JP2016532227A - 静電容量感知の間電荷をオフセットするためのプリント回路の使用 - Google Patents

静電容量感知の間電荷をオフセットするためのプリント回路の使用 Download PDF

Info

Publication number
JP2016532227A
JP2016532227A JP2016545242A JP2016545242A JP2016532227A JP 2016532227 A JP2016532227 A JP 2016532227A JP 2016545242 A JP2016545242 A JP 2016545242A JP 2016545242 A JP2016545242 A JP 2016545242A JP 2016532227 A JP2016532227 A JP 2016532227A
Authority
JP
Japan
Prior art keywords
routing traces
signal
capacitance sensing
absolute capacitance
processing system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016545242A
Other languages
English (en)
Other versions
JP6568530B2 (ja
Inventor
アダム シュワルツ,
アダム シュワルツ,
Original Assignee
シナプティクス インコーポレイテッド
シナプティクス インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シナプティクス インコーポレイテッド, シナプティクス インコーポレイテッド filed Critical シナプティクス インコーポレイテッド
Publication of JP2016532227A publication Critical patent/JP2016532227A/ja
Application granted granted Critical
Publication of JP6568530B2 publication Critical patent/JP6568530B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04107Shielding in digitiser, i.e. guard or shielding arrangements, mostly for capacitive touchscreens, e.g. driven shields, driven grounds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads

Abstract

静電容量感知の方法において、絶対静電容量感知信号は、プリント回路の複数のルーティングトレースのうちの少なくとも1つを通して駆動される。絶対静電容量感知は、センサ電極パターンの複数のセンサ電極のうちの少なくとも1つのセンサ電極で実行される。少なくとも1つのセンサ電極は、複数のルーティングトレースのうちの少なくとも1つに結合される。電荷が、絶対静電容量感知の間、複数のルーティングトレースのうちの少なくとも1つからオフセットされるように、オフセット信号が複数のルーティングトレースのうちの少なくとも1つをオーバーラップする平行導体に送信される。【選択図】図4

