さが大きいことが分かった。塗布面の表面粗さが大きいほど、撥水性が高くなる一方で、そのアンカー効果により水滴の付着強度が大きくなる。したがって、表面粗さは大きいほど良いというわけではなく、必要な撥水性を有することができる表面粗さの範囲内で、できるだけ小さい方が好ましい。
From the results shown in FIG. 8, it was found that the paints of Examples 4 to 6 can form a paint film having a water contact angle of 120 ° or more, that is, a highly water-repellent paint film.
Further, from the results shown in FIG. 8, it was found that the surface roughness of the coating film formed with the coating material of Example 6 was larger than that of the coating film formed with the coating material of Example 4. The greater the surface roughness of the coated surface, the higher the water repellency, while the anchor effect increases the adhesion strength of water droplets. Therefore, the larger the surface roughness, the better. It is preferable that the surface roughness is as small as possible within the range of the surface roughness that can have the required water repellency.

表1および図8に示す結果から、塗膜における粒子状フッ素樹脂の構成比率の範囲の好ましい下限は、43重量%であり、より好ましい下限は、50重量%であり、さらに好ましい下限は、55重量%であることが分かった。また、塗膜における粒子状フッ素樹脂の構成比率の範囲の好ましい上限は、82重量%であり、より好ましい上限は、77重量%であることが分かった。
また、実施例1および実施例2の塗料では、平均粒子径が1.0μm以上1.5μm未満(具体的には1.15μm)の粒子状フッ素樹脂を用い、実施例3、実施例4、実施例5、および実施例6の塗料では、平均粒子径が1.0μm未満(具体的には0.96μm)の粒子状フッ素樹脂を用いた。平均粒子径が1.0μm以上1.5μm未満の粒子状フッ素樹脂でも十分な分散性を得ることはできるが、平均粒子径が1.0μm未満の粒子状フッ素樹脂の方が分散性が良く、より均一(均質)な塗膜を形成することができる。塗膜の均一性が高いほど、エロージョン等の外的な影響で膜厚が薄くなっていっても撥水性能が低下しにくく、塗膜が均一であれば、膜厚が薄くなった際に、塗膜形成直後と同等の撥水性を再現することができるという利点がある。
なお、実施例4〜6の塗料では、常温反応硬化型樹脂塗料の主剤として着色塗料(具体的には、赤色のポリウレタン塗料)を用いた。これにより、塗膜の成膜性や塗膜の劣化(剥離の度合い等)などを目視確認することが可能となる。
From the results shown in Table 1 and FIG. 8, the preferred lower limit of the range of the constituent ratio of the particulate fluororesin in the coating film is 43% by weight, the more preferred lower limit is 50% by weight, and the more preferred lower limit is 55. It was found to be% by weight. Moreover, it turned out that the preferable upper limit of the range of the structural ratio of the particulate fluororesin in a coating film is 82 weight%, and a more preferable upper limit is 77 weight%.
Further, in the coating materials of Example 1 and Example 2, a particulate fluororesin having an average particle diameter of 1.0 μm or more and less than 1.5 μm (specifically, 1.15 μm) was used, and Example 3, Example 4, In the paints of Example 5 and Example 6, a particulate fluororesin having an average particle size of less than 1.0 μm (specifically 0.96 μm) was used. Sufficient dispersibility can be obtained even with a particulate fluororesin having an average particle size of 1.0 μm or more and less than 1.5 μm, but a particulate fluororesin having an average particle size of less than 1.0 μm has better dispersibility, A more uniform (homogeneous) coating film can be formed. The higher the uniformity of the coating film, the more difficult the water-repellent performance will be when the film thickness is thin due to external effects such as erosion. There is an advantage that water repellency equivalent to that immediately after the coating film formation can be reproduced.
In the paints of Examples 4 to 6, a colored paint (specifically, a red polyurethane paint) was used as the main component of the room temperature reaction curable resin paint. This makes it possible to visually check the film formability of the coating film, the deterioration of the coating film (such as the degree of peeling), and the like.

100 防除氷システム
110 翼
112 非撥水性塗膜
113 撥水性塗膜
120 発熱体(加熱手段)
P 水滴衝突領域
Q 非撥水性領域
100 ice prevention system 110 wing 112 non-water-repellent coating 113 water-repellent coating 120 heating element (heating means)
P Water droplet collision area Q Non-water-repellent area

Claims (9)

