JP2016525866A - Secondary device of grid-like linear motor for linear motor rail traffic - Google Patents

Secondary device of grid-like linear motor for linear motor rail traffic Download PDF

Info

Publication number
JP2016525866A
JP2016525866A JP2016530294A JP2016530294A JP2016525866A JP 2016525866 A JP2016525866 A JP 2016525866A JP 2016530294 A JP2016530294 A JP 2016530294A JP 2016530294 A JP2016530294 A JP 2016530294A JP 2016525866 A JP2016525866 A JP 2016525866A
Authority
JP
Japan
Prior art keywords
linear motor
conductive
grid
secondary device
rail traffic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016530294A
Other languages
Japanese (ja)
Inventor
云岳 叶
云岳 叶
琴芬 ▲盧▼
琴芬 ▲盧▼
高▲聖▼ ▲張▼
高▲聖▼ ▲張▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Hi Function Energy Technology Co ltd
Original Assignee
Shandong Hi Function Energy Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Hi Function Energy Technology Co ltd filed Critical Shandong Hi Function Energy Technology Co ltd
Publication of JP2016525866A publication Critical patent/JP2016525866A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L13/00Electric propulsion for monorail vehicles, suspension vehicles or rack railways; Magnetic suspension or levitation for vehicles
    • B60L13/03Electric propulsion by linear motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/002Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of propulsion for monorail vehicles, suspension vehicles or rack railways; for control of magnetic suspension or levitation for vehicles for propulsion purposes
    • B60L15/005Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of propulsion for monorail vehicles, suspension vehicles or rack railways; for control of magnetic suspension or levitation for vehicles for propulsion purposes for control of propulsion for vehicles propelled by linear motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/025Asynchronous motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Abstract

本発明は、導磁性鉄心(5)と、導電体(6)と、取付フレーム(7)と、を備えるリニアモータレール交通用のグリッド状リニアモータの二次装置において、導電体(6)は、グリッド状に配列された1組の導電棒(61)と、隣接する導電棒(61)の端部を接続する導電端部棒(62)を含み、導磁性鉄心(5)に導電棒に対応する取付溝(51)が設けられ、導電棒(61)が取付溝(51)内に嵌め込まれ、導電棒(61)の2つの端部が何れも取付溝(51)から延出し、導電端部棒(62)が導磁性鉄心(5)の側部に設けられ、導磁性鉄心(5)が取付フレーム(7)に設けられるリニアモータレール交通用のグリッド状リニアモータの二次装置に関する。導磁性鉄心(5)は、珪素鋼板から打ち抜けて積層されたものであり、珪素鋼板が導電棒(61)の長手方向に沿って積層する。導電棒(61)及び導電端部棒(62)は、導電性能の良い材料からなる。リニアモータの二次は、全新の全体的な構造を採用し、導電性能や導磁性能の良い材料を使用するので、二次誘導板内の渦電流損失を効果的に低下させ、モータの牽引力を向上させ、また優れた省エネルギー効果を取得することができる。【選択図】図3The present invention relates to a secondary device for a linear linear motor for linear motor rail traffic, comprising a magnetically conductive core (5), a conductor (6), and a mounting frame (7). , Including a pair of conductive rods (61) arranged in a grid and a conductive end rod (62) connecting the ends of the adjacent conductive rods (61), and the conductive iron core (5) is connected to the conductive rod. Corresponding mounting grooves (51) are provided, the conductive rods (61) are fitted into the mounting grooves (51), and the two ends of the conductive rods (61) both extend from the mounting grooves (51). The present invention relates to a secondary device for a grid-shaped linear motor for linear motor rail traffic in which an end bar (62) is provided on a side portion of a magnetic iron core (5) and a magnetic iron core (5) is provided on a mounting frame (7). . The magnetic iron core (5) is punched and laminated from the silicon steel plate, and the silicon steel plate is laminated along the longitudinal direction of the conductive rod (61). The conductive rod (61) and the conductive end rod (62) are made of a material having good conductive performance. The secondary of the linear motor adopts a whole new structure and uses materials with good conductive performance and magnetic conductivity performance, effectively reducing the eddy current loss in the secondary induction plate, and the traction force of the motor And an excellent energy saving effect can be obtained. [Selection] Figure 3

Description

本発明は、リニアモータレール交通に適用されるリニアモータレール交通用のグリッド状リニアモータの二次装置に関し、特に、地下鉄のリニアモータレール交通に適用されるリニアモータレール交通用のグリッド状リニアモータの二次装置に関する。   The present invention relates to a secondary device for a grid-like linear motor for linear motor rail traffic applied to linear motor rail traffic, and more particularly, to a grid-like linear motor for linear motor rail traffic applied to linear motor rail traffic on a subway. The secondary device.

リニアモータ車輪レール列車は、安全、素早く、快適、経済的で、省エネルギー等の優勢を有し、未来都市の車輪レール交通の重要な組成部分の一つであり、現代化した都市の車輪レール交通の発進に必然的な成り行きである。リニアモータ車輪レール交通は、システム全体の動作から言えば、ギアによって減速することも、空回り等の問題もないので、実際的な動作効率が低くない。実際的な運営データによると、リニアモータ地下鉄は、抵抗制動による従来の地下鉄よりも、エネルギーを約12%節約できる。その同時に、鋼材を15%以上節約できる。   Linear motor wheel rail trains are safe, quick, comfortable, economical, energy-saving and are one of the important components of future city wheel rail traffic. It is an inevitable outcome for the start. In terms of the operation of the entire system, the linear motor wheel rail traffic is not low in practical operation efficiency because there is no problem such as deceleration due to gears and idling. According to practical operational data, the linear motor subway can save about 12% energy than a conventional subway with resistance braking. At the same time, steel materials can be saved by 15% or more.