Description

関連米国特許出願の相互参照
[0001]本出願は、2013年9月26日に出願され、代理人整理番号SYNA−20130318−02を有し、本出願の譲受人に譲渡された、Adam Schwartzによる、「USING A PRINTED CIRCUIT TO OFFSET CHARGE DURING CAPACITIVE SENSING」という名称の同時係属の米国特許出願第14/038,466号の優先権及び利益を主張する。
背景
[0002]近接センサデバイス(一般に、タッチパッド又はタッチセンサデバイスとも呼ばれる)を含む入力デバイスは、様々な電子システムで広く使用されている。近接センサデバイスは、一般に、表面によって多くの場合境界を定められた感知領域を含み、近接センサデバイスは、1つ又は複数の入力物体の存在、場所、及び/又は運動を決定する。近接センサデバイスは、電子システムにインタフェースを設けるために使用することもできる。例えば、近接センサデバイスは、多くの場合、より大きいコンピューティングシステムの入力デバイス(ノートブックコンピュータ又はデスクトップコンピュータに一体化された、又はノートブックコンピュータ又はデスクトップコンピュータの周辺にある不透明なタッチパッドなど)として使用される。近接センサデバイスは、多くの場合、より小さいコンピューティングシステム(セルラ電話及びタブレットコンピュータに一体化されたタッチスクリーンなど)でも使用される。そのようなタッチスクリーン入力デバイスは、一般に、電子システムのディスプレイ上に載せられるか、又はさもなければ電子システムのディスプレイと並置される。
概要
[0003]静電容量感知(キャパシティブセンシング;capacitive sensing)の方法において、絶対静電容量感知信号は、プリント回路の複数のルーティングトレース(routing trace)のうちの少なくとも1つを通して駆動される。絶対静電容量感知は、センサ電極パターンの複数のセンサ電極のうちの少なくとも1つのセンサ電極で実行される。少なくとも1つのセンサ電極は、複数のルーティングトレースのうちの少なくとも1つに結合される。電荷が、絶対静電容量感知の間、複数のルーティングトレースのうちの少なくとも1つから相殺(オフセット;offset)されるように、オフセット信号が複数のルーティングトレースのうちの少なくとも1つを部分的に覆う(オーバーラップ;overlap)平行導体に送信される。
[0004]この「図面の簡単な説明」で参照される図面は、特に記述されない限り原寸に比例して描かれていると理解されるべきではない。「実施形態の説明」に組み込まれ、「実施形態の説明」の一部を形成する添付図面は、様々な実施形態を示し、「実施形態の説明」とともに、以下で論じられる原理を説明するのに役立ち、同様の名称は同様の要素を表す。
[0005]図1は、実施形態による、例示の入力デバイスのブロック図である。
[0006]図2は、いくつかの実施形態による、タッチスクリーンなどの入力デバイスの感知領域のすべて又は一部を生成するためにセンサで利用することができる例示のセンサ電極パターンの一部分を示す図である。
[0007]図3は、様々な実施形態による、静電容量感知入力デバイスで利用することができる例示の処理システムのいくつかの構成要素のブロック図である。
[0008]図4は、いくつかの実施形態による、静電容量感知入力デバイス内で使用できる例示のフレキシブルプリント回路の平面図である。
[0009]図5は、いくつかの実施形態による、静電容量感知入力デバイス内で使用できる例示のフレキシブルプリント回路の平面図である。
[0010]図6は、いくつかの実施形態による、静電容量感知入力デバイス内で使用できる例示のプリント回路の平面図である。
[0011]図7は、いくつかの実施形態による、静電容量感知入力デバイス内で使用できる例示のプリント回路の平面図である。
[0012]図8は、いくつかの実施形態による、図7のプリント回路の例示のフレキシブルプリント回路実施態様の分解側面断面図である。
[0013]図9Aは、いくつかの実施形態による、プリント回路によってセンサ電極に結合された処理システムの一部分の回路図である。
[0014]図9Bは、いくつかの実施形態による、プリント回路によってセンサ電極に結合された処理システムの一部分の回路図である。
[0015]図10は、様々な実施形態で使用することができるいくつかの例示の信号の比較を示す図である。
[0016]図11Aは、様々な実施形態による、静電容量感知の方法を示す図である。 [0016]図11Bは、様々な実施形態による、静電容量感知の方法を示す図である。
実施形態の説明
[0017]以下の実施形態の説明は、単に、例として、限定としてではなく提供される。それに加えて、前出の「背景技術」、「概要」、又は「図面の簡単な説明」若しくは以下の「実施形態の説明」に提示されたいかなる表現又は示唆された理論によっても制約されるものではない。
[説明の概観]
[0018]本明細書において、有用性の改善を促進する入力デバイス、処理システム、及び方法を提供する様々な実施形態が説明される。本明細書で説明する様々な実施形態において、入力デバイスは、静電容量感知入力デバイスとすることができる。本明細書で説明する技法を利用して、静電容量感知の間電荷をオフセットすることによって有効性を達成することもできる。すなわち、プリント回路のルーティングトレースをオーバーラップしかつ該ルーティングトレースと平行している導体を利用して、電荷をオフセットすることもできる。例えば、平行導体とルーティングトレースとの間の静電容量結合が、ルーティングトレースに結合されたセンサ電極による絶対静電容量感知の間に経験するバックグラウンド静電容量のうちのある量をオフセットするように平行導体に信号を駆動することもできる。
[0019]例示の入力デバイスであって、その入力デバイスにより又はその入力デバイスに基づいて本明細書で説明する実施形態を実施することもできる、例示の入力デバイスから解説が始まる。次に、例示のセンサ電極パターンが説明される。この後に、例示の処理システム及びそのいくつかの構成要素の説明が続く。処理システムは、静電容量感知入力デバイスなどの入力デバイスで利用することもできる。ルーティングトレースをオーバーラップする平行導体を有するいくつかの例示のプリント回路が説明される。処理システム及びプリント回路で利用することもできるいくつかの信号があるので、プリント回路によってセンサ電極に結合される処理システムの回路図が説明される。次に、静電容量感知入力デバイス、処理システム及びその構成要素、並びにプリント回路の動作が、静電容量感知の方法の説明に関連してさらに説明される。
[例示の入力デバイス]
[0020]次に、図を参照すると、図1は、様々な実施形態による、例示的な入力デバイス100のブロック図である。入力デバイス100は、電子システム/デバイス150に入力を供給するように構成することもできる。本明細書で使用する「電子システム」(又は「電子デバイス」)という用語は、情報を電子的に処理することもできる任意のシステムを広く指す。電子システムのいくつかの非限定例には、デスクトップコンピュータ、ラップトップコンピュータ、ネットブックコンピュータ、タブレット、ウェブブラウザ、電子書籍リーダ、及び携帯情報端末(PDA)などのあらゆるサイズ及び形状のパーソナルコンピュータが含まれる。追加の例示の電子システムには、入力デバイス100及び別個のジョイスティック又はキースイッチを含む物理的キーボードなどの複合入力デバイスが含まれる。さらなる例示の電子システムには、データ入力デバイス(リモートコントロール及びマウスを含む)及びデータ出力デバイス(表示スクリーン及びプリンタを含む)などの周辺機器が含まれる。他の例には、リモート端末、キオスク、及びテレビゲーム機(例えば、テレビゲーム機器、携帯型ゲームデバイスなど)が含まれる。他の例には、通信デバイス(スマートフォンなどのセルラ電話を含む)と、メディアデバイス(レコーダと、エディタと、テレビジョン、セットトップボックス、音楽プレーヤ、デジタルフォトフレーム、及びデジタルカメラなどのプレーヤとを含む)とが含まれる。追加として、電子システムは、入力デバイスのホスト又はスレーブとなり得る。
[0021]入力デバイス100は、電子システム150の物理的な一部として実装することもでき、又は電子システム150から物理的に分離することもできる。適宜に、入力デバイス100は、バス、ネットワーク、及び他の有線又は無線相互接続うちの任意の1つ又は複数を使用して電子システムの一部と通信することもできる。限定はしないが、例には、インターインテグレイテッドサーキット(I2C)、シリアルペリフェラルインタフェース(SPI)、パーソナルシステム2(PS/2)、ユニバーサルシリアルバス(USB)、ブルートゥース(登録商標)、無線周波数(RF)、及び赤外線データ協会(IrDA)が含まれる。
[0022]図1において、入力デバイス100は、感知領域120中の1つ又は複数の入力物体140によって供給される入力を感知するように構成された近接センサデバイス(多くの場合、「タッチパッド」又は「タッチセンサデバイス」とも呼ばれる)として示されている。例示の入力物体は、図1に示すような指及びスタイラスを含む。
[0023]感知領域120は、入力デバイス100の上方の、まわりの、中の、及び/又は近くの任意の空間を包含し、入力デバイス100は、ユーザ入力(例えば、1つ又は複数の入力物体140によって供給されるユーザ入力)を検出することもできる。特定の感知領域のサイズ、形状、及び場所は、実施形態ごとに広く変ることもできる。いくつかの実施形態において、感知領域120は、信号対雑音比のために十分に正確な対象物検出ができなくなるまで、1つ又は複数の方向に入力デバイス100の表面から空間中に延びる。この感知領域120が特定の方向に延びる距離は、様々な実施形態において、ミリメートル未満、ミリメートル、センチメートル、又はそれを超える程度とすることもでき、使用されている感知技術のタイプ及び所望の正確さにより大きく変り得る。それにより、いくつかの実施形態は、入力デバイス100の表面との非接触、入力デバイス100の入力表面(例えば、タッチ表面)との接触、ある量の力又は圧力の印加により結合された入力デバイス100の入力表面との接触、及び/又はそれらの組合せを含む入力を感知する。様々な実施形態において、入力表面は、センサ電極が存在するケーシングの表面、センサ電極又はケーシングの上に付けられた表面シートなどによって設けることもできる。いくつかの実施形態において、感知領域120は、入力デバイス100の入力表面上に投影されたとき長方形を有する。
[0024]入力デバイス100は、感知領域120中のユーザ入力を検出するためにセンサ構成要素と感知技術との任意の組合せを利用することもできる。入力デバイス100は、ユーザ入力を検出するための1つ又は複数の感知素子を含む。非限定例として、入力デバイス100は、静電容量技法を使用することもできる。
[0025]いくつかの実施態様は、1次元、2次元、3次元、又はより高い次元の空間にわたる画像を提供するように構成される。いくつかの実施態様は、特定の軸又は面に沿った入力の投影を提供するように構成される。
[0026]入力デバイス100のいくつかの静電容量実施態様では、電圧又は電流を印加して、電界を作り出す。近くの入力物体は、電界の変化を引き起し、静電容量結合の検出可能な変化を作り、この変化が、電圧、電流などの変化として検出され得る。
[0027]いくつかの静電容量実施態様は、静電容量感知素子のアレイ又は他の規則的若しくは不規則なパターンを利用して、電界を作り出す。いくつかの静電容量実施態様では、別個の感知素子をオーミックに一緒に短絡して、より大きいセンサ電極を形成することもできる。いくつかの静電容量実施態様は、一様に抵抗性とすることもできる抵抗性シートを利用する。
[0028]いくつかの静電容量実施態様は、センサ電極と入力物体との間の静電容量結合の変化に基づく「自己静電容量」(又は「絶対静電容量」)感知方法を利用する。様々な実施形態において、センサ電極の近くの入力物体は、センサ電極の近くの電界を変更し、それにより、測定される静電容量結合を変化させる。1つの実施態様では、絶対静電容量感知方法は、基準電圧(例えば、システム接地)を基準にしてセンサ電極を変調し、センサ電極と入力物体との間の静電容量結合を検出することによって機能する。
[0029]いくつかの静電容量実施態様は、センサ電極間の静電容量結合の変化に基づく「相互静電容量」(又は「トランス静電容量」)感知方法を利用する。様々な実施形態において、センサ電極の近くの入力物体は、センサ電極間の電界を変更し、それにより、測定される静電容量結合を変化させる。1つの実施態様では、トランス静電容量感知方法は、1つ又は複数の送信器センサ電極(同様に「送信器電極」又は「送信器」)と1つ又は複数の受信器センサ電極(同様に「受信器電極」又は「受信器」)との間の静電容量結合を検出することによって機能する。ひとまとめにして、送信器及び受信器は、センサ電極又はセンサ要素と呼ぶことがある。送信器センサ電極は基準電圧(例えば、システム接地)に対して変調されて、送信器信号を送信することもできる。受信器センサ電極は基準電圧に対して実質的に一定に保持されて、結果として生じる信号の受信を容易にすることもできる。結果として生じる信号は、1つ又は複数の送信器信号に対応する、及び/又は環境上の干渉(例えば、他の電磁信号)の1つ又は複数の発生源に対応する効果(複数可)を含むこともできる。センサ電極は、専用の送信器又は受信器とすることもでき、又は送信及び受信の両方を行うように構成することもできる。いくつかの実施形態では、1つ又は複数の受信器電極は、送信器電極が送信していない(例えば、送信器が働かなくされている)とき、結果として生じる信号を受信するように動作することもできる。このようにして、結果として生じる信号は、感知領域120の動作環境において検出された雑音を表す。
[0030]図1において、処理システム110は、入力デバイス100の一部として示されている。処理システム110は、感知領域120における入力を検出するために入力デバイス100のハードウェアを動作させるように構成される。処理システム110は、1つ又は複数の集積回路(IC)及び/又は他の回路構成要素の一部又はすべてを含む。(例えば、相互静電容量センサデバイスの処理システムは、送信器センサ電極で信号を送信するように構成された送信器回路、及び/又は受信器センサ電極で信号を受信するように構成された受信器回路を含むこともできる。)いくつかの実施形態では、処理システム110は、ファームウェアコード、ソフトウェアコードなどのような電子的に読取り可能な命令をさらに含む。ある実施形態では、処理システム110を構成する構成要素は、入力デバイス100に属する近くの感知素子(複数可)などと一緒に配置される。他の実施形態では、処理システム110の構成要素は、入力デバイス100の感知素子(複数可)の近くの1つ又は複数の構成要素及び他のところの1つ又は複数の構成要素とは物理的に分離されている。例えば、入力デバイス100は、デスクトップコンピュータに結合された周辺機器とすることもでき、処理システム110は、デスクトップコンピュータの中央制御装置及び中央制御装置から分離された1つ又は複数のIC(多分、関連するファームウェアを備えた)上で走るように構成されたソフトウェアを含むこともできる。別の例として、入力デバイス100は、電話に物理的に一体化することもでき、処理システム110は、電話の主プロセッサの一部である回路及びファームウェアを含むこともできる。ある実施形態では、処理システム110は、入力デバイス100を実装するために専用である。他の実施形態では、処理システム110は、さらに、表示スクリーンを動作させる、触覚アクチュエータを駆動するなどの他の機能を実行する。