常温で反応硬化する常温反応硬化型樹脂と、粒子状フッ素樹脂と、を混合してなり、
塗膜における前記粒子状フッ素樹脂の構成比率が43重量%以上82重量%以下であることを特徴とする混合塗料。
A mixture of a room temperature reaction curable resin that cures at room temperature and a particulate fluororesin,
A mixed paint, wherein the composition ratio of the particulate fluororesin in the coating film is 43 wt% or more and 82 wt% or less.
前記粒子状フッ素樹脂は、四フッ化エチレン樹脂であることを特徴とする請求項1に記載の混合塗料。   The mixed paint according to claim 1, wherein the particulate fluororesin is a tetrafluoroethylene resin. 前記常温反応硬化型樹脂は、フッ素樹脂であることを特徴とする請求項1または2に記載の混合塗料。   The mixed paint according to claim 1, wherein the room temperature reaction curable resin is a fluororesin. 前記粒子状フッ素樹脂の平均粒子径は、1.5μm未満であることを特徴とする請求項1から請求項3のいずれかに記載の混合塗料。   The mixed paint according to any one of claims 1 to 3, wherein an average particle size of the particulate fluororesin is less than 1.5 µm. 前記粒子状フッ素樹脂の平均粒子径は、1.0μm未満であることを特徴とする請求項4に記載の混合塗料。   The mixed paint according to claim 4, wherein an average particle diameter of the particulate fluororesin is less than 1.0 μm. 翼前縁部の水滴衝突領域の最表層は、非撥水性塗膜からなり、
前記水滴衝突領域に隣接する撥水性領域の最表層は、請求項1から請求項5のいずれかに記載の混合塗料によって形成された撥水性塗膜からなることを特徴とする翼。
The outermost layer of the water droplet collision area at the wing leading edge consists of a non-water-repellent coating film,
6. The wing according to claim 1, wherein the outermost layer of the water-repellent region adjacent to the water droplet collision region is formed of a water-repellent coating film formed by the mixed paint according to claim 1.
前記非撥水性塗膜は、前記水滴衝突領域から前記撥水性領域にまたがって形成されており、
前記撥水性塗膜は、前記非撥水性塗膜上に形成されていることを特徴とする請求項6に記載の翼。
The non-water-repellent coating film is formed across the water-repellent region from the water droplet collision region,
The wing according to claim 6, wherein the water-repellent coating film is formed on the non-water-repellent coating film.
請求項6または請求項7に記載の翼と、
前記水滴衝突領域を加熱するための加熱手段と、
を備えることを特徴とする防除氷システム。
The wing according to claim 6 or 7,
Heating means for heating the water droplet collision area;
An anti-icing system characterized by comprising:
前記加熱手段は、前記撥水性領域のうちの、少なくとも前記水滴衝突領域側の一部も加熱可能であることを特徴とする請求項8に記載の防除氷システム。   9. The ice prevention system according to claim 8, wherein the heating means can also heat at least a part of the water-repellent region on the side of the water droplet collision region.
JP2015179067A 2015-06-15 2015-09-11 Wing and ice protection system Active JP6170531B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/172,014 US10351247B2 (en) 2015-06-15 2016-06-02 Wing and anti-icing system
EP16174417.2A EP3115299B1 (en) 2015-06-15 2016-06-14 Wing, and anti-icing system
CN201610425348.4A CN106243952B (en) 2015-06-15 2016-06-15 Compo, the wing and anti-deicing system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015120023 2015-06-15
JP2015120023 2015-06-15

Publications (2)

Publication Number Publication Date
JP2017002269A true JP2017002269A (en) 2017-01-05
JP6170531B2 JP6170531B2 (en) 2017-07-26

Family

ID=57751300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015179067A Active JP6170531B2 (en) 2015-06-15 2015-09-11 Wing and ice protection system

Country Status (1)

Country Link
JP (1) JP6170531B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109469580A (en) * 2018-09-25 2019-03-15 天津瑞能电气有限公司 A kind of super-hydrophobic hydrophilic spacer coating control ice blade and method
JP2020050817A (en) * 2018-09-28 2020-04-02 日立化成株式会社 Coating agent composition, coating film and article

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58221800A (en) * 1982-06-17 1983-12-23 地球化学株式会社 Aircraft
JPS60259598A (en) * 1984-06-01 1985-12-21 三菱重工業株式会社 Anti-icing device
JPH0445168A (en) * 1990-06-12 1992-02-14 Asahi Glass Co Ltd Paint composition for inhibiting ice accretion or snow accretion
JPH07228821A (en) * 1993-12-22 1995-08-29 Du Pont Mitsui Fluorochem Co Ltd Article having water-repellent fluororesin surface
JPH1036707A (en) * 1996-04-17 1998-02-10 Nippon Telegr & Teleph Corp <Ntt> Water repellent coating material, coating film using the same and coated product
JP2002295188A (en) * 2001-01-29 2002-10-09 Sumitomo Rubber Ind Ltd Structure and method for reinforcing wall surface of concrete structure
JP2004091647A (en) * 2002-08-30 2004-03-25 Kyowa Chem Ind Co Ltd Blistering inhibitor for use in coating material and method for preventing blistering of coating film
JP2005298731A (en) * 2004-04-14 2005-10-27 Fuji Heavy Ind Ltd Mixed coating material and method for producing the same
JP2010234989A (en) * 2009-03-31 2010-10-21 Ikutoku Gakuen Kanagawa Koka Daigaku Blade structure having anti-icing structure

