JP2017002252A - Laminate film - Google Patents
Laminate film Download PDFInfo
- Publication number
- JP2017002252A JP2017002252A JP2015120704A JP2015120704A JP2017002252A JP 2017002252 A JP2017002252 A JP 2017002252A JP 2015120704 A JP2015120704 A JP 2015120704A JP 2015120704 A JP2015120704 A JP 2015120704A JP 2017002252 A JP2017002252 A JP 2017002252A
- Authority
- JP
- Japan
- Prior art keywords
- film
- group
- compound
- acid
- adhesive layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Laminated Bodies (AREA)
- Adhesive Tapes (AREA)
- Adhesives Or Adhesive Processes (AREA)
Abstract
Description
本発明は、積層フィルムに関するものであり、例えば、樹脂板、金属板等の輸送時、保管時や加工時の傷付き防止や汚れ付着防止用等の表面保護フィルム等として、フィッシュアイが少なく、機械的強度および耐熱性に優れ、良好な粘着特性および滑り性を有する積層フィルムに関するものである。 The present invention relates to a laminated film, for example, as a surface protection film for preventing scratches and preventing dirt adhesion during transport, storage and processing of resin plates, metal plates, etc. The present invention relates to a laminated film having excellent mechanical strength and heat resistance, and having good adhesive properties and slipperiness.
従来、樹脂板、金属板やガラス板等の輸送時、保管時や加工時の傷付き防止や汚れ付着防止、液晶パネルや偏光板等の電子関連分野に使用される部材の加工時における傷付き防止や粉塵・汚れ付着防止、自動車の輸送時、保管時における汚れ付着防止や酸性雨からの自動車塗装の保護、フレキシブルプリント基板のメッキやエッチング処理時の保護等の用途において、表面保護フィルムが幅広く使用されている。 Conventionally, when transporting, storing and processing resin plates, metal plates, glass plates, etc., preventing scratches and dirt, and scratching when processing components used in electronic fields such as liquid crystal panels and polarizing plates Wide range of surface protection films for applications such as prevention of dust and dirt, prevention of dirt and dirt during transportation and storage of automobiles, protection of automobile coating from acid rain, and protection during plating and etching of flexible printed circuit boards It is used.
これらの表面保護フィルムには、樹脂板、金属板やガラス板等、各種の被着体の輸送時、保管時や加工時等において、当該被着体に対して適度な粘着力を有し、被着体の表面に付着することで、その被着体の表面を保護し、目的終了後には容易に剥がせられることが求められている。これらの課題を克服するために、ポリオレフィン系のフィルムを表面保護のために使用する提案がなされている(特許文献1、2)。 These surface protective films have an appropriate adhesive force to the adherend during transport, storage, processing, etc. of various adherends such as resin plates, metal plates and glass plates, It is required that the surface of the adherend be protected by adhering to the surface of the adherend and easily peeled off after the end of the purpose. In order to overcome these problems, proposals have been made to use polyolefin-based films for surface protection (Patent Documents 1 and 2).
しかしながら、表面保護フィルム基材としてポリオレフィン系のフィルムを使用しているため、フィッシュアイと一般的に呼ばれる、フィルム基材原料に起因するゲル状物や劣化物による欠陥を除去することができず、例えば、表面保護フィルムを貼り合わせた状態で被着体を検査する際に、表面保護フィルムの欠陥を検知してしまう等の障害となるという問題がある。 However, since a polyolefin-based film is used as the surface protective film substrate, it is not possible to remove defects caused by gel-like materials and deteriorated products, which are generally called fisheye, For example, when inspecting an adherend in a state where the surface protective film is bonded, there is a problem that it becomes an obstacle such as detecting a defect of the surface protective film.
また、表面保護フィルムの基材としては、被着体と貼り合わせ時等、各種の加工時の張力により、当該基材が引き伸ばされてしまわないようにある程度の機械的強度を有するフィルムが求められるが、ポリオレフィン系のフィルムは一般的に機械的強度が劣るため、生産性を重視するために加工速度を上げること等に起因する、高張力の加工には不向きであるという欠点がある。 In addition, as a base material for the surface protection film, a film having a certain degree of mechanical strength is required so that the base material is not stretched due to tension during various processing such as bonding to an adherend. However, since polyolefin films generally have poor mechanical strength, they have the disadvantage of being unsuitable for high-tension processing due to increasing the processing speed in order to emphasize productivity.
さらに、加工速度や種々の特性向上等のための、加工温度の高温化においても、ポリオレフィン系のフィルムは熱による収縮安定性に優れていないため、寸法安定性が悪い。そのため、高温加工しても熱変形が少なく、寸法安定性に優れたフィルムが求められている。 Furthermore, even when the processing temperature is increased to improve the processing speed and various characteristics, the polyolefin-based film is not excellent in shrinkage stability due to heat, so that the dimensional stability is poor. Therefore, there is a demand for a film that has little thermal deformation even when processed at high temperature and has excellent dimensional stability.
本発明は、上記実情に鑑みなされたものであって、その解決課題は、各種表面保護フィルム用等に使用する、フィッシュアイが少なく、機械的強度および耐熱性に優れ、良好な粘着特性および滑り性を有する積層フィルムを提供することにある。 The present invention has been made in view of the above circumstances, and the problem to be solved is that it has few fish eyes, is excellent in mechanical strength and heat resistance, is used for various surface protection films, etc., has good adhesive properties and slippage. It is providing the laminated film which has property.
本発明者は、上記実情に鑑み、鋭意検討した結果、特定の構成からなる積層フィルムを用いれば、上述の課題を容易に解決できることを知見し、本発明を完成させるに至った。 As a result of intensive studies in view of the above circumstances, the present inventor has found that the above-described problems can be easily solved by using a laminated film having a specific configuration, and has completed the present invention.
すなわち、本発明の要旨は、非ポリオレフィン系フィルムの少なくとも一方の面に、平均粒径が3μm以下の粒子を含有する粘着層を有し、前記粒子の平均粒径が粘着層の膜厚の3倍以下であることを特徴とする積層フィルムに存する。 That is, the gist of the present invention is that at least one surface of a non-polyolefin film has an adhesive layer containing particles having an average particle diameter of 3 μm or less, and the average particle diameter of the particles is 3 of the film thickness of the adhesive layer. It exists in the laminated film characterized by being below 2 times.
本発明の積層フィルムによれば、各種表面保護フィルムとして、フィッシュアイが少なく、機械的強度および耐熱性に優れ、良好な粘着特性および滑り性を有するフィルムを提供することができ、その工業的価値は高い。 According to the laminated film of the present invention, as various surface protective films, it is possible to provide a film having few fish eyes, excellent mechanical strength and heat resistance, and having good adhesive properties and slipperiness, and its industrial value. Is expensive.
課題であるフィッシュアイの低減、機械的強度の向上および耐熱性の向上には基材フィルムの根本材料を大きく変える必要があると考え、種々検討の結果、従来使用のポリオレフィン系の材料から非ポリオレフィン系の材料を使用することで達成できることを見いだした。例えば、ポリエステルフィルム、ポリカーボネートフィルム、フッ素樹脂フィルム、ポリイミドフィルム、トリアセチルセルロースフィルム、ポリアクリレートフィルム、ポリスチレンフィルム、ポリ塩化ビニルフィルム、ポリビニルアルコールフィルム、ナイロンフィルム等が挙げられる。特に、各種の用途へ展開するために、耐熱性や機械特性により優れることが好ましく、ポリエステルフィルム、ポリカーボネートフィルム、フッ素樹脂フィルム、ポリイミドフィルムが好適に用いられ、さらに透明性や成形性、汎用性を考慮するとポリエステルフィルムがより好適に用いられる。 In order to reduce fish eyes, improve mechanical strength, and improve heat resistance, the fundamental material of the base film needs to be changed significantly. We found that this can be achieved by using materials of the system. Examples thereof include a polyester film, a polycarbonate film, a fluororesin film, a polyimide film, a triacetyl cellulose film, a polyacrylate film, a polystyrene film, a polyvinyl chloride film, a polyvinyl alcohol film, and a nylon film. In particular, in order to develop into various applications, it is preferable to be superior in heat resistance and mechanical properties, and polyester film, polycarbonate film, fluororesin film, and polyimide film are preferably used, and further, transparency, moldability, and versatility are improved. In consideration, a polyester film is more preferably used.
しかしながら、基材フィルムの材料系を非ポリオレフィン系の材料へと大きく変えることにより、粘着特性は大幅に低下し、上述のような一般的な非ポリオレフィン系フィルムでは到底達成できないものとなってしまった。そこで、基材フィルム上に粘着層を設けることで改善を図り、本発明に至った。以下、本発明の詳細に関して説明する。 However, by greatly changing the material system of the base film to a non-polyolefin material, the adhesive properties are greatly reduced, and cannot be achieved with general non-polyolefin films as described above. . Therefore, improvement was achieved by providing an adhesive layer on the substrate film, and the present invention was achieved. Hereinafter, the details of the present invention will be described.
本発明における積層フィルムを構成するフィルムは単層構成であっても多層構成であってもよく、2層、3層構成以外にも本発明の要旨を越えない限り、4層またはそれ以上の多層であってもよく、特に限定されるものではない。2層以上の多層構成とし、それぞれの層に特徴を持たせ、多機能化を図ることが好ましい。 The film constituting the laminated film in the present invention may have a single-layer structure or a multilayer structure, and may have a multilayer structure of four or more layers as long as the gist of the present invention is not exceeded other than the two-layer or three-layer structure. There is no particular limitation. It is preferable to have a multi-layer structure of two or more layers and to give each layer a characteristic so as to achieve multiple functions.
本発明のフィルムとして用いられうるポリエステルフィルムとして、当該ポリエステルは、ホモポリエステルであっても共重合ポリエステルであってもよい。ホモポリエステルからなる場合、芳香族ジカルボン酸と脂肪族グリコールとを重縮合させて得られるものが好ましい。芳香族ジカルボン酸としては、テレフタル酸、2,6−ナフタレンジカルボン酸などが挙げられ、脂肪族グリコールとしては、エチレングリコール、ジエチレングリコール、1,4−シクロヘキサンジメタノール等が挙げられる。代表的なポリエステルとしては、ポリエチレンテレフタレート等が例示される。一方、共重合ポリエステルのジカルボン酸成分としては、イソフタル酸、フタル酸、テレフタル酸、2,6−ナフタレンジカルボン酸、アジピン酸、セバシン酸、オキシカルボン酸(例えば、p−オキシ安息香酸など)等の一種または二種以上が挙げられ、グリコール成分として、エチレングリコール、ジエチレングリコール、プロピレングリコール、ブタンジオール、4−シクロヘキサンジメタノール、ネオペンチルグリコール等の一種または二種以上が挙げられる。 As the polyester film that can be used as the film of the present invention, the polyester may be a homopolyester or a copolyester. In the case of a homopolyester, those obtained by polycondensation of an aromatic dicarboxylic acid and an aliphatic glycol are preferred. Examples of the aromatic dicarboxylic acid include terephthalic acid and 2,6-naphthalenedicarboxylic acid, and examples of the aliphatic glycol include ethylene glycol, diethylene glycol, and 1,4-cyclohexanedimethanol. Typical polyester includes polyethylene terephthalate and the like. On the other hand, the dicarboxylic acid component of the copolyester includes isophthalic acid, phthalic acid, terephthalic acid, 2,6-naphthalenedicarboxylic acid, adipic acid, sebacic acid, oxycarboxylic acid (for example, p-oxybenzoic acid, etc.), etc. 1 type or 2 types or more are mentioned, As a glycol component, 1 type or 2 types or more, such as ethylene glycol, diethylene glycol, propylene glycol, butanediol, 4-cyclohexane dimethanol, neopentyl glycol, is mentioned.
種々の加工条件に耐えられるフィルムにするという観点から、機械的強度や耐熱性(加熱による寸法安定性)が高いことが好ましく、そのためには共重合ポリエステル成分が少ないことが好ましい。具体的には、ポリエステルフィルム中に占める共重合ポリエステルを形成するモノマーの割合が、好ましくは10モル%以下、より好ましくは5モル%以下の範囲であり、さらに好ましくはホモポリエステル重合時に副産物として生成してしまう程度である、3モル%以下のジエーテル成分を含む程度である。ポリエステルとしてより好ましい形態は、機械的強度や耐熱性を考慮すると、前記化合物の中でも、テレフタル酸とエチレングリコールから重合されてなる、ポリエチレンテレフタレートやポリエチレンナフタレートから形成されたフィルムがより好ましく、製造のしやすさ、表面保護フィルム等の用途としての取扱い性を考慮すると、ポリエチレンテレフタレートから形成されたフィルムがより好ましい。 From the viewpoint of forming a film that can withstand various processing conditions, it is preferable that the mechanical strength and heat resistance (dimensional stability by heating) are high, and for that purpose, it is preferable that the copolymer polyester component is small. Specifically, the proportion of the monomer forming the copolyester in the polyester film is preferably in the range of 10 mol% or less, more preferably 5 mol% or less, and more preferably produced as a by-product during homopolyester polymerization. It is a grade which contains the diether component of 3 mol% or less which is a grade which will carry out. In view of mechanical strength and heat resistance, a more preferable form of polyester is more preferably a film formed from polyethylene terephthalate or polyethylene naphthalate, which is polymerized from terephthalic acid and ethylene glycol, among the above compounds. In consideration of ease of handling and handling properties as a surface protective film, a film formed from polyethylene terephthalate is more preferable.
ポリエステルの重合触媒としては、特に制限はなく、従来公知の化合物を使用することができ、例えば、アンチモン化合物、チタン化合物、ゲルマニウム化合物、マンガン化合物、アルミニウム化合物、マグネシウム化合物、カルシウム化合物等が挙げられる。この中でも、アンチモン化合物は安価であることから好ましく、また、チタン化合物やゲルマニウム化合物は触媒活性が高く、少量で重合を行うことが可能であり、フィルム中に残留する金属量が少ないことから、フィルムの透明性が高くなるため好ましい。さらに、ゲルマニウム化合物は高価であることから、チタン化合物を用いることがより好ましい。 There is no restriction | limiting in particular as a polymerization catalyst of polyester, A conventionally well-known compound can be used, For example, an antimony compound, a titanium compound, a germanium compound, a manganese compound, an aluminum compound, a magnesium compound, a calcium compound etc. are mentioned. Among these, antimony compounds are preferable because they are inexpensive, and titanium compounds and germanium compounds have high catalytic activity, can be polymerized in a small amount, and the amount of metal remaining in the film is small. Since transparency of this becomes high, it is preferable. Furthermore, since a germanium compound is expensive, it is more preferable to use a titanium compound.
チタン化合物を用いたポリエステルの場合、チタン元素含有量は、好ましくは50ppm以下、より好ましくは1〜20ppm、さらに好ましくは2〜10ppmの範囲である。チタン化合物の含有量が多すぎる場合は、ポリエステルを溶融押出する工程でポリエステルの劣化が促進され黄色味が強いフィルムとなる場合があり、また、含有量が少なすぎる場合は、重合効率が悪くコストアップや十分な強度を有するフィルムが得られない場合がある。また、チタン化合物によるポリエステルを用いる場合、溶融押出する工程での劣化抑制の目的で、チタン化合物の活性を下げるためにリン化合物を使用することが好ましい。リン化合物としては、ポリエステルの生産性や熱安定性を考慮すると正リン酸が好ましい。リン元素含有量は、溶融押出するポリエステル量に対して、好ましくは1〜300ppm、より好ましくは3〜200ppm、さらに好ましくは5〜100ppmの範囲である。リン化合物の含有量が多すぎる場合は、ゲル化や異物の原因となる可能性があり、また、含有量が少なすぎる場合は、チタン化合物の活性を十分に下げることができず、黄色味のあるフィルムとなる場合がある。 In the case of polyester using a titanium compound, the titanium element content is preferably 50 ppm or less, more preferably 1 to 20 ppm, and still more preferably 2 to 10 ppm. If the content of the titanium compound is too high, the polyester may be deteriorated in the process of melt-extruding the polyester, resulting in a strong yellowish film. If the content is too low, the polymerization efficiency is poor and the cost is low. In some cases, a film having a sufficient strength or a sufficient strength cannot be obtained. Moreover, when using the polyester by a titanium compound, it is preferable to use a phosphorus compound in order to reduce the activity of a titanium compound for the purpose of suppressing deterioration in the step of melt extrusion. As the phosphorus compound, orthophosphoric acid is preferable in view of the productivity and thermal stability of the polyester. The phosphorus element content is preferably in the range of 1 to 300 ppm, more preferably 3 to 200 ppm, and still more preferably 5 to 100 ppm with respect to the amount of polyester to be melt-extruded. If the content of the phosphorus compound is too large, it may cause gelation or foreign matter. If the content is too small, the activity of the titanium compound cannot be lowered sufficiently, and the yellowish It may be a film.
本発明のフィルムとして用いられうるポリカーボネートフィルムとして、当該ポリカーボネートは、従来公知のものを使用することができるが、特にビスフェノールA構造を含有するタイプが好ましい。 As the polycarbonate film that can be used as the film of the present invention, a conventionally known polycarbonate can be used, but a type containing a bisphenol A structure is particularly preferable.
本発明のフィルムとして用いられうるフッ素樹脂フィルムとして、当該フッ素樹脂は、従来公知のものを使用することができるが、例えば、ポリテトラフルオロエチレン、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体等が挙げられる。 As the fluororesin film that can be used as the film of the present invention, a conventionally known fluororesin can be used. For example, polytetrafluoroethylene, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoro Examples include ethylene-perfluoroalkyl vinyl ether copolymers.
本発明のフィルム中には、易滑性の付与、各工程での傷発生防止、耐ブロッキング特性の向上を目的として、粒子を配合することも可能である。粒子を配合する場合、配合する粒子の種類は、易滑性付与可能な粒子であれば特に限定されるものではなく、具体例としては、例えば、シリカ、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、硫酸カルシウム、リン酸カルシウム、リン酸マグネシウム、カオリン、酸化アルミニウム、酸化ジルコニウム、酸化チタン等の無機粒子、アクリル樹脂、スチレン樹脂、尿素樹脂、フェノール樹脂、エポキシ樹脂、ベンゾグアナミン樹脂等の有機粒子等が挙げられる。さらに、フィルムのベースとなる樹脂の製造工程中、触媒等の金属化合物の一部を沈殿、微分散させた析出粒子を用いることもできる。これらの中でも特に少量で効果が出やすいという点でシリカ粒子や炭酸カルシウム粒子が好ましい。 In the film of the present invention, particles can be blended for the purpose of imparting slipperiness, preventing generation of scratches in each step, and improving anti-blocking properties. When the particles are blended, the kind of the particles to be blended is not particularly limited as long as it is a particle capable of imparting slipperiness, and specific examples thereof include, for example, silica, calcium carbonate, magnesium carbonate, barium carbonate, sulfuric acid. Examples thereof include inorganic particles such as calcium, calcium phosphate, magnesium phosphate, kaolin, aluminum oxide, zirconium oxide, and titanium oxide, and organic particles such as acrylic resin, styrene resin, urea resin, phenol resin, epoxy resin, and benzoguanamine resin. Further, it is also possible to use precipitated particles in which a part of a metal compound such as a catalyst is precipitated and finely dispersed during the manufacturing process of the resin serving as the base of the film. Of these, silica particles and calcium carbonate particles are preferable because they are particularly effective in a small amount.
粒子の平均粒径は、好ましくは10μm以下、より好ましくは0.01〜5μm、さらに好ましくは0.01〜3μmの範囲である。平均粒径が10μmを超える場合には、粒子の脱落やフィルムの透明性の低下による不具合が懸念される場合がある。 The average particle diameter of the particles is preferably 10 μm or less, more preferably 0.01 to 5 μm, and still more preferably 0.01 to 3 μm. When the average particle diameter exceeds 10 μm, there may be a concern about problems due to dropout of particles or reduction in transparency of the film.
さらにフィルム中の粒子含有量は、粒子の平均粒径との兼ね合いもあるので一概にはいえないが、好ましくは5重量%以下、より好ましくは0.0003〜3重量%の範囲、さらに好ましくは0.0005〜1重量%の範囲である。粒子含有量が5重量%を超える場合、粒子の脱落やフィルムの透明性の低下による不具合が懸念される場合がある。粒子がない場合、あるいは少ない場合は、フィルムの透明性が高くなり、良好なフィルムとなるが、滑り性が不十分となる場合があるため、粘着層中に適度な粒子を入れることにより、滑り性を向上させる等の工夫が必要となってしまう場合がある。 Further, the content of the particles in the film is unclear because there is a balance with the average particle size of the particles, but is preferably 5% by weight or less, more preferably in the range of 0.0003 to 3% by weight, and still more preferably. The range is 0.0005 to 1% by weight. When the particle content exceeds 5% by weight, there may be a concern about problems due to dropout of particles or reduction in transparency of the film. When there are no or few particles, the transparency of the film will be high and a good film will be obtained, but the slipperiness may be insufficient, so slipping can be achieved by putting appropriate particles in the adhesive layer. In some cases, it is necessary to devise such as improving the performance.
使用する粒子の形状に関しても特に限定されるわけではなく、球状、塊状、棒状、扁平状等のいずれを用いてもよい。また、その硬度、比重、色等についても特に制限はない。
これら一連の粒子は、必要に応じて2種類以上を併用してもよい。
The shape of the particles to be used is not particularly limited, and any of a spherical shape, a block shape, a rod shape, a flat shape, and the like may be used. Moreover, there is no restriction | limiting in particular also about the hardness, specific gravity, a color, etc.
These series of particles may be used in combination of two or more as required.
フィルム中に粒子を添加する方法としては、特に限定されるものではなく、従来公知の方法を採用しうる。例えば、各層を構成するフィルムを形成する樹脂を製造する任意の段階において含有させることもできるし、樹脂を製造後に含有させることもできる。 The method for adding particles to the film is not particularly limited, and a conventionally known method can be adopted. For example, it can be contained at any stage of producing the resin forming the film constituting each layer, or the resin can be contained after production.
本発明におけるフィルム中には、上述の粒子以外に必要に応じて従来公知の紫外線吸収剤、酸化防止剤、帯電防止剤、熱安定剤、潤滑剤、染料、顔料等を添加することができる。 In addition to the above-mentioned particles, conventionally known ultraviolet absorbers, antioxidants, antistatic agents, thermal stabilizers, lubricants, dyes, pigments and the like can be added to the film in the present invention as necessary.
本発明におけるフィルムの厚みは、フィルムとして製膜可能な範囲であれば特に限定されるものではないが、好ましくは2〜350μm、より好ましくは5〜200μm、さらに好ましくは10〜75μmの範囲である。 The thickness of the film in the present invention is not particularly limited as long as it can be formed into a film, but is preferably 2 to 350 μm, more preferably 5 to 200 μm, and still more preferably 10 to 75 μm. .
次に本発明におけるフィルムの製造例について具体的に説明するが、以下の製造例に何ら限定されるものではない。一般的には、樹脂を溶融し、シート化して、強度を上げる等の目的で延伸を行い、フィルムを作成する。一例として、先に述べたポリエステルフィルムを製造する場合を紹介する。例えば、二軸延伸ポリエステルフィルムを製造する場合、まずポリエステル原料を、押出機を用いてダイから溶融押し出しし、溶融シートを冷却ロールで冷却固化して未延伸シートを得る。この場合、シートの平面性を向上させるためシートと回転冷却ドラムとの密着性を高めることが好ましく、静電印加密着法や液体塗布密着法が好ましく採用される。次に得られた未延伸シートを一方向にロールまたはテンター方式の延伸機により延伸する。延伸温度は、好ましくは70〜120℃、より好ましくは80〜110℃であり、延伸倍率は好ましくは2.5〜7倍、より好ましくは3.0〜6倍である。次いで、一段目の延伸方向と直交する方向に、好ましくは70〜170℃で、延伸倍率は好ましくは2.5〜7倍、より好ましくは3.0〜6倍で延伸する。引き続き180〜270℃の温度で緊張下または30%以内の弛緩下で熱処理を行い、二軸配向フィルムを得る方法が挙げられる。上記の延伸においては、一方向の延伸を2段階以上で行う方法を採用することもできる。その場合、最終的に二方向の延伸倍率がそれぞれ上記範囲となるように行うのが好ましい。また、延伸は同時二軸延伸法を用いることも可能である。 Next, although the manufacture example of the film in this invention is demonstrated concretely, it is not limited to the following manufacture examples at all. In general, the resin is melted, formed into a sheet, and stretched for the purpose of increasing the strength and the film is formed. As an example, the case where the polyester film mentioned above is manufactured is introduced. For example, when producing a biaxially stretched polyester film, first, a polyester raw material is melt-extruded from a die using an extruder, and the molten sheet is cooled and solidified with a cooling roll to obtain an unstretched sheet. In this case, in order to improve the flatness of the sheet, it is preferable to improve the adhesion between the sheet and the rotary cooling drum, and an electrostatic application adhesion method or a liquid application adhesion method is preferably employed. Next, the obtained unstretched sheet is stretched in one direction by a roll or a tenter type stretching machine. The stretching temperature is preferably 70 to 120 ° C, more preferably 80 to 110 ° C, and the stretching ratio is preferably 2.5 to 7 times, more preferably 3.0 to 6 times. Next, the film is stretched in the direction orthogonal to the first-stage stretching direction, preferably at 70 to 170 ° C., and the stretching ratio is preferably 2.5 to 7 times, more preferably 3.0 to 6 times. Subsequently, a method of obtaining a biaxially oriented film by performing heat treatment at a temperature of 180 to 270 ° C. under tension or under relaxation within 30% can be mentioned. In the above-described stretching, a method in which stretching in one direction is performed in two or more stages can be employed. In that case, it is preferable to carry out so that the draw ratios in the two directions finally fall within the above ranges. In addition, the simultaneous biaxial stretching method can be used for stretching.
次に本発明における積層フィルムを構成する粘着層の形成について説明する。粘着層の形成方法としては、例えば、コーティング、転写、ラミネート等の方法が挙げられる。粘着層の形成のしやすさ、膜厚のコントロールを考慮するとコーティングにより形成することが好ましい。 Next, formation of the adhesion layer which comprises the laminated | multilayer film in this invention is demonstrated. Examples of the method for forming the adhesive layer include methods such as coating, transfer, and lamination. In consideration of ease of formation of the adhesive layer and control of the film thickness, it is preferable to form the adhesive layer by coating.
