JP2016533781A5 - - Google Patents

Download PDF

Info

Publication number
JP2016533781A5
JP2016533781A5 JP2016521301A JP2016521301A JP2016533781A5 JP 2016533781 A5 JP2016533781 A5 JP 2016533781A5 JP 2016521301 A JP2016521301 A JP 2016521301A JP 2016521301 A JP2016521301 A JP 2016521301A JP 2016533781 A5 JP2016533781 A5 JP 2016533781A5
Authority
JP
Japan
Prior art keywords
power
ophthalmic
iol
refractive power
correction value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016521301A
Other languages
English (en)
Japanese (ja)
Other versions
JP2016533781A (ja
JP6620293B2 (ja
Filing date
Publication date
Application filed filed Critical
Priority claimed from PCT/US2014/059943 external-priority patent/WO2015054521A1/en
Publication of JP2016533781A publication Critical patent/JP2016533781A/ja
Publication of JP2016533781A5 publication Critical patent/JP2016533781A5/ja
Application granted granted Critical
Publication of JP6620293B2 publication Critical patent/JP6620293B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

JP2016521301A 2013-10-10 2014-10-08 Iol度数を推定するための補正値 Active JP6620293B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361889477P 2013-10-10 2013-10-10
US61/889,477 2013-10-10
PCT/US2014/059943 WO2015054521A1 (en) 2013-10-10 2014-10-08 Correction values for iol power estimates

Publications (3)

Publication Number Publication Date
JP2016533781A JP2016533781A (ja) 2016-11-04
JP2016533781A5 true JP2016533781A5 (enExample) 2017-11-16
JP6620293B2 JP6620293B2 (ja) 2019-12-18

Family

ID=52809390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016521301A Active JP6620293B2 (ja) 2013-10-10 2014-10-08 Iol度数を推定するための補正値

Country Status (7)

Country Link
US (1) US9622655B2 (enExample)
EP (1) EP3038514A4 (enExample)
JP (1) JP6620293B2 (enExample)
CN (2) CN105813543B (enExample)
AU (1) AU2014331833B2 (enExample)
CA (1) CA2923648C (enExample)
WO (1) WO2015054521A1 (enExample)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105530853B (zh) 2013-07-25 2018-12-04 光学医疗公司 对物质的折射率的原位确定
US10912456B2 (en) 2016-01-27 2021-02-09 Johnson & Johnson Vision Care, Inc. Ametropia treatment tracking methods and system
US10667680B2 (en) 2016-12-09 2020-06-02 Microsoft Technology Licensing, Llc Forecasting eye condition progression for eye patients
IL258706A (en) * 2017-04-25 2018-06-28 Johnson & Johnson Vision Care Treatment follow-up methods in emmetropia and system
US11890184B2 (en) * 2017-09-29 2024-02-06 John Gregory LADAS Systems, apparatuses, and methods for intraocular lens selection using artificial intelligence
EP3501376A1 (en) * 2017-12-22 2019-06-26 Essilor International Methods and systems for determining a refraction of at least an eye of a person
AU2019205653B2 (en) * 2018-01-05 2024-12-12 Alcon Inc. Systems and methods for intraocular lens selection
CN108538389B (zh) * 2018-03-27 2022-04-29 季书帆 一种预测smile屈光手术中屈光度调整值的方法及系统
US10888380B2 (en) * 2018-07-12 2021-01-12 Alcon Inc. Systems and methods for intraocular lens selection
EP4471799A3 (en) * 2018-12-06 2025-03-05 Advanced Euclidean Solutions, LLC Apparatus and method for intraocular lens selection using post-operative measurements
CN109645956B (zh) * 2018-12-25 2021-08-06 重庆远视科技有限公司 眼睛屈光度测量装置
EP4524992A3 (en) * 2019-01-22 2025-06-04 Alcon Inc. Systems and methods for intraocular lens selection using emmetropia zone prediction
US11529230B2 (en) * 2019-04-05 2022-12-20 Amo Groningen B.V. Systems and methods for correcting power of an intraocular lens using refractive index writing
US11564839B2 (en) 2019-04-05 2023-01-31 Amo Groningen B.V. Systems and methods for vergence matching of an intraocular lens with refractive index writing
US12377622B2 (en) 2019-04-05 2025-08-05 Amo Groningen B.V. Systems and methods for vergence matching with an optical profile and using refractive index writing
US11583388B2 (en) 2019-04-05 2023-02-21 Amo Groningen B.V. Systems and methods for spectacle independence using refractive index writing with an intraocular lens
US11678975B2 (en) 2019-04-05 2023-06-20 Amo Groningen B.V. Systems and methods for treating ocular disease with an intraocular lens and refractive index writing
US11583389B2 (en) 2019-04-05 2023-02-21 Amo Groningen B.V. Systems and methods for correcting photic phenomenon from an intraocular lens and using refractive index writing
US11944574B2 (en) 2019-04-05 2024-04-02 Amo Groningen B.V. Systems and methods for multiple layer intraocular lens and using refractive index writing
US12357509B2 (en) 2019-04-05 2025-07-15 Amo Groningen B.V. Systems and methods for improving vision from an intraocular lens in an incorrect position and using refractive index writing
CN110123488B (zh) * 2019-05-27 2023-12-29 中国计量科学研究院 人工晶状体屈光度校验镜片及定值方法
PH12021553194A1 (en) 2019-07-02 2022-11-07 Rodenstock Gmbh Method and apparatus for optimizing spectacle lenses, in particular for wearers of implanted intraocular lenses
EP3798944A1 (en) * 2019-09-30 2021-03-31 Hoya Lens Thailand Ltd. Learning model generation method, computer program, eyeglass lens selection support method, and eyeglass lens selection support system
EP4018459A1 (en) * 2019-10-31 2022-06-29 Alcon Inc. Systems and methods for providing vision simulation for pseudophakic patients
CN111134613B (zh) * 2019-11-21 2022-04-05 明灏科技(北京)有限公司 一种基于图像识别的角膜塑形镜验配方法及系统
CN111259743B (zh) * 2020-01-09 2023-11-24 中山大学中山眼科中心 一种近视图像深度学习识别模型训练方法及系统
DE102020101763A1 (de) * 2020-01-24 2021-07-29 Carl Zeiss Meditec Ag Machine-learning gestützte pipeline zur dimensionierung einer intraokularlinse
CN111513917B (zh) * 2020-05-22 2022-03-22 杭州明视康眼科医院有限公司 一种散光型icl术后残留散光的转位调整方法并预估转位调整后的屈光度的方法
CN112102940B (zh) * 2020-09-08 2024-04-16 南方科技大学 一种屈光检测方法、装置、计算机设备及存储介质
DE102021109945B4 (de) * 2021-04-20 2022-11-24 Carl Zeiss Meditec Ag Ki-basierte videoanalyse der kataraktchirurgie zur dynamischen anomalieerkennung und korrektur
CN117238514B (zh) * 2023-05-12 2024-05-07 中山大学中山眼科中心 一种人工晶状体屈光力预测方法、系统、设备及介质

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6634751B2 (en) * 2001-09-10 2003-10-21 Bausch & Lomb Incorporated Intraocular lens derivation system
US6736510B1 (en) 2003-02-04 2004-05-18 Ware Tec Vision Systems, Inc. Ophthalmic talbot-moire wavefront sensor
US7556378B1 (en) 2003-04-10 2009-07-07 Tsontcho Ianchulev Intraoperative estimation of intraocular lens power
US7476248B2 (en) * 2004-04-06 2009-01-13 Alcon, Inc. Method of calculating the required lens power for an opthalmic implant
JP4972546B2 (ja) 2004-04-20 2012-07-11 ウェーブテック・ビジョン・システムズ・インコーポレイテッド 一体化した手術用顕微鏡および波面センサ
JP4492858B2 (ja) * 2004-07-20 2010-06-30 株式会社ニデック 眼科装置及び眼内屈折力分布算出プログラム
US8862447B2 (en) * 2010-04-30 2014-10-14 Amo Groningen B.V. Apparatus, system and method for predictive modeling to design, evaluate and optimize ophthalmic lenses
US8480659B2 (en) * 2008-07-25 2013-07-09 Lensar, Inc. Method and system for removal and replacement of lens material from the lens of an eye
US8657445B2 (en) * 2008-09-11 2014-02-25 Iol Innovations Aps System and method for determining and predicting IOL power in situ
EP2818130B1 (en) * 2009-07-14 2017-09-27 WaveTec Vision Systems, Inc. Determination of the effective lens position of an intraocular lens using aphakic refractive power
WO2011008609A1 (en) * 2009-07-14 2011-01-20 Wavetec Vision Systems, Inc. Ophthalmic surgery measurement system

Similar Documents

Publication Publication Date Title
JP2016533781A5 (enExample)
Potvin et al. New algorithm for intraocular lens power calculations after myopic laser in situ keratomileusis based on rotating Scheimpflug camera data
EP2453822B1 (en) Determination of the effective lens position of an intraocular lens using aphakic refractive power
JP6620293B2 (ja) Iol度数を推定するための補正値
Smith et al. The spherical aberration of the crystalline lens of the human eye
McCarthy et al. Intraocular lens power calculations after myopic laser refractive surgery: a comparison of methods in 173 eyes
Zheleznyak et al. Impact of corneal aberrations on through-focus image quality of presbyopia-correcting intraocular lenses using an adaptive optics bench system
Ravikumar et al. Change in visual acuity is well correlated with change in image-quality metrics for both normal and keratoconic wavefront errors
Savini et al. Influence of corneal asphericity on the refractive outcome of intraocular lens implantation in cataract surgery
Lee et al. Univariate and bivariate polar value analysis of corneal astigmatism measurements obtained with 6 instruments
Tamaoki et al. Intraocular lens power calculation in cases with posterior keratoconus
AU2014331833A1 (en) Correction values for IOL power estimates
Preussner et al. Topography-based intraocular lens power selection
JP2013236902A5 (enExample)
JP2013135837A5 (enExample)
Faria-Ribeiro et al. Errors associated with IOLMaster biometry as a function of internal ocular dimensions
Kim et al. Intraocular lens prediction accuracy after corneal refractive surgery using K values from 3 devices
Kohnen Posterior corneal astigmatism
Bourges Cataract surgery in keratoconus with irregular astigmatism
Date et al. Confirmation and refinement of the Diehl-Miller nomogram for intraocular lens power calculation after laser in situ keratomileusis
Mauger et al. Comparison of Placido, Scheimpflug and Combined Dual Scheimpflug-Placido Technologies in Evaluating Anterior and Posterior CLMI, SimK's as well as Kmax, in Keratoconic and Postrefractive Surgery Ectasia
CN105339833A (zh) 用于确定镜片验光单的方法和系统
CA3046726C (en) Calculation of actual astigmatism correction and nomographs for corneal laser treatment
McBee et al. Repeatability of a Combined Adaptive Optics Visual Simulator and Hartman-Shack Aberrometer in Pseudophakic Eyes With and Without Previous Corneal Refractive Surgery
Fouda et al. Predictability of Sirius dual-scanning corneal tomography in the measurement of corneal power after photorefractive surgery