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58221800A (en) * 1982-06-17 1983-12-23 地球化学株式会社 Aircraft
JPS60259598A (en) * 1984-06-01 1985-12-21 三菱重工業株式会社 Anti-icing device
JPH0445168A (en) * 1990-06-12 1992-02-14 Asahi Glass Co Ltd Paint composition for inhibiting ice accretion or snow accretion
JPH07228821A (en) * 1993-12-22 1995-08-29 Du Pont Mitsui Fluorochem Co Ltd Article having water-repellent fluororesin surface
JPH1036707A (en) * 1996-04-17 1998-02-10 Nippon Telegr & Teleph Corp <Ntt> Water repellent coating material, coating film using the same and coated product
JP2002295188A (en) * 2001-01-29 2002-10-09 Sumitomo Rubber Ind Ltd Structure and method for reinforcing wall surface of concrete structure
JP2004091647A (en) * 2002-08-30 2004-03-25 Kyowa Chem Ind Co Ltd Blistering inhibitor for use in coating material and method for preventing blistering of coating film
JP2005298731A (en) * 2004-04-14 2005-10-27 Fuji Heavy Ind Ltd Mixed coating material and method for producing the same
JP2010234989A (en) * 2009-03-31 2010-10-21 Ikutoku Gakuen Kanagawa Koka Daigaku Blade structure having anti-icing structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109469580A (en) * 2018-09-25 2019-03-15 天津瑞能电气有限公司 A kind of super-hydrophobic hydrophilic spacer coating control ice blade and method
CN109469580B (en) * 2018-09-25 2023-09-29 天津瑞能电气有限公司 Super-hydrophobic hydrophilic interval coating ice control blade and method
JP2020050817A (en) * 2018-09-28 2020-04-02 日立化成株式会社 Coating agent composition, coating film and article

Also Published As

Publication number Publication date
JP6170531B2 (en) 2017-07-26

Similar Documents

Publication Publication Date Title
US10351247B2 (en) Wing and anti-icing system
Liu et al. An experimental study of surface wettability effects on dynamic ice accretion process over an UAS propeller model
Liu et al. An experimental study on soft PDMS materials for aircraft icing mitigation
De Pauw et al. Effect of superhydrophobic coating on the anti-icing and deicing of an airfoil
Khadak et al. Studies on de-icing and anti-icing of carbon fiber-reinforced composites for aircraft surfaces using commercial multifunctional permanent superhydrophobic coatings
US9199741B2 (en) Systems and methods for passive deicing
CN104937042B (en) With the structure coating dried with anti-icing characteristic, and for manufacturing the coating precursor of the structure coating
Zhang et al. An experimental study on the detrimental effects of deicing fluids on the performance of icephobic coatings for aircraft icing mitigation
JP2010234989A (en) Blade structure having anti-icing structure
Ma et al. Bio‐inspired icephobic coatings for aircraft icing mitigation: A critical review
CA3023908C (en) Methods and systems for self-lubricating icephobic elastomer coatings
JP6170531B2 (en) Wing and ice protection system
CN115703103A (en) Conductive anti-icing coating system and method
Villeneuve et al. Experimental assessment of the ice protection effectiveness of icephobic coatings for a hovering drone rotor
JP3848334B2 (en) Mixed paint and method for producing the same
Fortin Considerations on the use of hydrophobic, superhydrophobic or icephobic coatings as a part of the aircraft ice protection system
JP5842023B2 (en) Mixed paint
JP6151751B2 (en) Method for preventing icing of wing structure
Lachmann Aspects of insect contamination in relation to laminar flow aircraft
Liu et al. An experimental study on the transient heat transfer and dynamic ice accretion process over a rotating UAS propeller
Khadak et al. Enhancing the De-Icing Capabilities of Carbon Fiber-Reinforced Composite Aircraft via Permanent Superhydrophobic Coatings
Liu et al. Experimental Investigations on Bio‐Inspired Icephobic Coatings for Aircraft Inflight Icing Mitigation
DE202007006212U1 (en) Anti-icing aircraft part
Hobitz Preventing Atmospheric Icing in Aviation: Passive Repulsion of Super Cooled Water Droplets through Hydrophobic Nanocomposites
Hu et al. Comparative Study of Using Superhydrophobic and Icephobic Surface Coatings for Aircraft Icing Mitigation

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170630

R150 Certificate of patent or registration of utility model

Ref document number: 6170531

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250