コーティングによる方法としては、フィルム製造の工程内で行う、インラインコーティングにより設けられてもよく、一旦製造したフィルムに系外でコーティングする、オフラインコーティングより設けられてもよい。より好ましくはインラインコーティングにより形成されるものである。 As a method by coating, it may be provided by in-line coating performed in the film production process, or may be provided by off-line coating in which the film once produced is coated outside the system. More preferably, it is formed by in-line coating.
インラインコーティングは、具体的には、フィルムを形成する樹脂を溶融押出ししてから延伸後熱固定して巻き上げるまでの任意の段階でコーティングを行う方法である。通常は、溶融、急冷して得られる未延伸シート、延伸された一軸延伸フィルム、熱固定前の二軸延伸フィルム、熱固定後で巻上前のフィルムの何れかにコーティングする。以下に限定するものではないが、例えば逐次二軸延伸においては、特に長手方向(縦方向)に延伸された一軸延伸フィルムにコーティングした後に横方向に延伸する方法が優れている。かかる方法によれば、製膜と粘着層形成を同時に行うことができるため製造コスト上のメリットがあり、また、コーティング後に延伸を行うために、粘着層の厚みを延伸倍率により変化させることもでき、オフラインコーティングに比べ、薄膜コーティングをより容易に行うことができる。 Specifically, the in-line coating is a method in which coating is performed at an arbitrary stage from melt extrusion of a resin forming a film to heat setting after stretching and winding. Usually, it is coated on any of an unstretched sheet obtained by melting and quenching, a stretched uniaxially stretched film, a biaxially stretched film before heat setting, and a film after heat setting and before winding. Although not limited to the following, for example, in sequential biaxial stretching, a method of stretching in the transverse direction after coating a uniaxially stretched film stretched in the longitudinal direction (longitudinal direction) is particularly excellent. According to such a method, since film formation and adhesion layer formation can be performed simultaneously, there is a merit in manufacturing cost, and in order to perform stretching after coating, the thickness of the adhesion layer can be changed by the stretching ratio. Compared to offline coating, thin film coating can be performed more easily.
また、延伸前にフィルム上に粘着層を設けることにより、粘着層を基材フィルムと共に延伸することができ、それにより粘着層を基材フィルムに強固に密着させることができる。さらに、二軸延伸フィルムの製造において、クリップ等によりフィルム端部を把持しつつ延伸することで、フィルムを縦および横方向に拘束することができ、熱固定工程において、しわ等が入らず平面性を維持したまま高温をかけることができる。 Moreover, by providing the adhesive layer on the film before stretching, the adhesive layer can be stretched together with the base film, whereby the adhesive layer can be firmly adhered to the base film. Furthermore, in the manufacture of biaxially stretched films, the film can be restrained in the vertical and horizontal directions by stretching while gripping the film edges with clips, etc., and flatness is not generated in the heat setting process. High temperature can be applied while maintaining
それゆえ、コーティング後に施される熱処理が他の方法では達成されない高温とすることができるために、粘着層の造膜性が向上し、粘着層と基材フィルムとをより強固に密着させることができ、さらには、強固な粘着層とすることができる。 Therefore, since the heat treatment performed after coating can be performed at a high temperature that cannot be achieved by other methods, the film forming property of the adhesive layer can be improved, and the adhesive layer and the base film can be more firmly adhered to each other. In addition, a strong adhesive layer can be obtained.
上述のインラインコーティングによる工程によれば、粘着層の形成有無でフィルム寸法が大きく変わることはなく、傷付きや異物付着のリスクも粘着層の形成有無で大きく変わることはないため、コーティングという工程を1つ余分に行うオフラインコーティングに比べ大きな利点である。さらに、種々検討の結果、インラインコーティングの方が本発明のフィルムを被着体に貼り合わせたときの粘着層の成分の移行である、糊残りを低減させることができるという利点もあることを見いだした。これは、オフラインコーティングでは得られない高温で熱処理することが可能であり、粘着層と基材フィルムとがより強固に密着した結果であると考えられる。 According to the above-mentioned process by in-line coating, the film size does not change greatly depending on whether or not the adhesive layer is formed, and the risk of scratches and adhesion of foreign substances does not change greatly depending on whether or not the adhesive layer is formed. This is a significant advantage over an extra off-line coating. Furthermore, as a result of various studies, it has been found that in-line coating has the advantage of reducing adhesive residue, which is a transfer of components of the adhesive layer when the film of the present invention is bonded to an adherend. It was. This can be heat-treated at a high temperature that cannot be obtained by off-line coating, and is considered to be a result of the adhesive layer and the base film being more firmly adhered to each other.
本発明においては、平均粒径が3μm以下の粒子を含有する粘着層を有し、当該粒子の平均粒径が粘着層の膜厚の3倍以下の範囲であることを必須の要件とするものである。 In the present invention, it has an adhesive layer containing particles having an average particle size of 3 μm or less, and it is an essential requirement that the average particle size of the particles is in a range of 3 times or less the thickness of the adhesive layer It is.
粘着層に含有する粒子の平均粒径と、平均粒径と膜厚の比率を適切な範囲で調整することで、粘着力と、粘着力と相反してしまう特性であるということが判明した、ブロッキング特性および滑り性を確保しやすいことを見いだした。平均粒径が3μmを超える場合、あるいは平均粒径が粘着層の膜厚の3倍を超える場合には、粘着層の設計によっては、最も重要視している粘着力が十分に発現しないことや、粒子が脱落してしまうこと、フィルムのヘーズが上がってしまい視認性が悪くなることがある。 By adjusting the average particle size of the particles contained in the adhesive layer, and the ratio of the average particle size and the film thickness in an appropriate range, it was found that the adhesive strength was a property that conflicted with the adhesive strength, It was found that it was easy to ensure blocking characteristics and slipperiness. When the average particle diameter exceeds 3 μm, or when the average particle diameter exceeds three times the film thickness of the adhesive layer, depending on the design of the adhesive layer, the most important adhesive force may not be sufficiently developed. The particles may fall off, the haze of the film may increase, and the visibility may deteriorate.
粘着層に含有する粒子の平均粒径は、3μm以下であることが必須であり、好ましくは1nm〜2μm、より好ましくは5nm〜1μm、さらに好ましくは10〜500nm、特に好ましくは15〜300nmの範囲である。粘着層の膜厚が例えば1μm以下などの薄い範囲では、平均粒径が小さいほど粘着力低下を防ぐことができ、粘着特性には効果的ではあるが、フィルムのブロッキング特性や滑り性に起因する取扱い性は悪化する方向である。そのため、用途に応じて、上述の好適な範囲での使用が必要となってくる。 The average particle size of the particles contained in the adhesive layer must be 3 μm or less, preferably 1 nm to 2 μm, more preferably 5 nm to 1 μm, still more preferably 10 to 500 nm, and particularly preferably 15 to 300 nm. It is. In a thin range where the thickness of the adhesive layer is, for example, 1 μm or less, the smaller the average particle size, the lower the adhesive strength can be prevented, which is more effective for adhesive properties, but is due to the blocking properties and slipperiness of the film. The handleability is in the direction of worsening. Therefore, use in the above-mentioned suitable range is required according to the application.
平均粒径と粘着層の膜厚の比率(平均粒径を粘着層の膜厚で除算した値)は、3倍以下であることが必須であり、好ましくは0.001〜2倍、より好ましくは0.01〜1倍、さらに好ましくは0.04〜0.8倍、特に好ましくは0.1〜0.7倍の範囲である。平均粒径と膜厚の比率が大きくなると、粘着層の設計によっては粘着力が低下する傾向にある。特に1倍を超える範囲では、粘着層や粘着される相手基材(被着体)の性質によっては著しく粘着力が低下する場合もあるので注意が必要である。また、逆に平均粒径と膜厚の比率が小さくなると、フィルムのブロッキング特性や滑り性に起因する取扱い性は悪化する方向である。そのため、用途に応じて、上述の好適な範囲での使用が必要となってくる。 The ratio of the average particle diameter to the thickness of the adhesive layer (the value obtained by dividing the average particle diameter by the thickness of the adhesive layer) must be 3 times or less, preferably 0.001 to 2 times, more preferably Is 0.01 to 1 times, more preferably 0.04 to 0.8 times, and particularly preferably 0.1 to 0.7 times. When the ratio between the average particle diameter and the film thickness increases, the adhesive strength tends to decrease depending on the design of the adhesive layer. In particular, in the range exceeding 1 time, the adhesive strength may be remarkably lowered depending on the properties of the adhesive layer and the partner substrate (adhered body) to be adhered, so care must be taken. On the other hand, when the ratio between the average particle diameter and the film thickness becomes small, the handling property due to the blocking properties and slipperiness of the film tends to deteriorate. Therefore, use in the above-mentioned suitable range is required according to the application.
粘着層の膜厚としては、上述の平均粒径や、平均粒径と膜厚の比率の範囲で適宜選択することが可能であるが、より好適な粘着力の調整、あるいはブロッキング特性、粘着層の外観などの向上のためには、10μm以下、好ましくは1nm〜4μm、より好ましくは10nm〜1μm、さらに好ましくは20〜500nm以下、特に好ましくは40〜400nm以下の範囲である。一般的な粘着層は数十μmレベルの厚い膜厚であるが、そのような場合、例えば、偏光板製造用に使用する場合、粘着フィルムを偏光板などとの被着体と貼り合わせて断裁する際等において、粘着層中の粘着剤のはみ出しが顕著に発生してしまう場合がある。ところが上述の範囲に膜厚を調整することで、当該はみ出しを最小限に抑えることができる。この効果は、粘着層の膜厚が薄いほど良好となる。また、粘着層の膜厚が薄いほど、フィルム上に存在する粘着層の絶対量が少ないこともあり、被着体に粘着層の成分が移行する、糊残りの低減にも効果的である。さらに上述の範囲の膜厚とすることで、強すぎない適度な粘着力を達成することができることも分かり、例えば、偏光板製造工程用など、粘着性能と、貼り合わせ後に剥離する剥離性能の両立を図る必要がある用途に用いる場合には、粘着−剥離の操作を容易に行うことができ、最適なフィルムとすることが可能となる。膜厚が薄いほどブロッキング特性には有効であり、インラインコーティングにより粘着層を形成する場合には製造し易いものとなり好ましいが、逆に膜厚が薄すぎる場合は粘着層の構成によっては粘着特性がなくなってしまう場合もあるので、用途に応じて上述の好適な範囲での使用が好ましい。 The thickness of the pressure-sensitive adhesive layer can be appropriately selected within the range of the above average particle diameter or the ratio of the average particle diameter to the film thickness, but more suitable adjustment of adhesive force or blocking characteristics, pressure-sensitive adhesive layer In order to improve the appearance, the thickness is 10 μm or less, preferably 1 nm to 4 μm, more preferably 10 nm to 1 μm, still more preferably 20 to 500 nm, and particularly preferably 40 to 400 nm or less. A typical adhesive layer has a thickness of several tens of micrometers, but in such a case, for example, when used for manufacturing a polarizing plate, the adhesive film is bonded to an adherend such as a polarizing plate and cut. In some cases, the sticking out of the pressure-sensitive adhesive in the pressure-sensitive adhesive layer may occur remarkably. However, the protrusion can be minimized by adjusting the film thickness within the above-mentioned range. This effect becomes better as the adhesive layer is thinner. In addition, the thinner the adhesive layer is, the smaller the absolute amount of the adhesive layer present on the film is, and the more effective the adhesive paste component is transferred to the adherend and the reduction in adhesive residue. Furthermore, it can be seen that by setting the film thickness in the above-mentioned range, it is possible to achieve an appropriate adhesive strength that is not too strong. For example, for polarizing plate manufacturing processes, both adhesive performance and peeling performance that peels after bonding are achieved. When used in applications where it is necessary to achieve this, the adhesive-peeling operation can be easily performed, and an optimum film can be obtained. The thinner the film is, the more effective it is for blocking properties. When forming an adhesive layer by in-line coating, it is preferable because it is easy to manufacture. Since it may disappear, use in the above-mentioned suitable range according to a use is preferable.
使用する粒子の材質としては、従来公知の各種の粒子を使用することができ、例えば、シリカ、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、硫酸カルシウム、リン酸カルシウム、リン酸マグネシウム、カオリン、酸化アルミニウム、酸化ジルコニウム、酸化チタン等の無機粒子、アクリル樹脂、スチレン樹脂、尿素樹脂、フェノール樹脂、エポキシ樹脂、ベンゾグアナミン樹脂等の有機粒子等が挙げられる。その中でも、耐熱性が高く変形しにくく粘着特性やブロッキング特性の調整がしやすいという観点から無機粒子が好ましく、平均粒径の選択性・利便性も考慮するとシリカ粒子がより好ましい。 As the material of the particles to be used, various conventionally known particles can be used. For example, silica, calcium carbonate, magnesium carbonate, barium carbonate, calcium sulfate, calcium phosphate, magnesium phosphate, kaolin, aluminum oxide, zirconium oxide And inorganic particles such as titanium oxide, and organic particles such as acrylic resin, styrene resin, urea resin, phenol resin, epoxy resin, and benzoguanamine resin. Among them, inorganic particles are preferable from the viewpoint of high heat resistance and resistance to deformation and easy adjustment of adhesive properties and blocking properties, and silica particles are more preferable in view of selectivity and convenience of average particle size.
粘着層中に含有させる粒子は1種類でも良いし、2種類以上を併用しても良い。例えば、平均粒径が異なる粒子を2種類以上併用することで、フィルムの透明性を落とすことなく、フィルムの滑り性をより向上させることもできる。 One kind of particles may be contained in the adhesive layer, or two or more kinds may be used in combination. For example, by using two or more kinds of particles having different average particle sizes in combination, the slipperiness of the film can be further improved without deteriorating the transparency of the film.
粘着層を形成する粒子以外の材料としては、種々検討の結果、特に制限するものではないが、ガラス転移点が0℃以下の樹脂を用いることにより、非ポリオレフィン系フィルムに、適度な粘着特性を付与しやすいことを見いだした。ガラス転移点が0℃以下の樹脂としては、従来公知の樹脂を使用することができる。樹脂の具体例としては、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂、ポリビニル樹脂(ポリビニルアルコール、塩化ビニル酢酸ビニル共重合体等)等が挙げられ、その中でも特に粘着特性やコーティング性を考慮すると、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂が好ましい。さらに、フィルムの再利用性を考慮した場合、ポリエステル樹脂やアクリル樹脂が好ましく、また、基材がポリエステルフィルムの場合、基材との密着性や被着体への糊残りの少なさを考慮した場合はポリエステル樹脂が、また経時変化の少なさを考慮した場合はアクリル樹脂が、最も好ましい。 The material other than the particles forming the adhesive layer is not particularly limited as a result of various studies. By using a resin having a glass transition point of 0 ° C. or less, an appropriate adhesive property can be imparted to a non-polyolefin film. I found it easy to grant. Conventionally known resins can be used as the resin having a glass transition point of 0 ° C. or lower. Specific examples of the resin include a polyester resin, an acrylic resin, a urethane resin, a polyvinyl resin (polyvinyl alcohol, vinyl chloride vinyl acetate copolymer, etc.) and the like. Acrylic resin and urethane resin are preferred. Furthermore, when considering the reusability of the film, a polyester resin or an acrylic resin is preferable, and when the base material is a polyester film, the adhesiveness with the base material and the small amount of adhesive residue on the adherend are considered. In this case, a polyester resin is most preferable, and an acrylic resin is most preferable in consideration of little change with time.
ポリエステル樹脂とは、主な構成成分として例えば、下記のような多価カルボン酸および多価ヒドロキシ化合物からなるものが挙げられる。すなわち、多価カルボン酸としては、テレフタル酸、イソフタル酸、オルトフタル酸、フタル酸、4,4’−ジフェニルジカルボン酸、2,5−ナフタレンジカルボン酸、1,5−ナフタレンジカルボン酸および、2,6−ナフタレンジカルボン酸、2,7−ナフタレンジカルボン酸、1,4−シクロヘキサンジカルボン酸、2−カリウムスルホテレフタル酸、5−ソジウムスルホイソフタル酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸、グルタル酸、コハク酸、トリメリット酸、トリメシン酸、ピロメリット酸、無水トリメリット酸、無水フタル酸、p−ヒドロキシ安息香酸、トリメリット酸モノカリウム塩およびそれらのエステル形成性誘導体などを用いることができ、多価ヒドロキシ化合物としては、エチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、1,3−プロパンジオ−ル、1,4−ブタンジオール、1,6−ヘキサンジオ−ル、2−メチル−1,5−ペンタンジオ−ル、ネオペンチルグリコール、1,4−シクロヘキサンジメタノ−ル、p−キシリレングリコ−ル、ビスフェノ−ルA−エチレングリコ−ル付加物、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコ−ル、ポリプロピレングリコ−ル、ポリテトラメチレングリコ−ル、ポリテトラメチレンオキシドグリコ−ル、ジメチロ−ルプロピオン酸、グリセリン、トリメチロ−ルプロパン、ジメチロ−ルエチルスルホン酸ナトリウム、ジメチロ−ルプロピオン酸カリウムなどを用いることができる。これらの化合物の中から、それぞれ適宜1つ以上を選択し、常法の重縮合反応によりポリエステル樹脂を合成すればよい。 The polyester resin includes, for example, those composed of the following polyvalent carboxylic acid and polyvalent hydroxy compound as main constituent components. That is, as the polyvalent carboxylic acid, terephthalic acid, isophthalic acid, orthophthalic acid, phthalic acid, 4,4′-diphenyldicarboxylic acid, 2,5-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, and 2,6 -Naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 2-potassium sulfoterephthalic acid, 5-sodium sulfoisophthalic acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, glutar Acid, succinic acid, trimellitic acid, trimesic acid, pyromellitic acid, trimellitic anhydride, phthalic anhydride, p-hydroxybenzoic acid, trimellitic acid monopotassium salt and ester-forming derivatives thereof can be used. As the polyvalent hydroxy compound, ethylene Recall, 1,2-propylene glycol, 1,3-propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, 2-methyl-1,5-pentanediol , Neopentyl glycol, 1,4-cyclohexanedimethanol, p-xylylene glycol, bisphenol A-ethylene glycol adduct, diethylene glycol, triethylene glycol, polyethylene glycol, polypropylene glycol Polytetramethylene glycol, polytetramethylene oxide glycol, dimethylolpropionic acid, glycerin, trimethylolpropane, sodium dimethylolethylsulfonate, potassium dimethylolpropionate, and the like can be used. One or more compounds may be appropriately selected from these compounds, and a polyester resin may be synthesized by a conventional polycondensation reaction.
上記の中でもガラス転移点を0℃以下と低くするために脂肪族多価カルボン酸や脂肪族多価ヒドロキシ化合物を構成成分に含有することが好ましい。一般的に、ポリエステル樹脂は芳香族多価カルボン酸と脂肪族も含めた多価ヒドロキシ化合物で構成されるので、一般的なポリエステル樹脂よりもガラス転移点を低くするためには、脂肪族多価カルボン酸を含有することが効果的である。ガラス転移点を低くする観点においては脂肪族多価カルボン酸の中でも炭素数は長いことが良く、好ましくは炭素数6以上(アジピン酸)、より好ましくは炭素数8以上、さらに好ましくは10以上の範囲であり、好ましい範囲の上限は20である。 Among them, it is preferable to contain an aliphatic polyvalent carboxylic acid or an aliphatic polyvalent hydroxy compound as a constituent component in order to lower the glass transition point to 0 ° C. or lower. In general, since a polyester resin is composed of an aromatic polyvalent carboxylic acid and a polyvalent hydroxy compound including an aliphatic group, in order to lower the glass transition point than a general polyester resin, an aliphatic polyvalent compound is used. It is effective to contain a carboxylic acid. From the viewpoint of lowering the glass transition point, the aliphatic polyvalent carboxylic acid should have a long carbon number, preferably 6 or more (adipic acid), more preferably 8 or more, and still more preferably 10 or more. The upper limit of the preferred range is 20.
また、粘着特性向上の観点から、上記脂肪族多価カルボン酸のポリエステル樹脂中の酸成分における含有量としては、好ましくは2モル%以上、より好ましくは4モル%以上、さらに好ましくは6モル%以上、特に好ましくは10モル%以上であり、好ましい範囲の上限は50モル%である。 Further, from the viewpoint of improving adhesive properties, the content of the aliphatic polyvalent carboxylic acid in the acid component in the polyester resin is preferably 2 mol% or more, more preferably 4 mol% or more, and even more preferably 6 mol%. As mentioned above, it is 10 mol% or more especially preferably, and the upper limit of a preferable range is 50 mol%.
脂肪族多価ヒドロキシ化合物において、ガラス転移点を低くするためには、炭素数が4以上(ブタンジオール)であることが好ましく、そのポリエステル樹脂中のヒドロキシ成分における含有量としては、好ましくは10モル%以上、より好ましくは30モル%以上の範囲である。 In the aliphatic polyvalent hydroxy compound, in order to lower the glass transition point, the number of carbon atoms is preferably 4 or more (butanediol), and the content of the hydroxy component in the polyester resin is preferably 10 mol. % Or more, more preferably in the range of 30 mol% or more.
インラインコーティングへの適性を考慮すると水系にすることが好ましく、そのためにスルホン酸、スルホン酸金属塩、カルボン酸、カルボン酸金属塩がポリエステル樹脂に含有していることが好ましい。特に水への分散性が良好であるという点において、スルホン酸やスルホン酸金属塩が好ましく、特にスルホン酸金属塩が好ましい。 In view of suitability for in-line coating, it is preferable to use an aqueous system. For this reason, it is preferable that a sulfonic acid, a sulfonic acid metal salt, a carboxylic acid, and a carboxylic acid metal salt are contained in the polyester resin. In view of good dispersibility in water, sulfonic acid and sulfonic acid metal salt are preferable, and sulfonic acid metal salt is particularly preferable.
上記、スルホン酸、スルホン酸金属塩、カルボン酸、カルボン酸金属塩を使用する場合、ポリエステル樹脂中の酸成分中の含有量として、好ましくは0.1〜10モル%、より好ましくは0.2〜8モル%の範囲である。上記範囲で使用することで水への分散性が良好なものとなる。 When the above sulfonic acid, sulfonic acid metal salt, carboxylic acid, or carboxylic acid metal salt is used, the content in the acid component in the polyester resin is preferably 0.1 to 10 mol%, more preferably 0.2. It is in the range of ˜8 mol%. By using in the above range, water dispersibility is good.
また、インラインコーティングにおける塗布外観、基材フィルムへの密着性やブロッキング、さらには表面保護フィルムとして用いた場合の被着体への糊残りの低減を考慮すると、ポリエステル樹脂中の酸成分として、ある程度の芳香族多価カルボン酸を含有していることが好ましい。芳香族多価カルボン酸の中でも粘着特性の観点からテレフタル酸やイソフタル酸等のベンゼン環構造がナフタレン環構造より好ましい。さらに粘着特性をより向上させるには2種類以上の芳香族多価カルボン酸を併用することがより好ましい。 In addition, considering the appearance of coating in in-line coating, adhesion to the base film and blocking, and reduction of adhesive residue on the adherend when used as a surface protective film, as an acid component in the polyester resin, to some extent It is preferable to contain the aromatic polyvalent carboxylic acid. Among aromatic polycarboxylic acids, a benzene ring structure such as terephthalic acid or isophthalic acid is preferable to a naphthalene ring structure from the viewpoint of adhesive properties. In order to further improve the adhesive properties, it is more preferable to use two or more kinds of aromatic polyvalent carboxylic acids in combination.
粘着特性を向上させるためのポリエステル樹脂のガラス転移点としては、0℃以下が必須であり、好ましくは−10℃以下、より好ましくは−20℃以下の範囲であり、好ましい範囲の下限としては−60℃である。上記範囲で使用することで最適な粘着特性を有するフィルムとすることが容易となる。 As a glass transition point of the polyester resin for improving the adhesive properties, 0 ° C. or less is essential, preferably −10 ° C. or less, more preferably −20 ° C. or less, and the lower limit of the preferred range is − 60 ° C. It becomes easy to set it as the film which has the optimal adhesion characteristic by using in the said range.
アクリル樹脂とは、アクリル系、メタアクリル系のモノマーを含む重合性モノマーからなる重合体である(以下、アクリルおよびメタアクリルを合わせて(メタ)アクリルと略記する場合がある)。これらは、単独重合体あるいは共重合体、さらにはアクリル系、メタアクリル系のモノマー以外の重合性モノマーとの共重合体、いずれでも差し支えない。 The acrylic resin is a polymer composed of a polymerizable monomer including acrylic and methacrylic monomers (hereinafter, acrylic and methacryl may be abbreviated as (meth) acryl). These may be either homopolymers or copolymers, and copolymers with polymerizable monomers other than acrylic and methacrylic monomers.
また、それら重合体と他のポリマー(例えばポリエステル、ポリウレタン等)との共重合体も含まれる。例えば、ブロック共重合体、グラフト共重合体である。あるいは、ポリエステル溶液、またはポリエステル分散液中で重合性モノマーを重合して得られたポリマー(場合によってはポリマーの混合物)も含まれる。同様にポリウレタン溶液、ポリウレタン分散液中で重合性モノマーを重合して得られたポリマー(場合によってはポリマーの混合物)も含まれる。同様にして他のポリマー溶液、または分散液中で重合性モノマーを重合して得られたポリマー(場合によってはポリマー混合物)も含まれる。 Moreover, the copolymer of these polymers and other polymers (for example, polyester, polyurethane, etc.) is also included. For example, a block copolymer or a graft copolymer. Alternatively, a polymer (possibly a mixture of polymers) obtained by polymerizing a polymerizable monomer in a polyester solution or a polyester dispersion is also included. Similarly, a polymer obtained by polymerizing a polymerizable monomer in a polyurethane solution or a polyurethane dispersion (sometimes a mixture of polymers) is also included. Similarly, a polymer (in some cases, a polymer mixture) obtained by polymerizing a polymerizable monomer in another polymer solution or dispersion is also included.