しかしながら、リニアモータ車輪レール交通において、リニアモータの一次と二次との間の大きなエアギャップ、及び特有の端効果の問題により、その効率及び力率が従来の回転モータよりも低いので、リニアモータ車輪レール列車の発進がある程度に制約される。リニアモータによる伝送技術が日増しに成熟するにつれて、リニアモータのエネルギー消費を如何に更に減少させるかは、既にリニアモータ車輪レール交通において重視しなければならない重要な問題になっている。   However, in linear motor wheel rail traffic, linear motors have lower efficiency and power factor than conventional rotary motors due to the large air gap between the primary and secondary of the linear motor and the problems of the unique end effect. The start of the wheel rail train is limited to some extent. As linear motor transmission technology matures day by day, how to further reduce the energy consumption of linear motors is already an important issue that must be emphasized in linear motor wheel rail traffic.

上記リニアモータのエネルギー消費は、第一に、リニアモータの一次と二次との間のエアギャップが回転モータのエアギャップより大きいので、必要な励磁電流が大きく、損失が増加することによる。第二に、リニアモータの一次鉄心の両端が折れ、端効果が発生し、波形歪み等を引き起こし、リニアモータの動作性能に影響を与え、損失が増加してしまうことによる。   The energy consumption of the linear motor is primarily due to the fact that the required excitation current is large and the loss increases because the air gap between the primary and secondary of the linear motor is larger than the air gap of the rotary motor. Secondly, both ends of the primary core of the linear motor are bent, an end effect is generated, waveform distortion and the like are caused, the operation performance of the linear motor is affected, and the loss increases.

そのため、リニアモータのエネルギー消費を如何に低下させるかは、次第に注目されて研究される問題となっている。リニアモータ自体から言えば、エネルギー消費の要素は、主にその一次や二次の構造及び材料にある。従来技術から見れば、リニアモータの一次構造及び材料が既に比較的に完璧に設計されるため、リニアモータの二次構造及び材料の設計と選択は、現在、国内外で研究や試験されている重点となっている。   Therefore, how to reduce the energy consumption of the linear motor has become a problem that has been studied with increasing attention. Speaking of the linear motor itself, energy consumption is mainly in its primary and secondary structures and materials. From the viewpoint of the prior art, the primary structure and materials of the linear motor are already relatively perfectly designed, so the design and selection of the secondary structure and material of the linear motor are currently being researched and tested at home and abroad. It is important.

現在、リニアモータ車輪レール交通用のリニアモータの大部分は、二次として20〜25mmの導磁性鉄板を採用し、また爆発溶接の結合プロセスによって5〜7mmの導電性アルミ板を複合させて一体型誘導板と呼ばれる複合二次のものを組み合わせる。図1は、一体型誘導板の二次を示す模式図である。図1に示すように、一体型誘導板の二次は、導電性アルミ板1(バルク状)と、導磁性鋼板2(バルク状)と、を備え、導電性アルミ板1が導磁性鋼板2の表面に複合される。このような二次構造のリニアモータは動作している、渦電流損失が大きく、効率が低い。   At present, most of linear motors for linear motor wheel rail traffic adopt a 20-25mm conductive iron plate as a secondary, and a 5-7mm conductive aluminum plate is compounded by a combination process of explosion welding. Combined with a composite secondary called a somatic guide plate. FIG. 1 is a schematic diagram showing a secondary of the integrated guide plate. As shown in FIG. 1, the secondary of the integrated induction plate includes a conductive aluminum plate 1 (bulk shape) and a magnetic conductive steel plate 2 (bulk shape), and the conductive aluminum plate 1 is a magnetic conductive steel plate 2. Is compounded on the surface. Such a secondary structure linear motor is operating, has a large eddy current loss and low efficiency.

近年、図2に示すような、積層型誘導板と呼ばれる別のリニアモータの二次構造が開発される。このような積層型誘導板の二次としては、導電性アルミ板3(バルク状)と、若干枚の角鋼で積み重ねた導磁性鋼板4(積層型状)と、を備え、そして導電性アルミ板3が図1に示すと同様に導磁性鋼板4の表面に複合される。このような二次構造のリニアモータは動作している場合、渦電流損失が一体型誘導板の二次構造よりも小さく、効率が向上する。   In recent years, another secondary structure of a linear motor called a laminated induction plate as shown in FIG. 2 has been developed. As a secondary of such a laminated induction plate, a conductive aluminum plate 3 (bulk shape) and a conductive steel plate 4 (laminated shape shape) stacked with a few square steel plates are provided, and the conductive aluminum plate 3 is combined with the surface of the magnetically conductive steel plate 4 in the same manner as shown in FIG. When such a secondary structure linear motor is operating, the eddy current loss is smaller than the secondary structure of the integrated induction plate, and the efficiency is improved.