[0031]処理システム110は、処理システム110の異なる機能を扱う1組のモジュールとして実装することもできる。各モジュールは、処理システム110、ファームウェア、ソフトウェア、又はそれらの組合せの一部である回路を含むこともできる。様々な実施形態において、モジュールの異なる組合せを使用することもできる。例示のモジュールは、センサ電極及び表示スクリーンなどのハードウェアを動作させるためのハードウェア動作モジュールと、センサ信号及び位置情報などのデータを処理するためのデータ処理モジュールと、情報を報告するための報告モジュールとを含む。さらなる例示のモジュールは、入力を検出するために感知素子(複数可)を動作させるように構成されたセンサ動作モジュールと、モード変更ジェスチャなどのジェスチャを識別するように構成された識別モジュールと、動作モードを変更するためのモード変更モジュールとを含む。
[0032]いくつかの実施形態では、処理システム110は、1つ又は複数のアクションを引き起こすことによって感知領域120におけるユーザ入力(又はユーザ入力の欠如)に直接に応答する。例示のアクションには、動作モードの変更、並びにカーソル移動、選択、メニューナビゲーション、及び他の機能などのGUIアクションが含まれる。いくつかの実施形態では、処理システム110は、電子システムの一部に(例えば、別個の中央処理システムが存在する場合、処理システム110から分離している電子システムのそのような中央処理システムに)入力(又は入力の欠如)に関する情報を供給する。いくつかの実施形態では、電子システムの一部は、ユーザ入力に作用するために、例えば、モード変更アクション及びGUIアクションを含む全範囲のアクションを容易にするなどのために、処理システム110から受け取った情報を処理する。
[0033]例えば、いくつかの実施形態では、処理システム110は、感知領域120における入力(又は入力の欠如)を示す電気信号を作るために入力デバイス100の感知素子(複数可)を動作させる。処理システム110は、電子システムに供給する情報を生成する際に電気信号への適切な量の処理を実行することもできる。例えば、処理システム110は、センサ電極から得たアナログ電気信号をデジタル化することもできる。別の例として、処理システム110は、フィルタ処理又は他の信号調整を実行することもできる。さらなる別の例として、処理システム110は、ベースラインを減じるか、又はさもなければベースラインを補償することもでき、その結果、情報は、電気信号とベースラインとの間の差を反映する。さらなる例として、処理システム110は、位置情報を決定すること、入力をコマンドとして認識すること、手書きを認識することなどを行うこともできる。
[0034]本明細書で使用する「位置情報」は、絶対位置、相対位置、速度、加速度、及び他のタイプの空間情報を広く包含する。例示的な「ゼロ次元」位置情報は、近/遠又は接触/非接触情報を含む。例示的な「1次元」位置情報は、軸に沿った位置を含む。例示的な「2次元」位置情報は、面内の運動を含む。例示的な「3次元」位置情報は、空間内の瞬間速度又は平均速度を含む。さらなる例は、空間情報の他の表現を含む。例えば、ある期間にわたって位置、運動、又は瞬間速度を追跡した履歴データを含む1つ又は複数のタイプの位置情報に関する履歴データを決定し、及び/又は記憶することもできる。
[0035]いくつかの実施形態では、入力デバイス100は、処理システム110によって又は何か他の処理システムによって動作される追加の入力構成要素とともに実装される。これらの追加の入力構成要素は、感知領域120における入力に対する冗長機能、又は何か他の機能を用意することもできる。図1は、感知領域120の近くのボタン130を示しており、ボタン130は、入力デバイス100を使用して項目を選択するのを容易にするのに使用することもできる。他のタイプの追加の入力構成要素には、スライダ、ボール、ホイール、スイッチなどが含まれる。逆に、いくつかの実施形態では、入力デバイス100は、他の入力構成要素なしに実装することもできる。
[0036]いくつかの実施形態では、入力デバイス100はタッチスクリーンとすることもでき、感知領域120は、表示スクリーンの能動区域の少なくとも一部をオーバーラップする。例えば、入力デバイス100は、表示スクリーンを被覆(オーバーレイ;overlay)する実質的に透明なセンサ電極を含み、関連する電子システム150にタッチスクリーンインタフェースを設けることもできる。表示スクリーンは、ビジュアルインタフェースをユーザに表示することもできる任意のタイプのダイナミックディスプレイとすることもでき、任意のタイプの発光ダイオード(LED)、有機LED(OLED)、陰極線管(CRT)、液晶ディスプレイ(LCD)、プラズマ、エレクトロルミネセンス(EL)、又は他のディスプレイ技術を含むこともできる。入力デバイス100及び表示スクリーンは、物理的要素を共有することもできる。例えば、いくつかの実施形態は、表示及び感知のために同じ電気構成要素の一部を利用することもできる。別の例として、表示スクリーンは、処理システム110によって部分的に又は全体的に動作させることもできる。
[0037]多くの実施形態は、完全に機能する装置という状況で説明されているが、機構は様々な形態のプログラム製品(例えば、ソフトウェア)として分散され得ることを理解されたい。例えば、説明されている機構は、電子プロセッサによる読取が可能な情報担持媒体(例えば、処理システム110による読取が可能な非一時的コンピュータ可読及び/又は記録可能/書込み可能情報担持媒体)上のソフトウェアプログラムとして実装及び分散することもできる。追加として、実施形態は、分散を実行するために使用される媒体の特定のタイプに関係なく、等しく当てはまる。非一時的で、電子的に読取り可能な媒体の例には、様々なディスク、メモリスティック、メモリカード、メモリモジュールなどが含まれる。電子的に読取り可能な媒体は、フラッシュ、光学、磁気、ホログラフィック、又は他の非一時的な記憶技術に基づくこともできる。
[例示のセンサ電極パターン]
[0038]図2は、様々な実施形態による、入力デバイス100の感知領域のすべて又は一部を生成するためにセンサで利用することもできる例示のセンサ電極パターン200の一部分を示す。入力デバイス100は、静電容量センサ電極パターンを用いて利用される場合、静電容量入力デバイスとして構成される。図及び説明を明確にするために、非限定の簡単な長方形センサ電極パターン200が示されている。単一の組のセンサ電極をもつパターン、単一層に(オーバーラップすることなしに)配設された2組のセンサ電極をもつパターン、及び個々のボタン電極を備えるパターンを含む非常に多くの他のセンサ電極パターンを採用できることが正しく理解されよう。図示のセンサ電極パターンは、この例では、互いをオーバーレイする複数の受信器電極270(270−0、270−1、270−2、…、270−n)と複数の送信器電極260(260−0、260−1、260−2、…、260−n)とから構成される。図示の例では、タッチ感知画素は、送信器電極と受信器電極とが交差する場所に中心がある。静電容量画素290は、トランス静電容量感知の間センサ電極パターン200によって生成される静電容量画素のうちの1つを示している。図示の例などの交差するセンサ電極パターンでは、ある形態の絶縁材料又は基板が、一般に、送信器電極260と受信器電極270との間に配設されることが正しく理解されよう。しかしながら、いくつかの実施形態では、送信器電極260及び受信器電極270は、ルーティング技法及び/又はジャンパを使用することにより互いに同じ層に配設することもできる。様々な実施形態において、タッチ感知は、感知領域120中のどこかの入力物体を感知することを含み、入力デバイス100の表面との非接触、入力デバイス100の入力表面(例えば、タッチ表面)との接触、ある量の力又は圧力の印加により結合された入力デバイス100の入力表面との接触、及び/又はそれらの組合せを含むこともできる。
[0039]トランス静電容量測定を遂行する場合、静電容量画素290などの静電容量画素は、送信器電極260と受信器電極270との間の局所的静電容量結合の区域である。送信器電極260と受信器電極270との間の静電容量結合は、送信器電極260及び受信器電極270に関連する感知領域における入力物体の接近及び運動により変化する。
[0040]いくつかの実施形態では、センサ電極パターン200は、これらの静電容量結合を決定するために「走査」される。すなわち、送信器電極260は、送信器信号を送信するために駆動される。送信器は、一度に1つの送信器電極が送信するか、又は同時に多数の送信器電極が送信するように動作することもできる。同時に多数の送信器電極が送信する場合、これらの多数の送信器電極は、同じ送信器信号を送信し、事実上より大きい送信器電極を作ることもでき、又はこれらの多数の送信器電極は異なる送信器信号を送信することもできる。例えば、多数の送信器電極は、受信器電極270の結果として生じる信号への組合せ効果を別々に決定できるようにする1つ又は複数のコード体系に従って異なる送信器信号を送信することもできる。
[0041]受信器電極270は、結果として生じる信号を取得するために単独で又は複合的に動作させることもできる。結果として生じる信号を使用して、静電容量画素での静電容量結合の測定値を決定することもできる。
[0042]静電容量画素からの1組の測定値は、画素での静電容量結合を表す「静電容量画像」(同様に「静電容量フレーム」)を形成する。多数の静電容量画像を多くの期間にわたって取得し、それらの間の差を使用して感知領域における入力に関する情報を引き出すこともできる。例えば、連続する期間にわたって取得された連続する静電容量画像を使用して、感知領域に入る、感知領域から出て行く、及び感知領域内にいる1つ又は複数の入力物体の運動(複数可)を追跡することもできる。
[0043]いくつかの実施形態では、1つ又は複数のセンサ電極260又は270は、時間の特定の時期に絶対静電容量感知を実行するように動作することもできる。例えば、受信器電極270−0を充電することもでき、次に、受信器電極270−0の静電容量を測定することもできる。そのような実施形態では、受信器電極270−0と相互作用する入力物体140は、受信器電極270−0の近くの電界を変更し、それにより、測定される静電容量結合を変化させる。この同じ方法で、複数のセンサ電極270を使用して、絶対静電容量を測定することもでき、及び/又は複数のセンサ電極260を使用して、絶対静電容量を測定することもできる。絶対静電容量測定を実行するとき、「受信器電極」及び「送信器電極」というラベルは、トランス静電容量測定値技法で有している意味を失い、代わりに、センサ電極260又は270は、単に「センサ電極」と呼ぶこともでき、又はたとえセンサ電極260又は270が絶対静電容量感知の間同じように使用されても、送信器電極又は受信器電極としてその名称を使用し続けることもできることを正しく理解されたい。
[0044]バックグラウンド静電容量Cは、センサ電極パターンの感知領域に入力物体がない場合にセンサ電極で測定されたセンサパターンの静電容量画像又は絶対静電容量である。バックグラウンド静電容量は、環境及び動作条件で変化する。
[0045]静電容量画像及び絶対静電容量測定値は、より効率的な処理のためにセンサデバイスのバックグラウンド静電容量に関連して調節することもできる。例えば、様々な技法をASIC/処理システムの内部及び/又は外部で採用して、絶対静電容量測定値に存在することが知られているベースライン静電容量のうちのある量を減じる/オフセットすることもできる。絶対静電容量感知では、そのような電荷オフセットは、ベースライン絶対静電容量信号測定値の上の入力物体関連成分を含む信号を増幅するために使用されるASIC/処理システムの増幅器のダイナミックレンジを改善する。これは、ベースライン部分の一部が内部オフセットによって取り除かれる場合、入力物体の存在に帰する信号の成分がより大きく増幅され得る(増幅器飽和なしに)からである。
[0046]ベースライン電荷の内部オフセット(ASIC/処理システムの内部の)の多くの技法が、当技術分野で知られており、増幅器のフィードバックキャパシタに並列のオフセット静電容量を利用すること、及び/又は絶対静電容量を測定しているセンサにも結合されている増幅器の入力部に電荷を注入することを含む。
[0047]いくつかの実施形態では、本明細書の技法を使用して、感知デバイスの感知領域のセンサへの及び/又はそれからの感知信号を結合するのに使用されるルーティングトレースを含むプリント回路(例えば、フレキシブルプリント回路、プリント回路基板、リソグラフィプリント回路、又は他のタイプのプリント回路)の1つ又は複数の部分は、絶対静電容量感知の間測定されるベースライン静電容量のうちのある量をオフセットするために使用することもできる。このタイプの電荷オフセットは、ASIC/処理システムの外部で遂行される。本明細書で説明する外部電荷オフセット技法のいずれも単独で利用することもでき、又は1つ又は複数の内部電荷オフセット技法と組み合わせて使用することもできることを正しく理解されたい。
[例示の処理システム]
[0048]図3は、様々な実施形態による、入力デバイスとともに利用する(例えば、処理システム110の代わりに、入力デバイス100の一部として)こともできる例示の処理システム110Aのいくつかの構成要素のブロック図を示す。処理システム110Aは、1つ又は複数の特定用途向け集積回路(ASICS)、1つ又は複数の集積回路(IC)、1つ又は複数のコントローラ、又はそれらの組合せで実装することもできる。1つの実施形態では、処理システム110Aは、入力デバイス100の感知領域120を実現する第1及び第2の複数のセンサ電極(例えば、センサ電極260及び270)のうちの1つ又は複数のセンサ電極に通信可能に結合される。いくつかの実施形態では、処理システム110Aと、それが一部である入力デバイス100とは、表示デバイス、コンピュータ、又は他の電子システムなどの電子システム150に配設されるか又は通信可能に結合され得る。
[0049]1つの実施形態では、処理システム110Aは、構成要素の中で特に、センサモジュール310と決定モジュール320とを含んでいる。処理システム110A及び/又はその構成要素は、とりわけ、センサ電極パターン200などのセンサ電極パターンのセンサ電極に結合され得る。例えば、センサモジュール310は、入力デバイス100のセンサ電極パターン(例えば、センサ電極パターン200)の1つ又は複数のセンサ電極(260、270)に結合される。本明細書で説明するように、いくつかの実施形態では、処理システム(例えば、センサモジュール310)は、処理システム110Aとセンサ電極パターンのセンサ電極との間で信号を搬送するルーティングトレースをさらに含むプリント回路内に配設された1つ又は複数の導体に結合される。これらの導体は、ルーティングトレース以外のプリント回路の異なる層に配設され、これらの導体が、オーバーラップされたルーティングトレースとそれをオーバーラップする平行導体との間の静電容量結合を可能にするような方法で、ルーティングトレースの1つ又は複数をオーバーラップしかつ該1つ又は複数と平行するように配列される。
[0050]センサモジュール310はセンサ回路を含み、感知領域120を生成するために利用されるセンサ電極パターンのセンサ電極と相互作用するように動作する。これには、非活動であるように、送信器信号で駆動されるように、トランス静電容量感知で使用されるように、及び/又は絶対静電容量感知で使用されるように第1の複数のセンサ電極(例えば、送信器電極270)を動作させることが含まれる。これには、非活動であるように、送信器信号で駆動されるように、トランス静電容量感知で使用されるように、及び/又は絶対静電容量感知で使用されるように第2の複数のセンサ電極(例えば、受信機電極270)を動作させることがさらに含まれる。