上記重合性モノマーとしては、特に限定はしないが、特に代表的な化合物としては、例えば、アクリル酸、メタクリル酸、クロトン酸、イタコン酸、フマル酸、マレイン酸、シトラコン酸のような各種カルボキシル基含有モノマー類、およびそれらの塩;2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、モノブチルヒドロキルフマレート、モノブチルヒドロキシイタコネートのような各種の水酸基含有モノマー類;メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2−エチルへキシル(メタ)アクリレート、ラウリル(メタ)アクリレートのような各種の(メタ)アクリル酸エステル類;(メタ)アクリルアミド、ジアセトンアクリルアミド、N−メチロールアクリルアミドまたは(メタ)アクリロニトリル等のような種々の窒素含有化合物;スチレン、α−メチルスチレン、ジビニルベンゼン、ビニルトルエンのような各種スチレン誘導体、プロピオン酸ビニル、酢酸ビニルのような各種のビニルエステル類;γ−メタクリロキシプロピルトリメトキシシラン、ビニルトリメトキシシラン等のような種々の珪素含有重合性モノマー類;燐含有ビニル系モノマー類;塩化ビニル、塩化ビリデンのような各種のハロゲン化ビニル類;ブタジエンのような各種共役ジエン類が挙げられる。 The polymerizable monomer is not particularly limited, but particularly representative compounds include, for example, various carboxyl groups such as acrylic acid, methacrylic acid, crotonic acid, itaconic acid, fumaric acid, maleic acid, and citraconic acid. Monomers, and salts thereof; such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, monobutyl hydroxyl fumarate, monobutyl hydroxy itaconate Various hydroxyl group-containing monomers; various such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate No (meta) acrylic Acid esters; various nitrogen-containing compounds such as (meth) acrylamide, diacetone acrylamide, N-methylolacrylamide or (meth) acrylonitrile; various styrene derivatives such as styrene, α-methylstyrene, divinylbenzene, vinyltoluene Various vinyl esters such as vinyl propionate and vinyl acetate; various silicon-containing polymerizable monomers such as γ-methacryloxypropyltrimethoxysilane, vinyltrimethoxysilane; phosphorus-containing vinyl monomers; Examples include various vinyl halides such as vinyl and biliden chloride; and various conjugated dienes such as butadiene.
ガラス転移点を0℃以下と低くするために、ホモポリマーのガラス転移点が0℃以下の(メタ)アクリル系を使用する必要があり、例えば、エチルアクリレート(ガラス転移点:−22℃)、n−プロピルアクリレート(ガラス転移点:−37℃)、イソプロピルアクリレート(ガラス転移点:−5℃)、ノルマルブチルアクリレート(ガラス転移点:−55℃)、n−へキシルアクリレート(ガラス転移点:−57℃)、2−エチルへキシルアクリレート(ガラス転移点:−70℃)、イソノニルアクリレート(ガラス転移点:−82℃)、ラウリルメタアクリレート(ガラス転移点:−65℃)、2−ヒドロキシエチルアクリレート(ガラス転移点:−15℃)等が挙げられる。 In order to lower the glass transition point to 0 ° C. or lower, it is necessary to use a (meth) acrylic system having a glass transition point of the homopolymer of 0 ° C. or lower. For example, ethyl acrylate (glass transition point: −22 ° C.), n-propyl acrylate (glass transition point: −37 ° C.), isopropyl acrylate (glass transition point: −5 ° C.), normal butyl acrylate (glass transition point: −55 ° C.), n-hexyl acrylate (glass transition point: − 57 ° C), 2-ethylhexyl acrylate (glass transition point: -70 ° C), isononyl acrylate (glass transition point: -82 ° C), lauryl methacrylate (glass transition point: -65 ° C), 2-hydroxyethyl Examples include acrylate (glass transition point: −15 ° C.).
粘着特性の観点から、アクリル樹脂を構成するモノマーとして、ホモポリマーのガラス転移点が0℃以下であるモノマーの含有量は、アクリル樹脂全体に対する割合として、好ましくは30重量%以上、より好ましくは45重量%以上、さらに好ましくは60重量%以上、特に好ましくは70重量%以上の範囲である。また、好ましい範囲の上限は99重量%である。当該範囲で使用することで良好な粘着特性が得られやすい。 From the viewpoint of adhesive properties, the content of the monomer having a homopolymer glass transition point of 0 ° C. or less as the monomer constituting the acrylic resin is preferably 30% by weight or more, more preferably 45%, as a proportion of the entire acrylic resin. % By weight or more, more preferably 60% by weight or more, particularly preferably 70% by weight or more. The upper limit of the preferred range is 99% by weight. It is easy to obtain good adhesive properties by using in this range.
また、粘着特性を向上させる、ホモポリマーのガラス転移点が0℃以下であるモノマーのガラス転移点としては、好ましくは−20℃以下、より好ましくは−30℃以下、さらに好ましくは−40℃以下、特に好ましくは−50℃以下であり、好ましい範囲の下限は−100℃である。当該範囲で使用することで、適度な粘着特性を有するフィルムとすることが容易となる。 Moreover, as a glass transition point of the monomer whose homopolymer has a glass transition point of 0 ° C. or lower for improving the adhesive property, it is preferably −20 ° C. or lower, more preferably −30 ° C. or lower, and further preferably −40 ° C. or lower. Especially preferably, it is -50 degrees C or less, and the minimum of a preferable range is -100 degreeC. By using it in the said range, it becomes easy to set it as the film which has moderate adhesive characteristics.
粘着特性を向上させるために使用するモノマーとしては、好ましくはアルキル基の炭素数が4〜30の範囲、より好ましくは4〜20の範囲、さらに好ましくは4〜12の範囲であるアルキル(メタ)アクリレートである。工業的に量産されており、取扱い性や供給安定性の観点から、ノルマルブチルアクリレート、2−エチルへキシルアクリレートを含有するアクリル樹脂が最適である。 The monomer used for improving the adhesive properties is preferably an alkyl (meth) in which the alkyl group has 4 to 30 carbon atoms, more preferably 4 to 20 carbon atoms, and even more preferably 4 to 12 carbon atoms. Acrylate. Acrylic resins containing normal butyl acrylate and 2-ethylhexyl acrylate are optimal from the viewpoint of mass production industrially and handling and supply stability.
粘着特性を向上させるためのさらに最適なアクリル樹脂の形態としては、ノルマルブチルアクリレートおよび2−エチルへキシルアクリレートのアクリル樹脂中の合計の含有量が、好ましくは30重量%以上、より好ましくは40重量%以上、さらに好ましくは50重量%以上の範囲であり、好ましい範囲の上限は99重量%である。 As a more optimal form of the acrylic resin for improving the adhesive properties, the total content of normal butyl acrylate and 2-ethylhexyl acrylate in the acrylic resin is preferably 30% by weight or more, more preferably 40% by weight. % Or more, more preferably 50% by weight or more, and the upper limit of the preferred range is 99% by weight.
粘着特性を向上させるためのアクリル樹脂のガラス転移点としては、0℃以下であることが必須であり、好ましくは−10℃以下、より好ましくは−20℃以下の範囲、さらに好ましくは−30℃以下の範囲であり、好ましい範囲の下限としては−80℃である。上記範囲で使用することで最適な粘着特性を有するフィルムとすることが容易となる。 The glass transition point of the acrylic resin for improving the adhesive properties must be 0 ° C. or lower, preferably −10 ° C. or lower, more preferably −20 ° C. or lower, and further preferably −30 ° C. The lower limit of the preferred range is −80 ° C. It becomes easy to set it as the film which has the optimal adhesion characteristic by using in the said range.
ウレタン樹脂とは、ウレタン結合を分子内に有する高分子化合物のことであり、通常ポリオールとイソシアネートの反応により作成される。ポリオールとしては、ポリカーボネートポリオール類、ポリエーテルポリオール類、ポリエステルポリオール類、ポリオレフィンポリオール類、アクリルポリオール類が挙げられ、これらの化合物は単独で用いても、複数種用いてもよい。 The urethane resin is a polymer compound having a urethane bond in the molecule, and is usually produced by a reaction between a polyol and an isocyanate. Examples of the polyol include polycarbonate polyols, polyether polyols, polyester polyols, polyolefin polyols, and acrylic polyols. These compounds may be used alone or in combination.
ポリカーボネートポリオール類は、多価アルコール類とカーボネート化合物とから、脱アルコール反応によって得られる。多価アルコール類としては、エチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,4−シクロヘキサンジオール、1,4−シクロヘキサンジメタノール、1,7−ヘプタンジオール、1,8−オクタンジオール、1,9−ノナンジオール、1,10−デカンジオール、ネオペンチルグリコール、3−メチル−1,5−ペンタンジオール、3,3−ジメチロールヘプタン等が挙げられる。カーボネート化合物としては、ジメチルカーボネート、ジエチルカーボネート、ジフェニルカーボネート、エチレンカーボネート等が挙げられ、これらの反応から得られるポリカーボネート系ポリオール類としては、例えば、ポリ(1,6−ヘキシレン)カーボネート、ポリ(3−メチル−1,5−ペンチレン)カーボネート等が挙げられる。 Polycarbonate polyols are obtained from a polyhydric alcohol and a carbonate compound by a dealcoholization reaction. Examples of the polyhydric alcohols include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentane. Diol, 1,6-hexanediol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decane Diol, neopentyl glycol, 3-methyl-1,5-pentanediol, 3,3-dimethylol heptane and the like can be mentioned. Examples of the carbonate compound include dimethyl carbonate, diethyl carbonate, diphenyl carbonate, and ethylene carbonate. Examples of the polycarbonate-based polyols obtained from these reactions include poly (1,6-hexylene) carbonate, poly (3- And methyl-1,5-pentylene) carbonate.
粘着特性向上の観点から、鎖状のアルキル鎖の炭素数は、好ましくは4〜30、より好ましくは4〜20、さらに好ましくは6〜12の範囲であるジオール成分から構成されるポリカーボネートポリオールであり、工業的に量産されており、取扱い性や供給安定性が良いという観点において、1,6−ヘキサンジオール、あるいは1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオールの中から選ばれる少なくとも2種のジオールを含有させた共重合ポリカーボネートポリオールであることが最適である。 From the viewpoint of improving adhesive properties, the chain alkyl chain is a polycarbonate polyol composed of a diol component preferably in the range of 4 to 30, more preferably 4 to 20, and even more preferably 6 to 12. In terms of industrial mass production and good handling and supply stability, 1,6-hexanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol It is optimal that it is a copolymerized polycarbonate polyol containing at least two diols selected from among them.
ポリエーテルポリオール類としては、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレンプロピレングリコール、ポリテトラメチレンエーテルグリコール、ポリヘキサメチレンエーテルグリコール等が挙げられる。 Examples of polyether polyols include polyethylene glycol, polypropylene glycol, polyethylene propylene glycol, polytetramethylene ether glycol, polyhexamethylene ether glycol, and the like.
粘着特性向上の観点から、ポリエーテルを形成するモノマーは、炭素数が、好ましくは2〜30、より好ましくは3〜20、さらに好ましくは4〜12の範囲である脂肪族ジオール、特に直鎖脂肪族ジオールを含有するポリエーテルポリオールである。 From the viewpoint of improving the adhesive properties, the monomer forming the polyether is an aliphatic diol, particularly a straight chain fat, preferably having 2 to 30 carbon atoms, more preferably 3 to 20 carbon atoms, and even more preferably 4 to 12 carbon atoms. It is a polyether polyol containing a group diol.
ポリエステルポリオール類としては、多価カルボン酸(マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、セバシン酸、フマル酸、マレイン酸、テレフタル酸、イソフタル酸等)またはそれらの酸無水物と多価アルコール(エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、2,3−ブタンジオール、2−メチル−1,3−プロパンジオール、1,5−ペンタンジオール、ネオペンチルグリコール、1,6−ヘキサンジオール、3−メチル−1,5−ペンタンジオール、2−メチル−2,4−ペンタンジオール、2−メチル−2−プロピル−1,3−プロパンジオール、1,8−オクタンジオール、2,2,4−トリメチル−1,3−ペンタンジオール、2−エチル−1,3−ヘキサンジオール、2,5−ジメチル−2,5−ヘキサンジオール、1,9−ノナンジオール、2−メチル−1,8−オクタンジオール、2−ブチル−2−エチル−1,3−プロパンジオール、2−ブチル−2−ヘキシル−1,3−プロパンジオール、シクロヘキサンジオール、ビスヒドロキシメチルシクロヘキサン、ジメタノールベンゼン、ビスヒドロキシエトキシベンゼン、アルキルジアルカノールアミン、ラクトンジオール等)の反応から得られるもの、ポリカプロラクトン等のラクトン化合物の誘導体ユニットを有するもの等が挙げられる。 Polyester polyols include polycarboxylic acids (malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, sebacic acid, fumaric acid, maleic acid, terephthalic acid, isophthalic acid, etc.) or their acid anhydrides. Product and polyhydric alcohol (ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 2-methyl-1,3-propanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 2-methyl-2,4-pentanediol 2-methyl-2-propyl-1 3-propanediol, 1,8-octanediol, 2,2,4-trimethyl-1,3-pentanediol, 2-ethyl-1,3-hexanediol, 2,5-dimethyl-2,5-hexanediol 1,9-nonanediol, 2-methyl-1,8-octanediol, 2-butyl-2-ethyl-1,3-propanediol, 2-butyl-2-hexyl-1,3-propanediol, cyclohexane Diol, bishydroxymethylcyclohexane, dimethanolbenzene, bishydroxyethoxybenzene, alkyl dialkanolamine, lactone diol, etc.) and those having derivative units of lactone compounds such as polycaprolactone.
粘着特性を考慮すると、上記ポリオール類の中でもポリカーボネートポリオール類およびポリエーテルポリオール類がより好適に用いられ、特にポリカーボネートポリオール類が好適である。 Considering the adhesive properties, among the polyols, polycarbonate polyols and polyether polyols are more preferably used, and polycarbonate polyols are particularly preferable.
ウレタン樹脂を得るために使用されるポリイソシアネート化合物としては、トリレンジイソシアネート、キシリレンジイソシアネート、メチレンジフェニルジイソシアネート、フェニレンジイソシアネート、ナフタレンジイソシアネート、トリジンジイソシアネート等の芳香族ジイソシアネート、α,α,α’,α’−テトラメチルキシリレンジイソシアネート等の芳香環を有する脂肪族ジイソシアネート、メチレンジイソシアネート、プロピレンジイソシアネート、リジンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート、シクロヘキサンジイソシアネート、メチルシクロヘキサンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、イソプロピリデンジシクロヘキシルジイソシアネート等の脂環族ジイソシアネート等が例示される。これらは単独で用いても、複数種併用してもよい。 Examples of the polyisocyanate compound used for obtaining the urethane resin include aromatic diisocyanates such as tolylene diisocyanate, xylylene diisocyanate, methylene diphenyl diisocyanate, phenylene diisocyanate, naphthalene diisocyanate, and tolidine diisocyanate, α, α, α ′, α ′. -Aliphatic diisocyanates having aromatic rings such as tetramethylxylylene diisocyanate, aliphatic diisocyanates such as methylene diisocyanate, propylene diisocyanate, trimethylhexamethylene diisocyanate, hexamethylene diisocyanate, cyclohexane diisocyanate, methylcyclohexane diisocyanate, isophorone diisocyanate, dicyclohexyl Methanzi Cyanate, alicyclic diisocyanates such as isopropylidene dicyclohexyl diisocyanates. These may be used alone or in combination.
ウレタン樹脂を合成する際に鎖延長剤を使用しても良く、鎖延長剤としては、イソシアネート基と反応する活性基を2個以上有するものであれば特に制限はなく、一般的には、水酸基またはアミノ基を2個有する鎖延長剤を主に用いることができる。 A chain extender may be used when synthesizing the urethane resin, and the chain extender is not particularly limited as long as it has two or more active groups that react with an isocyanate group. Alternatively, a chain extender having two amino groups can be mainly used.
水酸基を2個有する鎖延長剤としては、例えば、エチレングリコール、プロピレングリコール、ブタンジオール等の脂肪族グリコール、キシリレングリコール、ビスヒドロキシエトキシベンゼン等の芳香族グリコール、ネオペンチルグリコールヒドロキシピバレート等のエステルグリコールといったグリコール類を挙げることができる。また、アミノ基を2個有する鎖延長剤としては、例えば、トリレンジアミン、キシリレンジアミン、ジフェニルメタンジアミン等の芳香族ジアミン、エチレンジアミン、プロピレンジアミン、ヘキサンジアミン、2,2−ジメチル−1,3−プロパンジアミン、2−メチル−1,5−ペンタンジアミン、トリメチルヘキサンジアミン、2−ブチル−2−エチル−1,5−ペンタンジアミン、1 ,8−オクタンジアミン、1 ,9−ノナンジアミン、1 ,10−デカンジアミン等の脂肪族ジアミン、1−アミノ−3−アミノメチル−3,5,5−トリメチルシクロヘキサン、ジシクロヘキシルメタンジアミン、イソプロビリチンシクロヘキシル−4,4’−ジアミン、1,4−ジアミノシクロヘキサン、1 ,3−ビスアミノメチルシクロヘキサン等の脂環族ジアミン等が挙げられる。 Examples of the chain extender having two hydroxyl groups include aliphatic glycols such as ethylene glycol, propylene glycol and butanediol, aromatic glycols such as xylylene glycol and bishydroxyethoxybenzene, and esters such as neopentyl glycol hydroxypivalate. And glycols such as glycols. Examples of the chain extender having two amino groups include aromatic diamines such as tolylenediamine, xylylenediamine, and diphenylmethanediamine, ethylenediamine, propylenediamine, hexanediamine, 2,2-dimethyl-1,3- Propanediamine, 2-methyl-1,5-pentanediamine, trimethylhexanediamine, 2-butyl-2-ethyl-1,5-pentanediamine, 1,8-octanediamine, 1,9-nonanediamine, 1,10- Aliphatic diamines such as decane diamine, 1-amino-3-aminomethyl-3,5,5-trimethylcyclohexane, dicyclohexylmethanediamine, isoprobilitincyclohexyl-4,4′-diamine, 1,4-diaminocyclohexane, 1 , 3-Bisaminomethylcyclohexa And alicyclic diamines such as
本発明におけるウレタン樹脂は、溶剤を媒体とするものであってもよいが、好ましくは水を媒体とするものである。ウレタン樹脂を水に分散または溶解させるには、乳化剤を用いる強制乳化型、ウレタン樹脂中に親水性基を導入する自己乳化型あるいは水溶型等がある。特に、ウレタン樹脂の構造中にイオン基を導入しアイオノマー化した自己乳化タイプが、液の貯蔵安定性や得られる粘着層の耐水性、透明性に優れており好ましい。 The urethane resin in the present invention may use a solvent as a medium, but preferably uses water as a medium. In order to disperse or dissolve the urethane resin in water, there are a forced emulsification type using an emulsifier, a self-emulsification type in which a hydrophilic group is introduced into the urethane resin, and a water-soluble type. In particular, a self-emulsification type in which an ionic group is introduced into the structure of the urethane resin to form an ionomer is preferable because of excellent storage stability of the liquid and water resistance and transparency of the resulting adhesive layer.
また、導入するイオン基としては、カルボキシル基、スルホン酸、リン酸、ホスホン酸、第4級アンモニウム塩等、種々のものが挙げられるが、カルボキシル基が好ましい。ウレタン樹脂にカルボキシル基を導入する方法としては、重合反応の各段階の中で種々の方法が取り得る。例えば、プレポリマー合成時に、カルボキシル基を持つ樹脂を共重合成分として用いる方法や、ポリオールやポリイソシアネート、鎖延長剤などの一成分としてカルボキシル基を持つ成分を用いる方法がある。特に、カルボキシル基含有ジオールを用いて、この成分の仕込み量によって所望の量のカルボキシル基を導入する方法が好ましい。 Examples of the ionic group to be introduced include various groups such as a carboxyl group, sulfonic acid, phosphoric acid, phosphonic acid, and quaternary ammonium salt, and a carboxyl group is preferred. As a method for introducing a carboxyl group into a urethane resin, various methods can be taken in each stage of the polymerization reaction. For example, there are a method of using a carboxyl group-containing resin as a copolymer component during prepolymer synthesis, and a method of using a component having a carboxyl group as one component such as polyol, polyisocyanate, and chain extender. In particular, a method in which a desired amount of carboxyl groups is introduced using a carboxyl group-containing diol depending on the amount of this component charged is preferred.
例えば、ウレタン樹脂の重合に用いるジオールに対して、ジメチロールプロピオン酸、ジメチロールブタン酸、ビス−(2−ヒドロキシエチル)プロピオン酸、ビス−(2−ヒドロキシエチル)ブタン酸等を共重合させることができる。またこのカルボキシル基はアンモニア、アミン、アルカリ金属類、無機アルカリ類等で中和した塩の形にするのが好ましい。特に好ましいものは、アンモニア、トリメチルアミン、トリエチルアミンである。
かかるウレタン樹脂は、塗布後の乾燥工程において中和剤が外れたカルボキシル基を、他の架橋剤による架橋反応点として用いることが出来る。これにより、コーティング前の液の状態での安定性に優れる上、得られる粘着層の耐久性、耐溶剤性、耐水性、耐ブロッキング性等をさらに改善することが可能となる。
For example, dimethylolpropionic acid, dimethylolbutanoic acid, bis- (2-hydroxyethyl) propionic acid, bis- (2-hydroxyethyl) butanoic acid and the like are copolymerized with a diol used for polymerization of a urethane resin. Can do. The carboxyl group is preferably in the form of a salt neutralized with ammonia, amine, alkali metal, inorganic alkali or the like. Particularly preferred are ammonia, trimethylamine and triethylamine.
In such a urethane resin, the carboxyl group from which the neutralizing agent has been removed in the drying step after coating can be used as a crosslinking reaction point by another crosslinking agent. Thereby, it is possible to further improve the durability, solvent resistance, water resistance, blocking resistance and the like of the obtained adhesive layer as well as excellent stability in the liquid state before coating.
粘着特性を向上させるためのウレタン樹脂のガラス転移点としては、0℃以下であることが必須であり、好ましくは−10℃以下、より好ましくは−20℃以下の範囲、さらに好ましくは−30℃以下の範囲であり、好ましい範囲の下限としては−80℃である。上記範囲で使用することで最適な粘着特性を有するフィルムとすることが容易となる。 The glass transition point of the urethane resin for improving the adhesive properties must be 0 ° C. or lower, preferably −10 ° C. or lower, more preferably −20 ° C. or lower, and further preferably −30 ° C. The lower limit of the preferred range is −80 ° C. It becomes easy to set it as the film which has the optimal adhesion characteristic by using in the said range.
また、粘着層の強度や粘着特性の調整のために、架橋剤を併用することも可能である。架橋剤とは従来公知の材料を使用することができ、例えば、エポキシ化合物、メラミン化合物、オキサゾリン化合物、イソシアネート系化合物、カルボジイミド系化合物、シランカップリング化合物、ヒドラジド化合物、アジリジン化合物等が挙げられる。粘着層の強度の観点、粘着特性の調整の観点から、エポキシ化合物、メラミン化合物、オキサゾリン化合物、イソシアネート系化合物、カルボジイミド系化合物、シランカップリング化合物が好ましく、エポキシ化合物が特に好ましい。 Moreover, it is also possible to use a crosslinking agent in combination for adjusting the strength and adhesive properties of the adhesive layer. A conventionally well-known material can be used with a crosslinking agent, For example, an epoxy compound, a melamine compound, an oxazoline compound, an isocyanate type compound, a carbodiimide type compound, a silane coupling compound, a hydrazide compound, an aziridine compound etc. are mentioned. From the viewpoint of the strength of the adhesive layer and the adjustment of the adhesive properties, an epoxy compound, a melamine compound, an oxazoline compound, an isocyanate compound, a carbodiimide compound, and a silane coupling compound are preferable, and an epoxy compound is particularly preferable.
エポキシ化合物以外の架橋剤を使用する場合は、粘着層中の含有量が多くなりすぎると粘着特性が低下しすぎる場合がある。それゆえ、エポキシ化合物以外の架橋剤を使用する場合には、粘着層中の含有量に注意する必要がある。 When using a cross-linking agent other than an epoxy compound, if the content in the adhesive layer increases too much, the adhesive properties may deteriorate too much. Therefore, when using a crosslinking agent other than an epoxy compound, it is necessary to pay attention to the content in the adhesive layer.
エポキシ化合物とは、分子内にエポキシ基を有する化合物であり、例えば、エピクロロヒドリンとエチレングリコール、ポリエチレングリコール、グリセリン、ポリグリセリン、ビスフェノールA等の水酸基やアミノ基との縮合物が挙げられ、ポリエポキシ化合物、ジエポキシ化合物、モノエポキシ化合物、グリシジルアミン化合物等がある。ポリエポキシ化合物としては、例えば、ソルビトールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、トリグリシジルトリス(2−ヒドロキシエチル)イソシアネート、グリセロールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、ジエポキシ化合物としては、例えば、ネオペンチルグリコールジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、レゾルシンジグリシジルエーテル、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ポリテトラメチレングリコールジグリシジルエーテル、モノエポキシ化合物としては、例えば、アリルグリシジルエーテル、2−エチルヘキシルグリシジルエーテル、フェニルグリシジルエーテル、グリシジルアミン化合物としてはN,N,N’,N’−テトラグリシジル−m−キシリレンジアミン、1,3−ビス(N,N−ジグリシジルアミノ)シクロヘキサン等が挙げられる。 The epoxy compound is a compound having an epoxy group in the molecule, and examples thereof include condensates of epichlorohydrin with ethylene glycol, polyethylene glycol, glycerin, polyglycerin, bisphenol A and the like hydroxyl groups and amino groups, There are polyepoxy compounds, diepoxy compounds, monoepoxy compounds, glycidylamine compounds, and the like. Examples of the polyepoxy compound include sorbitol polyglycidyl ether, polyglycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, diglycerol polyglycidyl ether, triglycidyl tris (2-hydroxyethyl) isocyanate, glycerol polyglycidyl ether, trimethylolpropane. Examples of the polyglycidyl ether and diepoxy compound include neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, resorcin diglycidyl ether, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, and propylene glycol diglycidyl ether. , Polypropylene glycol diglycidyl ether, poly Examples of tetramethylene glycol diglycidyl ether and monoepoxy compounds include allyl glycidyl ether, 2-ethylhexyl glycidyl ether, phenyl glycidyl ether, and glycidyl amine compounds such as N, N, N ′, N′-tetraglycidyl-m-xylyl. Examples include range amine and 1,3-bis (N, N-diglycidylamino) cyclohexane.