上記リニアモータの二次の積層型誘導板構造と一体型誘導板構造との性能比較のテスト結果によると、同一の電流及び同一の一次や二次エアギャップの場合、積層型誘導板は、推力が一体型誘導板の推力より大きく、そして重ね数が増加すると推力も増加し、リニアモータの効率を向上させた。同一規格の積層型誘導板と一体型誘導板については、積層型誘導板によるリニアモータは、論理的に、推力が一体型誘導板によるリニアモータの推力よりも10%程度大きく、エネルギー消費が10%程度節約される。それは、リニアモータの一次と二次の誘導板が互いに作用すると、誘導板の導磁性鋼板に渦電流が発生し、一体型誘導板の導磁性鋼板は、バルクのバックアイアンであり、渦電流損失が大きいが、積層型誘導板の導磁性鋼板は、若干枚の角鋼から重ねてなり、渦電流損失が比較的に小さいからである。   According to the test results of the performance comparison between the secondary laminated guide plate structure and the integrated guide plate structure of the above linear motor, in the case of the same current and the same primary and secondary air gap, the laminated guide plate Is larger than the thrust of the integrated guide plate, and the thrust increases as the number of laps increases, improving the efficiency of the linear motor. Regarding the laminated induction plate and the integrated induction plate of the same standard, the linear motor using the laminated induction plate has a theoretically 10% larger thrust than the linear motor using the integrated induction plate, and the energy consumption is 10%. Saves about%. That is, when the primary and secondary induction plates of the linear motor interact with each other, eddy currents are generated in the conductive steel plate of the induction plate, and the conductive steel plate of the integrated induction plate is a bulk back iron and eddy current loss. However, this is because the magnetically conductive steel plate of the laminated induction plate is made up of a few pieces of square steel and the eddy current loss is relatively small.

積層型誘導板の二次は、一体型誘導板の二次よりもリニアモータの効率を向上させたが、リニアモータの二次構造及び材料から言えば、その変更が依然として不十分である。積層型誘導板の二次は、構造の一部から一体型誘導板の二次導磁性板の渦電流損失を変更し、その導磁性材料が依然として普通の鋼材を採用するので、その二次の導電板の構造及び材料がそのまま変わらないで、二次のエネルギー消費の低下にはまだより大きな改良の余地がある。本発明は、より良好な省エネルギー効果を取得するために、リニアモータの二次の全体的な構造及び材料そのもので更に新機軸を打ち出すように工夫する。   Although the secondary of the laminated induction plate has improved the efficiency of the linear motor over the secondary of the integral induction plate, the change is still insufficient in terms of the secondary structure and materials of the linear motor. The secondary of the laminated induction plate changes the eddy current loss of the secondary magnetic plate of the integrated induction plate from a part of the structure, and since the magnetic conductive material still adopts ordinary steel, its secondary The structure and material of the conductive plate are not changed, and there is still room for further improvement in reducing the secondary energy consumption. In order to obtain a better energy saving effect, the present invention is further devised to launch a new innovation with the secondary overall structure and material itself of the linear motor.

本発明は、従来のリニアモータレール交通の推力や動作効率を向上させた、より高効率なリニアモータレール交通用のグリッド状リニアモータの二次装置を提供することを目的とする。   An object of the present invention is to provide a secondary device for a grid-like linear motor for linear motor rail traffic with higher efficiency, which improves the thrust and operation efficiency of conventional linear motor rail traffic.

本発明は、導磁性鉄心と、導電体と、取付フレームと、を備えるリニアモータレール交通用のグリッド状リニアモータの二次装置において、導電体は、グリッド状に配列された1組の導電棒と、隣接する導電棒の端部を接続する導電端部棒と、を含み、導磁性鉄心に導電棒に対応する取付溝が設けられ、導電棒が取付溝内に嵌め込まれ、導電棒の2つの端部が何れも取付溝から延出し、導電端部棒が導磁性鉄心の側部に設けられ、導磁性鉄心が取付フレームに設けられるリニアモータレール交通用のグリッド状リニアモータの二次装置を提供することにより実現される。   The present invention relates to a secondary device of a linear motor for a linear motor rail for linear motor rails comprising a magnetic iron core, a conductor, and a mounting frame. The conductor is a set of conductive bars arranged in a grid. And a conductive end bar connecting the ends of the adjacent conductive bars, the magnetic conductive core is provided with a mounting groove corresponding to the conductive bar, the conductive bar is fitted into the mounting groove, A secondary device for a grid-like linear motor for linear motor rail traffic in which two end portions all extend from the mounting groove, a conductive end bar is provided on the side of the magnetic core, and the magnetic core is provided on the mounting frame It is realized by providing.

更に、導磁性鉄心は、平板状である。   Furthermore, the magnetically conductive iron core has a flat plate shape.

更に、導磁性鉄心は、珪素鋼板から打ち抜けて積層されたものであり、珪素鋼板が導電棒の長手方向に沿って積層する。   Furthermore, the magnetic conductive iron core is formed by punching out from the silicon steel plate, and the silicon steel plate is laminated along the longitudinal direction of the conductive rod.

更に、取付フレームは、締め具によって導磁性鉄心を固定する。   Further, the mounting frame fixes the magnetic iron core with a fastener.