[0051]トランス静電容量感知の間、センサモジュール310は、第1の複数のセンサ電極のうちの1つ又は複数のセンサ電極(例えば、送信器電極260のうちの1つ又は複数)に送信器信号を駆動するように動作する。送信器信号は、矩形波、台形波、又は何か他の波形とすることもできる。所与の時間間隔で、センサモジュール310は、複数のセンサ電極のうちの1つ又は複数に送信器信号(波形)を駆動することもあり、又は駆動しないこともある。センサモジュール310は、さらに、第1の複数のセンサ電極の1つ又は複数に送信器信号を駆動しないとき、そのようなセンサ電極をハイインピーダンス、接地、又は定電圧に結合させるために利用することもできる。いくつかの実施形態では、トランス静電容量感知を実行するとき、センサモジュール310は、センサ電極パターンの2つ以上の送信器電極を一度に駆動する。センサ電極パターンの2つ以上のセンサ電極を同時に駆動するとき、送信器信号は、コードに従ってコード化され得る。センサモジュール310は、さらに、トランス静電容量感知の間第2の複数のセンサ電極(例えば、受信器電極270のうちの1つ又は複数)を介して、結果として生じる信号を受信するように動作する。トランス静電容量感知の間、受信された結果として生じる信号は、第1の複数のセンサ電極を介して送信された送信器信号(複数可)に対応する効果に対応しかつそれを含む。これらの送信された送信器信号は、要因の中で特に、入力物体、浮遊容量、雑音、干渉、及び/又は回路欠陥の存在に起因して、結果として生じる信号の変更又は変化が生じることがあり、それにより、送信されたバージョンとわずかに又は大幅に異なることがある。トランス静電容量感知(絶対静電容量感知と違う異なる時間に実行される)の間、センサモジュール310は、平行導体を接地電位に結合させることもでき、その結果、接地された平行導体によってオーバーラップされるルーティングトレースはシールドされる。
[0052]絶対静電容量感知の間、センサモジュール310は、さらに、センサ電極260又は270のうちの1つ又は複数に送信器信号を駆動し、結果として生じる信号をセンサ電極260又は270のうちの1つ又は複数から受信するように動作する。絶対静電容量感知の間、この送信器信号は、絶対静電容量感知信号と呼ぶこともでき、処理システム110Aと、絶対感知が行われているセンサ電極との間の通信結合を行うルーティングトレースを通して駆動される。絶対静電容量感知を実行している間、結果として生じる信号は、時間間隔の間1つ又は複数のセンサ電極で受信することもできる。絶対静電容量感知では、センサ電極は、駆動されることと、結果として生じる信号を受信するために使用されることとの両方が行われる。絶対静電容量感知の間、センサモジュール310は、所望の効果に応じて様々な信号及び/又は電位のうちの1つに平行導体(複数可)を結合させる。
[0053]例えば、いくつかの実施形態では、絶対静電容量感知信号がルーティングトレースを通して駆動される場合、そのルーティングトレースをオーバーラップする平行導体は、同じ絶対静電容量感知信号(同じ位相及び同じ振幅)を平行導体に駆動し、その結果、平行導体は、ルーティングトレースを干渉からガードし、これは「ガーディング」と呼ぶこともできる。いくつかの実施形態では、絶対静電容量感知信号がルーティングトレースを通して駆動される場合、そのルーティングトレースをオーバーラップする平行導体は、同じ位相であるが異なる振幅の信号を平行導体に駆動し、その結果、平行導体は、オーバーラップされたトレースとの所望の静電容量結合を引き起こすこともできる。ルーティングトレースをオーバーラップする平行導体が、同じ位相であるが絶対静電容量感知信号よりも大きい振幅を有する信号で駆動される場合、それにより、オーバーラップされたルーティングトレースから電荷が減じられ、これは「オーバーガーディング(over guarding)」と呼ぶこともできる。ルーティングトレースをオーバーラップする平行導体が、同じ位相であるが絶対静電容量感知信号よりも小さい振幅の信号で駆動される場合、異なる静電容量結合が起こり、これは「アンダーガーディング(under guarding)」と呼ぶこともできる。いくつかの実施形態では、絶対静電容量感知信号がルーティングトレースを通して駆動される場合、そのルーティングトレースをオーバーラップする平行導体は、逆位相の信号を平行導体に駆動し、その結果、平行導体は、オーバーラップされたトレースとの所望の静電容量結合を引き起こすこともでき、これは「アンチガーディング」と呼ぶこともできる。
[0054]いくつかの実施形態では、平行導体は、平行導体によってオーバーラップされているどのルーティングトレースによっても絶対静電容量感知が行われていない期間の間、接地又は高インピーダンスに結合することもできる。例えば、これは、平行導体によってオーバーラップされていないルーティングトレースを通して絶対静電容量信号が駆動されている場合に生じることがある。
[0055]センサモジュール310は、複数の増幅器を含む。そのような増幅器は、増幅器、前置増幅器、集積化増幅器、差動増幅器などと呼ばれ、結果として生じる信号を入力部で受信することもできる。結果として生じる信号は、センサ電極パターン200などのセンサ電極パターンのセンサ電極からのものである。
[0056]決定モジュール320は、ハードウェア(例えば、ハードウェア論理部及び/又は他の回路)として、及び/又はハードウェアと、コンピュータ可読記憶媒体に非一時的方法で記憶されている命令との組合せとして実装することもできる。
[0057]決定モジュール320は、トランス静電容量感知の間第1のセンサ電極と第2のセンサ電極との間のトランス静電容量の静電容量結合の変化の測定値を計算する/決定するように動作する。次に、決定モジュール320は、そのような測定値を使用して、感知領域120を基準にして入力物体(もしあれば)の位置を含む位置情報を決定する。位置情報は、静電容量画像から決定することもできる。静電容量画像は、センサモジュール310によって取得された結果として生じる信号に基づいて決定モジュール320によって決定される。決定モジュール320は、結果として生じるコード化信号をデコードし組み立て直して、複数のセンサ電極のトランス静電容量走査から静電容量画像を構築するように動作することを正しく理解されたい。
[0058]絶対静電容量感知がセンサ電極260及び/又は270で実行される実施形態において、決定モジュール320は、さらに、センサ電極への絶対静電容量結合の測定値を計算する/決定するように動作する。決定モジュール320は、これらの測定値を使用して、入力物体が感知領域に存在するかどうかを決定することもできる。決定モジュール320は、さらに、これらの測定値を使用して、感知領域を基準にして入力物体の位置を決定することもできる。そのような測定値に基づいて入力物体の位置を決定する様々な技法が、当技術分野で知られている。
[0059]いくつかの実施形態では、処理システム110Aは、様々な入力に基づいて複数の異なる動作モードのうちの選択されたもので動作するように、センサモジュール310及び/又は決定モジュール320などの処理システム110Aの1つ又は複数の部分に指示する意志決定論理部を含む。
[例示のプリント回路]
[0060]図4は、いくつかの実施形態による、静電容量感知入力デバイス100の一部として利用される例示のプリント回路400の平面図を示す。プリント回路400は、いくつかの方法で、例えば、2、3の例を挙げると、リソグラフィでプリントされた回路、プリント回路基板(PCB)、又はフレキシブルプリント回路などを介して実装することもできる。プリント回路400は、複数のルーティングトレース460、470を含む。ルーティングトレース460は、処理システム110Aと送信器電極260との間で信号を通信可能に結合させるのに使用される。例えば、ルーティングトレース460−0は、処理システム110Aと送信器電極260−0との間で信号を通信可能に結合させることもできる。ルーティングトレース470は、処理システム110Aと受信器電極270との間で信号を通信可能に結合させるのに使用される。例えば、ルーティングトレース470−0は、処理システム110Aと受信器電極270−0との間で信号を通信可能に結合させることもできる。いくつかの実施形態では、プリント回路400は、処理システム110Aと、静電容量感知入力デバイス100に結合される電子システム150との間の通信結合(複数可)(例えば、信号ライン420)を追加として行うこともできる。
[0061]平行導体431は、プリント回路400の一部分として配設され、処理システム100Aとセンサ電極270との間のスパンに沿って等しい距離でルーティングトレース470の各々をオーバーラップしかつ該各々と平行する。平行導体432は、プリント回路400の一部分として配設され、処理システム110Aとセンサ電極260との間のスパンに沿って等しい距離でルーティングトレース460の各々をオーバーラップしかつ該各々と平行する。平行導体431及び432は、銅などの導電性材料で製作される。いくつかの実施形態では、平行導体431及び432は、シールドのために従来使用されているプリント回路の層からエッチングすることもできる。このシールド層の残りの部分は、エッチング除去される、所定位置に保持される、又は追加の平行導体へとエッチングされることが可能である。明瞭にするために、この銅の層の残りの部分は、図4では省略されている。
[0062]フレキシブルプリント回路実施態様の1つの可能なスタックアップを示す一実施形態が、図8に示されているが、しかしながら、図8に示されたスタックアップに現われているか又は他の可能なスタックアップに存在する層の多くが、平行導体431及び432とルーティングトレース470及び460との間の関係を示すこともできるように、図4では省略されている。例えば、平行導体431をルーティングトレース470から分離する図示されていない誘電体材料は、図を明瞭にするために省略されている。同様に、平行導体432をルーティングトレース460から分離する図示されていない誘電体材料は、図を明瞭にするためにやはり省略されている。
[0063]1つの実施形態では、平行導体431及び432の各々は、処理システム110Aの異なる送信器ピンに(プリント回路のスルーホールなどを用いて)結合され、その結果、平行導体431及び432は、独立に駆動され、及び/又はある電位に結合され得る。絶対静電容量感知が、センサ電極260のうちの1つ又は複数で行われているが、センサ電極270のいずれによっても実行されていない一例を考えよう。この例では、平行導体431はルーティングトレース470をシールドするために接地することもでき、一方、信号は平行導体432に送信される。送信信号が、ルーティングトレース460のより多くを通して送信される絶対静電容量感知信号と同相である場合、送信信号の振幅は、ルーティングトレース460をアンダーガードする(under guard)、ガードする、又はオーバーガードする(over guard)ように選択することもできる。オーバーガードが行われている場合、平行導体432の信号のより大きい振幅が、センサ電極260と処理システム110Aとの間で絶対静電容量感知信号を結合させるのに使用されているルーティングトレース460のいずれかに静電容量的に結合し、ルーティングトレース460のいずれかから電荷をオフセットする(減じる)ので、送信信号はオフセット信号となる。
[0064]絶対静電容量感知が、センサ電極270のうちの1つ又は複数で行われているが、センサ電極260のいずれによっても実行されていない一例を考えよう。この例では、平行導体432はルーティングトレース460をシールドするために接地することもでき、一方、オフセット信号が平行導体431に送信される。送信信号が、ルーティングトレース470のより多くを通して送信される絶対静電容量感知信号と同相である場合、送信信号の振幅は、ルーティングトレース470をアンダーガードする、ガードする、又はオーバーガードするように選択することもできる。オーバーガードが行われている場合、送信信号はオフセット信号となり、平行導体431のオフセット信号のより大きい振幅が、センサ電極270と処理システム110Aとの間で絶対静電容量感知信号を結合させるのに使用されているルーティングトレース470のいずれかから電荷をオフセットする(減じる)。
[0065]絶対静電容量感知が、センサ電極270のうちの1つ又は複数と、センサ電極260のうちの1つ又は複数とで同時に行われている一例を考えよう。この例では、信号は、平行導体432及び平行導体431の両方に送信され得る。1つの実施形態では、平行導体431に送信される信号は、ルーティングトレース470の1つ又は複数を通して送信される絶対静電容量感知信号と同相であり、一方、平行導体432に送信される信号は、ルーティングトレース460の1つ又は複数を通して送信される絶対静電容量感知信号と同相である。平行導体431及び432の各々に送信される信号の振幅は、同一であることも異なっていてもよく、各々は、それぞれの平行導体の各々によってオーバーラップされたルーティングトレースをアンダーガードする、ガードする、又はオーバーガードするように選択することもできる。1つの実施形態では、平行導体432に結合されたオーバーガードオフセット信号の振幅は、平行導体431に送信されるオーバーガードオフセット信号の振幅よりも大きく、その理由は、ルーティングトレース460がルーティングトレース470よりも一般に大きい長さであり、それにより、より大きく環境にさらされることと、ディスプレイパネル、静電容量センサ、電子デバイスなどの電子信号により大きくさらされることとに起因して、ルーティングトレース460からオフセットさせるより多くのバックグラウンド静電容量が存在するからである。
[0066]トランス静電容量感知が、センサ電極260及び270を使用して実行される(これらのセンサ電極が絶対静電容量感知で使用されているときと違う別個の時間に)一実施形態では、平行導体431及び432の一方又は両方は、それぞれの平行導体によってオーバーラップされるルーティングトレース470及び460をシールドするために接地に結合させることもできる。
[0067]図5は、いくつかの実施形態による、静電容量感知入力デバイス100の一部として利用される例示のプリント回路500の平面図を示す。プリント回路500は、いくつかの方法で、例えば、2、3の例を挙げると、リソグラフィでプリントされた回路、プリント回路基板(PCB)、又はフレキシブルプリント回路などを介して実装することもできる。プリント回路500は、平行導体432が平行導体533に入れ替わっていることを除いてプリント回路400に極めて類似している。平行導体533は、ルーティングトレース460のそれぞれのスパンに沿って異なる距離でルーティングトレース460の各々と平行しかつ各々をオーバーラップするように整形される。例えば、平行導体533の傾斜部分により、ルーティングトレース460−1は、ルーティングトレース460−1よりも大きい長さでオーバーラップされる。ルーティングトレースが長いほど、オーバーラップされるスパンの部分が大きくなるので、この整形により、静電容量結合はより長いトレースではより大きくなることもできる。他の形状を使用して、同様の結果を得ることもでき、例えば、いくつかの実施形態では、平行導体533の傾斜部分は階段状である。
[0068]平行導体533は、プリント回路500の一部分として配設される。平行導体533は、銅などの導電性材料で製作される。いくつかの実施形態では、平行導体431及び533は、シールドのために従来使用されているプリント回路の層からエッチングすることもできる。このシールド層の残りの部分は、エッチング除去される、所定位置に保持される、又は追加の平行導体へとエッチングされることが可能である。明瞭にするために、この銅の層の残りの部分は、図5では省略されている。