粘着特性が良好であるという観点において、上記中でも、ポリエーテル系のエポキシ化合物が好ましい。またエポキシ基の量としては、2官能より、3官能以上の多官能であるポリエポキシ化合物が好ましい。 Of the above, polyether epoxy compounds are preferable from the viewpoint of good adhesive properties. The amount of the epoxy group is preferably a polyepoxy compound that is trifunctional or more polyfunctional than bifunctional.
メラミン化合物とは、化合物中にメラミン骨格を有する化合物のことであり、例えば、アルキロール化メラミン誘導体、アルキロール化メラミン誘導体にアルコールを反応させて部分的あるいは完全にエーテル化した化合物、およびこれらの混合物を用いることができる。エーテル化に用いるアルコールとしては、メチルアルコール、エチルアルコール、イソプロピルアルコール、n−ブタノール、イソブタノール等が好適に用いられる。また、メラミン化合物としては、単量体、あるいは2量体以上の多量体のいずれであってもよく、あるいはこれらの混合物を用いてもよい。各種化合物との反応性を考慮すると、メラミン化合物中に水酸基を含有していることが好ましい。さらに、メラミンの一部に尿素等を共縮合したものも使用できるし、メラミン化合物の反応性を上げるために触媒を使用することも可能である。 The melamine compound is a compound having a melamine skeleton in the compound. For example, an alkylolized melamine derivative, a compound partially or completely etherified by reacting an alcohol with an alkylolated melamine derivative, and these Mixtures can be used. As alcohol used for etherification, methyl alcohol, ethyl alcohol, isopropyl alcohol, n-butanol, isobutanol and the like are preferably used. Moreover, as a melamine compound, either a monomer or a multimer more than a dimer may be sufficient, or a mixture thereof may be used. In view of reactivity with various compounds, it is preferable that the melamine compound contains a hydroxyl group. Further, a product obtained by co-condensing urea or the like with a part of melamine can be used, and a catalyst can be used to increase the reactivity of the melamine compound.
オキサゾリン化合物とは、分子内にオキサゾリン基を有する化合物であり、特にオキサゾリン基を含有する重合体が好ましく、付加重合性オキサゾリン基含有モノマー単独もしくは他のモノマーとの重合によって作成できる。付加重合性オキサゾリン基含有モノマーは、2−ビニル−2−オキサゾリン、2−ビニル−4−メチル−2−オキサゾリン、2−ビニル−5−メチル−2−オキサゾリン、2−イソプロペニル−2−オキサゾリン、2−イソプロペニル−4−メチル−2−オキサゾリン、2−イソプロペニル−5−エチル−2−オキサゾリン等を挙げることができ、これらの1種または2種以上の混合物を使用することができる。これらの中でも2−イソプロペニル−2−オキサゾリンが工業的にも入手しやすく好適である。他のモノマーは、付加重合性オキサゾリン基含有モノマーと共重合可能なモノマーであれば制限なく、例えばアルキル(メタ)アクリレート(アルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、2−エチルヘキシル基、シクロヘキシル基)等の(メタ)アクリル酸エステル類;アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマール酸、クロトン酸、スチレンスルホン酸およびその塩(ナトリウム塩、カリウム塩、アンモニウム塩、第三級アミン塩等)等の不飽和カルボン酸類;アクリロニトリル、メタクリロニトリル等の不飽和ニトリル類;(メタ)アクリルアミド、N−アルキル(メタ)アクリルアミド、N,N−ジアルキル(メタ)アクリルアミド、(アルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、2−エチルヘキシル基、シクロヘキシル基等)等の不飽和アミド類;酢酸ビニル、プロピオン酸ビニル等のビニルエステル類;メチルビニルエーテル、エチルビニルエーテル等のビニルエーテル類;エチレン、プロピレン等のα−オレフィン類;塩化ビニル、塩化ビニリデン、フッ化ビニル等の含ハロゲンα,β−不飽和モノマー類;スチレン、α−メチルスチレン、等のα,β−不飽和芳香族モノマー等を挙げることができ、これらの1種または2種以上のモノマーを使用することができる。 The oxazoline compound is a compound having an oxazoline group in the molecule, and a polymer containing an oxazoline group is particularly preferable, and can be prepared by polymerization of an addition polymerizable oxazoline group-containing monomer alone or with another monomer. Addition polymerizable oxazoline group-containing monomers include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2-oxazoline, 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-ethyl-2-oxazoline, and the like can be mentioned, and one or a mixture of two or more thereof can be used. Among these, 2-isopropenyl-2-oxazoline is preferred because it is easily available industrially. The other monomer is not limited as long as it is a monomer copolymerizable with an addition polymerizable oxazoline group-containing monomer. For example, alkyl (meth) acrylate (the alkyl group includes a methyl group, an ethyl group, an n-propyl group, an isopropyl group, (meth) acrylic acid esters such as n-butyl group, isobutyl group, t-butyl group, 2-ethylhexyl group, cyclohexyl group); acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, crotonic acid, styrene Unsaturated carboxylic acids such as sulfonic acid and its salts (sodium salt, potassium salt, ammonium salt, tertiary amine salt, etc.); Unsaturated nitriles such as acrylonitrile, methacrylonitrile; (meth) acrylamide, N-alkyl ( (Meth) acrylamide, N, N-dialkyl (meth) acrylamide, As the alkyl group, unsaturated amides such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, 2-ethylhexyl group and cyclohexyl group); vinyl acetate Vinyl esters such as vinyl propionate; vinyl ethers such as methyl vinyl ether and ethyl vinyl ether; α-olefins such as ethylene and propylene; halogen-containing α, β-unsaturated monomers such as vinyl chloride, vinylidene chloride and vinyl fluoride And α, β-unsaturated aromatic monomers such as styrene and α-methylstyrene, and the like, and one or more of these monomers can be used.
オキサゾリン化合物のオキサゾリン基量は、好ましくは0.5〜10mmol/g、より好ましくは1〜9mmol/g、さらに好ましくは3〜8mmol/g、特に好ましくは4〜6mmol/gの範囲である。上記範囲で使用することで、塗膜の耐久性が向上し、粘着特性の調整がしやすくなる。 The amount of the oxazoline group of the oxazoline compound is preferably in the range of 0.5 to 10 mmol / g, more preferably 1 to 9 mmol / g, still more preferably 3 to 8 mmol / g, and particularly preferably 4 to 6 mmol / g. By using in the said range, durability of a coating film improves and it becomes easy to adjust an adhesive characteristic.
イソシアネート系化合物とは、イソシアネート、あるいはブロックイソシアネートに代表されるイソシアネート誘導体構造を有する化合物のことである。イソシアネートとしては、例えば、トリレンジイソシアネート、キシリレンジイソシアネート、メチレンジフェニルジイソシアネート、フェニレンジイソシアネート、ナフタレンジイソシアネート等の芳香族イソシアネート、α,α,α’,α’−テトラメチルキシリレンジイソシアネート等の芳香環を有する脂肪族イソシアネート、メチレンジイソシアネート、プロピレンジイソシアネート、リジンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ヘキサメチレンジイソシアネート等の脂肪族イソシアネート、シクロヘキサンジイソシアネート、メチルシクロヘキサンジイソシアネート、イソホロンジイソシアネート、メチレンビス(4−シクロヘキシルイソシアネート)、イソプロピリデンジシクロヘキシルジイソシアネート等の脂環族イソシアネート等が例示される。また、これらイソシアネートのビュレット化物、イソシアヌレート化物、ウレトジオン化物、カルボジイミド変性体等の重合体や誘導体も挙げられる。これらは単独で用いても、複数種併用してもよい。上記イソシアネートの中でも、紫外線による黄変を避けるために、芳香族イソシアネートよりも脂肪族イソシアネートまたは脂環族イソシアネートがより好ましい。 The isocyanate compound is a compound having an isocyanate derivative structure typified by isocyanate or blocked isocyanate. Examples of the isocyanate include aromatic isocyanates such as tolylene diisocyanate, xylylene diisocyanate, methylene diphenyl diisocyanate, phenylene diisocyanate, and naphthalene diisocyanate, and aromatic rings such as α, α, α ′, α′-tetramethylxylylene diisocyanate. Aliphatic isocyanates such as aliphatic isocyanate, methylene diisocyanate, propylene diisocyanate, lysine diisocyanate, trimethylhexamethylene diisocyanate, hexamethylene diisocyanate, cyclohexane diisocyanate, methylcyclohexane diisocyanate, isophorone diisocyanate, methylene bis (4-cyclohexyl isocyanate), isopropylidene dicyclohexyl diisocyanate Ne Alicyclic isocyanates such as bets are exemplified. Further, polymers and derivatives such as burettes, isocyanurates, uretdiones, and carbodiimide modified products of these isocyanates are also included. These may be used alone or in combination. Among the above isocyanates, aliphatic isocyanates or alicyclic isocyanates are more preferable than aromatic isocyanates in order to avoid yellowing due to ultraviolet rays.
ブロックイソシアネートの状態で使用する場合、そのブロック剤としては、例えば重亜硫酸塩類、フェノール、クレゾール、エチルフェノールなどのフェノール系化合物、プロピレングリコールモノメチルエーテル、エチレングリコール、ベンジルアルコール、メタノール、エタノールなどのアルコール系化合物、マロン酸ジメチル、マロン酸ジエチル、イソブタノイル酢酸メチル、アセト酢酸メチル、アセト酢酸エチル、アセチルアセトンなどの活性メチレン系化合物、ブチルメルカプタン、ドデシルメルカプタンなどのメルカプタン系化合物、ε‐カプロラクタム、δ‐バレロラクタムなどのラクタム系化合物、ジフェニルアニリン、アニリン、エチレンイミンなどのアミン系化合物、アセトアニリド、酢酸アミドの酸アミド化合物、ホルムアルデヒド、アセトアルドオキシム、アセトンオキシム、メチルエチルケトンオキシム、シクロヘキサノンオキシムなどのオキシム系化合物が挙げられ、これらは単独でも2種以上の併用であってもよい。 When used in the state of blocked isocyanate, the blocking agent includes, for example, bisulfites, phenolic compounds such as phenol, cresol, and ethylphenol, and alcohols such as propylene glycol monomethyl ether, ethylene glycol, benzyl alcohol, methanol, and ethanol. Compounds, active methylene compounds such as dimethyl malonate, diethyl malonate, methyl isobutanoyl acetate, methyl acetoacetate, ethyl acetoacetate, acetylacetone, mercaptan compounds such as butyl mercaptan, dodecyl mercaptan, ε-caprolactam, δ-valerolactam, etc. Lactam compounds, amine compounds such as diphenylaniline, aniline, ethyleneimine, acetanilide, acid amide compounds of acetic acid amide, Examples include oxime compounds such as maldehyde, acetoald oxime, acetone oxime, methyl ethyl ketone oxime, and cyclohexanone oxime, and these may be used alone or in combination of two or more.
また、本発明におけるイソシアネート系化合物は単体で用いてもよいし、各種ポリマーとの混合物や結合物として用いてもよい。イソシアネート系化合物の分散性や架橋性を向上させるという意味において、ポリエステル樹脂やウレタン樹脂との混合物や結合物を使用することが好ましい。 In addition, the isocyanate compound in the present invention may be used alone, or may be used as a mixture or bond with various polymers. In the sense of improving the dispersibility and crosslinkability of the isocyanate compound, it is preferable to use a mixture or a bond with a polyester resin or a urethane resin.
カルボジイミド系化合物とは、カルボジイミド構造を有する化合物のことであり、粘着層の耐湿熱性の向上のために用いられるものである。カルボジイミド系化合物は、分子内にカルボジイミド、あるいはカルボジイミド誘導体構造を1つ以上有する化合物であるが、より良好な密着性等のために、分子内に2つ以上有するポリカルボジイミド系化合物がより好ましい。 A carbodiimide-based compound is a compound having a carbodiimide structure, and is used for improving the wet heat resistance of the adhesive layer. The carbodiimide compound is a compound having one or more carbodiimide or carbodiimide derivative structures in the molecule, but a polycarbodiimide compound having two or more in the molecule is more preferable for better adhesion and the like.
カルボジイミド系化合物は従来公知の技術で合成することができ、一般的には、ジイソシアネート化合物の縮合反応が用いられる。ジイソシアネート化合物としては、特に限定されるものではなく、芳香族系、脂肪族系いずれも使用することができ、具体的には、トリレンジイソシアネート、キシレンジイソシアネート、ジフェニルメタンジイソシアネート、フェニレンジイソシアネート、ナフタレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、シクロヘキサンジイソシアネート、メチルシクロヘキサンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルジイソシアネート、ジシクロヘキシルメタンジイソシアネートなどが挙げられる。 The carbodiimide compound can be synthesized by a conventionally known technique, and generally a condensation reaction of a diisocyanate compound is used. The diisocyanate compound is not particularly limited, and any of aromatic and aliphatic compounds can be used. Specifically, tolylene diisocyanate, xylene diisocyanate, diphenylmethane diisocyanate, phenylene diisocyanate, naphthalene diisocyanate, hexa Examples include methylene diisocyanate, trimethylhexamethylene diisocyanate, cyclohexane diisocyanate, methylcyclohexane diisocyanate, isophorone diisocyanate, dicyclohexyl diisocyanate, and dicyclohexylmethane diisocyanate.
さらに、本発明の効果を消失させない範囲において、ポリカルボジイミド系化合物の水溶性や水分散性を向上させるために、界面活性剤を添加することや、ポリアルキレンオキシド、ジアルキルアミノアルコールの四級アンモニウム塩、ヒドロキシアルキルスルホン酸塩などの親水性モノマーを添加して用いてもよい。 Furthermore, in order to improve the water solubility and water dispersibility of the polycarbodiimide compound within a range not losing the effect of the present invention, a surfactant may be added, or a polyalkylene oxide or a quaternary ammonium salt of a dialkylamino alcohol. Hydrophilic monomers such as hydroxyalkyl sulfonates may be added and used.
なお、これら架橋剤は、乾燥過程や、製膜過程において、反応させて粘着層の性能を向上させる設計で用いている。できあがった粘着層中には、これら架橋剤の未反応物、反応後の化合物、あるいはそれらの混合物が存在しているものと推測できる。 These cross-linking agents are used in a design for improving the performance of the adhesive layer by reacting in the drying process or the film forming process. It can be inferred that unreacted products of these crosslinking agents, compounds after the reaction, or a mixture thereof exist in the resulting adhesive layer.
本発明において、フィルムの粘着層とは反対側の面に、各種の機能付与のために機能層を設けても良い。例えば、粘着層によるフィルムのブロッキングを軽減するために離型層を設けることも好ましいし、フィルムの剥離帯電や摩擦帯電による周囲のゴミなどの付着等による欠陥を防止するために、帯電防止層を設けることも好ましい形態である。当該機能層はコーティングにより設けることも可能であり、インラインコーティングにより設けられてもよく、オフラインコーティングを採用してもよい。製造コストやインラインの熱処理による離型性能や帯電防止性能などの安定化の観点から、インラインコーティングが好ましく用いられる。 In the present invention, a functional layer may be provided on the surface opposite to the adhesive layer of the film for providing various functions. For example, it is preferable to provide a release layer in order to reduce blocking of the film by the adhesive layer, and in order to prevent defects due to adhesion of dust around the film due to film peeling or frictional charging, an antistatic layer is provided. Providing is also a preferred form. The functional layer may be provided by coating, may be provided by in-line coating, or may employ offline coating. In-line coating is preferably used from the viewpoint of stabilization of production cost, release performance by in-line heat treatment, antistatic performance, and the like.
例えば、フィルムの粘着層とは反対側の面に離型機能層を設ける場合、機能層に含有する離型剤としては、特に制限はなく、従来公知の離型剤を使用することが可能であり、例えば、長鎖アルキル基含有化合物、フッ素化合物、シリコーン化合物、ワックス等が挙げられる。これらの中でも汚染性が少なく、ブロッキング軽減に優れるという点からは長鎖アルキル化合物やフッ素化合物が好ましく、特にブロッキング軽減を重視したい場合はシリコーン化合物が好ましい。また、表面の汚染除去性を向上させるためにはワックスが効果的である。これらの離型剤は単独で用いてもよいし、複数種使用してもよい。 For example, when a release functional layer is provided on the surface opposite to the adhesive layer of the film, the release agent contained in the functional layer is not particularly limited, and conventionally known release agents can be used. Yes, for example, long-chain alkyl group-containing compounds, fluorine compounds, silicone compounds, waxes and the like. Among these, a long-chain alkyl compound and a fluorine compound are preferable from the viewpoint of low contamination and excellent blocking reduction, and a silicone compound is preferable when it is particularly important to reduce blocking. Also, wax is effective for improving the surface decontamination property. These release agents may be used alone or in combination.
長鎖アルキル基含有化合物とは、炭素数が通常6以上、好ましくは8以上、さらに好ましくは12以上の直鎖または分岐のアルキル基を有する化合物のことである。アルキル基としては、例えば、ヘキシル基、オクチル基、デシル基、ラウリル基、オクタデシル基、ベヘニル基等が挙げられる。アルキル基を有する化合物とは、例えば、各種の長鎖アルキル基含有高分子化合物、長鎖アルキル基含有アミン化合物、長鎖アルキル基含有エーテル化合物、長鎖アルキル基含有4級アンモニウム塩等が挙げられる。耐熱性、汚染性を考慮すると高分子化合物であることが好ましい。また、効果的に離型性を得られるという観点から、長鎖アルキル基を側鎖に持つ高分子化合物であることがより好ましい。 The long-chain alkyl group-containing compound is a compound having a linear or branched alkyl group having usually 6 or more, preferably 8 or more, and more preferably 12 or more carbon atoms. Examples of the alkyl group include hexyl group, octyl group, decyl group, lauryl group, octadecyl group, and behenyl group. Examples of the compound having an alkyl group include various long-chain alkyl group-containing polymer compounds, long-chain alkyl group-containing amine compounds, long-chain alkyl group-containing ether compounds, and long-chain alkyl group-containing quaternary ammonium salts. . In view of heat resistance and contamination, a polymer compound is preferable. Further, from the viewpoint of effectively obtaining releasability, a polymer compound having a long-chain alkyl group in the side chain is more preferable.
長鎖アルキル基を側鎖に持つ高分子化合物とは、反応性基を有する高分子と、当該反応性基と反応可能なアルキル基を有する化合物とを反応させて得ることができる。上記反応性基としては、例えば、水酸基、アミノ基、カルボキシル基、酸無水物等が挙げられる。
これらの反応性基を有する化合物としては、例えば、ポリビニルアルコール、ポリエチレンイミン、ポリエチレンアミン、反応性基含有ポリエステル樹脂、反応性基含有ポリ(メタ)アクリル樹脂等が挙げられる。これらの中でも離型性や取り扱い易さを考慮するとポリビニルアルコールであることが好ましい。
The polymer compound having a long-chain alkyl group in the side chain can be obtained by reacting a polymer having a reactive group with a compound having an alkyl group capable of reacting with the reactive group. Examples of the reactive group include a hydroxyl group, an amino group, a carboxyl group, and an acid anhydride.
Examples of the compound having such a reactive group include polyvinyl alcohol, polyethyleneimine, polyethyleneamine, a reactive group-containing polyester resin, and a reactive group-containing poly (meth) acrylic resin. Among these, polyvinyl alcohol is preferable in view of releasability and ease of handling.
上記の反応性基と反応可能なアルキル基を有する化合物とは、例えば、ヘキシルイソシアネート、オクチルイソシアネート、デシルイソシアネート、ラウリルイソシアネート、オクタデシルイソシアネート、ベヘニルイソシアネート等の長鎖アルキル基含有イソシアネート、ヘキシルクロライド、オクチルクロライド、デシルクロライド、ラウリルクロライド、オクタデシルクロライド、ベヘニルクロライド等の長鎖アルキル基含有酸クロライド、長鎖アルキル基含有アミン、長鎖アルキル基含有アルコール等が挙げられる。これらの中でも離型性や取り扱い易さを考慮すると長鎖アルキル基含有イソシアネートが好ましく、オクタデシルイソシアネートが特に好ましい。 Examples of the compound having an alkyl group capable of reacting with the reactive group include, for example, long-chain alkyl group-containing isocyanates such as hexyl isocyanate, octyl isocyanate, decyl isocyanate, lauryl isocyanate, octadecyl isocyanate, and behenyl isocyanate, hexyl chloride, and octyl chloride. Long chain alkyl group-containing acid chlorides such as decyl chloride, lauryl chloride, octadecyl chloride, and behenyl chloride, long chain alkyl group-containing amines, and long chain alkyl group-containing alcohols. Among these, long chain alkyl group-containing isocyanates are preferable, and octadecyl isocyanate is particularly preferable in consideration of releasability and ease of handling.
また、長鎖アルキル基を側鎖に持つ高分子化合物は、長鎖アルキル(メタ)アクリレートの重合物や長鎖アルキル(メタ)アクリレートと他のビニル基含有モノマーとの共重合によって得ることもできる。長鎖アルキル(メタ)アクリレートとは、例えば、ヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、デシル(メタ)アクリレート、ラウリル(メタ)アクリレート、オクタデシル(メタ)アクリレート、ベヘニル(メタ)アクリレート等が挙げられる。 In addition, a polymer compound having a long-chain alkyl group in the side chain can also be obtained by copolymerization of a long-chain alkyl (meth) acrylate polymer or a long-chain alkyl (meth) acrylate and another vinyl group-containing monomer. . Examples of the long-chain alkyl (meth) acrylate include hexyl (meth) acrylate, octyl (meth) acrylate, decyl (meth) acrylate, lauryl (meth) acrylate, octadecyl (meth) acrylate, and behenyl (meth) acrylate. It is done.
フッ素化合物としては、化合物中にフッ素原子を含有している化合物である。インラインコーティングによる塗布外観の点で有機系フッ素化合物が好適に用いられ、例えば、パーフルオロアルキル基含有化合物、フッ素原子を含有するオレフィン化合物の重合体、フルオロベンゼン等の芳香族フッ素化合物等が挙げられる。離型性の観点からパーフルオロアルキル基を有する化合物であることが好ましい。さらにフッ素化合物には後述するような長鎖アルキル化合物を含有している化合物も使用することができる。 The fluorine compound is a compound containing a fluorine atom in the compound. Organic fluorine compounds are preferably used in terms of the appearance of coating by in-line coating, and examples thereof include perfluoroalkyl group-containing compounds, polymers of olefin compounds containing fluorine atoms, and aromatic fluorine compounds such as fluorobenzene. . From the viewpoint of releasability, a compound having a perfluoroalkyl group is preferable. Furthermore, the compound containing the long-chain alkyl compound which is mentioned later can also be used for a fluorine compound.
パーフルオロアルキル基を有する化合物とは、例えば、パーフルオロアルキル(メタ)アクリレート、パーフルオロアルキルメチル(メタ)アクリレート、2−パーフルオロアルキルエチル(メタ)アクリレート、3−パーフルオロアルキルプロピル(メタ)アクリレート、3−パーフルオロアルキル−1−メチルプロピル(メタ)アクリレート、3−パーフルオロアルキル−2−プロペニル(メタ)アクリレート等のパーフルオロアルキル基含有(メタ)アクリレートやその重合物、パーフルオロアルキルメチルビニルエーテル、2−パーフルオロアルキルエチルビニルエーテル、3−パーフルオロプロピルビニルエーテル、3−パーフルオロアルキル−1−メチルプロピルビニルエーテル、3−パーフルオロアルキル−2−プロペニルビニルエーテル等のパーフルオロアルキル基含有ビニルエーテルやその重合物などが挙げられる。耐熱性、汚染性を考慮すると重合物であることが好ましい。重合物は単一化合物のみでも複数化合物の重合物でもよい。また、離型性の観点からパーフルオロアルキル基は炭素原子数が3〜11であることが好ましい。さらに後述するような長鎖アルキル化合物を含有している化合物との重合物であってもよい。また、基材との密着性の観点から、塩化ビニルとの重合物であることも好ましい。 Examples of the compound having a perfluoroalkyl group include perfluoroalkyl (meth) acrylate, perfluoroalkylmethyl (meth) acrylate, 2-perfluoroalkylethyl (meth) acrylate, and 3-perfluoroalkylpropyl (meth) acrylate. Perfluoroalkyl group-containing (meth) acrylates such as 3-perfluoroalkyl-1-methylpropyl (meth) acrylate and 3-perfluoroalkyl-2-propenyl (meth) acrylate, and polymers thereof, and perfluoroalkylmethyl vinyl ether 2-perfluoroalkyl ethyl vinyl ether, 3-perfluoropropyl vinyl ether, 3-perfluoroalkyl-1-methylpropyl vinyl ether, 3-perfluoroalkyl-2-propenyl vinyl Perfluoroalkyl group-containing vinyl ether and polymers thereof such as ether, and the like. In view of heat resistance and contamination, a polymer is preferable. The polymer may be a single compound or a polymer of multiple compounds. From the viewpoint of releasability, the perfluoroalkyl group preferably has 3 to 11 carbon atoms. Further, it may be a polymer with a compound containing a long-chain alkyl compound as described later. Moreover, it is also preferable that it is a polymer with vinyl chloride from a viewpoint of adhesiveness with a base material.