更に、取付フレームの上部に、若干の位置限定部が隣接する導電棒の間に位置するように設けられる。   Further, a slight position limiting portion is provided on the upper portion of the mounting frame so as to be positioned between adjacent conductive bars.

更に、取付フレームの外側面に敷設・取付用の取付板が凸設され、取付板に取付孔が設けられる。   Furthermore, a mounting plate for laying and mounting is projected on the outer surface of the mounting frame, and a mounting hole is provided in the mounting plate.

更に、導電棒と導電端部棒とは、一体的に接続される。   Furthermore, the conductive bar and the conductive end bar are integrally connected.

更に、導電棒及び導電端部棒は、導電性能の良い材料からなる。   Furthermore, the conductive bar and the conductive end bar are made of a material having good conductive performance.

更に、導電棒及び導電端部棒の材料は、精銅材である。   Further, the material of the conductive bar and the conductive end bar is a fine copper material.

更に、導電端部棒の断面面積が導電棒の断面面積より大きい。   Furthermore, the cross-sectional area of the conductive end bar is larger than the cross-sectional area of the conductive bar.

従来技術に比べて、本発明にかかるグリッド状リニアモータの二次装置は、まず、全体的な構造が積層型誘導板の二次装置及び一体型誘導板の二次装置と完全に異なる。本発明の構造設計は、リニアモータの動作原理により合致し、リニアモータの優勢や特徴を更に体現することができる。従来のリニアモータの誘導板二次装置は、殆どバルクの金属板又は複合金属板を採用し、明らかな導電棒がないため、本発明に比べると、誘導板における誘導電流が明確に導かれず、かつ導電性アルミ板内の電流の分布が乱れ、その渦電流損失が大きく、効率が低い。次に、材料が従来の積層型誘導板の二次装置及び一体型誘導板の二次装置とも完全に異なる。従来の誘導板は、導電性アルミ板及び導磁性鋼板からなるが、本発明のグリッド状誘導板材料は、導電性能の良い精銅材及び導磁性能の良い珪素鋼板であり、導電や導磁性能が強くなり、電気エネルギー損失が少なく、効率がより高い。また、二次導磁性鉄心の厚さを変えずに一次導磁性鉄心の厚さを大きくし、リニアモータの牽引力を向上させることができる。   Compared with the prior art, the secondary device of the grid linear motor according to the present invention is completely different from the secondary device of the laminated induction plate and the secondary device of the integrated induction plate in the overall structure. The structural design of the present invention is more consistent with the operating principle of the linear motor, and can further embody the dominance and characteristics of the linear motor. The induction plate secondary device of the conventional linear motor employs almost a bulk metal plate or a composite metal plate, and since there is no obvious conductive rod, the induced current in the induction plate is not clearly guided compared to the present invention, In addition, the current distribution in the conductive aluminum plate is disturbed, the eddy current loss is large, and the efficiency is low. Next, the material is completely different from the conventional secondary device of the laminated induction plate and the secondary device of the integrated induction plate. The conventional induction plate is composed of a conductive aluminum plate and a magnetically conductive steel plate, but the grid-like induction plate material of the present invention is a fine copper material having a good electrical conductivity and a silicon steel plate having a good magnetic performance. Performance, less energy loss, and higher efficiency. Further, the traction force of the linear motor can be improved by increasing the thickness of the primary magnetic core without changing the thickness of the secondary magnetic core.

一体型誘導板の二次装置の構造の模式図である。It is a schematic diagram of the structure of the secondary apparatus of an integrated guide plate. 積層型誘導板の二次装置の構造の模式図である。It is a schematic diagram of the structure of the secondary apparatus of a laminated | stacked induction | guidance | derivation board. 本発明の好ましい実施例の構造の模式図である。1 is a schematic diagram of the structure of a preferred embodiment of the present invention. 図3に示した導電体内の誘導電流分布の模式図である。FIG. 4 is a schematic diagram of an induced current distribution in the conductor shown in FIG. 3. 図4の誘導電流回路の模式図である。It is a schematic diagram of the induced current circuit of FIG.

本発明の解決しようとする技術的問題、技術的解決手段及び利点をより明らかにするために、以下、図面及び実施例に合わせて本発明をより詳細に説明する。ここで説明される具体的な実施例は本発明を解釈するためのものに過ぎず、本発明を限定するためのものではないことを理解すべきである。   In order to clarify the technical problems, technical solutions and advantages to be solved by the present invention, the present invention will be described in more detail below with reference to the drawings and embodiments. It should be understood that the specific embodiments described herein are only for the purpose of interpreting the invention and are not intended to limit the invention.

本発明の好ましい実施例を示す図3を参照されたい。本実施例のリニアモータレール交通用のグリッド状リニアモータの二次装置は、導磁性鉄心5と、導電体6と、取付フレーム7と、を備える。導磁性鉄心5は平板状であり、導電体6は導磁性鉄心5内に設けられ、導磁性鉄心5は取付フレーム7に設けられる。   Please refer to FIG. 3, which shows a preferred embodiment of the present invention. The secondary device of the linear motor for the linear motor rail traffic of this embodiment includes a magnetic iron core 5, a conductor 6, and an attachment frame 7. The magnetic iron core 5 has a flat plate shape, the conductor 6 is provided in the magnetic iron core 5, and the magnetic iron core 5 is provided in the mounting frame 7.