[0069]フレキシブルプリント回路実施態様の1つの可能なスタックアップを示す実施形態が、図8に示されているが、しかしながら、図8に示されたスタックアップに現われているか又は他の可能なスタックアップに存在する層の多くが、平行導体431及び533とルーティングトレース460及び470との間の関係を示すこともできるように、図5では省略されている。例えば、平行導体431をルーティングトレース470から分離する図示されていない誘電体材料は、図を明瞭にするために省略されている。同様に、平行導体533をルーティングトレース470から分離する図示されていない誘電体材料は、図を明瞭にするためにやはり省略されている。
[0070]1つの実施形態では、平行導体431及び533の各々は、処理システム110Aの異なる送信器ピンに(プリント回路のスルーホールなどを用いて)結合され、その結果、平行導体431及び533は、独立に駆動され、及び/又はある電位に結合され得る。平行導体533は、平行導体432に関して前に説明した使用法と同様の方法で利用され、それにより、ルーティングトレース460が処理システム110Aとセンサ電極260との間で絶対静電容量感知信号を通信するために利用される場合、ルーティングトレース460のいずれかから電荷をオフセットするために使用することもできる。
[0071]図6は、いくつかの実施形態による、静電容量感知入力デバイス100の一部として利用される例示のプリント回路600の平面図を示す。プリント回路600は、いくつかの方法で、例えば、2、3の例を挙げると、リソグラフィでプリントされた回路、プリント回路基板(PCB)、又はフレキシブルプリント回路などを介して実装することもできる。プリント回路600は、別々の平行導体431及び432が省略されており、ルーティングトレース460及びルーティングトレース470の両方をオーバーラップする単一の平行導体634が含まれていることを除いてプリント回路400に極めて類似している。平行導体634は、プリント回路600の一部分として配設される。平行導体634は、ルーティングトレース460及びルーティングトレース470のそれぞれのスパンに沿って同じ距離でルーティングトレース460及びルーティングトレース470の各々と平行しかつ各々をオーバーラップするように整形される。
[0072]平行導体634は、銅などの導電性材料で製作される。いくつかの実施形態では、平行導体634は、シールドのために従来使用されているプリント回路の層からエッチングすることもできる。このシールド層の残りの部分は、エッチング除去される、所定位置に保持される、又は追加の平行導体へとエッチングされることが可能である。明瞭にするために、この銅の層の残りの部分は、図6では省略されている。
[0073]フレキシブルプリント回路実施態様の1つの可能なスタックアップを示す一実施形態が、図8に示されているが、しかしながら、図8に示されたスタックアップに現われているか又は他の可能なスタックアップに存在する層の多くが、平行導体634とルーティングトレース460及び470との間の関係を示すこともできるように、図6では省略されている。例えば、平行導体634をルーティングトレース460及び470から分離する図示されていない誘電体材料は、図を明瞭にするために省略されている。
[0074]1つの実施形態では、平行導体634は、信号で駆動されるか又はある電位に結合されるように、処理システム110Aの送信器ピンに(プリント回路のスルーホールなどを用いて)結合される。絶対静電容量感知が、センサ電極260のうちの1つ又は複数で行われているが、センサ電極270のいずれによっても実行されていない一例を考えよう。この例では、信号は、平行導体634に送信される。送信信号が、ルーティングトレース460のより多くを通して送信される絶対静電容量感知信号と同相である場合、送信信号の振幅は、ルーティングトレース460をアンダーガードする、ガードする、又はオーバーガードするように選択することもできる。オーバーガードが行われている場合、平行導体634の信号のより大きい振幅が、センサ電極260と処理システム110Aとの間で絶対静電容量感知信号を結合させるのに使用されているルーティングトレース460のうちのいずれかに静電容量的に結合し、ルーティングトレース460のうちのいずれかから電荷をオフセットする(減じる)ので、送信信号はオフセット信号となる。ガードが行われている場合、送信信号は、ルーティングトレース460のうちの1つ又は複数を通して送信される絶対静電容量感知信号の振幅と同じ振幅の信号である。
[0075]絶対静電容量感知が、センサ電極270のうちの1つ又は複数で行われているが、センサ電極260のいずれによっても実行されていない一例を考えよう。この例では、信号は、平行導体634に送信される。送信信号が、ルーティングトレース470のより多くを通して送信される絶対静電容量感知信号と同相である場合、送信信号の振幅は、ルーティングトレース470をアンダーガードする、ガードする、又はオーバーガードするように選択することもできる。オーバーガードが行われている場合、平行導体634の信号のより大きい振幅が、センサ電極270と処理システム110Aとの間で絶対静電容量感知信号を結合させるのに使用されているルーティングトレース470のうちのいずれかに静電容量的に結合し、ルーティングトレース470のうちのいずれかから電荷をオフセットする(減じる)ので、送信信号はオフセット信号となる。ガードが行われている場合、送信信号は、ルーティングトレース470のうちの1つ又は複数を通して送信される中間での絶対静電容量感知信号の振幅と同じ振幅の信号である。
[0076]絶対静電容量感知が、センサ電極270のうちの1つ又は複数と、センサ電極260のうちの1つ又は複数とで同時に行われている一例を考えよう。1つの実施形態では、平行導体634に送信される信号は、ルーティングトレースを通して送信される絶対静電容量感知信号と同相である。平行導体634に送信される信号の振幅は、それぞれの平行導体の各々によってオーバーラップされたルーティングトレースをアンダーガードする、ガードする、又はオーバーガードするように選択することもできる。
[0077]トランス静電容量感知が、センサ電極260及び270を使用して実行される(これらのセンサ電極が絶対静電容量感知で使用されているときと違う別個の時間に)一実施形態では、1つの平行導体634は接地に結合されて、1つの平行導体634がオーバーラップするルーティングトレース470及び460をシールドすることもできる。
[0078]図7は、いくつかの実施形態による、静電容量感知入力デバイス100の一部として利用される例示のプリント回路700の平面図を示す。プリント回路700は、いくつかの方法で、例えば、2、3の例を挙げると、リソグラフィでプリントされた回路、プリント回路基板(PCB)、又はフレキシブルプリント回路などを介して実装することもできる。プリント回路700は、プリント回路400及び600に極めて類似しており、プリント回路700が平行導体634と一緒に別々の平行導体431及び432を含んでいるという点で本質的にプリント回路400及び600の組合せである。
[0079]平行導体432、432、及び634は、銅などの導電性材料で製作される。いくつかの実施形態では、平行導体431、432、及び634は、シールドのために従来使用されているプリント回路の層からエッチングすることもできる。このシールド層の残りの部分は、エッチング除去される、所定位置に保持される、又は追加の平行導体へとエッチングされることが可能である。明瞭にするために、この銅の層の残りの部分は、図7では省略されている。
[0080]フレキシブルプリント回路実施態様の1つの可能なスタックアップを示す一実施形態が、図8に示されているが、しかしながら、図8に示されたスタックアップに現われているか又は他の可能なスタックアップに存在する層の多くが、平行導体431、432、及び634とルーティングトレース460及び470との間の関係を示すこともできるように、図7では省略されている。例えば、平行導体431、432、及び634をルーティングトレース460及び470から分離する図示されていない誘電体材料は、図を明瞭にするために省略されている。
[0081]1つの実施形態では、平行導体431、432、及び634の各々は、独立して、信号で駆動される、及び/又はある電位に結合されるように、処理システム110Aの別々の送信器ピンに(プリント回路のスルーホールなどを用いて)結合される。絶対静電容量感知が、センサ電極260のうちの1つ又は複数で行われているが、センサ電極270のいずれによっても実行されていない一例を考えよう。この例では、平行導体431はルーティングトレース470をシールドするために接地することもでき、一方、ガード信号が平行導体634に送信され、オーバーガードオフセット信号が平行導体432に送信される。
[0082]絶対静電容量感知が、センサ電極270のうちの1つ又は複数で行われているが、センサ電極260のいずれによっても実行されていない一例を考えよう。この例では、平行導体432はルーティングトレース460をシールドするために接地することもでき、一方、ガード信号が平行導体634に送信され、オーバーガードオフセット信号が平行導体431に送信される。
[0083]絶対静電容量感知が、センサ電極270のうちの1つ又は複数と、センサ電極260のうちの1つ又は複数とで同時に行われている一例を考えよう。この例では、ガード信号を平行導体634に送信することもでき、一方、まったく異なるアンダーガード信号、ガード信号、又はオーバーガード信号を平行導体431及び432の各々に送信することもできる。
[0084]トランス静電容量感知が、センサ電極260及び270を使用して実行される(これらのセンサ電極が絶対静電容量感知で使用されているときと違う別個の時間に)一実施形態では、平行導体431、432、及び634のうちの1つ又は複数は、それぞれの平行導体によってオーバーラップされるルーティングトレース470及び460をシールドするために接地に結合することもできる。
[0085]図示した実施形態は、図示されていない様々な方法で組み合わせる、及び/又は利用することもできることを理解されたい。例えば、図4を参照すると、1つの実施形態では、平行導体431及び432のいずかのものは省略することもでき、図7を参照すると、平行導体431及び432のいずれかは省略する、及び/又は平行導体533と同様の整形された導体で入れ替えることもでき、図6及び7を参照すると、平行導体634のすべて又は一部分は、あるオーバーラップされたルーティングトレースが他のものよりも大きい距離でオーバーラップされるように整形することもできる。すべてのルーティングトレースが、本明細書で説明するタイプの平行導体によってオーバーラップされる必要があるとは限らないことを正しく理解されたい。追加として、図4に示した実施形態などのいくつかの実施形態では、いくつかのルーティングトレース(460、470)は、平行導体431及び432の両方によってオーバーラップされてもよい。
[例示のプリント回路スタックアップ]
[0086]図8は、いくつかの実施形態による、プリント回路700の例示のフレキシブルプリント回路実施態様の分解側面断面図A−Aを示す。断面A−Aは、図7の切断線及び矢印A−Aの方向に取られている。上部から下部にかけて、スタックアップの第1の層は処理システム110A(ASICとして実装することもできる)であり、スタックアップの第2の層はカバーレイ820であり、スタックアップの第3の層は、ルーティングトレース460及び470が配設される導電層であり、スタックアップの第4の層はコア材料830であり、スタックアップの第5の層は、平行導体634が配設される別の導電層であり、スタックアップの第6の層はカバーレイ850である。これは高水準記述であり、多くの変形が可能であることを正しく理解されたい。このスタックアップは、ルーティングトレース460及び470に関して平行導体634の実質的に平行な性質及びオーバーラップの性質を示すために提供されている。見て分るように、それらの実質的に平行な方位及び分離により、プリント回路静電容量結合(CPRT_CIR)が、平行導体634とルーティングトレース460及び470の各々との間に存在することもできる。同様のプリント回路の静電容量結合が、他の図示した平行導体(431、432、533)と、各々がオーバーラップするそれぞれのルーティングトレースとの間に存在する。同様のスタックアップが、限定はしないが、プリント回路基板及びリソグラフィプリント回路を含む他のタイプのプリント回路に実装され得ることを正しく理解されたい。ルーティングトレースをオーバーラップする導体(例えば、「平行導体」)は、多くの場合、本明細書ではオーバーラップされたルーティングトレース(複数可)と平行するとされているが、その理由は、導体が、オーバーラップされたルーティングトレース(複数可)に沿ったあるスパンの間1つ又は複数の中間層が存在することに起因して多かれ少なかれ均一の距離だけルーティングトレースから分離されるからである。しかしながら、これらの中間層の厚さ、1つ又は複数のオーバーラップされたルーティングトレースの厚さ、及び導電層の厚さの1つ又は複数に変動があり得ることを正しく理解されたい。これらの変動は、例えば、材料の制限のために、製造における変動のために、又は他の理由で生じることがある。そのような小さいずれのため、「平行導体」は、オーバーラップされたルーティングトレースの一部又はすべてにとって「実質的に平行」であるにすぎないことになる場合がある。そのような小さいずれは予測され、プリント回路を使用するオフセット静電容量のための本明細書で説明している技法に実質的に影響を与えず、あらゆる点で、平行及び実質的に平行という用語は交換可能に使用することもできる。
[いくつかの例示の電荷オフセット技法の説明]
[0087]図9Aは、いくつかの実施形態による、プリント回路によってセンサ電極に結合された処理システム110Aの一部分の回路図900Aである。絶対静電容量感知を実施するとき、センサ電極260−0は、ルーティングトレース460−0を介したTX0などの送信器ピンへの結合により絶対静電容量感知信号で駆動される。同時に、プリント回路400の異なる層でルーティングトレース460−0をオーバーラップする平行導体432などの平行導体は、TX1などの送信器ピンへの平行導体432の結合によりオーバーガードオフセット信号で駆動することもできる。このようにして、静電容量結合CPRT_CIRを介して、ベースライン静電容量(C)の一部が、処理システム110Aの外部でオフセットされる(減じられる)。いくつかの実施形態では、外部電荷削減は、電荷削減の唯一の手段として使用することもできる。他の実施形態では、その1つの例が図9Bに示されており、絶対静電容量感知の間、内部電荷削減の1つ又は複数の機構を外部電荷削減に関連して利用することもできる。
[0088]図9Bは、いくつかの実施形態による、プリント回路によってセンサ電極に結合された処理システム110Aの一部分の回路図900を示す。処理システム100Aの図示の部分は、選択可能スイッチSW1を通してセンサ電極260−0に結合される反転入力部を有する差動増幅器910を含む。選択可能電圧を、増幅器910の非反転入力部で変調するか又は設定する(例えば、VDD/2)こともできる。フィードバックキャパシタCFB0が、増幅器910の出力部と反転入力部との間に結合される。フィードバックキャパシタCFB1の第1の側は、増幅器910の反転入力部に結合され、一方、キャパシタCFB1の第2の側は、選択可能スイッチSW2によりVDD、接地、又は増幅器910の出力部に結合される。CFB1は、含まれている場合、増幅器910の出力部に結合される前に、処理システム100Aの内部にある電荷オフセットの1つの機構として、接地又はVDDに事前充電することもできる。粗ベースライン補正キャパシタCCBCは、増幅器910の反転入力部に結合され、静電容量値の調節及び調整可能信号SIGCBCによる駆動の両方を行うこともでき、その結果、センサ電極260−0から結合される電荷を、選択された量だけオフセットすることもできる。CCBCは、含まれている場合、処理システム100Aの内部にある電荷オフセットの機構を備える。絶対静電容量感知を実施するとき、センサ電極260−0は、ルーティングトレース460−0を介したTX0などの送信器ピンへの結合により絶対静電容量感知信号SIGABSで駆動される。同時に、プリント回路400の異なる層でルーティングトレース460−0をオーバーラップする平行導体432などの平行導体は、TX1などの送信器ピンへの平行導体432の結合によりオーバーガードオフセット信号で駆動することもできる。このようにして、静電容量結合CPRT_CIRを介して、ベースライン静電容量(C)の一部が、処理システム110Aの外部でオフセットされる(減じられる)。
[0089]内部電荷削減の2つの機構が図9Bに示されているが、外部電荷削減(CPRT_CIRを介する)は、これらの機構のいずれか若しくは両方との組合せ、又はこれら及び他の内部電荷削減機構の1つ又は複数との組合せとすることもできることを正しく理解されたい。
[いくつかの例示の信号の比較]
[0090]図10は、様々な実施形態で使用することもできるいくつかの例示の信号の比較を示す。振幅Aをもつ被変調絶対静電容量感知信号SIGABSが、比較目的のために示されている。信号1010は、アンダーガード信号の一例であり、SIGABSと同相であるが、SIGABSよりも小さい振幅である。信号1020は、ガード信号の一例であり、SIGABSと同相であり、SIGABSと同じ振幅を有する。信号1030は、オーバーガード信号の一例であり、SIGABSと同相であるが、SIGABSよりも大きい振幅である。信号1040は、アンチガード信号の一例であり、SIGABSと同じ振幅を有するが、180度位相外れである。
[例示の動作の方法]
[0091]図11A及び11Bは、様々な実施形態による、静電容量感知の方法の流れ図1100を示す。この方法の手順が、図1〜10のうちの1つ又は複数の要素及び/又は構成要素を参照して説明される。いくつかの実施形態では、手順は、説明した以外の異なる順序で実行することもでき、説明した手順の一部が実行されないことがあり、及び/又は説明した手順への1つ又は複数の追加の手順が実行され得ることを正しく理解されたい。
[0092]図11Aを参照すると、流れ図1100の手順1110において、1つの実施形態では、絶対静電容量感知信号が、プリント回路の複数のルーティングトレースの少なくとも1つを通る。様々な実施形態において、プリント回路は、スタックアップのある層のルーティングトレースと、絶縁材料によってルーティングトレースから分離されているスタックアップの別の層の導電層とを有するフレキシブルプリント回路、プリント回路基板、リソグラフィプリント回路、又は別のプリント回路とすることもできる。1つの実施形態では、これは、複数のルーティングトレース460、470のうちの1つのルーティングトレース(例えば、ルーティングトレース460−0)を通してセンサ電極パターン(例えば、センサ電極パターン200)のうちの1つのセンサ電極(例えば、センサ電極260−0)に至る送信器信号(絶対静電容量感知信号とも呼ばれる)を駆動する処理システム110Aのセンサモジュール310を含む。
[0093]図11Aを引き続いて参照すると、流れ図1100の手順1120において、1つの実施形態では、絶対静電容量感知が、センサ電極パターンの複数のセンサ電極のうちの少なくとも1つのセンサ電極で実行され、ここで、少なくとも1つのセンサ電極は、上記複数のルーティングトレースのうちの少なくとも1つに結合されている。以前の例とともに続いて、1つの実施形態では、処理システム110Aは、センサ電極パターン200のセンサ電極260−0で絶対静電容量感知を実行する。
[0094]図11Aを引き続いて参照すると、流れ図1100の手順1130において、1つの実施形態では、オフセット信号が、複数のルーティングトレースのうちの少なくとも1つをオーバーラップする平行導体に送信され、その結果、電荷は、絶対静電容量感知の間、複数のルーティングトレースのうちの少なくとも1つからオフセットされる。以前の例に続いて、1つの実施形態では、センサモジュール310は、センサ電極260−0で測定されたあるバックグラウンド静電容量(ベースライン静電容量の一部である)をオフセットする(減じる)ために、ルーティングトレース460−0をオーバーラップする平行導体432にオフセット信号を送信する。このオフセット信号は、絶対静電容量感知信号と同相であり、絶対静電容量感知信号の振幅よりも大きい信号レベル(大きい振幅)のものである。
[0095]図11Bを参照すると、流れ図1100の手順1140に示されるように、いくつかの実施形態では、1110〜1130で説明したような方法は、複数のルーティングトレースのうちの少なくとも1つをオーバーラップする第2の平行導体にガード信号を送信することをさらに含み、その結果、第2の平行導体によってオーバーラップされる複数のルーティングトレースのうちの少なくとも1つに属する一部分は、絶対静電容量感知の間ガードされる。平行導体及び第2の平行導体は、複数のルーティングトレースのうちの少なくとも1つに属する異なる部分をオーバーラップする。手順1130の説明に含まれる例に続いて、図7を参照して、いくつかの実施形態では、センサモジュール310は、平行導体432によってオーバーラップされる部分以外のルーティングトレース460−0の異なる部分をオーバーラップする平行導体634にガード信号を送信する。
[0096]図11Bを引き続いて参照すると、流れ図1100の手順1150に示されるように、いくつかの実施形態では、1110〜1130で説明したような方法は、複数のルーティングトレースのうちの第2の異なる少なくとも1つをオーバーラップする第2の平行導体にガード信号を送信することをさらに含み、その結果、第2の平行導体によってオーバーラップされる複数のルーティングトレースのうちの第2の少なくとも1つに属する一部分は、絶対静電容量感知の間ガードされる。手順1130の説明に含まれる例に続いて、図4及び7を参照して、いくつかの実施形態では、センサモジュール310は、複数のルーティングトレース460、470のうちの第2の異なる1つ(例えば、ルーティングトレース470−0)をオーバーラップする平行導体431にガード信号を送信する。
[0097]図11Bを引き続いて参照すると、流れ図1100の手順1160に示されるように、いくつかの実施形態では、1110〜1130で説明したような方法は、センサ電極を使用してトランス静電容量感知を実行することをさらに含む。トランス静電容量感知は、絶対静電容量感知と違う別個で異なる時間に実行される。手順1110〜1130の説明に提示された例に続いて、1つの実施形態では、これは、センサモジュール310がセンサ電極パターン200のセンサ電極を使用してトランス静電容量感知を実行することを含む。
[0098]図11Bを引き続いて参照すると、流れ図1100の手順1170において、1つの実施形態では、平行導体は、トランス静電容量感知の間接地に結合される。手順1110〜1130及び1160の説明に提示された例に続いて、1つの実施形態では、これは、センサモジュール310が平行導体432を接地に結合させることを含む。追加の平行導体も接地に結合させることもできることを正しく理解されたい。
[0099]短い概要として、この記述は、少なくとも以下の広い概念を開示している。
[概念1]
プリント回路の複数のルーティングトレースのうちの少なくとも1つを通して絶対静電容量感知信号を駆動するステップと、
センサ電極パターンの複数のセンサ電極のうちの少なくとも1つのセンサ電極で絶対静電容量感知を実行するステップであり、上記少なくとも1つのセンサ電極が、上記複数のルーティングトレースのうちの上記少なくとも1つに結合されている、実行するステップと、
電荷が、上記絶対静電容量感知の間、上記複数のルーティングトレースのうちの上記少なくとも1つからオフセットされるように、上記複数のルーティングトレースのうちの上記少なくとも1つをオーバーラップする平行導体にオフセット信号を送信するステップと
を含む静電容量感知の方法。
[概念2]
電荷が、上記絶対静電容量感知の間、上記複数のルーティングトレースのうちの上記少なくとも1つからオフセットされるように、上記複数のルーティングトレースのうちの上記少なくとも1つをオーバーラップする平行導体にオフセット信号を送信する上記ステップが、
上記絶対静電容量感知信号と同相の同相信号(in-phase signal)として上記オフセット信号を送信するステップ
を含む、概念1に記載の方法。
[概念3]
上記絶対静電容量感知信号と同相の同相信号として上記オフセット信号を送信する上記ステップが、
上記絶対静電容量感知信号の振幅よりも大きいレベルに上記オフセット信号の振幅を設定するステップ
を含む、概念2に記載の方法。
[概念4]
上記絶対静電容量感知の間、第2の平行導体によってオーバーラップされている上記複数のルーティングトレースのうちの上記少なくとも1つに属する一部分がガードされるように、上記複数のルーティングトレースのうちの上記少なくとも1つをオーバーラップする上記第2の平行導体にガード信号を送信するステップであり、上記平行導体及び上記第2の平行導体が、上記複数のルーティングトレースのうちの上記少なくとも1つに属する異なる部分をオーバーラップする、送信するステップをさらに含む、概念1に記載の方法。
[概念5]
上記絶対静電容量感知の間、第2の平行導体によってオーバーラップされている上記複数のルーティングトレースのうちの第2の少なくとも1つに属する一部分がガードされるように、上記複数のルーティングトレースのうちの上記第2の異なる少なくとも1つをオーバーラップする上記第2の平行導体にガード信号を送信するステップをさらに含む、概念1に記載の方法。
[概念6]
上記絶対静電容量感知と違う別個の時間に上記センサ電極を使用してトランス静電容量感知を実行するステップと、
上記トランス静電容量感知の間上記平行導体を接地に結合させるステップと
をさらに含む、概念1に記載の方法。
[概念7]
センサ電極パターンの複数のセンサ電極のうちの少なくとも1つのセンサ電極で絶対静電容量感知を実行するために、プリント回路の複数のルーティングトレースのうちの少なくとも1つを通して絶対静電容量感知信号を駆動し、ここで、上記少なくとも1つのセンサ電極が、上記複数のルーティングトレースのうちの上記少なくとも1つに結合されており、
電荷が、上記絶対静電容量感知の間、上記複数のルーティングトレースのうちの上記少なくとも1つからオフセットされるように、上記複数のルーティングトレースのうちの上記少なくとも1つをオーバーラップする平行導体にオフセット信号を送信する
ように構成された、センサモジュールと、
上記絶対静電容量感知に基づいて上記複数のセンサ電極の感知領域内の入力を決定するように構成された決定モジュールと
を備える処理システム。
[概念8]
上記センサモジュールが、
上記絶対静電容量感知と違う別個の時間に上記センサ電極を使用してトランス静電容量感知を実行し、
上記トランス静電容量感知の間上記平行導体を接地に結合させる
ようにさらに構成され、
上記決定モジュールが、上記トランス静電容量感知に基づいて上記複数のセンサ電極の感知領域内の入力を決定するようにさらに構成される、概念7に記載の処理システム。
[概念9]
上記センサモジュールが、上記絶対静電容量感知信号と同相の同相信号として上記オフセット信号を送信するように構成される、概念7に記載の処理システム。
[概念10]
上記センサモジュールは、電荷が上記複数のルーティングトレースからオフセットされるように上記絶対静電容量感知信号の振幅よりも大きいレベルに上記オフセット信号の振幅を設定するように構成される、概念9に記載の処理システム。
[概念11]
上記センサモジュールは、上記絶対静電容量感知の間、第2の平行導体によってオーバーラップされている上記複数のルーティングトレースのうちの上記少なくとも1つに属する一部分がガードされるように、上記複数のルーティングトレースのうちの上記少なくとも1つをオーバーラップする上記第2の平行導体にガード信号を送信するようにさらに構成され、上記平行導体及び上記第2の平行導体が、上記複数のルーティングトレースのうちの上記少なくとも1つに属する異なる部分をオーバーラップする、概念7に記載の処理システム。
[概念12]
上記センサモジュールが、
上記絶対静電容量感知の間、第2の平行導体によってオーバーラップされている上記複数のルーティングトレースのうちの第2の少なくとも1つに属する一部分がガードされるように、上記複数のルーティングトレースのうちの上記第2の異なる少なくとも1つをオーバーラップする上記第2の平行導体にガード信号を送信する
ようにさらに構成される、概念7に記載の処理システム。
[概念13]
複数のセンサ電極を含むセンサ電極パターンと、
絶対静電容量感知を実行するために上記センサ電極を動作させるように構成された処理システムと、
プリント回路とを備え、上記プリント回路が、
上記センサ電極と上記処理システムとの間で信号を通信可能に結合させるように構成された複数のルーティングトレース、及び
上記複数の上記ルーティングトレースをオーバーラップし、上記処理システムに結合され、上記絶対静電容量感知の間上記複数のルーティングトレースから電荷をオフセットするように構成された平行導体
を含む、静電容量感知入力デバイス。
[概念14]
第2の複数のルーティングトレースと、
上記第2の複数の上記ルーティングトレースをオーバーラップし、上記処理システムに結合され、上記絶対静電容量感知の間上記第2の複数のルーティングトレースに送信された信号と実質的に同じ振幅の同相信号で上記第2の複数のルーティングトレースをガードするように構成された第2の平行導体と
をさらに含む、概念13に記載の入力デバイス。
[概念15]
上記複数のルーティングトレース及び上記第2の複数のルーティングトレースが、ルーティングトレースを共通して共有しない、概念14に記載の入力デバイス。
[概念16]
上記複数のルーティングトレース及びオーバーラップされた上記第2の複数のルーティングトレースは、少なくともいくつかのルーティングトレースを共通して共有する、概念14に記載の入力デバイス。
[概念17]
上記平行導体及び上記第2の平行導体が、異なる場所で上記複数のルーティングトレースをオーバーラップする、概念14に記載の入力デバイス。
[概念18]
上記処理システムが、
上記絶対静電容量感知の間上記複数のルーティングトレースに送信される信号と同相の同相信号に上記平行導体を結合させる
ようにさらに構成される、概念13に記載の入力デバイス。
[概念19]
上記同相信号の振幅が、上記複数のルーティングトレースの信号の振幅よりも大きい、概念18に記載の入力デバイス。
[概念20]
上記処理システムが、
トランス静電容量感知を実行するために上記センサ電極を動作させ、
上記トランス静電容量感知の間上記平行導体を接地に結合させる
ようにさらに構成される、概念13に記載の入力デバイス。
[概念21]
上記平行導体が、上記複数のルーティングトレースの各々を実質的に同じ長さでオーバーラップする、概念13に記載の入力デバイス。
[概念22]
上記平行導体が、上記複数のルーティングトレースのうちの第1のもの及び第2のものを異なる長さでオーバーラップする、概念13に記載の入力デバイス。
[00100]本明細書に記載された例は、最も的確に説明し、特定の用途を記述し、それによって、記述された例の実施形態を当業者が行い使用できるようにするために提示された。しかしながら、当業者は、前述の説明及び例が、例証及び例示のためにのみ提示されたことを認識するであろう。記載された説明は、網羅的であるように、又は開示された正確な形態に実施形態を限定するように意図されていない。

Claims (22)

  1. 静電容量感知の方法であって、
    プリント回路の複数のルーティングトレースのうちの少なくとも1つを通して絶対静電容量感知信号を駆動するステップと、
    センサ電極パターンの複数のセンサ電極のうちの少なくとも1つのセンサ電極で絶対静電容量感知を実行するステップであり、前記少なくとも1つのセンサ電極が、前記複数のルーティングトレースのうちの前記少なくとも1つに結合されている、実行するステップと、
    電荷が、前記絶対静電容量感知の間、前記複数のルーティングトレースのうちの前記少なくとも1つからオフセットされるように、前記複数のルーティングトレースのうちの前記少なくとも1つをオーバーラップする平行導体にオフセット信号を送信するステップと
    を含む感知方法。
  2. 電荷が、前記絶対静電容量感知の間、前記複数のルーティングトレースのうちの前記少なくとも1つからオフセットされるように、前記複数のルーティングトレースのうちの前記少なくとも1つをオーバーラップする平行導体にオフセット信号を送信する前記ステップが、
    前記絶対静電容量感知信号と同相の同相信号として前記オフセット信号を送信するステップ
    を含む、請求項1に記載の方法。
  3. 前記絶対静電容量感知信号と同相の同相信号として前記オフセット信号を送信する前記ステップが、
    前記絶対静電容量感知信号の振幅よりも大きいレベルに前記オフセット信号の振幅を設定するステップ
    を含む、請求項2に記載の方法。
  4. 前記絶対静電容量感知の間、第2の平行導体によってオーバーラップされている前記複数のルーティングトレースのうちの前記少なくとも1つに属する一部分がガードされるように、前記複数のルーティングトレースのうちの前記少なくとも1つをオーバーラップする前記第2の平行導体にガード信号を送信するステップであり、前記平行導体及び前記第2の平行導体が、前記複数のルーティングトレースのうちの前記少なくとも1つに属する異なる部分をオーバーラップする、送信するステップをさらに含む、請求項1に記載の方法。
  5. 前記絶対静電容量感知の間、第2の平行導体によってオーバーラップされている前記複数のルーティングトレースのうちの第2の少なくとも1つに属する一部分がガードされるように、前記複数のルーティングトレースのうちの前記第2の異なる少なくとも1つをオーバーラップする前記第2の平行導体にガード信号を送信するステップをさらに含む、請求項1に記載の方法。
  6. 前記絶対静電容量感知と違う別個の時間に前記センサ電極を使用してトランス静電容量感知を実行するステップと、
    前記トランス静電容量感知の間前記平行導体を接地に結合させるステップと、
    をさらに含む、請求項1に記載の方法。
  7. センサ電極パターンの複数のセンサ電極のうちの少なくとも1つのセンサ電極で絶対静電容量感知を実行するために、プリント回路の複数のルーティングトレースのうちの少なくとも1つを通して絶対静電容量感知信号を駆動し、ここで、前記少なくとも1つのセンサ電極が、前記複数のルーティングトレースのうちの前記少なくとも1つに結合されており、
    電荷が、前記絶対静電容量感知の間、前記複数のルーティングトレースのうちの前記少なくとも1つからオフセットされるように、前記複数のルーティングトレースのうちの前記少なくとも1つをオーバーラップする平行導体にオフセット信号を送信する
    ように構成された、センサモジュールと、
    前記絶対静電容量感知に基づいて前記複数のセンサ電極の感知領域内の入力を決定するように構成された決定モジュールと、
    を備える処理システム。
  8. 前記センサモジュールが、
    前記絶対静電容量感知と違う別個の時間に前記センサ電極を使用してトランス静電容量感知を実行し、
    前記トランス静電容量感知の間前記平行導体を接地に結合させる
    ようにさらに構成され、
    前記決定モジュールが、前記トランス静電容量感知に基づいて前記複数のセンサ電極の感知領域内の入力を決定するようにさらに構成される、請求項7に記載の処理システム。
  9. 前記センサモジュールが、前記絶対静電容量感知信号と同相の同相信号として前記オフセット信号を送信するように構成される、請求項7に記載の処理システム。
  10. 前記センサモジュールは、電荷が前記複数のルーティングトレースからオフセットされるように前記絶対静電容量感知信号の振幅よりも大きいレベルに前記オフセット信号の振幅を設定するように構成される、請求項9に記載の処理システム。
  11. 前記センサモジュールは、前記絶対静電容量感知の間、第2の平行導体によってオーバーラップされている前記複数のルーティングトレースのうちの前記少なくとも1つに属する一部分がガードされるように、前記複数のルーティングトレースのうちの前記少なくとも1つをオーバーラップする前記第2の平行導体にガード信号を送信するようにさらに構成され、前記平行導体及び前記第2の平行導体が、前記複数のルーティングトレースのうちの前記少なくとも1つに属する異なる部分をオーバーラップする、請求項7に記載の処理システム。
  12. 前記センサモジュールが、
    前記絶対静電容量感知の間、第2の平行導体によってオーバーラップされている前記複数のルーティングトレースのうちの第2の少なくとも1つに属する一部分がガードされるように、前記複数のルーティングトレースのうちの前記第2の異なる少なくとも1つをオーバーラップする前記第2の平行導体にガード信号を送信する
    ようにさらに構成される、請求項7に記載の処理システム。
  13. 複数のセンサ電極を含むセンサ電極パターンと、
    絶対静電容量感知を実行するために前記センサ電極を動作させるように構成された処理システムと、
    プリント回路であり、
    前記センサ電極と前記処理システムとの間で信号を通信可能に結合させるように構成された複数のルーティングトレース、及び
    前記複数のルーティングトレースをオーバーラップし、前記処理システムに結合され、前記絶対静電容量感知の間前記複数のルーティングトレースから電荷をオフセットするように構成された平行導体
    を含む、プリント回路と、
    を備える、静電容量感知入力デバイス。
  14. 第2の複数のルーティングトレースと、
    前記第2の複数のルーティングトレースをオーバーラップする第2の平行導体であり、前記処理システムに結合され、前記絶対静電容量感知の間前記第2の複数のルーティングトレースに送信された信号と実質的に同じ振幅の同相信号で前記第2の複数のルーティングトレースをガードするように構成された第2の平行導体と、
    をさらに含む、請求項13に記載の入力デバイス。
  15. 前記複数のルーティングトレース及び前記第2の複数のルーティングトレースが、ルーティングトレースを共有しない、請求項14に記載の入力デバイス。
  16. 前記複数のルーティングトレース及びオーバーラップされた前記第2の複数のルーティングトレースは、少なくともいくつかのルーティングトレースを共有する、請求項14に記載の入力デバイス。
  17. 前記平行導体及び前記第2の平行導体が、異なる場所で前記複数のルーティングトレースをオーバーラップする、請求項14に記載の入力デバイス。
  18. 前記処理システムが、
    前記絶対静電容量感知の間前記複数のルーティングトレースに送信される信号と同相の同相信号に前記平行導体を結合させる
    ようにさらに構成される、請求項13に記載の入力デバイス。
  19. 前記同相信号の振幅が、前記複数のルーティングトレースの信号の振幅よりも大きい、請求項18に記載の入力デバイス。
  20. 前記処理システムが、
    トランス静電容量感知を実行するために前記センサ電極を動作させ、
    前記トランス静電容量感知の間前記平行導体を接地に結合させる
    ようにさらに構成される、請求項13に記載の入力デバイス。
  21. 前記平行導体が、前記複数のルーティングトレースの各々を実質的に同じ長さでオーバーラップする、請求項13に記載の入力デバイス。
  22. 前記平行導体が、前記複数のルーティングトレースのうちの第1のもの及び第2のものを異なる長さでオーバーラップする、請求項13に記載の入力デバイス。
JP2016545242A 2013-09-26 2014-09-26 静電容量感知の間電荷をオフセットするためのプリント回路の使用 Active JP6568530B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/038,466 2013-09-26
US14/038,466 US9658722B2 (en) 2013-09-26 2013-09-26 Using a printed circuit to offset charge during capacitive sensing
PCT/US2014/057769 WO2015048482A1 (en) 2013-09-26 2014-09-26 Using a printed circuit to offset charge during capacitive sensing

Publications (2)

Publication Number Publication Date
JP2016532227A true JP2016532227A (ja) 2016-10-13
JP6568530B2 JP6568530B2 (ja) 2019-08-28

Family

ID=52690515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016545242A Active JP6568530B2 (ja) 2013-09-26 2014-09-26 静電容量感知の間電荷をオフセットするためのプリント回路の使用

Country Status (5)

Country Link
US (1) US9658722B2 (ja)
JP (1) JP6568530B2 (ja)
KR (1) KR102313332B1 (ja)
CN (1) CN105706032B (ja)
WO (1) WO2015048482A1 (ja)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013165601A1 (en) 2012-05-03 2013-11-07 Yknots Industries Llc Moment compensated bending beam sensor for load measurement on platform supported by bending beams
WO2014098946A1 (en) 2012-12-17 2014-06-26 Changello Enterprise Llc Force detection in touch devices using piezoelectric sensors
US9952703B2 (en) 2013-03-15 2018-04-24 Apple Inc. Force sensing of inputs through strain analysis
US10120478B2 (en) * 2013-10-28 2018-11-06 Apple Inc. Piezo based force sensing
AU2015100011B4 (en) 2014-01-13 2015-07-16 Apple Inc. Temperature compensating transparent force sensor
US9746974B2 (en) * 2014-08-21 2017-08-29 Cypress Semiconductor Corporation Providing a baseline capacitance for a capacitance sensing channel
US10429998B2 (en) 2014-07-23 2019-10-01 Cypress Semiconductor Corporation Generating a baseline compensation signal based on a capacitive circuit
US10082916B2 (en) 2015-07-08 2018-09-25 Samsung Electronics Co., Ltd. Circuit for cancelling offset capacitance of capacitive touch screen panel and device including the same
TWI584173B (zh) * 2015-07-20 2017-05-21 瑞鼎科技股份有限公司 內嵌式觸控面板
US9612170B2 (en) 2015-07-21 2017-04-04 Apple Inc. Transparent strain sensors in an electronic device
US10055048B2 (en) 2015-07-31 2018-08-21 Apple Inc. Noise adaptive force touch
US9874965B2 (en) 2015-09-11 2018-01-23 Apple Inc. Transparent strain sensors in an electronic device
US9886118B2 (en) 2015-09-30 2018-02-06 Apple Inc. Transparent force sensitive structures in an electronic device
KR101809917B1 (ko) * 2016-01-29 2017-12-21 엘지디스플레이 주식회사 구동 회로, 터치 디스플레이 장치 및 그 구동방법
US10006820B2 (en) 2016-03-08 2018-06-26 Apple Inc. Magnetic interference avoidance in resistive sensors
TWI581167B (zh) * 2016-03-29 2017-05-01 矽創電子股份有限公司 雜訊抑制電路
US10209830B2 (en) 2016-03-31 2019-02-19 Apple Inc. Electronic device having direction-dependent strain elements
US10133418B2 (en) 2016-09-07 2018-11-20 Apple Inc. Force sensing in an electronic device using a single layer of strain-sensitive structures
US10338740B2 (en) * 2016-11-18 2019-07-02 Synaptics Incorporated Reducing background capacitance associated with a touch surface
KR102596607B1 (ko) * 2016-12-20 2023-11-01 엘지디스플레이 주식회사 터치회로, 터치 센싱 장치 및 터치 센싱 방법
JP2018147396A (ja) * 2017-03-08 2018-09-20 株式会社ジャパンディスプレイ 表示装置
US10444091B2 (en) 2017-04-11 2019-10-15 Apple Inc. Row column architecture for strain sensing
US10379688B2 (en) 2017-06-14 2019-08-13 Synaptics Incorporated Transcapacitive matrix sensor with via routing
US10309846B2 (en) 2017-07-24 2019-06-04 Apple Inc. Magnetic field cancellation for strain sensors
US10318084B2 (en) * 2017-09-18 2019-06-11 Synaptics Incorporated Methods and systems for matrix electrode arrays
JP6947041B2 (ja) * 2018-01-09 2021-10-13 日立金属株式会社 多心ケーブルの検査方法、多心ケーブルアセンブリの製造方法、及び多心ケーブルの検査装置
US10782818B2 (en) 2018-08-29 2020-09-22 Apple Inc. Load cell array for detection of force input to an electronic device enclosure
CN110806228A (zh) * 2019-04-24 2020-02-18 神盾股份有限公司 用于感测器的校正电路与相关感测器
US11620017B2 (en) * 2021-05-20 2023-04-04 Himax Technologies Limited Touch controllers capable of reducing noise interference

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060274055A1 (en) * 2005-06-01 2006-12-07 Synaptics Incorporated Touch pad with flexible substrate
JP2011227793A (ja) * 2010-04-22 2011-11-10 Hitachi Displays Ltd タッチパネル、および表示装置
WO2012141139A1 (ja) * 2011-04-13 2012-10-18 シャープ株式会社 タッチパネルおよびそれを備えた表示装置
JP2012527052A (ja) * 2009-05-13 2012-11-01 シナプティクス インコーポレイテッド 静電容量センサデバイス

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5801340A (en) * 1995-06-29 1998-09-01 Invotronics Manufacturing Proximity sensor
US6057903A (en) * 1998-08-18 2000-05-02 International Business Machines Corporation Liquid crystal display device employing a guard plane between a layer for measuring touch position and common electrode layer
EP2280483A1 (en) 2005-06-03 2011-02-02 Synaptics, Incorporated Methods and systems for shielding a charge transfer capacitance sensor for proximity detection
US8395395B2 (en) 2007-11-27 2013-03-12 Azoteq (Pty) Ltd. Noise rejection and parasitic capacitance removal implementations
US8237068B2 (en) * 2009-08-07 2012-08-07 OpeanPeak Inc. Projected capacitive touch-sensitive panel
US8901944B2 (en) * 2010-01-15 2014-12-02 Cypress Semiconductor Corporation Lattice structure for capacitance sensing electrodes
US20120050206A1 (en) 2010-08-29 2012-03-01 David Welland Multi-touch resolve mutual capacitance sensor
US8711570B2 (en) * 2011-06-21 2014-04-29 Apple Inc. Flexible circuit routing
US8970545B2 (en) 2011-07-13 2015-03-03 Synaptics Incorporated Trace shielding for input devices
US9024891B2 (en) 2011-11-03 2015-05-05 Synaptics Incorporated Single substrate touch sensor
KR102261698B1 (ko) 2012-01-12 2021-06-07 시냅틱스 인코포레이티드 단일층 용량성 이미징 센서들
US8910104B2 (en) 2012-01-23 2014-12-09 Cirque Corporation Graduated routing for routing electrodes coupled to touch sensor electrodes to thereby balance capacitance on the touch sensor electrodes
US9086768B2 (en) * 2012-04-30 2015-07-21 Apple Inc. Mitigation of parasitic capacitance
CN102929471B (zh) * 2012-11-21 2015-08-12 深圳爱商精密电子有限公司 电容式触摸屏的制作方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060274055A1 (en) * 2005-06-01 2006-12-07 Synaptics Incorporated Touch pad with flexible substrate
JP2012527052A (ja) * 2009-05-13 2012-11-01 シナプティクス インコーポレイテッド 静電容量センサデバイス
JP2011227793A (ja) * 2010-04-22 2011-11-10 Hitachi Displays Ltd タッチパネル、および表示装置
WO2012141139A1 (ja) * 2011-04-13 2012-10-18 シャープ株式会社 タッチパネルおよびそれを備えた表示装置

Also Published As

Publication number Publication date
CN105706032A (zh) 2016-06-22
CN105706032B (zh) 2019-11-19
JP6568530B2 (ja) 2019-08-28
US9658722B2 (en) 2017-05-23
KR20160061345A (ko) 2016-05-31
KR102313332B1 (ko) 2021-10-15
US20150084876A1 (en) 2015-03-26
WO2015048482A1 (en) 2015-04-02

Similar Documents

Publication Publication Date Title
JP6568530B2 (ja) 静電容量感知の間電荷をオフセットするためのプリント回路の使用
US9959002B2 (en) System and method for input sensing
US9977549B2 (en) Single substrate touch sensor
US9134396B2 (en) Reducing bending effects in touch sensor devices
US9965105B2 (en) Systems and methods for detecting low ground mass conditions in sensor devices
CN107148608B (zh) 用于采用中间屏蔽电极层的力和接近性感测的设备和方法
US10503320B2 (en) Active feedforward interference cancellation techniques for sensor analog front-end
CN106020577B (zh) 用于差分读出的传感器阵列配置
US8711120B2 (en) Single integrated circuit configured to operate both a capacitive proximity sensor device and a resistive pointing stick
US9454278B2 (en) Weighting for display noise removal in capacitive sensors
US9329731B2 (en) Routing trace compensation
US9946404B1 (en) LED screen noise sensing for discreet capacitive sensors
US20140226083A1 (en) Guarding and shielding routing traces in proximity sensors
KR102533303B1 (ko) 잡음 결정을 위한 전극 결합
TW201802660A (zh) 歸一化電容性感測量測以降低低接地體及雜訊的影響
US10175827B2 (en) Detecting an active pen using a capacitive sensing device
US20150378496A1 (en) Capacitive input sensing in the presence of a uniform conductor
US9274643B2 (en) Capacitive charge measurement
US9891763B2 (en) Current feedback techniques for capacitive sensing
US9268435B2 (en) Single layer capacitive sensor and capacitive sensing input device
US20190138125A1 (en) Differential force sensing referenced to display
CN105760027B (zh) 用于输入感应的开关电容技术
US10095341B2 (en) Hybrid force measurement

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20170828

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171222

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20171222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190507

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190613

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190802

R150 Certificate of patent or registration of utility model

Ref document number: 6568530

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250