シリコーン化合物とは、分子内にシリコーン構造を有する化合物のことであり、例えば、ジメチルシリコーン、ジエチルシリコーン等のアルキルシリコーン、また、フェニル基を有するフェニルシリコーン、メチルフェニルシリコーン等が挙げられる。シリコーンには各種の官能基を有するものも使用することができ、例えば、エーテル基、水酸基、アミノ基、エポキシ基、カルボン酸基、フッ素等のハロゲン基、パーフルオロアルキル基、各種アルキル基や各種芳香族基等の炭化水素基等が挙げられる。他の官能基として、ビニル基を有するシリコーンや水素原子が直接ケイ素原子に結合したハイドロゲンシリコーンも一般的で、両者を併用して、付加型(ビニル基とハイドロゲンシランの付加反応による型)のシリコーンとして使用することも可能である。 The silicone compound is a compound having a silicone structure in the molecule, and examples thereof include alkyl silicones such as dimethyl silicone and diethyl silicone, phenyl silicones having a phenyl group, and methyl phenyl silicone. Silicones having various functional groups can also be used, such as ether groups, hydroxyl groups, amino groups, epoxy groups, carboxylic acid groups, halogen groups such as fluorine, perfluoroalkyl groups, various alkyl groups, and various types. Examples thereof include hydrocarbon groups such as aromatic groups. As other functional groups, silicones having vinyl groups and hydrogen silicones in which hydrogen atoms are directly bonded to silicon atoms are also common, and both are used in combination to form silicones (addition reaction between vinyl groups and hydrogen silane). It can also be used.
また、シリコーン化合物として、アクリルグラフトシリコーン、シリコーングラフトアクリル、アミノ変性シリコーン、パーフルオロアルキル変性シリコーン等の変性シリコーンを使用することも可能である。耐熱性、汚染性を考慮すると、硬化型シリコーン樹脂を使用することが好ましく、硬化型の種類としては、縮合型、付加型、活性エネルギー線硬化型等いずれの硬化反応タイプでも用いることができる。これらの中でも、特にロール状にしたときの裏面転写が少ないという観点において、縮合型シリコーン化合物が好ましい。 Moreover, it is also possible to use modified silicones such as acrylic graft silicone, silicone graft acrylic, amino-modified silicone, and perfluoroalkyl-modified silicone as the silicone compound. In view of heat resistance and contamination, it is preferable to use a curable silicone resin. As the type of curable type, any of the curing reaction types such as a condensation type, an addition type, and an active energy ray curable type can be used. Among these, a condensation type silicone compound is preferred from the viewpoint that there is little back surface transfer when it is formed into a roll.
シリコーン化合物を使用する場合の好ましい形態としては、裏面転写が少なく、水系溶媒への分散性が良くインラインコーティングへの適性が高いという観点において、ポリエーテル基含有シリコーン化合物が好ましい。ポリエーテル基はシリコーンの側鎖や末端に有していても、主鎖に有していても良い。水系溶媒への分散性の観点から、側鎖や末端に有していることが好ましい。 In the case of using a silicone compound, a polyether group-containing silicone compound is preferable from the viewpoint of less back transfer, good dispersibility in an aqueous solvent and high suitability for in-line coating. The polyether group may be present in the side chain or terminal of the silicone or may be present in the main chain. From the viewpoint of dispersibility in an aqueous solvent, it is preferably present in the side chain or terminal.
ポリエーテル基は従来公知の構造を使用することができる。水系溶媒の分散性の観点から、芳香族ポリエーテル基より、脂肪族ポリエーテル基が好ましく、脂肪族ポリエーテル基の中でも、アルキルポリエーテル基が好ましい。また、立体障害による合成上の観点から、分岐アルキルポリエーテル基よりも、直鎖アルキルポリエーテル基が好ましく、その中でも、炭素数が8以下の直鎖アルキルからなるポリエーテル基が好ましい。さらに、展開する溶媒が水の場合は、水への分散性を考慮し、ポリエチレングリコール基またはポリプロピレングリコール基が好ましく、特に最適なのは、ポリエチレングリコール基である。 A conventionally well-known structure can be used for a polyether group. From the viewpoint of the dispersibility of the aqueous solvent, an aliphatic polyether group is preferable to an aromatic polyether group, and an alkyl polyether group is preferable among the aliphatic polyether groups. Further, from the viewpoint of synthesis due to steric hindrance, a linear alkyl polyether group is preferable to a branched alkyl polyether group, and among them, a polyether group composed of linear alkyl having 8 or less carbon atoms is preferable. Further, when the developing solvent is water, a polyethylene glycol group or a polypropylene glycol group is preferable in consideration of dispersibility in water, and a polyethylene glycol group is particularly optimal.
ポリエーテル基のエーテル結合の個数は、水系溶媒への分散性と機能層の耐久性の向上の観点から、通常1〜30個の範囲、好ましくは2〜20個の範囲、より好ましくは3〜15個の範囲である。エーテル結合が少ないと分散性が悪くなり、逆に多すぎると耐久性や離型性能が悪くなる。 The number of ether bonds in the polyether group is usually in the range of 1-30, preferably in the range of 2-20, more preferably 3 in terms of improving the dispersibility in an aqueous solvent and the durability of the functional layer. There are 15 ranges. When there are few ether bonds, dispersibility will worsen, and conversely too much, durability and mold release performance will worsen.
ポリエーテル基をシリコーンの側鎖あるいは末端に有する場合、ポリエーテル基の末端は特に限定するものではなく、水酸基、アミノ基、チオール基、アルキル基やフェニル基等の炭化水素基、カルボン酸基、スルホン酸基、アルデヒド基、アセタール基等、各種の官能基を使用することができる。その中でも、水への分散性や機能層の強度向上のための架橋性を考慮すると、水酸基、アミノ基、カルボン酸基、スルホン酸基が好ましく、特に、水酸基が最適である。 When the polyether group has a side chain or a terminal of the silicone, the terminal of the polyether group is not particularly limited, and is a hydroxyl group, an amino group, a thiol group, a hydrocarbon group such as an alkyl group or a phenyl group, a carboxylic acid group, Various functional groups such as a sulfonic acid group, an aldehyde group, and an acetal group can be used. Among these, considering the dispersibility in water and the crosslinkability for improving the strength of the functional layer, a hydroxyl group, an amino group, a carboxylic acid group, and a sulfonic acid group are preferable, and a hydroxyl group is particularly optimal.
ポリエーテル基含有シリコーンのポリエーテル基の含有量は、シリコーンのシロキサン結合を1として、モル比の割合で、好ましくは0.001〜0.30の範囲、より好ましくは0.01〜0.20%の範囲、さらに好ましくは0.03〜0.15%の範囲、特に好ましくは0.05〜0.12%の範囲である。この範囲内で使用することで、水への分散性と機能層の耐久性や良好な離型性を保持することができる。 The polyether group content of the polyether group-containing silicone is preferably in the range of 0.001 to 0.30, more preferably 0.01 to 0.20 in terms of a molar ratio, where the siloxane bond of the silicone is 1. %, More preferably 0.03 to 0.15%, particularly preferably 0.05 to 0.12%. By using within this range, it is possible to maintain the dispersibility in water, the durability of the functional layer, and the good releasability.
ポリエーテル基含有シリコーンの分子量は、水系溶媒への分散性を考慮するとあまり大きくない方が好ましく、また、機能層の耐久性や離型性能を考慮すると大きい方が好ましい。この両者の特性をバランスさせることが求められており、数平均分子量として、好ましくは1000〜100000の範囲、より好ましくは3000〜30000の範囲、さらに好ましくは、5000〜10000の範囲である。 The molecular weight of the polyether group-containing silicone is preferably not so large in consideration of dispersibility in an aqueous solvent, and is preferably high in consideration of the durability and release performance of the functional layer. It is required to balance these characteristics, and the number average molecular weight is preferably in the range of 1000 to 100,000, more preferably in the range of 3000 to 30000, and still more preferably in the range of 5000 to 10,000.
また、機能層の経時変化や離型性能、また、各種工程の汚染性を考慮するとシリコーンの低分子成分(数平均分子量で500以下)はできる限り少ない方が好ましく、その量としては、シリコーン化合物全体の割合として、好ましくは15重量%以下、より好ましくは10重量%以下、さらに好ましくは5重量%以下の範囲である。また、縮合型シリコーンを使用する場合は、ケイ素に結合したビニル基(ビニルシラン)、水素基(ハイドロゲンシラン)は、未反応のまま機能層に残ると各種性能の経時変化の原因となるので、シリコーン中の官能基量として含有量は0.1モル%以下が好ましく、さらには含有しないことがより好ましい。 Further, considering the temporal change and release performance of the functional layer and the contamination of various processes, it is preferable that the low molecular component (number average molecular weight is 500 or less) of silicone is as small as possible. The total ratio is preferably 15% by weight or less, more preferably 10% by weight or less, and further preferably 5% by weight or less. In addition, when using condensation-type silicone, silicon-bonded vinyl groups (vinyl silane) and hydrogen groups (hydrogen silane) can cause changes in performance over time if left unreacted in the functional layer. The content of the functional group is preferably 0.1 mol% or less, more preferably not contained.
ポリエーテル基含有シリコーンは単独では塗布することが難しいので、水へ分散して使用することが好ましい。分散のために従来公知の各種の分散剤を使用することが可能であり、例えば、アニオン性分散剤、ノニオン性分散剤、カチオン性分散剤、両性分散剤が挙げられる。これらの中でも、ポリエーテル基含有シリコーンの分散性、および機能層の形成に用いられ得るポリエーテル基含有シリコーン以外のポリマーとの相溶性を考慮した場合、アニオン性分散剤やノニオン性分散剤が好ましい。また、これら分散剤には、フッ素化合物を使用することも可能である。 Since polyether group-containing silicone is difficult to apply alone, it is preferable to use it dispersed in water. Various conventionally known dispersants can be used for dispersion, and examples thereof include anionic dispersants, nonionic dispersants, cationic dispersants, and amphoteric dispersants. Among these, when considering the dispersibility of the polyether group-containing silicone and the compatibility with polymers other than the polyether group-containing silicone that can be used for forming the functional layer, anionic dispersants and nonionic dispersants are preferable. . Moreover, it is also possible to use a fluorine compound for these dispersing agents.
アニオン性分散剤としては、ドデシルベンゼンスルホン酸ナトリウム、アルキルスルホン酸ナトリウム、アルキルナフタレンスルホン酸ナトリウム、ジアルキルスルホコハク酸ナトリウム、ポリオキシエチレンアルキルエーテル硫酸ナトリウム、ポリオキシエチレンアルキルアリルエーテル硫酸ナトリウム、ポリオキシアルキレンアルケニルエーテル硫酸アンモニウム塩等のスルホン酸塩や硫酸エステル塩系、ラウリル酸ナトリウム、オレイン酸カリウム等のカルボン酸塩系、アルキルリン酸塩、ポリオキシエチレンアルキルエーテルリン酸塩、ポリオキシエチレンアルキルフェニルエーテルリン酸塩等のリン酸塩系が挙げられる。これらの中でも、分散性が良好であるという観点からスルホン酸塩系が好ましい。 Anionic dispersants include sodium dodecylbenzenesulfonate, sodium alkylsulfonate, sodium alkylnaphthalenesulfonate, sodium dialkylsulfosuccinate, sodium polyoxyethylene alkyl ether sulfate, sodium polyoxyethylene alkyl allyl ether sulfate, polyoxyalkylene alkenyl. Sulfonates such as ether ammonium sulfate, sulfate esters, carboxylates such as sodium laurate and potassium oleate, alkyl phosphates, polyoxyethylene alkyl ether phosphates, polyoxyethylene alkyl phenyl ether phosphates Examples thereof include phosphates such as salts. Among these, a sulfonate system is preferable from the viewpoint of good dispersibility.
ノニオン性分散剤としては、例えば、高級アルコールやアルキルフェノールなどの水酸基をもつ化合物にエチレンオキサイドやプロピレンオキサイド等のアルキレンオキサイドを付加させたエーテル型、グリセリンや糖類などの多価アルコールと脂肪酸がエステル結合したエステル型、脂肪酸や多価アルコール脂肪酸エステルにアルキレンオキサイドを付加させたエステル・エーテル型、疎水基と親水基がアミド結合を介しているアミド型等が挙げられる。これらの中でも水への溶解性、安定性を考慮するとエーテル型が好ましく、取扱い性も考慮するとエチレンオキサイドを付加させたタイプがより好ましい。 Nonionic dispersants include, for example, ether type compounds in which alkylene oxides such as ethylene oxide and propylene oxide are added to compounds having hydroxyl groups such as higher alcohols and alkylphenols, and polyhydric alcohols such as glycerin and saccharides and ester bonds. Examples include an ester type, an ester / ether type in which an alkylene oxide is added to a fatty acid or a polyhydric alcohol fatty acid ester, and an amide type in which a hydrophobic group and a hydrophilic group are connected via an amide bond. Among these, an ether type is preferable in consideration of solubility in water and stability, and a type to which ethylene oxide is added is more preferable in consideration of handleability.
使用するポリエーテル基含有シリコーンの分子量や構造にも依存するし、使用する分散剤の種類にも依存するので一概にはいえないが、目安として分散剤の量は、ポリエーテル基含有シリコーンを1として、重量比で、好ましくは0.01〜0.5、より好ましくは0.05〜0.4、さらに好ましくは0.1〜0.3の範囲である。 Although it depends on the molecular weight and structure of the polyether group-containing silicone to be used and depends on the type of the dispersant to be used, it cannot be said unconditionally. As a weight ratio, it is preferably 0.01 to 0.5, more preferably 0.05 to 0.4, and still more preferably 0.1 to 0.3.
ワックスとは、天然ワックス、合成ワックス、それらの配合したワックスの中から選ばれたワックスである。天然ワックスとは、植物系ワックス、動物系ワックス、鉱物系ワックス、石油ワックスである。植物系ワックスとしては、キャンデリラワックス、カルナウバワックス、ライスワックス、木ロウ、ホホバ油等が挙げられる。動物系ワックスとしては、みつろう、ラノリン、鯨ロウ等が挙げられる。鉱物系ワックスとしてはモンタンワックス、オゾケライト、セレシン等が挙げられる。石油ワックスとしてはパラフィンワックス、マイクロクリスタリンワックス、ペトロラタム等が挙げられる。合成ワックスとしては、合成炭化水素、変性ワックス、水素化ワックス、脂肪酸、酸アミド、アミン、イミド、エステル、ケトン等が挙げられる。合成炭化水素としては、例えば、フィッシャー・トロプシュワックス(別名サゾワールワックス)、ポリエチレンワックスが挙げられ、このほかに低分子量の高分子(具体的には数平均分子量500から20000の高分子)である以下のポリマーも、すなわち、ポリプロピレン、エチレン・アクリル酸共重合体、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレングリコールとポリプロピレングリコールのブロックまたはグラフト結合体等が挙げられる。変性ワックスとしてはモンタンワックス誘導体、パラフィンワックス誘導体、マイクロクリスタリンワックス誘導体等が挙げられる。ここでの誘導体とは、精製、酸化、エステル化、ケン化のいずれかの処理、またはそれらの組み合わせによって得られる化合物である。水素化ワックスとしては硬化ひまし油、および硬化ひまし油誘導体が挙げられる。 The wax is a wax selected from natural waxes, synthetic waxes, and blended waxes thereof. Natural waxes are plant waxes, animal waxes, mineral waxes, and petroleum waxes. Examples of plant waxes include candelilla wax, carnauba wax, rice wax, wood wax, jojoba oil and the like. Animal waxes include beeswax, lanolin, whale wax and the like. Examples of the mineral wax include montan wax, ozokerite, and ceresin. Examples of petroleum wax include paraffin wax, microcrystalline wax, and petrolatum. Synthetic waxes include synthetic hydrocarbons, modified waxes, hydrogenated waxes, fatty acids, acid amides, amines, imides, esters, ketones, and the like. Synthetic hydrocarbons include, for example, Fischer-Tropsch wax (also known as sazoir wax) and polyethylene wax, and also low molecular weight polymers (specifically, polymers having a number average molecular weight of 500 to 20000). The following polymers are also exemplified: polypropylene, ethylene / acrylic acid copolymer, polyethylene glycol, polypropylene glycol, polyethylene glycol / polypropylene glycol block or graft conjugate, and the like. Examples of the modified wax include montan wax derivatives, paraffin wax derivatives, and microcrystalline wax derivatives. The derivative herein is a compound obtained by any of purification, oxidation, esterification, saponification treatment, or a combination thereof. Hydrogenated waxes include hardened castor oil and hardened castor oil derivatives.
上記中でも特性が安定するという観点において、合成ワックスが好ましく、その中でもポリエチレンワックスがより好ましく、酸化ポリエチレンワックスがさらに好ましい。合成ワックスの数平均分子量としては、ブロッキング等の特性の安定性、取扱い性の観点から、好ましくは500〜30000、より好ましくは1000〜15000、さらに好ましくは2000〜8000の範囲である。 Among these, synthetic waxes are preferable from the viewpoint of stable characteristics, among which polyethylene wax is more preferable, and oxidized polyethylene wax is more preferable. The number average molecular weight of the synthetic wax is preferably in the range of 500 to 30000, more preferably 1000 to 15000, and still more preferably 2000 to 8000, from the viewpoints of stability of properties such as blocking and handleability.
フィルムの粘着層と反対側の面に帯電防止機能層を設ける場合、機能層に含有する帯電防止剤としては、特に制限はなく、従来公知の帯電防止剤を使用することが可能であるが、耐熱性、耐湿熱性が良好であることから、高分子タイプの帯電防止剤であることが好ましい。高分子タイプの帯電防止剤としては、例えば、アンモニウム基を有する化合物、ポリエーテル化合物、スルホン酸基を有する化合物、ベタイン化合物、導電ポリマー等が挙げられる。 When providing an antistatic functional layer on the surface opposite to the adhesive layer of the film, the antistatic agent contained in the functional layer is not particularly limited, and conventionally known antistatic agents can be used. A polymer type antistatic agent is preferred because of its good heat resistance and moist heat resistance. Examples of the polymer type antistatic agent include a compound having an ammonium group, a polyether compound, a compound having a sulfonic acid group, a betaine compound, and a conductive polymer.
アンモニウム基を有する化合物とは、分子内にアンモニウム基を有する化合物であり、脂肪族アミン、脂環族アミンや芳香族アミンのアンモニウム化物等が挙げられる。アンモニウム基を有する化合物は、高分子タイプのアンモニウム基を有する化合物であることが好ましく、当該アンモニウム基は、カウンターイオンとしてではなく、高分子の主鎖や側鎖中に組み込まれている構造であることが好ましい。例えば、付加重合性のアンモニウム基またはアミン等のアンモニウム基の前駆体を含有するモノマーを重合した重合体からアンモニウム基を有する高分子化合物とするものが挙げられ、好適に用いられる。重合体としては、付加重合性のアンモニウム基またはアミン等のアンモニウム基の前駆体を含有するモノマーを単独で重合しても良いし、これらを含有するモノマーと他のモノマーとの共重合体であっても良い。 The compound having an ammonium group is a compound having an ammonium group in the molecule, and examples thereof include aliphatic amines, alicyclic amines, and ammonium compounds of aromatic amines. The compound having an ammonium group is preferably a compound having a polymer type ammonium group, and the ammonium group has a structure incorporated in the main chain or side chain of the polymer, not as a counter ion. It is preferable. For example, a polymer obtained by polymerizing a monomer containing an addition polymerizable ammonium group or a precursor of an ammonium group such as an amine is used as a polymer compound having an ammonium group, which is preferably used. As the polymer, a monomer containing an addition polymerizable ammonium group or a precursor of an ammonium group such as an amine may be polymerized alone, or it may be a copolymer of a monomer containing these and another monomer. May be.
アンモニウム基を有する化合物の中でも、帯電防止性、耐熱安定性が優れているという点で、ピロリジニウム環を有する化合物も好ましい。 Among the compounds having an ammonium group, compounds having a pyrrolidinium ring are also preferred in that they are excellent in antistatic properties and heat stability.
ピロリジニウム環を有する化合物の窒素原子に結合している2つの置換基は、それぞれ独立してアルキル基、フェニル基等であり、これらのアルキル基、フェニル基が以下に示す基で置換されていてもよい。置換可能な基は、例えば、ヒドロキシル基、アミド基、エステル基、アルコキシ基、フェノキシ基、ナフトキシ基、チオアルコキシ、チオフェノキシ基、シクロアルキル基、トリアルキルアンモニウムアルキル基、シアノ基、ハロゲンである。また、窒素原子に結合している2つの置換基は化学的に結合していてもよく、例えば、−(CH2)m−(m=2〜5の整数)、−CH(CH3)CH(CH3)−、−CH=CH−CH=CH−、−CH=CH−CH=N−、−CH=CH−N=C−、−CH2OCH2−、−(CH2)2O(CH2)2−などが挙げられる。 The two substituents bonded to the nitrogen atom of the compound having a pyrrolidinium ring are each independently an alkyl group, a phenyl group, and the like. Even if these alkyl groups and phenyl groups are substituted with the groups shown below, Good. Substitutable groups are, for example, hydroxyl group, amide group, ester group, alkoxy group, phenoxy group, naphthoxy group, thioalkoxy, thiophenoxy group, cycloalkyl group, trialkylammonium alkyl group, cyano group, and halogen. Moreover, the two substituents bonded to the nitrogen atom may be chemically bonded. For example, — (CH 2 ) m — (m = 2 to 5), —CH (CH 3 ) CH (CH 3 ) —, —CH═CH—CH═CH—, —CH═CH—CH═N—, —CH═CH—N═C—, —CH 2 OCH 2 —, — (CH 2 ) 2 O (CH 2 ) 2 — and the like.
本発明において、ピロリジニウム環を有するポリマーは、ジアリルアミン誘導体を、ラジカル重合触媒を用いて環化重合させることにより得られる。重合は、溶媒として水あるいはメタノール、エタノール、イソプロパノール、ホルムアミド、ジメチルホルムアミド、ジオキサン、アセトニトリルなどの極性溶媒中で過酸化水素、ベンゾイルパーオキサイド、第3級ブチルパーオキサイド等の重合開始剤により、公知の方法で実施できるが、これらに限定するものではない。本発明においては、ジアリルアミン誘導体と重合性のある炭素−炭素不飽和結合を有する化合物を共重合成分としてもよい。 In the present invention, the polymer having a pyrrolidinium ring is obtained by cyclopolymerizing a diallylamine derivative using a radical polymerization catalyst. The polymerization is carried out by using a polymerization initiator such as hydrogen peroxide, benzoyl peroxide, tertiary butyl peroxide in a polar solvent such as water or methanol, ethanol, isopropanol, formamide, dimethylformamide, dioxane, acetonitrile as a solvent. Although it can implement by a method, it is not limited to these. In the present invention, a compound having a diallylamine derivative and a polymerizable carbon-carbon unsaturated bond may be used as a copolymerization component.
また、帯電防止性および耐湿熱安定性に優れるという点で、下記式(1)の構造を有する高分子であることも好ましい。単独の重合体や共重合体、さらには、その他の複数の成分を共重合していても良い。 Moreover, it is also preferable that it is a polymer which has a structure of following formula (1) at the point which is excellent in antistatic property and wet heat-resistant stability. A single polymer or copolymer, or a plurality of other components may be copolymerized.
例えば、上記式中で置換基R1は水素原子または炭素数が1〜20のアルキル基、フェニル基等の炭化水素基、R2が−O−、−NH−または−S−、R3が炭素数1〜20のアルキレン基または式1の構造を成立しうるその他の構造、R4、R5、R6は、それぞれ独立して、水素原子、炭素数1〜20のアルキル基、フェニル基等の炭化水素基、またはヒドロキシアルキル基等の官能基が付与された炭化水素基、X−は各種のカウンターイオンである。 For example, in the above formula, the substituent R 1 is a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, a hydrocarbon group such as a phenyl group, R 2 is —O—, —NH— or —S—, and R 3 is R 4 , R 5 , and R 6 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a phenyl group, or an alkylene group having 1 to 20 carbon atoms or another structure that can form the structure of Formula 1. Or a hydrocarbon group provided with a functional group such as a hydroxyalkyl group, and X − represents various counter ions.
上記の中でも、特に帯電防止性や耐湿熱安定性に優れるという観点において、式(1)中で、置換基R1は水素原子または炭素数が1〜6のアルキル基であることが好ましく、R3は炭素数が1〜6のアルキル基であることが好ましく、R4、R5、R6はそれぞれ独立して水素原子または炭素数1〜6のアルキル基であることが好ましく、さらに好ましくは、R4、R5、R6のいずれか1つは水素原子であり、他の置換基が炭素数1〜4のアルキル基であることである。 Among the above, in view of excellent antistatic properties and wet heat resistance, in particular, in the formula (1), the substituent R 1 is preferably a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. 3 is preferably an alkyl group having 1 to 6 carbon atoms, and R 4 , R 5 and R 6 are preferably each independently a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, more preferably , R 4 , R 5 , or R 6 is a hydrogen atom, and the other substituent is an alkyl group having 1 to 4 carbon atoms.
上述したアンモニウム基を有する化合物のアンモニウム基の対イオン(カウンターイオン)となるアニオンとしては例えば、ハロゲンイオン、スルホナート、ホスファート、ニトラート、アルキルスルホナート、カルボキシラート等のイオンが挙げられる。 Examples of the anion serving as the counter ion (counter ion) of the ammonium group of the compound having an ammonium group described above include ions such as halogen ions, sulfonates, phosphates, nitrates, alkylsulfonates, and carboxylates.
また、アンモニウム基を有する化合物の数平均分子量は1000〜500000、好ましくは2000〜350000、さらに好ましくは5000〜200000である。分子量が1000未満の場合は塗膜の強度が弱くなる場合や、耐熱安定性が劣る場合がある。
また、分子量が500000を超える場合は、塗布液の粘度が高くなり、取扱い性や塗布性が悪化する場合がある。
Moreover, the number average molecular weight of the compound which has an ammonium group is 1000-500000, Preferably it is 2000-350,000, More preferably, it is 5000-200000. When the molecular weight is less than 1000, the strength of the coating film may be weakened or the heat stability may be poor.
On the other hand, when the molecular weight exceeds 500,000, the viscosity of the coating solution increases, and the handleability and applicability may deteriorate.
ポリエーテル化合物としては、例えば、ポリエチレンオキシド、ポリエーテルエステルアミド、ポリエチレングリコールを側鎖に有するアクリル樹脂等が挙げられる。 Examples of polyether compounds include polyethylene oxide, polyether ester amide, acrylic resins having polyethylene glycol in the side chain, and the like.