導電体6は、グリッド状に配列された1組の導電棒61と、隣接する導電棒61の端部を接続する導電端部棒62と、を含む。導電棒61と導電端部棒62とは、一体的に接続され、グリッド状となり、複数の閉鎖した回路を有し、リニアモータの二次の誘導電流が二次において設計の要求に応じて回路を規則的に流動し、誘導電流の分布がより規律的で、渦電流損失が小さく、効率を高くするようにする。導電端部棒62は、断面面積が導電棒61の断面面積より大きい。導電棒61及び導電端部棒62は、例えば、精銅、銅合金、アルミニウムやアルミニウム合金のような、導電性能の良い材料からなる。本実施例において、導電棒61及び導電端部棒62の材料は、精銅材であり、二次の内部抵抗が小さく、二次のエネルギー消費が低下し、更に、二次効率を向上させる。   The conductor 6 includes a set of conductive rods 61 arranged in a grid and conductive end rods 62 that connect the ends of the adjacent conductive rods 61. The conductive bar 61 and the conductive end bar 62 are integrally connected, have a grid shape, have a plurality of closed circuits, and the secondary induced current of the linear motor is a circuit according to the design requirements in the secondary. The induced current distribution is more regular, the eddy current loss is small, and the efficiency is increased. The conductive end bar 62 has a cross-sectional area larger than that of the conductive bar 61. The conductive bar 61 and the conductive end bar 62 are made of a material having good conductive performance, such as, for example, fine copper, copper alloy, aluminum, or aluminum alloy. In the present embodiment, the material of the conductive rod 61 and the conductive end rod 62 is a fine copper material, the secondary internal resistance is small, the secondary energy consumption is reduced, and the secondary efficiency is further improved.

導磁性鉄心5の頂面に導電棒61に対応する複数の取付溝51が凹設され、導電棒61が取付溝51内に嵌め込まれ、導電棒61の2つの端部が何れも取付溝51から延出し、導電端部棒62が導磁性鉄心5の側部に設けられる。導磁性鉄心5は、導磁性能の良い珪素鋼板から打ち抜けて積層されたものであり、珪素鋼板が導電棒61の長手方向に沿って積層し、好ましくは厚さが0.5mmである。導磁性鉄心5として導磁性能の良い珪素鋼板を採用すれば、二次のエネルギー消費を更に低下させ、二次効率を向上させることができる。取付溝51の形状や数は、リニアモータの一次に対する設計要求に応じて決められる。取付溝51は、導電棒61を固定することに用いられ、リニアモータの一次や二次の磁気回路と互いに通じる。   A plurality of mounting grooves 51 corresponding to the conductive rods 61 are formed in the top surface of the magnetic iron core 5, the conductive rods 61 are fitted into the mounting grooves 51, and the two ends of the conductive rods 61 are both mounted grooves 51. A conductive end bar 62 is provided on the side of the magnetic iron core 5. The magnetic iron core 5 is formed by punching from a silicon steel plate with good magnetic conductivity, and the silicon steel plate is laminated along the longitudinal direction of the conductive rod 61, and preferably has a thickness of 0.5 mm. If a silicon steel plate with good magnetic performance is adopted as the magnetic iron core 5, the secondary energy consumption can be further reduced and the secondary efficiency can be improved. The shape and number of the mounting grooves 51 are determined according to the design requirements for the primary of the linear motor. The mounting groove 51 is used to fix the conductive rod 61 and communicates with the primary and secondary magnetic circuits of the linear motor.

導電棒61は、それぞれ取付溝51の両端まで延伸するように取付溝51内に嵌合され、その頂面が導磁性鉄心5の頂面より高くない。導電端部棒62は、それぞれ導磁性鉄心5の両側に設けられ、片側の導電端部棒62がそれぞれこの側の導電棒61毎の端部を接続する。導電体6がグリッド状となる。   The conductive rod 61 is fitted into the mounting groove 51 so as to extend to both ends of the mounting groove 51, and the top surface thereof is not higher than the top surface of the magnetic conductive core 5. The conductive end rods 62 are respectively provided on both sides of the magnetic iron core 5, and the conductive end rods 62 on one side connect the ends of the respective conductive rods 61 on this side. The conductor 6 has a grid shape.

取付フレーム7は、それぞれ導磁性鉄心5の2つの側面に設けられ、そして締め具8によって導磁性鉄心5を固定する。本実施例において、締め具8としては、ボルドとナットによって連結する。3つのボルドがそれぞれ導磁性鉄心5を貫通して、導磁性鉄心5の他端でナットと締め付けられる。取付フレーム7は、敷設・取付・固定に用いられる。取付フレーム7の外側面に敷設・取付用の取付板71が凸設られ、取付板71に取付に寄与する取付孔72が設けられる。取付フレーム7の上部に、導磁性鉄心5の固定及び導電棒61の取付位置の制限するための若干の位置限定部73が隣接する導電棒61の間に位置するように設けられる。   The mounting frame 7 is provided on each of the two side surfaces of the magnetic iron core 5, and the magnetic iron core 5 is fixed by a fastener 8. In this embodiment, the fastener 8 is connected by a bould and a nut. Each of the three boulds penetrates the magnetic iron core 5 and is tightened with a nut at the other end of the magnetic iron core 5. The mounting frame 7 is used for laying, mounting and fixing. A mounting plate 71 for laying and mounting is projected on the outer surface of the mounting frame 7, and a mounting hole 72 that contributes to mounting is provided in the mounting plate 71. On the upper portion of the mounting frame 7, a slight position limiting portion 73 for fixing the magnetic conductive core 5 and limiting the mounting position of the conductive bar 61 is provided so as to be positioned between the adjacent conductive bars 61.