スルホン酸基を有する化合物とは、分子内にスルホン酸あるいはスルホン酸塩を含有する化合物のことであり、例えば、ポリスチレンスルホン酸等、スルホン酸あるいはスルホン酸塩が多量に存在する化合物が好適に用いられる。 The compound having a sulfonic acid group is a compound containing a sulfonic acid or a sulfonate in the molecule. For example, a compound having a large amount of sulfonic acid or a sulfonate such as polystyrene sulfonic acid is preferably used. It is done.
導電ポリマーとしては、例えば、ポリチオフェン系、ポリアニリン系、ポリピロール系、ポリアセチレン系等が挙げられ、その中でも例えば、ポリ(3,4−エチレンジオキシチオフェン)をポリスチレンスルホン酸と併用するような、ポリチオフェン系が好適に用いられる。導電ポリマーは抵抗値が低くなるという点において、上述の他の帯電防止剤に比べて好適である。しかし、一方で、着色やコストが気になる用途では使用量を低減するなどの工夫が必要となってくる。 Examples of the conductive polymer include polythiophene-based, polyaniline-based, polypyrrole-based, and polyacetylene-based polymers. Among them, for example, polythiophene-based polymers using poly (3,4-ethylenedioxythiophene) in combination with polystyrene sulfonic acid. Are preferably used. The conductive polymer is preferable to the other antistatic agents described above in that the resistance value is low. However, on the other hand, it is necessary to devise measures such as reducing the amount used in applications where coloring and cost are a concern.
フィルムの粘着層とは反対側の面に設けられうる機能層は、上述の離型剤と帯電防止剤の両方を含有させ、帯電防止離型機能を有するものとすることも好ましい形態である。 It is also a preferred embodiment that the functional layer that can be provided on the surface of the film opposite to the adhesive layer contains both the above-mentioned release agent and antistatic agent and has an antistatic release function.
機能層の形成には、塗布外観や透明性の向上、滑り性のコントロールために、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂等の各種のポリマーや、粘着層の形成に使用されうる架橋剤を併用することも可能である。特に機能層を強固にする、ブロッキング軽減するという観点において、メラミン化合物、オキサゾリン化合物、イソシアネート系化合物、エポキシ化合物を併用することが好ましく、その中でも特にメラミン化合物が好ましい。 For the formation of the functional layer, various polymers such as polyester resin, acrylic resin, urethane resin, and a crosslinking agent that can be used for forming the adhesive layer are used in combination to improve the coating appearance, transparency, and control of slipperiness. It is also possible. In particular, in terms of strengthening the functional layer and reducing blocking, it is preferable to use a melamine compound, an oxazoline compound, an isocyanate compound, and an epoxy compound, and among them, a melamine compound is particularly preferable.
本発明の主旨を損なわない範囲において、機能層の形成にも、ブロッキングや滑り性改良のために粒子を併用することも可能である。ただし、機能層が離型性能を有している場合は十分な耐ブロッキング性や滑り性を備えている場合が多いため、機能層の外観の観点から粒子を併用しないことが好ましい場合がある。 As long as the gist of the present invention is not impaired, particles can be used in combination with the formation of the functional layer in order to improve blocking and slipperiness. However, when the functional layer has mold release performance, it often has sufficient blocking resistance and slipperiness, and therefore it may be preferable not to use particles from the viewpoint of the appearance of the functional layer.
さらに本発明の主旨を損なわない範囲において、粘着層および機能層の形成には必要に応じて消泡剤、塗布性改良剤、増粘剤、有機系潤滑剤、帯電防止剤、紫外線吸収剤、酸化防止剤、発泡剤、染料、顔料等を併用することも可能である。 Furthermore, in the range not impairing the gist of the present invention, an antifoaming agent, a coating property improving agent, a thickener, an organic lubricant, an antistatic agent, an ultraviolet absorber, Antioxidants, foaming agents, dyes, pigments and the like can be used in combination.
本発明における積層フィルムを構成する粘着層中の割合として、粒子は、好ましくは0.01〜70重量%、より好ましくは0.1〜50重量%、さらに好ましくは0.5〜35重量%、特に好ましくは1〜25重量%、最も好ましくは1〜15重量%の範囲である。上記範囲で使用することで、十分な粘着特性、ブロッキング特性や滑り性が得られやすい。 As a ratio in the pressure-sensitive adhesive layer constituting the laminated film in the present invention, the particles are preferably 0.01 to 70% by weight, more preferably 0.1 to 50% by weight, still more preferably 0.5 to 35% by weight, Especially preferably, it is 1 to 25 weight%, Most preferably, it is the range of 1 to 15 weight%. By using in the above range, sufficient adhesive properties, blocking properties and slipperiness are easily obtained.
本発明における積層フィルムを構成する粘着層中の割合として、ガラス転移点が0℃以下である樹脂は、好ましくは30〜99.99重量%、より好ましくは50〜99.9重量%、さらに好ましくは65〜99.5重量%、特に好ましくは75〜99重量%、最も好ましくは85〜99重量%の範囲である。上記範囲で使用することで、十分な粘着特性が得られやすい。 As a ratio in the adhesive layer constituting the laminated film in the present invention, the resin having a glass transition point of 0 ° C. or less is preferably 30 to 99.99% by weight, more preferably 50 to 99.9% by weight, and still more preferably. Is in the range of 65-99.5 wt%, particularly preferably 75-99 wt%, most preferably 85-99 wt%. By using in the above range, sufficient adhesive properties can be easily obtained.
本発明における積層フィルムを構成する粘着層中の割合として、エポキシ化合物の割合は、好ましくは50重量%以下、より好ましくは40重量%以下、さらに好ましくは30重量%以下の範囲である。上記範囲で使用することで良好な強度と粘着特性が得られやすい。 As a ratio in the pressure-sensitive adhesive layer constituting the laminated film in the present invention, the ratio of the epoxy compound is preferably 50% by weight or less, more preferably 40% by weight or less, and further preferably 30% by weight or less. When used in the above range, good strength and adhesive properties can be easily obtained.
本発明における積層フィルムを構成する粘着層中の割合として、エポキシ化合物以外の架橋剤の割合は、好ましくは30重量%以下、より好ましくは20重量%以下、さらに好ましくは10重量%以下の範囲である。上記範囲で使用することで良好な強度と調整された粘着特性が得られやすいが、粘着層中に使用する材料や組成によっては、粘着特性が低下しすぎる懸念から、使用しない方が好ましい場合もある。 As a ratio in the adhesive layer constituting the laminated film in the present invention, the ratio of the crosslinking agent other than the epoxy compound is preferably 30% by weight or less, more preferably 20% by weight or less, and further preferably 10% by weight or less. is there. Although it is easy to obtain good strength and adjusted adhesive properties by using in the above range, depending on the material and composition used in the adhesive layer, there are cases where it is preferable not to use because of concern that the adhesive properties will be too low. is there.
本発明における積層フィルムにおいて、粘着層とは反対面側に離型性能を有する機能層を設ける場合、機能層中の割合として、離型剤の割合は、離型剤の種類により適量が異なるので一概にはいえないが、好ましくは3重量%以上の範囲、より好ましくは15重量%以上、さらに好ましくは25〜99重量%の範囲である。3重量%未満の場合はブロッキング軽減が十分でない場合がある。 In the laminated film of the present invention, when providing a functional layer having a release performance on the side opposite to the adhesive layer, the ratio of the release agent as the ratio in the functional layer varies depending on the type of the release agent. Although it cannot be generally stated, it is preferably in the range of 3% by weight or more, more preferably 15% by weight or more, and further preferably in the range of 25 to 99% by weight. If it is less than 3% by weight, the blocking reduction may not be sufficient.
離型剤として、長鎖アルキル化合物やフッ素化合物を使用する場合、機能層中の割合は、好ましくは5重量%以上、より好ましくは15〜99重量%、さらに好ましくは20〜95重量%、特に好ましくは25〜90重量%の範囲である。上記範囲で使用することで、ブロッキング軽減が効果的なものとなる。また、架橋剤の割合は、好ましくは95重量%以下、より好ましくは1〜80重量%、さらに好ましくは5〜70重量%、特に好ましくは10〜50重量%の範囲であり、架橋剤としてメラミン化合物やイソシアネート系化合物(その中でも特に活性メチレン系化合物でブロックしたブロックイソシアネートが好ましい)が好ましく、特にメラミン化合物がブロッキング軽減の観点から好ましい。 When a long-chain alkyl compound or a fluorine compound is used as the release agent, the proportion in the functional layer is preferably 5% by weight or more, more preferably 15 to 99% by weight, still more preferably 20 to 95% by weight, particularly Preferably it is the range of 25 to 90 weight%. By using it in the above range, blocking reduction is effective. The proportion of the crosslinking agent is preferably 95% by weight or less, more preferably 1 to 80% by weight, further preferably 5 to 70% by weight, and particularly preferably 10 to 50% by weight. Compounds and isocyanate compounds (block isocyanates blocked with active methylene compounds are particularly preferred among them) are preferred, and melamine compounds are particularly preferred from the viewpoint of reducing blocking.
離型剤として、縮合型のシリコーン化合物を使用する場合、機能層中の割合は、好ましくは3重量%以上、より好ましくは5〜97重量%、さらに好ましくは8〜95重量%、特に好ましくは10〜90重量%の範囲である。上記範囲で使用することで、ブロッキング軽減が効果的なものとなる。また、架橋剤の割合は、好ましくは97重量%以下、より好ましくは3〜95重量%、さらに好ましくは5〜92重量%、特に好ましくは10〜90重量%の範囲である。また、架橋剤としては、メラミン化合物がブロッキング軽減の観点から好ましい。 When a condensation type silicone compound is used as a release agent, the proportion in the functional layer is preferably 3% by weight or more, more preferably 5 to 97% by weight, still more preferably 8 to 95% by weight, and particularly preferably. It is in the range of 10 to 90% by weight. By using it in the above range, blocking reduction is effective. The ratio of the crosslinking agent is preferably 97% by weight or less, more preferably 3 to 95% by weight, still more preferably 5 to 92% by weight, and particularly preferably 10 to 90% by weight. Moreover, as a crosslinking agent, a melamine compound is preferable from a viewpoint of blocking reduction.
離型剤として、付加型のシリコーン化合物を使用する場合、機能層中の割合は、好ましくは5重量%以上、より好ましくは25重量%以上、さらに好ましくは50重量%以上、特に好ましくは70重量%以上の範囲である。好ましい範囲の上限としては、99重量%、より好ましい上限は90重量%である。上記範囲で使用することで、ブロッキング軽減が効果的なものとなり、また機能層の外観も良好なものとなる。 When an addition-type silicone compound is used as a release agent, the proportion in the functional layer is preferably 5% by weight or more, more preferably 25% by weight or more, further preferably 50% by weight or more, and particularly preferably 70% by weight. % Or more. The upper limit of the preferable range is 99% by weight, and the more preferable upper limit is 90% by weight. By using in the said range, blocking reduction becomes effective and the external appearance of a functional layer also becomes favorable.
離型剤として、ワックスを使用する場合、機能層中の割合は、好ましくは10重量%以上、より好ましくは20〜90重量%、さらに好ましくは25〜70重量%の範囲である。上記範囲で使用することで、ブロッキング低減がしやすいものとなる。ただし、表面の汚染除去性が目的でワックスを使用する場合は、上記の割合を少なくすることができ、好ましくは1重量%以上、より好ましくは2〜50重量%、さらに好ましくは3〜30重量%の範囲である。また、架橋剤の割合は、好ましくは90重量%以下、より好ましくは10〜70重量%、さらに好ましくは20〜50重量%の範囲である。また、架橋剤としては、メラミン化合物がブロッキング低減の観点から好ましい。 When wax is used as the release agent, the ratio in the functional layer is preferably 10% by weight or more, more preferably 20 to 90% by weight, and further preferably 25 to 70% by weight. By using it in the above range, blocking can be easily reduced. However, when wax is used for the purpose of decontamination of the surface, the above ratio can be reduced, preferably 1% by weight or more, more preferably 2 to 50% by weight, and further preferably 3 to 30% by weight. % Range. The proportion of the crosslinking agent is preferably 90% by weight or less, more preferably 10 to 70% by weight, and still more preferably 20 to 50% by weight. Moreover, as a crosslinking agent, a melamine compound is preferable from a viewpoint of blocking reduction.
一方、粘着層とは反対面側に帯電防止性能を有する機能層を設ける場合、機能層中の割合として、帯電防止剤の割合は、帯電防止剤の種類により適量が異なるので一概にはいえないが、好ましくは0.5重量%以上の範囲、より好ましくは3〜90重量%、さらに好ましくは5〜70重量%の範囲、特に好ましくは8〜60重量%の範囲である。0.5重量%未満の場合は、帯電防止効果が十分ではなく、周囲のゴミ等の付着防止の効果が十分でない場合がある。 On the other hand, when a functional layer having antistatic performance is provided on the side opposite to the adhesive layer, the proportion of the antistatic agent as the proportion in the functional layer cannot be generally described because the appropriate amount varies depending on the type of the antistatic agent. However, it is preferably in the range of 0.5% by weight or more, more preferably in the range of 3 to 90% by weight, still more preferably in the range of 5 to 70% by weight, and particularly preferably in the range of 8 to 60% by weight. If it is less than 0.5% by weight, the antistatic effect is not sufficient, and the effect of preventing the adhesion of surrounding dust and the like may not be sufficient.
帯電防止剤として、導電ポリマー以外の帯電防止剤を使用する場合、帯電防止層中の割合は、好ましくは5重量%以上、より好ましくは10〜90重量%、さらに好ましくは20〜70重量%の範囲、特に好ましくは25〜60重量%の範囲である。5重量%未満の場合は、帯電防止効果が十分ではなく、周囲のゴミ等の付着防止の効果が十分でない場合がある。 When an antistatic agent other than a conductive polymer is used as the antistatic agent, the proportion in the antistatic layer is preferably 5% by weight or more, more preferably 10 to 90% by weight, still more preferably 20 to 70% by weight. The range, particularly preferably 25 to 60% by weight. If it is less than 5% by weight, the antistatic effect is not sufficient, and the effect of preventing the adhesion of surrounding dust and the like may not be sufficient.
帯電防止剤として、導電ポリマーを使用する場合、帯電防止層中の割合は、好ましくは0.5重量%以上、より好ましくは3〜70重量%、さらに好ましくは5〜50重量%、特に好ましくは8〜30重量%の範囲である。0.5重量%未満の場合は、帯電防止効果が十分ではなく、周囲のゴミ等の付着防止の効果が十分でない場合がある。 When a conductive polymer is used as the antistatic agent, the proportion in the antistatic layer is preferably 0.5% by weight or more, more preferably 3 to 70% by weight, still more preferably 5 to 50% by weight, particularly preferably. It is in the range of 8 to 30% by weight. If it is less than 0.5% by weight, the antistatic effect is not sufficient, and the effect of preventing the adhesion of surrounding dust and the like may not be sufficient.
粘着層や機能層中の成分の分析は、例えば、TOF−SIMS、ESCA、蛍光X線、IR等の分析によって行うことができる。 The analysis of the components in the adhesive layer and the functional layer can be performed by analysis of TOF-SIMS, ESCA, fluorescent X-ray, IR, etc., for example.
粘着層や機能層の形成に関して、上述の一連の化合物を溶液または溶媒の分散体として、固形分濃度が0.1〜80重量%程度を目安に調整した液をフィルム上にコーティングする要領にて積層フィルムを製造することが好ましい。特にインラインコーティングにより設ける場合は、水溶液または水分散体であることがより好ましい。水への分散性改良、造膜性改良等を目的として、塗布液中には少量の有機溶剤を含有していてもよい。また、有機溶剤は1種類のみでもよく、適宜、2種類以上を使用してもよい。 Regarding the formation of the adhesive layer and functional layer, the above-mentioned series of compounds is used as a solution or solvent dispersion, and the film is coated with a liquid adjusted to a solid content concentration of about 0.1 to 80% by weight. It is preferable to produce a laminated film. In particular, when provided by in-line coating, an aqueous solution or a water dispersion is more preferable. A small amount of an organic solvent may be contained in the coating solution for the purpose of improving the dispersibility in water, improving the film forming property, and the like. Moreover, only one type of organic solvent may be used, and two or more types may be used as appropriate.
機能層の膜厚は、設ける機能にも依存するために一概にはいえないが、例えば、離型性能や帯電防止性能を付与するための機能層としては、好ましくは1nm〜3μm、より好ましくは10nm〜1μm、さらに好ましくは20〜500nm、特に好ましくは20〜200nmの範囲である。機能層の膜厚を上記範囲で使用することにより、ブロッキング特性の向上、あるいは帯電防止性能の向上や、良好な外観とすることが容易となる。 Although the thickness of the functional layer depends on the function to be provided, it cannot be said unconditionally. For example, the functional layer for imparting release performance or antistatic performance is preferably 1 nm to 3 μm, more preferably It is in the range of 10 nm to 1 μm, more preferably 20 to 500 nm, particularly preferably 20 to 200 nm. By using the film thickness of the functional layer within the above range, it becomes easy to improve the blocking characteristics, improve the antistatic performance, or obtain a good appearance.
本発明のフィルムにおいて、粘着層や機能層を形成する方法としては、例えば、グラビアコート、リバースロールコート、ダイコート、エアドクターコート、ブレードコート、ロッドコート、バーコート、カーテンコート、ナイフコート、トランスファロールコート、スクイズコート、含浸コート、キスコート、スプレーコート、カレンダコート、押出コート等、従来公知のコーティング方式を用いることができる。 In the film of the present invention, examples of the method for forming the adhesive layer and the functional layer include gravure coating, reverse roll coating, die coating, air doctor coating, blade coating, rod coating, bar coating, curtain coating, knife coating, and transfer roll. Conventionally known coating methods such as coat, squeeze coat, impregnation coat, kiss coat, spray coat, calendar coat, and extrusion coat can be used.
本発明において、フィルム上に粘着層を形成する際の乾燥および硬化条件に関しては特に限定されるものではないが、コーティングによる方法の場合、コーティング液に使用している水等の溶媒の乾燥に関しては、好ましくは70〜150℃、より好ましくは80〜130℃、さらに好ましくは90〜120℃の範囲である。乾燥の時間としては、目安として3〜200秒、好ましくは5〜120秒の範囲である。また、粘着層の強度を向上させるため、フィルム製造工程において、好ましくは180〜270℃、より好ましくは200〜250℃、さらに好ましくは210〜240℃の範囲の熱処理工程を経ることである。当該熱処理工程の時間としては、目安として3〜200秒、好ましくは5〜120秒の範囲である。 In the present invention, the drying and curing conditions for forming the adhesive layer on the film are not particularly limited, but in the case of the method by coating, the drying of a solvent such as water used in the coating solution is not limited. , Preferably it is 70-150 degreeC, More preferably, it is 80-130 degreeC, More preferably, it is the range of 90-120 degreeC. The drying time is generally 3 to 200 seconds, preferably 5 to 120 seconds. Moreover, in order to improve the intensity | strength of an adhesion layer, in a film manufacturing process, Preferably it is 180-270 degreeC, More preferably, it is 200-250 degreeC, More preferably, it is passing through the heat processing process of the range of 210-240 degreeC. The time for the heat treatment step is generally 3 to 200 seconds, preferably 5 to 120 seconds.
また、必要に応じて熱処理と紫外線照射等の活性エネルギー線照射とを併用してもよい。本発明における積層フィルムを構成するフィルムにはあらかじめ、コロナ処理、プラズマ処理等の表面処理を施してもよい。 Moreover, you may use together heat processing and active energy ray irradiation, such as ultraviolet irradiation, as needed. The film constituting the laminated film in the present invention may be subjected to surface treatment such as corona treatment or plasma treatment in advance.
本発明の粘着層の粘着力としては、ポリメチルメタクリレート板に対して、好ましくは1〜1000mN/cmであり、より好ましくは3〜800mN/cm以上、さらに好ましくは5〜500mN/cm、特に好ましくは7〜300mN/cm、最も好ましくは10〜100mN/cmの範囲である。上記範囲を外れる場合は、被着体によっては、粘着力がない場合や、粘着力が強すぎて剥離しにくいものとなる場合や、フィルムのブロッキングが顕著となってしまう場合がある。上記範囲とすることで、粘着性能と、貼り合わせ後に剥離する剥離性能の両立を図る必要がある用途、例えば、偏光板製造工程用等に用いる場合には、粘着−剥離の操作を容易に行うことができるため最適なものとなる。 The adhesive strength of the adhesive layer of the present invention is preferably 1 to 1000 mN / cm, more preferably 3 to 800 mN / cm or more, still more preferably 5 to 500 mN / cm, particularly preferably relative to the polymethyl methacrylate plate. Is in the range of 7 to 300 mN / cm, most preferably 10 to 100 mN / cm. When it is out of the above range, depending on the adherend, there is a case where there is no adhesive force, a case where the adhesive force is too strong to be easily peeled off, or film blocking becomes remarkable. By setting it as the above range, when it is used for an application where it is necessary to achieve both the adhesion performance and the separation performance for peeling after bonding, for example, for a polarizing plate production process, the adhesion-peeling operation is easily performed. Can be optimal.
本発明の積層フィルムのブロッキング性として、積層フィルムを重ね合わせて、40℃、80%RH、10kg/cm2、20時間の条件下でプレスした後の剥離荷重は、好ましくは100g/cm以下、より好ましくは30g/cm以下、さらに好ましくは20g/cm以下、特に好ましくは10g/cm以下、最も好ましくは8g/cm以下の範囲である。上記範囲とすることで、ブロッキングのリスクを回避しやすくなり、より実用性の高いフィルムとすることができる。 As the blocking property of the laminated film of the present invention, the peeling load after the laminated films are stacked and pressed under the conditions of 40 ° C., 80% RH, 10 kg / cm 2 , 20 hours, is preferably 100 g / cm or less, More preferably, it is 30 g / cm or less, More preferably, it is 20 g / cm or less, Especially preferably, it is 10 g / cm or less, Most preferably, it is the range of 8 g / cm or less. By setting it as the said range, it becomes easy to avoid the risk of blocking and it can be set as a more practical film.
また、本発明のフィルムの粘着層とは反対側の面のフィルム表面を粗くすることも、粘着層側とのブロッキング特性を改善させるための手段の1つでありうる場合がある。粘着層の種類や粘着力にも依存するので一概にはいえないが、表面粗さによりブロッキング特性を改善する目的がある場合には、粘着層とは反対側の面のフィルム表面の算術平均粗さ(Sa)は、好ましくは5nm以上、より好ましくは10nm以上、さらに好ましくは30nm以上の範囲であり、上限は特に制限はないが、好ましい範囲の上限として透明性の観点から300nmである。 Moreover, roughening the film surface on the side opposite to the adhesive layer of the film of the present invention may be one of the means for improving the blocking property with the adhesive layer side. Since it depends on the type of adhesive layer and adhesive strength, it cannot be generally stated, but when there is a purpose to improve the blocking characteristics by surface roughness, the arithmetic average roughness of the film surface on the side opposite to the adhesive layer is used. The thickness (Sa) is preferably in the range of 5 nm or more, more preferably 10 nm or more, and even more preferably 30 nm or more. The upper limit is not particularly limited, but is 300 nm from the viewpoint of transparency as the upper limit of the preferred range.
本発明の積層フィルムの滑り性の指標となる摩擦係数として、粘着層側面とフィルムの粘着層とは反対側面(機能層がある場合は機能層)の静止摩擦係数は、好ましくは1.1以下、より好ましくは1.0以下、さらに好ましくは0.9以下、特に好ましくは0.8以下の範囲である。摩擦係数が上記範囲内にある場合は、フィルムが良好な滑り性を有し、取扱い性や傷付き防止に有効である。 As a coefficient of friction that serves as an index of the slipperiness of the laminated film of the present invention, the static friction coefficient of the side surface of the adhesive layer and the side surface opposite to the adhesive layer of the film (the functional layer if there is a functional layer) is preferably 1.1 or less. More preferably, it is 1.0 or less, more preferably 0.9 or less, and particularly preferably 0.8 or less. When the coefficient of friction is within the above range, the film has good slipperiness and is effective in handling and preventing scratches.
以下、本発明を実施例によりさらに詳細に説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されるものではない。また、本発明で用いた測定法および評価方法は次のとおりである。 EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to a following example, unless the summary is exceeded. The measurement method and evaluation method used in the present invention are as follows.
(1)ポリエステルの極限粘度の測定方法
ポリエステルに非相溶な他のポリマー成分および顔料を除去したポリエステル1gを精秤し、フェノール/テトラクロロエタン=50/50(重量比)の混合溶媒100mlを加えて溶解させ、30℃で測定した。
(1) Method for measuring the intrinsic viscosity of polyester 1 g of polyester from which other polymer components and pigments incompatible with polyester have been removed are precisely weighed, and 100 ml of a mixed solvent of phenol / tetrachloroethane = 50/50 (weight ratio) is added. And dissolved at 30 ° C.
(2)平均粒径(d50:μm)の測定方法
株式会社島津製作所製、遠心沈降式粒度分布測定装置 SA−CP3型を使用して測定した等価球形分布における積算(重量基準)50%の値を平均粒径とした。
(2) Measuring method of average particle diameter (d50: μm) Value of 50% of integration (weight basis) in equivalent spherical distribution measured using Shimadzu Corporation, centrifugal sedimentation type particle size distribution measuring device SA-CP3 type Was the average particle size.
(3)算術平均粗さ(Sa)の測定方法
後述する実施例、比較例の粘着層とは反対側のフィルム表面を、株式会社菱化システム製、非接触表面・層断面形状計測システム VertScan(登録商標)R550GMLを使用して、CCDカメラ:SONY HR−50 1/3’、対物レンズ:20倍、鏡筒:1X Body、ズームレンズ:No Relay、波長フィルター:530 white、測定モード:Waveにて測定し、4次の多項式補正による出力を用いた。
(3) Measuring Method of Arithmetic Average Roughness (Sa) The surface of the film opposite to the adhesive layer of Examples and Comparative Examples described later is manufactured by Ryoka System Co., Ltd., non-contact surface / layer cross-sectional shape measurement system VertScan ( Using registered trademark R550GML, CCD camera: SONY HR-50 1/3 ', objective lens: 20x, lens barrel: 1X Body, zoom lens: No Relay, wavelength filter: 530 white, measurement mode: Wave And the output by the fourth-order polynomial correction was used.
(4)粘着層の膜厚測定方法
粘着層の表面をRuO4で染色し、エポキシ樹脂中に包埋した。その後、超薄切片法により作成した切片をRuO4で染色し、粘着層断面をTEM(株式会社日立ハイテクノロジーズ製 H−7650、加速電圧100V)を用いて測定した。
(4) Method for measuring film thickness of adhesive layer The surface of the adhesive layer was dyed with RuO 4 and embedded in an epoxy resin. Thereafter, the section prepared by ultramicrotomy stained with RuO 4, and the adhesive layer cross-section was measured using a TEM (Hitachi High Technologies Corporation H-7650, accelerating voltage 100 V).
(5)ガラス転移点
株式会社パーキンエルマージャパン製、示差走査熱量測定装置(DSC) 8500を使用して、−100〜200℃において毎分10℃の昇温条件で測定した。
(5) Glass transition point Using a differential scanning calorimeter (DSC) 8500, manufactured by PerkinElmer Japan Co., Ltd., measurement was performed at −100 to 200 ° C. under a temperature rising condition of 10 ° C. per minute.
(6)数平均分子量測定方法
GPC(東ソー株式会社製 HLC−8120GPC)を用いて測定した。数平均分子量はポリスチレン換算で算出した。
(6) Number average molecular weight measurement method It measured using GPC (HLC-8120GPC by Tosoh Corporation). The number average molecular weight was calculated in terms of polystyrene.
(7)シリコーンの官能基確認
ポリエーテル基含有シリコーンを、NMR(Bruker Biospin社製 AVANCEIII600)を用いて、1H−NMRの各ピークを帰属し、ジメチルシロキサンとポリエーテル基の量、ビニルシランやハイドロゲンシランの有無を確認した。
(7) Functional group confirmation of silicone Polyether group-containing silicone was assigned to each peak of 1 H-NMR using NMR (AVANCE III600 manufactured by Bruker Biospin), and the amount of dimethylsiloxane and polyether group, vinyl silane and hydrogen The presence or absence of silane was confirmed.
(8−1)粘着力評価方法(粘着力1)
ポリメチルメタクリレート板(株式会社クラレ製 コモグラス(登録商標)、厚さ1mm)の表面に、5cm幅の本発明の積層フィルムの粘着層面を5cm幅の2kgゴムローラーにて1往復圧着し、室温にて1時間放置後の剥離力を測定した。剥離力は、株式会社島津製作所製「Ezgraph」を使用し、引張速度300mm/分の条件下、180°剥離を行った。
(8-1) Adhesive strength evaluation method (adhesive strength 1)
The pressure-sensitive adhesive layer surface of the laminated film of 5 cm width of the present invention is pressure-bonded once with a 2 cm rubber roller of 5 cm width on the surface of a polymethylmethacrylate plate (Kuraray Co., Ltd., Como Glass (registered trademark), thickness 1 mm), and brought to room temperature. The peel strength after standing for 1 hour was measured. For the peeling force, “Ezgraph” manufactured by Shimadzu Corporation was used, and 180 ° peeling was performed under the condition of a tensile speed of 300 mm / min.
(8−2)粘着力評価方法(粘着力2)
(8−1)のポリメチルメタクリレート板に変えて、ポリカーボネート板(厚さ1mm)を用いて粘着力を評価すること以外は(8−1)と同様にして評価を行った。
(8-2) Adhesive strength evaluation method (adhesive strength 2)
Evaluation was carried out in the same manner as in (8-1) except that the adhesive strength was evaluated using a polycarbonate plate (thickness 1 mm) instead of the polymethyl methacrylate plate of (8-1).
(8−3)粘着力評価方法(粘着力3)
(8−1)のポリメチルメタクリレート板に変えて、後述する比較例1で得られた粘着層のないポリエステルフィルム表面(厚さ50μm)を用いて粘着力を評価すること以外は(8−1)と同様にして評価を行った。
(8-3) Adhesive strength evaluation method (adhesive strength 3)
(8-1) except that the adhesive strength is evaluated using the polyester film surface (thickness: 50 μm) having no adhesive layer obtained in Comparative Example 1 described later instead of the polymethyl methacrylate plate (8-1). ) And the evaluation was performed in the same manner.
(9)粘着層のリワーク性評価方法
1枚のA4サイズの積層ポリエステルフィルムの粘着層側と、後述する比較例1の粘着層がないA4サイズのポリエステルフィルムを重ねて指で強く押さえて粘着特性を評価した。指で軽く押さえただけでフィルムが貼りついて、粘着層を有する方のフィルムのみを持っても貼りついた状態を保持できる場合を5点、指で強く押さえることでフィルムが貼りついて、粘着層を有する方のフィルムのみを持っても貼りついた状態を保持できる場合を4点、指で強く押さえることでフィルムが貼りついて、粘着層を有する方のフィルムのみを持っても貼りついた状態を保持できるが、3秒以内に剥がれてしまう場合を3点、指で強く押さえることでフィルムには粘着特性が微小に見られるが、貼りついた状態を保持できない場合を2点、指で強く押さえても全く粘着特性が見られない場合を1点とした。
フィルムを剥がした後、再度同様な操作を同一箇所で行ったとき、評価結果が同等となる場合を○、粘着特性が悪化する場合を×とした。
(9) Reworkability Evaluation Method for Adhesive Layer Adhesive properties of one A4 size laminated polyester film and the A4 size polyester film without the adhesive layer of Comparative Example 1, which will be described later. Evaluated. 5 points when the film sticks just by lightly pressing it with your finger, and you can hold the attached state even if you have only the film with the adhesive layer. 4 points when you can hold the sticking state even if you have only the film you have, the film sticks by pressing firmly with your finger, and keeps the sticking state even if you have only the film with the adhesive layer Yes, if the film is peeled off within 3 seconds, press the finger firmly. Press the button with your finger. In the case where no adhesive property was observed, 1 point was assigned.
When the same operation was performed again at the same location after the film was peeled off, the case where the evaluation results were equivalent was evaluated as ◯, and the case where the adhesive properties were deteriorated was evaluated as ×.
(10)粘着層の糊残り(転着特性)評価方法
上記評価方法(9)において、貼りつけたフィルムを剥がした後を観察し、糊残り(粘着層の転着跡)がない場合を○、糊残りがある場合を×とした。
(10) Adhesive residue (transfer properties) evaluation method of adhesive layer In the above evaluation method (9), the adhesive film was observed after peeling off the attached film, and there was no adhesive residue (adhesion layer transfer marks). In the case where there is an adhesive residue, x was given.
(11)ブロッキング特性の測定方法
測定するポリエステルフィルムを2枚用意し、粘着層側と、粘着層とは反対側(機能層側)を重ね合わせて、12cm×10cmの面積を、40℃、80%RH、10kg/cm2、20時間の条件下でプレスした。その後、フィルム同士をASTM D1893に規定された方法に準じて剥離し、その剥離荷重を測定した。
剥離荷重が軽いものほどブロッキングしにくく良好であり、好ましくは100g/cm以下、より好ましくは30g/cm以下、さらに好ましくは20g/cm以下、特に好ましくは10g/cm以下、最も好ましくは8g/cm以下の範囲である。なお、本評価で300g/cmを超えるものや、評価の途中でフィルムが破れてしまうものや、プレスにより明らかなブロッキングが発生してしまうものは実用的ではなく、それらの場合は×と評価した。
(11) Measuring method of blocking property Two polyester films to be measured are prepared, the adhesive layer side and the opposite side (functional layer side) of the adhesive layer are overlapped, and an area of 12 cm × 10 cm is obtained at 40 ° C., 80 Pressing was performed under the conditions of% RH, 10 kg / cm 2 , and 20 hours. Thereafter, the films were peeled according to the method specified in ASTM D1893, and the peel load was measured.
The lighter the peeling load, the harder it is to block and the better, preferably 100 g / cm or less, more preferably 30 g / cm or less, more preferably 20 g / cm or less, particularly preferably 10 g / cm or less, and most preferably 8 g / cm. The range is as follows. In this evaluation, those exceeding 300 g / cm, those in which the film was torn during the evaluation, and those in which obvious blocking was generated by the press were not practical. In those cases, the evaluation was x. .
(12)摩擦係数
幅10mm、長さ100mmの平滑なガラス板上に粘着層側を上面としてフィルムを貼り付け、その上に幅18mm、長さ120mmに切り出したフィルムを粘着層とは反対側(機能層がある場合は機能層)を下面として、直径8mmの金属ピンに押し当て、金属ピンをガラス板の長手方向に、加重30g、40mm/分で滑らせて摩擦力を測定し、滑らせ始めた点の摩擦係数を静止摩擦係数(摩擦係数1)、10mm滑らせた点での摩擦係数を動摩擦係数(摩擦係数2)として評価した。なお、測定は、室温23℃ 、湿度50%RHの雰囲気下で行い、摩擦係数が高く測定振れが大きい場合は、振れの中間の値を摩擦係数とした。
(12) Friction coefficient A film is pasted on a smooth glass plate having a width of 10 mm and a length of 100 mm with the adhesive layer side as the upper surface, and a film cut out to a width of 18 mm and a length of 120 mm on the opposite side of the adhesive layer ( If there is a functional layer, press it against a metal pin with a diameter of 8 mm with the functional layer as the bottom surface, slide the metal pin in the longitudinal direction of the glass plate at a load of 30 g, 40 mm / min, and measure the frictional force. The coefficient of friction at the start point was evaluated as the coefficient of static friction (friction coefficient 1), and the coefficient of friction at the point of sliding 10 mm as the dynamic coefficient of friction (friction coefficient 2). Note that the measurement was performed in an atmosphere of a room temperature of 23 ° C. and a humidity of 50% RH, and when the friction coefficient was high and the measurement runout was large, an intermediate value of the runout was taken as the friction coefficient.
(13)表面抵抗の測定方法
日本ヒューレット・パッカード株式会社製高抵抗測定器:HP4339Bおよび測定電極:HP16008Bを使用し、23℃、50%RHの測定雰囲気下でポリエステルフィルムを十分調湿後、印可電圧100Vで1分後の帯電防止層の表面抵抗を測定した。
(13) Measuring method of surface resistance Using a high resistance measuring instrument: HP4339B and measuring electrode: HP16008B manufactured by Nippon Hewlett-Packard Co., Ltd. The surface resistance of the antistatic layer after 1 minute at a voltage of 100 V was measured.
(14)機能層(帯電防止層)側の塵埃付着性評価方法
23℃、50%RHの測定雰囲気下でポリエステルフィルムを十分調湿後、帯電防止層を綿布で10往復こする。これを、細かく砕いた煙草の灰の上に静かに近づけ、灰の付着状況を以下の基準で評価した。
○:フィルムを灰に接触させても付着しない
△:フィルムを灰に接触させると少し付着する
×:フィルムを灰に近づけただけで多量に付着する
(14) Dust adhesion evaluation method on the functional layer (antistatic layer) side After sufficiently conditioning the polyester film in a measurement atmosphere of 23 ° C. and 50% RH, the antistatic layer is rubbed 10 times with a cotton cloth. This was brought close to the finely crushed cigarette ash and the ash adhesion was evaluated according to the following criteria.
○: Even if the film is brought into contact with ash, it does not adhere. Δ: When the film is brought into contact with ash, it adheres a little.
実施例および比較例において使用したポリエステルは、以下のようにして準備したものである。
<ポリエステル(A)の製造方法>
テレフタル酸ジメチル100重量部、エチレングリコール60重量部、エチルアシッドフォスフェートを生成ポリエステルに対して30ppm、触媒として酢酸マグネシウム・四水和物を生成ポリエステルに対して100ppmを窒素雰囲気下、260℃でエステル化反応をさせた。引き続いて、テトラブチルチタネートを生成ポリエステルに対して50ppm添加し、2時間30分かけて280℃まで昇温すると共に、絶対圧力0.3kPaまで減圧し、さらに80分、溶融重縮合させ、極限粘度0.63、ジエチレングリコール量が2モル%のポリエステル(A)を得た。
The polyester used in the examples and comparative examples was prepared as follows.
<Method for producing polyester (A)>
100 parts by weight of dimethyl terephthalate, 60 parts by weight of ethylene glycol, 30 ppm of ethyl acid phosphate with respect to the resulting polyester, and 100 ppm of magnesium acetate tetrahydrate with respect to the resulting polyester as the catalyst at 260 ° C. in a nitrogen atmosphere at 260 ° C. The reaction was allowed to proceed. Subsequently, 50 ppm of tetrabutyl titanate was added to the resulting polyester, the temperature was raised to 280 ° C. over 2 hours and 30 minutes, the pressure was reduced to 0.3 kPa in absolute pressure, and melt polycondensation was further carried out for 80 minutes. A polyester (A) having 0.63 and an amount of diethylene glycol of 2 mol% was obtained.
<ポリエステル(B)の製造方法>
テレフタル酸ジメチル100重量部、エチレングリコール60重量部、触媒として酢酸マグネシウム・四水和物を生成ポリエステルに対して900ppmを窒素雰囲気下、225℃でエステル化反応をさせた。引き続いて、正リン酸を生成ポリエステルに対して3500ppm、二酸化ゲルマニウムを生成ポリエステルに対して70ppm添加し、2時間30分かけて280℃まで昇温すると共に、絶対圧力0.4kPaまで減圧し、さらに85分、溶融重縮合させ、極限粘度0.64、ジエチレングリコール量が2モル%のポリエステル(B)を得た。
<Method for producing polyester (B)>
100 parts by weight of dimethyl terephthalate, 60 parts by weight of ethylene glycol, and magnesium acetate tetrahydrate as a catalyst were subjected to an esterification reaction at 225 ° C. in a nitrogen atmosphere at 900 ppm with respect to the produced polyester. Subsequently, 3500 ppm of orthophosphoric acid was added to the produced polyester, and 70 ppm of germanium dioxide was added to the produced polyester. The temperature was raised to 280 ° C. over 2 hours and 30 minutes, and the pressure was reduced to an absolute pressure of 0.4 kPa. After 85 minutes of melt polycondensation, polyester (B) having an intrinsic viscosity of 0.64 and a diethylene glycol amount of 2 mol% was obtained.
<ポリエステル(C)の製造方法>
ポリエステル(A)の製造方法において、溶融重合前に平均粒径2μmのシリカ粒子を0.3重量部添加する以外はポリエステル(A)の製造方法と同様の方法を用いてポリエステル(C)を得た。
<Method for producing polyester (C)>
In the production method of polyester (A), polyester (C) is obtained using the same method as the production method of polyester (A) except that 0.3 part by weight of silica particles having an average particle diameter of 2 μm is added before melt polymerization. It was.
<ポリエステル(D)の製造方法>
ポリエステル(A)の製造方法において、溶融重合前に平均粒径3μmのシリカ粒子を0.6重量部添加する以外はポリエステル(A)の製造方法と同様の方法を用いてポリエステル(D)を得た。
<Method for producing polyester (D)>
In the production method of polyester (A), polyester (D) is obtained using the same method as the production method of polyester (A) except that 0.6 parts by weight of silica particles having an average particle diameter of 3 μm is added before melt polymerization. It was.
粘着層および機能層を構成する化合物例は以下のとおりである。
(化合物例)
・ポリエステル樹脂:(IA)
下記組成からなるポリエステル樹脂(ガラス転移点:−20℃)の水分散体
モノマー組成:(酸成分)ドデカンジカルボン酸/テレフタル酸/イソフタル酸/5−ソジウムスルホイソフタル酸//(ジオール成分)エチレングリコール/1,4−ブタンジオール=20/38/38/4//40/60(mol%)
・ポリエステル樹脂:(IB)
下記組成からなるポリエステル樹脂(ガラス転移点:−30℃)の水分散体
モノマー組成:(酸成分)ドデカンジカルボン酸/テレフタル酸/イソフタル酸/5−ソジウムスルホイソフタル酸//(ジオール成分)エチレングリコール/1,4−ブタンジオール=30/33/33/4//40/60(mol%)
Examples of compounds constituting the adhesive layer and the functional layer are as follows.
(Example compounds)
・ Polyester resin: (IA)
Water dispersion of polyester resin (glass transition point: −20 ° C.) having the following composition: Monomer composition: (acid component) dodecanedicarboxylic acid / terephthalic acid / isophthalic acid / 5-sodiumsulfoisophthalic acid // (diol component) ethylene Glycol / 1,4-butanediol = 20/38/38/4 // 40/60 (mol%)
・ Polyester resin: (IB)
Water dispersion of polyester resin (glass transition point: −30 ° C.) having the following composition: Monomer composition: (acid component) dodecanedicarboxylic acid / terephthalic acid / isophthalic acid / 5-sodium sulfoisophthalic acid // (diol component) ethylene Glycol / 1,4-butanediol = 30/33/33/4 // 40/60 (mol%)
・ポリエステル樹脂:(IC)
下記組成からなるポリエステル樹脂(ガラス転移点:30℃)の水分散体
モノマー組成:(酸成分)テレフタル酸/イソフタル酸/5−ソジウムスルホイソフタル酸//(ジオール成分)エチレングリコール/1,4−ブタンジオール/ジエチレングリコール=40/56/4//45/25/30(mol%)
・ポリエステル樹脂:(ID)
下記組成からなるポリエステル樹脂の水分散体
モノマー組成:(酸成分)テレフタル酸/イソフタル酸/5−ソジウムスルホイソフタル酸//(ジオール成分)エチレングリコール/1,4−ブタンジオール/ジエチレングリコール=56/40/4//70/20/10(mol%)
・ Polyester resin: (IC)
Water dispersion of polyester resin (glass transition point: 30 ° C.) having the following composition: Monomer composition: (acid component) terephthalic acid / isophthalic acid / 5-sodium sulfoisophthalic acid // (diol component) ethylene glycol / 1,4 -Butanediol / diethylene glycol = 40/56/4 // 45/25/30 (mol%)
・ Polyester resin: (ID)
Water dispersion of polyester resin having the following composition: Monomer composition: (acid component) terephthalic acid / isophthalic acid / 5-sodium sulfoisophthalic acid // (diol component) ethylene glycol / 1,4-butanediol / diethylene glycol = 56 / 40/4 // 70/20/10 (mol%)
・アクリル樹脂:(IIA)
下記組成からなるアクリル樹脂(ガラス転移点:−25℃)の水分散体
ノルマルブチルアクリレート/メチルメタクリレート/2−ヒドロキシエチルメタクリレート/アクリル酸=72/23/3/2(重量%)
・アクリル樹脂:(IIB)
下記組成からなるアクリル樹脂(ガラス転移点:−40℃)の水分散体
ノルマルブチルアクリレート/2−エチルへキシルアクリレート/エチルアクリレート/2−ヒドロキシエチルメタクリレート/アクリル酸=30/30/36/2/2(重量%)
・ Acrylic resin: (IIA)
Aqueous dispersion of acrylic resin (glass transition point: −25 ° C.) having the following composition: normal butyl acrylate / methyl methacrylate / 2-hydroxyethyl methacrylate / acrylic acid = 72/23/3/2 (% by weight)
・ Acrylic resin: (IIB)
Aqueous dispersion of acrylic resin (glass transition point: −40 ° C.) having the following composition: normal butyl acrylate / 2-ethylhexyl acrylate / ethyl acrylate / 2-hydroxyethyl methacrylate / acrylic acid = 30/30/36/2 / 2 (% by weight)
・アクリル樹脂:(IIC)
下記組成からなるアクリル樹脂(ガラス転移点:−50℃)の水分散体
2−エチルへキシルアクリレート/ラウリルメタクリレート/2−ヒドロキシエチルメタクリレート/アクリル酸/メタクリル酸=50/25/15/5/5(重量%)
・アクリル樹脂:(IID)
下記組成からなるアクリル樹脂(ガラス転移点:−55℃)の水分散体
2−エチルへキシルアクリレート/酢酸ビニル/アクリル酸=78/20/2(重量%)
・アクリル樹脂:(IIE)
下記組成からなるアクリル樹脂(ガラス転移点:10℃)の水分散体
エチルアクリレート/ノルマルブチルメタクリレート/アクリル酸=25/73/2(重量%)
・ Acrylic resin: (IIC)
Aqueous dispersion of acrylic resin (glass transition point: −50 ° C.) having the following composition: 2-ethylhexyl acrylate / lauryl methacrylate / 2-hydroxyethyl methacrylate / acrylic acid / methacrylic acid = 50/25/15/5/5 (weight%)
・ Acrylic resin: (IID)
Aqueous dispersion of acrylic resin (glass transition point: −55 ° C.) having the following composition 2-ethylhexyl acrylate / vinyl acetate / acrylic acid = 78/20/2 (% by weight)
・ Acrylic resin: (IIE)
Aqueous dispersion of acrylic resin (glass transition point: 10 ° C.) having the following composition: ethyl acrylate / normal butyl methacrylate / acrylic acid = 25/73/2 (% by weight)
・ウレタン樹脂:(III)
1,6−ヘキサンジオールとジエチルカーボネートからなる数平均分子量が2000のポリカーボネートポリオール80部、数平均分子量400のポリエチレングリコール4部、メチレンビス(4−シクロヘキシルイソシアネート)12部、ジメチロールブタン酸4部からなるウレタン樹脂をトリエチルアミンで中和した水分散体(ガラス転移点:−30℃)
-Urethane resin: (III)
Consisting of 80 parts of polycarbonate polyol having a number average molecular weight of 2000 consisting of 1,6-hexanediol and diethyl carbonate, 4 parts of polyethylene glycol having a number average molecular weight of 400, 12 parts of methylenebis (4-cyclohexylisocyanate), and 4 parts of dimethylolbutanoic acid. Water dispersion obtained by neutralizing urethane resin with triethylamine (glass transition point: -30 ° C)
・エポキシ化合物:(IVA)多官能ポリエポキシ化合物である、ポリグリセロールポリグリシジルエーテル
・メラミン化合物:(IVB)ヘキサメトキシメチロールメラミン
・オキサゾリン化合物:(IVC)
オキサゾリン基及びポリアルキレンオキシド鎖を有するアクリルポリマー エポクロス(オキサゾリン基量=4.5mmol/g、株式会社日本触媒製)
・イソシアネート系化合物:(IVD)
ヘキサメチレンジイソシアネート1000部を60℃で攪拌し、触媒としてテトラメチルアンモニウム・カプリエート0.1部を加えた。4時間後、リン酸0.2部を添加して反応を停止させ、イソシアヌレート型ポリイソシアネート組成物を得た。得られたイソシアヌレート型ポリイソシアネート組成物100部、数平均分子量400のメトキシポリエチレングリコール42.3部、プロピレングリコールモノメチルエーテルアセテート29.5部を仕込み、80℃で7時間保持した。その後反応液温度を60℃に保持し、イソブタノイル酢酸メチル35.8部、マロン酸ジエチル32.2部、ナトリウムメトキシドの28%メタノール溶液0.88部を添加し、4時間保持した。n−ブタノール58.9部を添加し、反応液温度80℃で2時間保持し、その後、2−エチルヘキシルアシッドホスフェート0.86部を添加して得られた活性メチレンによるブロックポリイソシアネート。
・ Epoxy compound: (IVA) Polyglycerol polyglycidyl ether which is a polyfunctional polyepoxy compound ・ Melamine compound: (IVB) Hexamethoxymethylolmelamine ・ Oxazoline compound: (IVC)
Acrylic polymer having an oxazoline group and a polyalkylene oxide chain Epocross (Oxazoline group amount = 4.5 mmol / g, manufactured by Nippon Shokubai Co., Ltd.)
・ Isocyanate compounds: (IVD)
1000 parts of hexamethylene diisocyanate was stirred at 60 ° C., and 0.1 part of tetramethylammonium capryate was added as a catalyst. After 4 hours, 0.2 part of phosphoric acid was added to stop the reaction, and an isocyanurate type polyisocyanate composition was obtained. 100 parts of the obtained isocyanurate type polyisocyanate composition, 42.3 parts of methoxypolyethylene glycol having a number average molecular weight of 400, and 29.5 parts of propylene glycol monomethyl ether acetate were charged and maintained at 80 ° C. for 7 hours. Thereafter, the reaction solution temperature was kept at 60 ° C., 35.8 parts of methyl isobutanoyl acetate, 32.2 parts of diethyl malonate, and 0.88 part of 28% methanol solution of sodium methoxide were added and kept for 4 hours. Block polyisocyanate with active methylene obtained by adding 58.9 parts of n-butanol, maintaining the reaction solution temperature at 80 ° C. for 2 hours, and then adding 0.86 part of 2-ethylhexyl acid phosphate.
・粒子:(VA) 平均粒径25nmのシリカ粒子
・粒子:(VB) 平均粒径45nmのシリカ粒子
・粒子:(VC) 平均粒径65nmのシリカ粒子
・粒子:(VD) 平均粒径80nmのシリカ粒子
・粒子:(VE) 平均粒径140nmのシリカ粒子
・粒子:(VF) 平均粒径450nmのシリカ粒子
-Particles: (VA) Silica particles with an average particle size of 25 nm-Particles: (VB) Silica particles with an average particle size of 45 nm-Particles: (VC) Silica particles with an average particle size of 65 nm-Particles: (VD) Silica particles / particles: (VE) Silica particles / particles with an average particle diameter of 140 nm: (VF) Silica particles with an average particle diameter of 450 nm
・離型剤(長鎖アルキル基含有化合物):(VIA)
4つ口フラスコにキシレン200部、オクタデシルイソシアネート600部を加え、攪拌下に加熱した。キシレンが還流し始めた時点から、平均重合度500、ケン化度88モル%のポリビニルアルコール100部を少量ずつ10分間隔で約2時間にわたって加えた。ポリビニルアルコールを加え終わってから、さらに2時間還流を行い、反応を終了した。反応混合物を約80℃まで冷却してから、メタノール中に加えたところ、反応生成物が白色沈殿として析出したので、この沈殿を濾別し、キシレン140部を加え、加熱して完全に溶解させた後、再びメタノールを加えて沈殿させるという操作を数回繰り返した後、沈殿をメタノールで洗浄し、乾燥粉砕して得た。
・ Releasing agent (long chain alkyl group-containing compound): (VIA)
To a four-necked flask, 200 parts of xylene and 600 parts of octadecyl isocyanate were added and heated with stirring. From the time when xylene began to reflux, 100 parts of polyvinyl alcohol having an average degree of polymerization of 500 and a degree of saponification of 88 mol% was added in small portions over a period of about 2 hours. After the addition of polyvinyl alcohol, the reaction was completed by further refluxing for 2 hours. When the reaction mixture was cooled to about 80 ° C. and added to methanol, the reaction product was precipitated as a white precipitate. This precipitate was filtered off, added with 140 parts of xylene, and heated to dissolve completely. After repeating the operation of adding methanol again to precipitate several times, the precipitate was washed with methanol and dried and ground.