実際的に使用する場合、リニアモータの一次はレール列車のボギーに設けられるが、本発明のリニアモータレール交通用のグリッド状リニアモータの二次装置はレールに沿ってリニアモータの一次に対応するように路盤のレール板又は枕木の土台に敷設される。   In practical use, the primary motor of the linear motor is provided in the bogie of the rail train. However, the secondary device of the linear motor for the linear motor rail traffic of the present invention corresponds to the primary motor of the linear motor along the rail. In this way, it is laid on the base of railroad boards or sleepers.

リニア誘導モータの一次の三相巻線に、三相対称正弦波電流が流れると、一次と二次とが互いに作用した後で、それらの間のエアギャップにエアギャップ磁界が発生する。導磁性鉄心5の両端が折れて引き起こされた縦向きの端効果を考慮せず場合、このエアギャップ磁界の分布状況は、広げたリニア方向に沿って正弦波状に分布されたものと見られてもよい。三相電流が時間につれて変わる場合、エアギャップ磁界は、A、B、Cの位相順序にしたがってリニアに沿って移動する。この磁界は、平行に移動するため、進行波磁界と呼ばれる。二次がグリッド状である場合、二次導体棒は、進行波磁界により切断されて、起電力を誘導して誘導電流を発生させる。導電棒61の電流及びエアギャップ磁界が互いに作用して電磁推力を発生させることになる。この電磁推力の作用で、二次が動かずに固定されば、一次は、列車をつれて進行波磁界の運動方向に沿ってリニア運動を行う。   When a three-phase symmetric sine wave current flows in the primary three-phase winding of the linear induction motor, an air gap magnetic field is generated in the air gap between the primary and secondary after interacting with each other. Without considering the vertical end effect caused by bending both ends of the magnetic iron core 5, the air gap magnetic field distribution is considered to be distributed in a sinusoidal shape along the extended linear direction. Also good. When the three-phase current changes with time, the air gap magnetic field moves along a linear according to the phase order of A, B, C. Since this magnetic field moves in parallel, it is called a traveling wave magnetic field. When the secondary has a grid shape, the secondary conductor rod is cut by the traveling wave magnetic field to induce an electromotive force to generate an induced current. The current of the conductive rod 61 and the air gap magnetic field act on each other to generate electromagnetic thrust. If the secondary is fixed without moving by the action of the electromagnetic thrust, the primary moves along the train and linearly moves along the direction of motion of the traveling wave magnetic field.

図4及び図5を合わせて参照されたい。図4及び図5には、それぞれ導電体6内の仮想された誘導磁界や誘導電流、および導電体6内の誘導電流の分布が示される。図中に、lδは一次導磁性鉄心の重ね厚さであり、cは二次誘導電流の端部通路として用いる、二次のlδ長手方向で一次鉄心から伸ばした幅であり、cの大きさが二次の抵抗に影響をする。本発明において、二次誘導電流の端部通路に、専門に導電端部棒62が設けられる。導電端部棒62の断面面積が導電棒61の断面面積より大きいため、二次誘導電流の導電端部棒62での消耗が低下する。導電端部棒62として導電性能の良い精銅材料を使用するため、二次の抵抗が更に低下し、効率が向上する。導電体6は、誘導渦電流の損失を減少させると共に、二次の磁気回路をより合理的にし、導磁性鉄心5の磁束を大きくし、二次効率を向上させることができる。 Please refer to FIGS. 4 and 5 together. 4 and 5 show hypothetical induced magnetic fields and induced currents in the conductor 6, and distributions of induced currents in the conductor 6, respectively. In the figure, l δ is the overlapping thickness of the primary magnetic core, c is the width extended from the primary core in the longitudinal direction of the secondary l δ used as the end passage of the secondary induced current, The magnitude affects the secondary resistance. In the present invention, a conductive end bar 62 is specially provided in the end passage of the secondary induced current. Since the cross-sectional area of the conductive end bar 62 is larger than the cross-sectional area of the conductive bar 61, the consumption of the secondary induced current at the conductive end bar 62 is reduced. Since a fine copper material having good conductive performance is used as the conductive end bar 62, the secondary resistance is further reduced and the efficiency is improved. The conductor 6 can reduce the loss of the induced eddy current, make the secondary magnetic circuit more rational, increase the magnetic flux of the magnetic conductive core 5, and improve the secondary efficiency.

一方、端部通路専用の導電端部棒62が設けられるため、lδの長さが相対的に大きくなり、更に一次導磁性鉄心(図示せず)の厚さが二次導磁性鉄心5の厚さと完全に重なるまでにもなり、二次導磁性鉄心5の厚さをより効果的に利用することができる。二次導磁性鉄心5の厚さを変えずに一次導磁性鉄心の厚さを大きくし、リニアモータの牽引力を向上させることができる。 On the other hand, since the conductive end rod 62 dedicated to the end passage is provided, the length of l δ is relatively large, and the thickness of the primary magnetic core (not shown) is equal to that of the secondary magnetic core 5. The thickness completely overlaps with the thickness, and the thickness of the secondary magnetic iron core 5 can be used more effectively. It is possible to increase the traction force of the linear motor by increasing the thickness of the primary magnetic core without changing the thickness of the secondary magnetic core 5.

本実施例のリニアモータレール交通用のグリッド状リニアモータの二次装置がグリッド状導電体誘導板を採用するリニアモータは、論理的に、積層型誘導板が採用されるリニアモータより推力が10%程度大きくなり、エネルギー消費を10%程度節約する。   The linear motor in which the secondary device of the linear motor for the linear motor rail traffic of this embodiment employs the grid-shaped conductor induction plate has a theoretically 10 thrust more than the linear motor in which the laminated induction plate is adopted. The energy consumption is reduced by about 10%.

上記は本発明の好ましい実施例に過ぎず、本発明を制限するためのものではなく、本発明の精神及び原則においてなされたあらゆる変更、等価取替及び改良等は、本発明の保護範囲に含まれるはずである。   The above are only preferred embodiments of the present invention and are not intended to limit the present invention, and all changes, equivalent replacements and improvements made in the spirit and principle of the present invention are included in the protection scope of the present invention. Should be.

Claims (10)

導磁性鉄心と、導電体と、取付フレームと、を備えるリニアモータレール交通用のグリッド状リニアモータの二次装置において、前記導電体は、グリッド状に配列された1組の導電棒と、隣接する導電棒の端部を接続する導電端部棒と、を含み、前記導磁性鉄心に導電棒に対応する取付溝が設けられ、前記導電棒が前記取付溝内に嵌め込まれ、導電棒の2つの端部が何れも取付溝から延出し、前記導電端部棒が導磁性鉄心の側部に設けられ、前記導磁性鉄心が取付フレームに設けられることを特徴とするリニアモータレール交通用のグリッド状リニアモータの二次装置。   In a secondary device of a grid-like linear motor for linear motor rail traffic comprising a magnetic iron core, a conductor, and a mounting frame, the conductor is adjacent to a set of conductor bars arranged in a grid. A conductive end bar for connecting the end of the conductive rod to be mounted, and a mounting groove corresponding to the conductive bar is provided in the magnetic iron core, and the conductive bar is fitted into the mounting groove. A linear motor rail traffic grid characterized in that one end portion extends from a mounting groove, the conductive end bar is provided on a side portion of a magnetic core, and the magnetic core is provided on a mounting frame. -Shaped linear motor secondary device. 前記導磁性鉄心は、平板状であることを特徴とする請求項1に記載のリニアモータレール交通用のグリッド状リニアモータの二次装置。   2. The secondary device for a linear motor for a linear motor rail traffic according to claim 1, wherein the magnetic iron core has a flat plate shape. 前記導磁性鉄心は、珪素鋼板から打ち抜けて積層されたものであり、前記珪素鋼板が前記導電棒の長手方向に沿って積層することを特徴とする請求項2に記載のリニアモータレール交通用のグリッド状リニアモータの二次装置。   3. The linear motor rail transportation according to claim 2, wherein the magnetic iron core is formed by being punched and laminated from a silicon steel plate, and the silicon steel plate is laminated along a longitudinal direction of the conductive rod. Secondary device for grid-shaped linear motor. 前記取付フレームは、締め具によって前記導磁性鉄心を固定することを特徴とする請求項3に記載のリニアモータレール交通用のグリッド状リニアモータの二次装置。   The secondary device of the linear motor for grid motor linear traffic according to claim 3, wherein the mounting frame fixes the magnetic iron core with a fastener. 前記取付フレームの上部に、若干の位置限定部が隣接する前記導電棒の間に位置するように設けられることを特徴とする請求項4に記載のリニアモータレール交通用のグリッド状リニアモータの二次装置。   5. The grid-like linear motor for linear motor rail traffic according to claim 4, wherein a slight position limiting portion is provided between the adjacent conductive rods at an upper portion of the mounting frame. Next device. 前記取付フレームの外側面に敷設・取付用の取付板が凸設され、前記取付板に取付孔が設けられることを特徴とする請求項1に記載のリニアモータレール交通用のグリッド状リニアモータの二次装置。   2. The grid-like linear motor for linear motor rail traffic according to claim 1, wherein a mounting plate for laying and mounting is provided on an outer surface of the mounting frame, and a mounting hole is provided in the mounting plate. Secondary device. 前記導電棒と導電端部棒とは、一体的に接続されることを特徴とする請求項1に記載のリニアモータレール交通用のグリッド状リニアモータの二次装置。   The secondary device of a grid-like linear motor for linear motor rail traffic according to claim 1, wherein the conductive bar and the conductive end bar are integrally connected. 前記導電棒及び導電端部棒は、導電性能の良い材料からなることを特徴とする請求項7に記載のリニアモータレール交通用のグリッド状リニアモータの二次装置。   The secondary device of a grid-like linear motor for linear motor rail traffic according to claim 7, wherein the conductive rod and the conductive end rod are made of a material having good conductive performance. 前記導電棒及び導電端部棒の材料は、精銅材であることを特徴とする請求項8に記載のリニアモータレール交通用のグリッド状リニアモータの二次装置。   The secondary device of the linear motor for linear motor rail traffic according to claim 8, wherein the material of the conductive rod and the conductive end rod is a copper material. 前記導電端部棒の断面面積が前記導電棒の断面面積より大きいことを特徴とする請求項1に記載のリニアモータレール交通用のグリッド状リニアモータの二次装置。   The secondary device of a grid-like linear motor for linear motor rail traffic according to claim 1, wherein the cross-sectional area of the conductive end bar is larger than the cross-sectional area of the conductive bar.
JP2016530294A 2013-07-30 2013-07-30 Secondary device of grid-like linear motor for linear motor rail traffic Pending JP2016525866A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/080417 WO2015013884A1 (en) 2013-07-30 2013-07-30 Grid-shaped linear motor secondary device for linear motor rail transit

Publications (1)

Publication Number Publication Date
JP2016525866A true JP2016525866A (en) 2016-08-25

Family

ID=52430832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016530294A Pending JP2016525866A (en) 2013-07-30 2013-07-30 Secondary device of grid-like linear motor for linear motor rail traffic

Country Status (2)

Country Link
JP (1) JP2016525866A (en)
WO (1) WO2015013884A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108832793B (en) * 2018-08-20 2023-09-26 宁波菲仕技术股份有限公司 Invisible anti-collision linear motor
CN110112883A (en) * 2019-06-12 2019-08-09 杭州新峰恒富科技有限公司 A kind of netted secondary line inductance electromotor of stereo garage long hole

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59114783U (en) * 1983-01-24 1984-08-02 住友電気工業株式会社 Reaction plate for linear motor
JPS6292760A (en) * 1985-10-16 1987-04-28 Mitsubishi Electric Corp Reaction plate for linear motor
JPH05199732A (en) * 1991-08-29 1993-08-06 Blum Gmbh Secondary member of asynchronous machine and manufacture thereof
JPH08196070A (en) * 1995-01-17 1996-07-30 Nippon Otis Elevator Co Linear motor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5203430A (en) * 1991-10-17 1993-04-20 Otis Elevator Company Elevator flat linear motor secondary
MY133384A (en) * 2000-07-17 2007-11-30 Inventio Ag Secondary part of a linear motor, method for the production thereof, linear motor with secondary part and use of the linear motor
CN2530390Y (en) * 2002-03-18 2003-01-08 哈尔滨泰富实业有限公司 Flat three-phase linear induction motor
CN100433512C (en) * 2003-07-03 2008-11-12 云南变压器电气股份有限公司 Straight line unidirectional D.C. electric machine and its application on magnetic suspension train
CN101425736A (en) * 2008-08-12 2009-05-06 中国科学院电工研究所 Single side linear induction motor used for material pipeline transportation
CN203377768U (en) * 2013-07-30 2014-01-01 山东红帆能源科技有限公司 Grid-shaped linear motor secondary device for linear motor rail transit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59114783U (en) * 1983-01-24 1984-08-02 住友電気工業株式会社 Reaction plate for linear motor
JPS6292760A (en) * 1985-10-16 1987-04-28 Mitsubishi Electric Corp Reaction plate for linear motor
JPH05199732A (en) * 1991-08-29 1993-08-06 Blum Gmbh Secondary member of asynchronous machine and manufacture thereof
US5349742A (en) * 1991-08-29 1994-09-27 Blum Gmbh Method of making a secondary for use in induction motors
JPH08196070A (en) * 1995-01-17 1996-07-30 Nippon Otis Elevator Co Linear motor

Also Published As

Publication number Publication date
WO2015013884A1 (en) 2015-02-05

Similar Documents

Publication Publication Date Title
CN108736687B (en) Linear induction motor based on V type groove secondary structure
CN109435716B (en) Three-pole magnetic coupling mechanism applied to rail transit wireless power supply system
CN203377768U (en) Grid-shaped linear motor secondary device for linear motor rail transit
JP2016525866A (en) Secondary device of grid-like linear motor for linear motor rail traffic
CN110014846A (en) A kind of rail traffic trailer system based on permanent magnet flux switching straight line motor
JP2015522240A (en) Linear motor with integer groove double layer annular winding
CN202758704U (en) Dry iron-core smoothing reactor
CN205542311U (en) Reactor
CN202871520U (en) Vertical type electronic transformer
CN203859667U (en) Linear motor secondary section and linear motor
CN202871518U (en) Flat framework electronic transformer
CN104348328A (en) Grid linear motor secondary device for linear motor rail transportation
CN202275691U (en) Magnetic core integrated with nUI
CN202339797U (en) Whole-plane-type pulling plate clamping component structure
Yang et al. Finite element analysis of linear induction motor for transportation systems
CN204596588U (en) The silicon steel structure of electrical transformer cores side column and center pillar
CN202196636U (en) Energy feedback reactor
CN204480857U (en) A kind of low noise iron core
CN101707125A (en) Multiple-use transformer for electromagnetic field
CN202871515U (en) Electronic transformer
CN202871522U (en) Rectangular skeleton electronic transformer
CN202906759U (en) Overall horizontal rectifier
CN202879516U (en) Magnetic track brake electromagnet
CN209843460U (en) Output filter inductor of high-power inverter system
CN111092532A (en) Linear motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170516

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171205