・離型剤(フッ素化合物):(VIB)
下記組成からなるフッ素化合物の水分散体
オクタデシルアクリレート/パーフルオロヘキシルエチルメタクリレート/塩化ビニル=66/17/17(重量%)
・ Releasing agent (fluorine compound): (VIB)
Fluorine compound aqueous dispersion having the following composition: Octadecyl acrylate / perfluorohexyl ethyl methacrylate / vinyl chloride = 66/17/17 (% by weight)
・ポリエーテル基含有縮合型シリコーン:(VIC)
ジメチルシリコーンの側鎖に、モル比でジメチルシロキサン100に対して、エチレングリコール鎖が8であるポリエチレングリコール(末端は水酸基)を1含有する、数平均分子量7000のポリエーテル基含有シリコーン(シリコーンのシロキサン結合を1とした場合、モル比の割合で、ポリエーテル基のエーテル結合は0.07である)。数平均分子量500以下の低分子成分は3%、ケイ素に結合したビニル基(ビニルシラン)、水素基(ハイドロゲンシラン)は存在せず。なお、本化合物は、重量比で、ポリエーテル基含有シリコーンを1として、ドデシルベンゼンスルホン酸ナトリウムを0.25の割合で配合し、水分散したもの。
-Polyether group-containing condensed silicone: (VIC)
Polyether group-containing silicone having a number average molecular weight of 7000 (silicone siloxane) containing 1 polyethylene glycol (terminated with a hydroxyl group) having an ethylene glycol chain of 8 with respect to dimethylsiloxane 100 in the dimethyl silicone side chain in a molar ratio. When the bond is 1, the ether bond of the polyether group is 0.07 at a molar ratio). 3% of low molecular components having a number average molecular weight of 500 or less, no vinyl group (vinyl silane) and hydrogen group (hydrogen silane) bonded to silicon exist. In addition, this compound mix | blends the water which disperse | distributes sodium dodecyl benzenesulfonate in the ratio of 0.25 by making polyether group containing silicone 1 by weight ratio.
・付加型シリコーン:(VID)
下記組成の化合物を混合した付加型シリコーンの水分散体
ビニル基を0.6モル%含有するメチルビニルポリシロキサンを80重量%、ハイドロゲンシラン基(水素基)を30モル%含有するメチルハイドロゲンポリシロキサンを5重量%、3−グリシドキシプロピルトリメトキシシランを5重量%、ポリエチレングリコールブチルエーテルを10重量%および白金触媒を含有する水分散体。
・ Additional silicone: (VID)
Addition-type silicone aqueous dispersion mixed with a compound of the following composition: methyl hydrogen polysiloxane containing 80% by weight of methyl vinyl polysiloxane containing 0.6 mol% of vinyl groups and 30 mol% of hydrogen silane groups (hydrogen groups) 5% by weight, 5% by weight of 3-glycidoxypropyltrimethoxysilane, 10% by weight of polyethylene glycol butyl ether, and an aqueous dispersion containing a platinum catalyst.
・ワックス:(VIE)
攪拌機、温度計、温度コントローラーを備えた内容量1.5Lの乳化設備に融点105℃、酸価16mgKOH/g、密度0.93g/mL、数平均分子量5000の酸化ポリエチレンワックス300g、イオン交換水650gとデカグリセリンモノオレエート界面活性剤を50g、48%水酸化カリウム水溶液10gを加え窒素で置換後、密封し150℃で1時間高速攪拌した後130℃に冷却し、高圧ホモジナイザーを400気圧下で通過させ40℃に冷却したワックスエマルション。
・ Wax: (VIE)
An emulsification facility with an internal capacity of 1.5 L equipped with a stirrer, thermometer, temperature controller, melting point 105 ° C., acid value 16 mgKOH / g, density 0.93 g / mL, number average molecular weight 5000 polyethylene oxide wax 300 g, ion-exchanged water 650 g After adding 50 g of decaglycerin monooleate surfactant and 10 g of 48% potassium hydroxide aqueous solution and replacing with nitrogen, the mixture was sealed, stirred at 150 ° C. for 1 hour at high speed, cooled to 130 ° C., and a high-pressure homogenizer at 400 atm. A wax emulsion passed through and cooled to 40 ° C.
・帯電防止剤(4級アンモニウム塩化合物):(VIIA)
主鎖にピロリジニウム環を有する下記組成で重合したポリマー
ジアリルジメチルアンモニウムクロライド/ジメチルアクリルアミド/N−メチロールアクリルアミド=90/5/5(mol%)。数平均分子量30000。
Antistatic agent (quaternary ammonium salt compound): (VIIA)
Polymer polymerized with the following composition having a pyrrolidinium ring in the main chain: Diallyldimethylammonium chloride / dimethylacrylamide / N-methylolacrylamide = 90/5/5 (mol%). Number average molecular weight 30000.
・帯電防止剤(アンモニウム基を有する化合物):(VIIB)
下記式(2)の構成単位からなる、対イオンがメタンスルホン酸イオンである数平均分子量50000の高分子化合物。
・ Antistatic agent (compound having ammonium group): (VIIB)
A polymer compound having a number average molecular weight of 50000, wherein the counter ion is a methanesulfonic acid ion, comprising a structural unit of the following formula (2)
実施例1:
ポリエステル(A)、(B)、(C)をそれぞれ91%、3%、6%の割合で混合した混合原料を最外層(表層)の原料とし、ポリエステル(A)、(B)をそれぞれ97%、3%の割合で混合した混合原料を中間層の原料として、2台の押出機に各々を供給し、各々285℃で溶融した後、40℃に設定した冷却ロール上に、2種3層(表層/中間層/表層=3:44:3の吐出量)の層構成で共押出し冷却固化させて未延伸シートを得た。次いで、ロール周速差を利用してフィルム温度85℃で縦方向に3.2倍延伸した後、この縦延伸フィルムの片面に、下記表1に示す塗布液A1を粘着層の膜厚(乾燥後)が30nmになるように塗布し、反対側の面に下記表3に示す塗布液B3を機能層の膜厚(乾燥後)が30nmになるように塗布し、テンターに導き、95℃で10秒間乾燥させた後、横方向に120℃で4.3倍延伸し、230℃で10秒間熱処理を行った後、横方向に2%弛緩し、厚さ50μm、機能層側の表面のSaが9nmのポリエステルフィルムを得た。
Example 1:
A mixed raw material in which polyesters (A), (B), and (C) were mixed in proportions of 91%, 3%, and 6%, respectively, was used as a raw material for the outermost layer (surface layer), and polyesters (A) and (B) were each 97 %, 3% of the mixed raw material is used as an intermediate layer raw material, each is supplied to two extruders, melted at 285 ° C., and then on a cooling roll set at 40 ° C. Coextruded and cooled and solidified with a layer structure of layers (surface layer / intermediate layer / surface layer = 3: 44: 3 discharge amount) to obtain an unstretched sheet. Next, the film was stretched 3.2 times in the machine direction at a film temperature of 85 ° C. using the roll peripheral speed difference, and then the coating liquid A1 shown in Table 1 below was applied to the thickness of the adhesive layer (dried) on one side of the film. (After) is applied to 30 nm, and coating liquid B3 shown in the following Table 3 is applied to the opposite surface so that the film thickness (after drying) of the functional layer is 30 nm, and guided to a tenter at 95 ° C. After drying for 10 seconds, the film was stretched 4.3 times in the transverse direction at 120 ° C., heat-treated at 230 ° C. for 10 seconds, relaxed 2% in the transverse direction, 50 μm in thickness, and Sa on the surface on the functional layer side. A 9 nm polyester film was obtained.
でき上がったポリエステルフィルムを評価したところ、粘着力は5mN/cmで、粘着特性を発現しており、またブロッキング特性や摩擦係数は良好であった。このフィルムの特性を下記表4および5に示す。 When the finished polyester film was evaluated, the adhesive strength was 5 mN / cm, the adhesive properties were exhibited, and the blocking properties and the friction coefficient were good. The properties of this film are shown in Tables 4 and 5 below.
実施例2〜72:
実施例1において、塗布剤組成を表1〜3に示す塗布剤組成に変更する以外は実施例1と同様にして製造し、ポリエステルフィルムを得た。でき上がったポリエステルフィルムは下記表4〜7に示すとおり、粘着力、ブロッキング特性および摩擦係数は良好であった。
Examples 2-72:
In Example 1, it manufactured like Example 1 except having changed an application agent composition into an application agent composition shown in Tables 1-3, and obtained a polyester film. As shown in Tables 4 to 7 below, the finished polyester film had good adhesive strength, blocking characteristics, and friction coefficient.
実施例73〜88:
実施例1において、塗布剤組成を表1および3に示す塗布剤組成に変更する以外は実施例1と同様にして製造し、ポリエステルフィルムを得た。でき上がったポリエステルフィルムは下記表8および9に示すとおり、粘着力、ブロッキング特性、摩擦係数および帯電防止性能は良好であった。
Examples 73-88:
In Example 1, it manufactured like Example 1 except having changed an application agent composition into the application agent composition shown in Table 1 and 3, and obtained the polyester film. As shown in Tables 8 and 9 below, the finished polyester film had good adhesive strength, blocking characteristics, coefficient of friction, and antistatic performance.
実施例89〜93:
実施例1において、粘着層とは反対側の表層のポリエステル組成を、ポリエステル(A)、(B)、(D)をそれぞれ72%、3%、25%の割合で混合した混合原料とし、層構成を3種3層(粘着層側の表層/中間層/粘着層とは反対側の表層=3:19:3の吐出量)の層構成で共押出しし、塗布剤組成を表1および3に示す塗布剤組成に変更する以外は実施例1と同様にして製造し、ポリエステルフィルムを得た。でき上がったポリエステルフィルムの粘着層とは反対側の表面のSaは30nmであり、また、粘着力および摩擦係数は良好であった。このフィルムの特性を下記表10および11に示す。
Examples 89-93:
In Example 1, the polyester composition of the surface layer opposite to the adhesive layer is a mixed raw material in which polyesters (A), (B), and (D) are mixed at a ratio of 72%, 3%, and 25%, respectively. The composition was co-extruded with a layer structure of 3 types and 3 layers (surface layer on the adhesive layer side / intermediate layer / surface layer on the opposite side of the adhesive layer = 3: 19: 3 discharge amount). A polyester film was obtained in the same manner as in Example 1 except that the composition was changed to the coating composition shown in FIG. Sa on the surface opposite to the pressure-sensitive adhesive layer of the finished polyester film was 30 nm, and the pressure-sensitive adhesive force and coefficient of friction were good. The properties of this film are shown in Tables 10 and 11 below.
実施例94:
実施例89において、粘着層および機能層を設けなかったこと以外は実施例89と同様にして製造し、ポリエステルフィルムを得た。この粘着層および機能層のないポリエステルフィルム上に、下記表1に示す塗布液A1を粘着層の膜厚(乾燥後)が130nmになるように塗布し、100℃で60秒間の乾燥を行い、オフラインコーティングによる粘着層が積層されたポリエステルフィルムを得た。でき上がったポリエステルフィルムは表10および11に示すとおり、転着特性やブロッキング特性が悪いものであったが、粘着力は良好であった。
Example 94
A polyester film was obtained in the same manner as in Example 89 except that the adhesive layer and functional layer were not provided in Example 89. On the polyester film without the adhesive layer and the functional layer, coating solution A1 shown in Table 1 below was applied so that the thickness of the adhesive layer (after drying) was 130 nm, and dried at 100 ° C. for 60 seconds. A polyester film on which an adhesive layer by off-line coating was laminated was obtained. As shown in Tables 10 and 11, the finished polyester film had poor transfer properties and blocking properties, but had good adhesive strength.
比較例1:
実施例1において、粘着層および機能層を設けなかったこと以外は実施例1と同様にして製造し、ポリエステルフィルムを得た。でき上がったポリエステルフィルムを評価したところ、下記表12に示すとおり、粘着力はないフィルムであった。
Comparative Example 1:
In Example 1, it manufactured like Example 1 except not having provided an adhesion layer and a functional layer, and obtained a polyester film. When the completed polyester film was evaluated, as shown in Table 12 below, it was a film having no adhesive force.
比較例2〜5:
実施例1において、塗布剤組成を表2および3に示す塗布剤組成に変更する以外は実施例1と同様にして製造し、ポリエステルフィルムを得た。でき上がったポリエステルフィルムは表12に示すとおり、摩擦係数が高い場合や、粘着力がない場合が見られた。
Comparative Examples 2-5:
A polyester film was obtained in the same manner as in Example 1 except that the coating composition was changed to the coating composition shown in Tables 2 and 3 in Example 1. As shown in Table 12, the finished polyester film was found to have a high friction coefficient or no adhesive force.
比較例6:
比較例1で得られた粘着層および機能層がないポリエステルフィルム上に、下記表2に示す塗布液C1を粘着層の膜厚(乾燥後)が20μmとなるように、オフラインコーティングによる粘着層が形成されたポリエステルフィルムを得た。ポリエステルフィルムに粘着層側を貼り合わせた後に断裁したところ、実施例では見られなかった、粘着層の成分のはみ出しが見られ、粘着成分による汚染が懸念される結果であった。その他の特性は表12および13に示すとおりであった。
Comparative Example 6:
On the polyester film without the pressure-sensitive adhesive layer and functional layer obtained in Comparative Example 1, the pressure-sensitive adhesive layer by off-line coating was applied so that the film thickness (after drying) of the coating liquid C1 shown in Table 2 below was 20 μm. A formed polyester film was obtained. When the polyester film was cut after bonding the pressure-sensitive adhesive layer side, the component of the pressure-sensitive adhesive layer that was not seen in the examples was seen to be contaminated by the pressure-sensitive adhesive component. The other characteristics were as shown in Tables 12 and 13.
本発明のフィルムは、例えば、樹脂板、金属板等の輸送時、保管時や加工時の傷付き防止や汚れ付着防止用等に使用する表面保護フィルム等の用途において、フィッシュアイが少なく、機械的強度および耐熱性に優れ、良好な粘着特性および滑り性が必要な用途に好適に利用することができる。 The film of the present invention has few fish eyes in applications such as surface protection films used for preventing scratches and preventing dirt adhesion during transportation, storage and processing of resin plates, metal plates, etc. It is excellent in mechanical strength and heat resistance, and can be suitably used for applications that require good adhesive properties and slipperiness.
粘着層の膜厚としては、上述の平均粒径や、平均粒径と膜厚の比率の範囲で適宜選択することが可能であるが、より好適な粘着力の調整、あるいはブロッキング特性、粘着層の外観などの向上のためには、10μm以下、好ましくは1nm〜4μm、より好ましくは10nm〜1μm、さらに好ましくは20〜500nm、特に好ましくは40〜400nmの範囲である。一般的な粘着層は数十μmレベルの厚い膜厚であるが、そのような場合、例えば、偏光板製造用に使用する場合、粘着フィルムを偏光板などとの被着体と貼り合わせて断裁する際等において、粘着層中の粘着剤のはみ出しが顕著に発生してしまう場合がある。ところが上述の範囲に膜厚を調整することで、当該はみ出しを最小限に抑えることができる。この効果は、粘着層の膜厚が薄いほど良好となる。また、粘着層の膜厚が薄いほど、フィルム上に存在する粘着層の絶対量が少ないこともあり、被着体に粘着層の成分が移行する、糊残りの低減にも効果的である。さらに上述の範囲の膜厚とすることで、強すぎない適度な粘着力を達成することができることも分かり、例えば、偏光板製造工程用など、粘着性能と、貼り合わせ後に剥離する剥離性能の両立を図る必要がある用途に用いる場合には、粘着−剥離の操作を容易に行うことができ、最適なフィルムとすることが可能となる。膜厚が薄いほどブロッキング特性には有効であり、インラインコーティングにより粘着層を形成する場合には製造し易いものとなり好ましいが、逆に膜厚が薄すぎる場合は粘着層の構成によっては粘着特性がなくなってしまう場合もあるので、用途に応じて上述の好適な範囲での使用が好ましい。 The thickness of the pressure-sensitive adhesive layer can be appropriately selected within the range of the above average particle diameter or the ratio of the average particle diameter to the film thickness, but more suitable adjustment of adhesive force or blocking characteristics, pressure-sensitive adhesive layer In order to improve the appearance, the thickness is 10 μm or less, preferably 1 nm to 4 μm, more preferably 10 nm to 1 μm, still more preferably 20 to 500 nm, and particularly preferably 40 to 400 nm . A typical adhesive layer has a thickness of several tens of micrometers, but in such a case, for example, when used for manufacturing a polarizing plate, the adhesive film is bonded to an adherend such as a polarizing plate and cut. In some cases, the sticking out of the pressure-sensitive adhesive in the pressure-sensitive adhesive layer may occur remarkably. However, the protrusion can be minimized by adjusting the film thickness within the above-mentioned range. This effect becomes better as the adhesive layer is thinner. In addition, the thinner the adhesive layer is, the smaller the absolute amount of the adhesive layer present on the film is, and the more effective the adhesive paste component is transferred to the adherend and the reduction in adhesive residue. Furthermore, it can be seen that by setting the film thickness in the above-mentioned range, it is possible to achieve an appropriate adhesive strength that is not too strong. For example, for polarizing plate manufacturing processes, both adhesive performance and peeling performance that peels after bonding are achieved. When used in applications where it is necessary to achieve this, the adhesive-peeling operation can be easily performed, and an optimum film can be obtained. The thinner the film is, the more effective it is for blocking properties. When forming an adhesive layer by in-line coating, it is preferable because it is easy to manufacture. Since it may disappear, use in the above-mentioned suitable range according to a use is preferable.
実施例94:
実施例89において、粘着層および機能層を設けなかったこと以外は実施例89と同様にして製造し、ポリエステルフィルムを得た。この粘着層および機能層のないポリエステルフィルム上に、下記表1に示す塗布液A4を粘着層の膜厚(乾燥後)が130nmになるように塗布し、100℃で60秒間の乾燥を行い、オフラインコーティングによる粘着層が積層されたポリエステルフィルムを得た。でき上がったポリエステルフィルムは表10および11に示すとおり、転着特性やブロッキング特性が悪いものであったが、粘着力は良好であった。
Example 94
A polyester film was obtained in the same manner as in Example 89 except that the adhesive layer and functional layer were not provided in Example 89. On a polyester film without the adhesive layer and functional layer, the coating solution A 4 shown in Table 1 thickness of the adhesive layer (after drying) was coated so that the 130 nm, followed by drying for 60 seconds at 100 ° C. Then, a polyester film on which an adhesive layer by off-line coating was laminated was obtained. As shown in Tables 10 and 11, the finished polyester film had poor transfer properties and blocking properties, but had good adhesive strength.
すなわち、本発明の要旨は、ポリエステルフィルムの少なくとも一方の面に、平均粒径が500nm以下の粒子を含有する粘着層を有し、前記粒子の平均粒径が粘着層の膜厚の3倍以下であることを特徴とする積層フィルムに存する。 That is, the gist of the present invention is to have an adhesive layer containing particles having an average particle diameter of 500 nm or less on at least one surface of the polyester film, and the average particle diameter of the particles is 3 times or less the film thickness of the adhesive layer. It exists in the laminated film characterized by being.
Claims (1)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015120704A JP6117858B2 (en) | 2015-06-16 | 2015-06-16 | Laminated film |
KR1020157035092A KR20170007085A (en) | 2015-06-13 | 2015-11-19 | Adhesive film |
CN201580001122.5A CN106471080A (en) | 2015-06-13 | 2015-11-19 | Adhesive film |
PCT/JP2015/082528 WO2016203669A1 (en) | 2015-06-13 | 2015-11-19 | Adhesive film |
TW104139187A TWI666296B (en) | 2015-06-13 | 2015-11-25 | Adhesive film and manufacturing method of adhesive film |
EP15202866.8A EP3103848A1 (en) | 2015-06-13 | 2015-12-29 | Adhesive film |
US14/984,500 US20160362582A1 (en) | 2015-06-13 | 2015-12-30 | Adhesive film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015120704A JP6117858B2 (en) | 2015-06-16 | 2015-06-16 | Laminated film |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017002252A true JP2017002252A (en) | 2017-01-05 |
JP6117858B2 JP6117858B2 (en) | 2017-04-19 |
Family
ID=57751539
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015120704A Active JP6117858B2 (en) | 2015-06-13 | 2015-06-16 | Laminated film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6117858B2 (en) |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007169458A (en) * | 2005-12-22 | 2007-07-05 | Fujimori Kogyo Co Ltd | Protecting film |
JP2008050507A (en) * | 2006-08-25 | 2008-03-06 | Nippon Carbide Ind Co Inc | Pressure-sensitive adhesive composition for surface protective film of optical member, and the surface protective film of optical member |
JP2008133435A (en) * | 2006-10-31 | 2008-06-12 | Nitto Denko Corp | Surface protective film and optical film with surface protective film |
JP2009227860A (en) * | 2008-03-24 | 2009-10-08 | Dainippon Printing Co Ltd | Self-adhesive composition, and near-infrared ray absorption filter using the self-adhesive composition |
WO2011105217A1 (en) * | 2010-02-23 | 2011-09-01 | 株式会社 きもと | Adhesive sheet |
JP2014063971A (en) * | 2012-09-21 | 2014-04-10 | Toray Advanced Materials Korea Inc | Adhesive composition for masking tape in mold underfill process, and masking tape using the same |
WO2014061533A1 (en) * | 2012-10-19 | 2014-04-24 | リンテック株式会社 | Adhesive agent composition and adhesive sheet |
JP2014104586A (en) * | 2012-11-22 | 2014-06-09 | General Co Ltd | Thermal tag sheet |
JP2015021082A (en) * | 2013-07-19 | 2015-02-02 | 日東電工株式会社 | Thermal peeling type adhesive tape for cutting-off electronic component and cutting-off method of electronic component |
JP2015028109A (en) * | 2013-07-30 | 2015-02-12 | セイコーインスツル株式会社 | Adhesive label, manufacturing method of adhesive label and label issuance device |
JP2015034215A (en) * | 2013-08-08 | 2015-02-19 | 三井化学株式会社 | Surface protective film |
-
2015
- 2015-06-16 JP JP2015120704A patent/JP6117858B2/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007169458A (en) * | 2005-12-22 | 2007-07-05 | Fujimori Kogyo Co Ltd | Protecting film |
JP2008050507A (en) * | 2006-08-25 | 2008-03-06 | Nippon Carbide Ind Co Inc | Pressure-sensitive adhesive composition for surface protective film of optical member, and the surface protective film of optical member |
JP2008133435A (en) * | 2006-10-31 | 2008-06-12 | Nitto Denko Corp | Surface protective film and optical film with surface protective film |
JP2009227860A (en) * | 2008-03-24 | 2009-10-08 | Dainippon Printing Co Ltd | Self-adhesive composition, and near-infrared ray absorption filter using the self-adhesive composition |
WO2011105217A1 (en) * | 2010-02-23 | 2011-09-01 | 株式会社 きもと | Adhesive sheet |
JP2014063971A (en) * | 2012-09-21 | 2014-04-10 | Toray Advanced Materials Korea Inc | Adhesive composition for masking tape in mold underfill process, and masking tape using the same |
WO2014061533A1 (en) * | 2012-10-19 | 2014-04-24 | リンテック株式会社 | Adhesive agent composition and adhesive sheet |
JP2014104586A (en) * | 2012-11-22 | 2014-06-09 | General Co Ltd | Thermal tag sheet |
JP2015021082A (en) * | 2013-07-19 | 2015-02-02 | 日東電工株式会社 | Thermal peeling type adhesive tape for cutting-off electronic component and cutting-off method of electronic component |
JP2015028109A (en) * | 2013-07-30 | 2015-02-12 | セイコーインスツル株式会社 | Adhesive label, manufacturing method of adhesive label and label issuance device |
JP2015034215A (en) * | 2013-08-08 | 2015-02-19 | 三井化学株式会社 | Surface protective film |
Also Published As
Publication number | Publication date |
---|---|
JP6117858B2 (en) | 2017-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6365506B2 (en) | Laminated polyester film | |
JP6077063B2 (en) | Laminated film | |
JP6455566B2 (en) | Laminated polyester film | |
WO2016092905A1 (en) | Coated film | |
JP6365613B2 (en) | Method for producing laminated polyester film | |
JP6172209B2 (en) | Optical member surface protection film | |
JP6428878B2 (en) | Laminated film | |
WO2016203669A1 (en) | Adhesive film | |
JP6350623B2 (en) | Laminated film | |
JP6278104B2 (en) | Method for producing polyester film for polarizing plate production process | |
JP6428879B2 (en) | Laminated film | |
JP6085656B1 (en) | Laminated polyester film | |
JP6061995B1 (en) | Laminated film | |
JP2018168385A (en) | Production method of laminate polyester film | |
JP2018123325A (en) | Laminated polyester film | |
JP2018159929A (en) | Optical member | |
JP6296129B2 (en) | Method for producing laminated film | |
JP6117858B2 (en) | Laminated film | |
JP6168106B2 (en) | Laminated film | |
JP2017042914A (en) | Laminate film | |
JP2016218482A (en) | Optical member | |
JP6278085B2 (en) | Manufacturing method of optical member | |
JP6109261B2 (en) | Laminated polyester film | |
JP6168120B2 (en) | Laminated polyester film | |
JP6311667B2 (en) | Laminated film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161122 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161202 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20170214 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170220 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20170228 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170321 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170323 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6117858 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |