JP2016513013A - Method for the synthesis of bimetallic catalyst particles made of platinum and another metal and its use in an electrochemical hydrogen production method - Google Patents

Method for the synthesis of bimetallic catalyst particles made of platinum and another metal and its use in an electrochemical hydrogen production method Download PDF

Info

Publication number
JP2016513013A
JP2016513013A JP2015558484A JP2015558484A JP2016513013A JP 2016513013 A JP2016513013 A JP 2016513013A JP 2015558484 A JP2015558484 A JP 2015558484A JP 2015558484 A JP2015558484 A JP 2015558484A JP 2016513013 A JP2016513013 A JP 2016513013A
Authority
JP
Japan
Prior art keywords
metal
platinum
salt
complex
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015558484A
Other languages
Japanese (ja)
Inventor
ギレ,ニコラ
ヌガムニ・ジャンブー,ジョゼフ
Original Assignee
コミサリヤ・ア・レネルジ・アトミク・エ・オ・エネルジ・アルテルナテイブ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コミサリヤ・ア・レネルジ・アトミク・エ・オ・エネルジ・アルテルナテイブ filed Critical コミサリヤ・ア・レネルジ・アトミク・エ・オ・エネルジ・アルテルナテイブ
Publication of JP2016513013A publication Critical patent/JP2016513013A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/035Precipitation on carriers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/093Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • B01J23/622Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead
    • B01J23/626Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead with tin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • B01J37/345Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy of ultraviolet wave energy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0238Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a carbon dioxide reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • C01B2203/107Platinum catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Inert Electrodes (AREA)

Abstract

本発明の主題は、白金と少なくとも1種類の第2の金属とを主成分とするバイメタル触媒の粒子の合成方法であって、第1の白金を主成分とする塩または錯体と、前記第2の金属を主成分とする少なくとも1種類の第2の塩または錯体との化学的還元を含み、前記化学的還元が:− 周囲温度および圧力条件(ATPC)下で液体形態である純還元剤の存在下で、前記第1の白金を主成分とする塩または錯体と、前記第2の金属を主成分とする前記第2の塩または錯体とを含む混合物を調製するステップであって、前記条件がそれぞれ25℃および100kPaに等しいと定義されるステップと;− 前記混合物を、ほぼ水の凍結温度と還元剤の凍結温度との間の温度に到達させるステップとを含むことを特徴とする、合成方法である。The subject of the present invention is a method for synthesizing particles of a bimetallic catalyst mainly comprising platinum and at least one second metal, wherein the salt or complex mainly comprising the first platinum, and the second Of a pure reducing agent that is in liquid form under ambient temperature and pressure conditions (ATPC) comprising: chemical reduction with at least one second salt or complex based on In the presence of preparing a mixture comprising a salt or complex based on the first platinum as a main component and the second salt or complex based on the second metal. A step defined as being equal to 25 ° C. and 100 kPa, respectively; and allowing the mixture to reach a temperature approximately between the freezing temperature of water and the freezing temperature of the reducing agent. Is the method.

Description

本発明の分野はH/O燃料電池の分野である。内燃機関ではなくその代替としての自動車産業におけるこの種類の燃料電池の使用は、水素の貯蔵に関する問題に依然として直面している。論文Schlapbach L.and Zuettel A.,Hydrogen−storage materials for mobile applications,Nature,2001,414,353−8に記載されるように、加圧水素タンク(気体での貯蔵)は、場合によっては危険であり、金属水素化物(固体形態での貯蔵)は、それらが低エネルギー密度であるために不適切である。 The field of the invention is that of H 2 / O 2 fuel cells. The use of this type of fuel cell in the automotive industry as an alternative to an internal combustion engine still faces problems with hydrogen storage. Paper Schlapbach L. and Zuettel A.A. , Hydrogen-storage materials for mobile applications, Nature, 2001, 414, 353-8, pressurized hydrogen tanks (gas storage) are potentially dangerous and metal hydrides (in solid form) Storage) is inadequate because of their low energy density.

論文Basile A.,Galluci F.and Paturzo L.,“Hydrogen production from methanol by oxidative steam reforming carried out in a membrane reactor”,Catalysis Today,2005,104,251−9に記載されるように、接触改質による車両上での水素の製造は、水素を直接貯蔵するための別の解決法となるが、燃料電池に供給するために精製段階が必要となる。   Paper Basile A. Galluci F., et al. and Paturzo L. , "Hydrogen production from methanol by oxidative steam reforming carried out in a membrane reactor", as described in hydrogen by Catalysis Today, 2005, 104, 251-9. While this is another solution for direct storage, a purification step is required to supply the fuel cell.

この種類の用途の場合、気体バイオ燃料または炭化水素、たとえば天然ガス、または液体バイオ燃料および炭化水素、たとえばアルコール、ガソリンまたはディーゼル油は、水素源となる場合があり、低出力電源に接続された電気化学セルを用いて一酸化炭素(CO)、二酸化炭素(CO)、メタン(CH)、およびその他のガスを含むガス混合物から水素を低温で抽出することができる。 For this type of application, gaseous biofuels or hydrocarbons, such as natural gas, or liquid biofuels and hydrocarbons, such as alcohol, gasoline, or diesel oil, may be a source of hydrogen and connected to a low power source Electrochemical cells can be used to extract hydrogen at low temperatures from gas mixtures containing carbon monoxide (CO), carbon dioxide (CO 2 ), methane (CH 4 ), and other gases.

論文M.Ciureanu et al.,“Electrochemical Impedance Study of Electrode−Membrane Assemblies in PEM Fuel Cells I.Electro−oxidation of H and H/CO Mixtures on Pt−Based Gas−Diffusion Electrodes”,Journal of the Electrochemical Society,1999,146,4031−4040に記載されるように、十分な電圧をセルの端子に印加することによって、水素および一酸化炭素の電解酸化がアノードで起こる:
→2H+2e(SHE基準でE°(H/H)=0、電気化学平衡標準電位SHEは標準水素電極の電位である)
COads+HO→CO+2H+2e
Paper M.D. Ciureanu et al. , "Electrochemical Impedance Study of Electrode- Membrane Assemblies in PEM Fuel Cells I.Electro-oxidation of H 2 and H 2 / CO Mixtures on Pt-Based Gas-Diffusion Electrodes", Journal of the Electrochemical Society, 1999,146,4031- As described in 4040, by applying sufficient voltage to the terminals of the cell, electrolytic oxidation of hydrogen and carbon monoxide occurs at the anode:
H 2 → 2H + + 2e (E ° (H + / H 2 ) = 0 on SHE basis, electrochemical equilibrium standard potential SHE is the potential of standard hydrogen electrode)
CO ads + H 2 O → CO 2 + 2H + + 2e .

白金は、電気化学系の反応触媒として使用されることが非常に多く、水素の電解酸化反応(H→2H+2e)に低温で使用される最良の材料であるが、アノード材料として精製用途におけるその使用には問題がある。 Platinum is very often used as an electrochemical reaction catalyst and is the best material used at low temperatures for hydrogen electrooxidation reactions (H 2 → 2H + + 2e ), but purified as an anode material There are problems with its use in applications.

これは、白金(Pt)は高価であり、希少であり、作用を阻害する性質を一酸化炭素(改質された水素中に存在する)が有するため低電位においては有効性が低いことが理由である。この作用の阻害は、Pt表面上にCOが不可逆的に吸着し、利用可能な吸着部位を閉鎖し、それによって水素の吸着およびその酸化を妨害することによって起こる。   This is because platinum (Pt) is expensive, rare, and carbon monoxide (present in the reformed hydrogen) has a property that inhibits its action, so its effectiveness is low at low potential. It is. Inhibition of this action occurs by CO irreversibly adsorbing on the Pt surface, closing available adsorption sites, thereby preventing hydrogen adsorption and its oxidation.

実際は、炭素上に担持されたPt表面におけるCOの電解酸化、すなわちCOからCOへの電解酸化(CO+HO→CO+2H+2e)は、SHE基準で0.7〜0.8V付近の比較的高い電位で起こり、これには少なくないエネルギーの寄与が必要となる。 Actually, the electrolytic oxidation of CO on the surface of Pt supported on carbon, that is, the electrolytic oxidation of CO to CO 2 (CO + H 2 O → CO 2 + 2H + + 2e ) is around 0.7 to 0.8 V on the basis of SHE. Occurs at a relatively high potential, and this requires a significant energy contribution.

一酸化炭素COに対する耐性が低いことに本質的に関連する白金Ptで生じる問題を克服するため、新しいアノード触媒が求められている。   In order to overcome the problems arising with platinum Pt inherently associated with low resistance to carbon monoxide CO, new anode catalysts are sought.

これらの新しい種類の触媒を得るために、Ptと遷移金属との合金の調製を想定することができ、または高度に分割されたPtと金属酸化物型の相との組み合わせを想定することもできる。高比表面積カーボンブラック上に担持された白金−ルテニウム(Pt−Ru)、白金−スズ(Pt−Sn)、白金−モリブデン(Pt−Mo)または白金−コバルト(Pt−Co)などの数種類の白金合金は、一酸化炭素COに対する良好な耐性を有し、さらに前記一酸化炭素COの低電位での酸化が可能になる最良の白金系合金を見出すことを目的とする研究の主題となる。   To obtain these new types of catalysts, the preparation of alloys of Pt and transition metals can be envisaged, or a combination of highly resolved Pt and metal oxide type phases can be envisaged. . Several types of platinum such as platinum-ruthenium (Pt-Ru), platinum-tin (Pt-Sn), platinum-molybdenum (Pt-Mo) or platinum-cobalt (Pt-Co) supported on high specific surface area carbon black Alloys are the subject of research aimed at finding the best platinum-based alloys that have good resistance to carbon monoxide CO and that allow oxidation of the carbon monoxide CO at low potentials.

さらに、H/COの電解酸化に関するこれらのアノード触媒の性能は、それらの構造、それらの化学組成、粒子のナノメートルサイズ、およびそれらの担体の性質に依存することが知られている。これらの触媒の合成技術および調製方法を駆使することで、物理化学的性質の制御が可能となる。金属ナノ粒子は、還元剤の存在下での金属塩または錯体の化学的還元によって一般に合成される。合成中、ナノ粒子が形成される機構は、グレーン成長および成長によって起こる。この段階は、粒子のサイズが決定され、その結果として触媒の電気活性表面に影響を与えるため、重要である。 In addition, the performance of these anode catalysts for H 2 / CO electrooxidation is known to depend on their structure, their chemical composition, the nanometer size of the particles, and the nature of their supports. Physicochemical properties can be controlled by making full use of these catalyst synthesis techniques and preparation methods. Metal nanoparticles are generally synthesized by chemical reduction of a metal salt or complex in the presence of a reducing agent. During synthesis, the mechanism by which nanoparticles are formed occurs by grain growth and growth. This step is important because the size of the particles is determined and consequently affects the electroactive surface of the catalyst.

Schlapbach L.and Zuettel A.,Hydrogen−storage materials for mobile applications,Nature,2001,414,353−8Schlapbach L. and Zuettel A.A. , Hydrogen-storage materials for mobile applications, Nature, 2001, 414, 353-8. Basile A.,Galluci F.and Paturzo L.,“Hydrogen production from methanol by oxidative steam reforming carried out in a membrane reactor”,Catalysis Today,2005,104,251−9Basile A. Galluci F., et al. and Paturzo L. , “Hydrogen production from methanol by oxidative steam reforming carried out in a membrane reactor”, Catalysis Today, 2005, 104, 251-9. M.Ciureanu et al.,“Electrochemical Impedance Study of Electrode−Membrane Assemblies in PEM Fuel Cells I.Electro−oxidation of H2 and H2/CO Mixtures on Pt−Based Gas−Diffusion Electrodes”,Journal of the Electrochemical Society,1999,146,4031−4040M.M. Ciureanu et al. , "Electrochemical Impedance Study of Electrode-Membrane Assemblies in PEM Fuel Cells I.Electro-oxidation of H2 and H2 / CO Mixtures on Pt-Based Gas-Diffusion Electrodes", Journal of the Electrochemical Society, 1999,146,4031-4040

還元剤の存在下での金属塩または錯体の化学的還元による触媒ナノ粒子の製造は、実施が簡単な方法であるが、グレーン成長およびナノ粒子の成長の段階の統制および制御は依然として主要な問題である。   The production of catalytic nanoparticles by chemical reduction of a metal salt or complex in the presence of a reducing agent is an easy-to-implement method, but control and control of the grain growth and nanoparticle growth stages remains a major problem. It is.

このような理由のため、かつこれに関連して、本発明の主題は、ナノ粒子の成長段階を制限し、グレーン成長の段階を促進することで、シードの数の増加を可能にするための合成の操作条件の最適化に基づいた方法である。   For this reason, and in this context, the subject of the present invention is to limit the growth stage of nanoparticles and promote the grain growth stage to allow an increase in the number of seeds. This is a method based on optimization of synthesis operation conditions.

化学的還元による粒子の合成中に自然に成長させる場合(操作パラメータは変更しない)と比較すると、成長段階を制限することによって、典型的には2〜5nm程度の小さなサイズ、およびより多い数の粒子を有するナノ粒子を得ることができる。   Compared to growing naturally during the synthesis of particles by chemical reduction (without changing the operating parameters), by limiting the growth stage, typically a small size of around 2-5 nm, and a larger number Nanoparticles having particles can be obtained.

これら2つの側面が統合されると、触媒の電気活性表面が最適となる微細構造の構成が得られる。   When these two aspects are integrated, a microstructured structure is obtained that optimizes the electroactive surface of the catalyst.

金属塩および錯体の化学的還元が行われる温度の変更は、2つのパラメータが同じ方向で展開するため、粒子の成長速度を低下させるための最も有効な手段となる。   Changing the temperature at which the chemical reduction of the metal salt and complex takes place is the most effective means for reducing the growth rate of the particles because the two parameters evolve in the same direction.

特に、本発明の主題は、白金と少なくとも1種類の第2の金属とを主成分とするバイメタル触媒の粒子の合成方法であって、第1の白金を主成分とする塩または錯体と、前記第2の金属を主成分とする少なくとも1種類の第2の塩または錯体との化学的還元を含み、前記化学的還元が:
− 周囲温度および圧力条件(ATPC)下で液体形態である純還元剤の存在下で、前記第1の白金を主成分とする塩または錯体と、前記第2の金属を主成分とする前記第2の塩または錯体とを含む混合物を調製するステップであって、前記条件が25℃および100kPaと定義されるステップと;
− 前記混合物を、ほぼ水の凍結温度と還元剤の凍結温度との間の温度に到達させるステップと
を含むことを特徴とする、合成方法である。
In particular, the subject of the present invention is a method for synthesizing particles of a bimetallic catalyst mainly comprising platinum and at least one second metal, the salt or complex mainly comprising the first platinum, Chemical reduction with at least one second salt or complex based on a second metal, the chemical reduction comprising:
The first platinum-based salt or complex and the second metal as the main component in the presence of a pure reducing agent in liquid form under ambient temperature and pressure conditions (ATPC); Preparing a mixture comprising two salts or complexes of which the conditions are defined as 25 ° C. and 100 kPa;
-Allowing the mixture to reach a temperature approximately between the freezing temperature of water and the freezing temperature of the reducing agent.

本発明の別の形態によると、還元剤はギ酸であり、前記化学的還元が、約0℃〜8℃の間、有利には約4℃であってよい温度で行われる。   According to another form of the invention, the reducing agent is formic acid and the chemical reduction is carried out at a temperature that may be between about 0 ° C. and 8 ° C., preferably about 4 ° C.

本発明の別の形態によると、還元剤はヒドラジンであり、前記還元が0℃〜2℃の間の温度で行われる。   According to another form of the invention, the reducing agent is hydrazine and the reduction is carried out at a temperature between 0 ° C and 2 ° C.

本発明の別の形態によると還元剤はホルムアルデヒドであり、前記還元が−19℃〜0℃の間の温度で行われる。   According to another form of the invention, the reducing agent is formaldehyde and the reduction is carried out at a temperature between -19 ° C and 0 ° C.

本発明の別の形態によると、方法は、カーボンブラックまたは金属酸化物または金属窒化物または金属炭化物の粒子の存在下で白金の塩または錯体と、前記第2の金属の塩または錯体とを混合するステップを含む。   According to another aspect of the present invention, a method mixes a platinum salt or complex with a second metal salt or complex in the presence of carbon black or metal oxide or metal nitride or metal carbide particles. Including the steps of:

本発明の別の形態によると、還元剤の量は、白金の塩または錯体と、第2の金属の塩または錯体とのすべての化学的還元を行うために必要な量以上である。   According to another aspect of the invention, the amount of reducing agent is greater than that required to perform all chemical reductions of the platinum salt or complex and the second metal salt or complex.

本発明の別の形態によると、反応は、化学的還元作業を促進し、ナノ粒子の成長は促進しないことを可能にする追加のエネルギー源の存在下で行われる。   According to another aspect of the invention, the reaction is carried out in the presence of an additional energy source that facilitates the chemical reduction operation and does not promote the growth of the nanoparticles.

本発明の別の形態によると、追加のエネルギー源は紫外線放射源である。   According to another aspect of the invention, the additional energy source is an ultraviolet radiation source.

本発明の別の形態によると、紫外線放射源は約200nm〜300nmの間の波長範囲内で放射する。   According to another aspect of the invention, the ultraviolet radiation source emits within a wavelength range between about 200 nm and 300 nm.

本発明の別の形態によると、第2の金属はスズまたはルテニウムまたはモリブデンまたはコバルトである。   According to another aspect of the invention, the second metal is tin or ruthenium or molybdenum or cobalt.

本発明の別の形態によると、バイメタル触媒の粒子は、白金およびスズを主成分とし、それらのサイズ分布は低分散で4nmのメジアン値を示し、標準偏差は約1.1である。   According to another aspect of the present invention, the bimetallic catalyst particles are based on platinum and tin, their size distribution is low dispersion and shows a median value of 4 nm, with a standard deviation of about 1.1.

本発明の別の主題は、本発明の触媒粒子と炭化水素化合物を含むガス混合物との存在下での接触改質反応を含む水素の電気化学的製造方法における、本発明によるバイメタル触媒の粒子の合成方法の使用である。これは、本発明の合成方法によって得られる金属粒子は、ガス混合物中に存在する炭化水素化合物による汚染に対する感受性が、最先端技術に記載の方法により得られる粒子よりも低いと思われることが理由である。   Another subject of the present invention is a method for producing particles of a bimetallic catalyst according to the invention in an electrochemical production process of hydrogen comprising a catalytic reforming reaction in the presence of the catalyst particles of the invention and a gas mixture comprising a hydrocarbon compound. The use of synthetic methods. This is because the metal particles obtained by the synthesis method of the present invention are considered less susceptible to contamination by hydrocarbon compounds present in the gas mixture than the particles obtained by the method described in the state of the art. It is.

別の形態によると、ガス混合物は一酸化炭素、二酸化炭素、およびメタンを含む。   According to another form, the gas mixture comprises carbon monoxide, carbon dioxide, and methane.

限定を意味することなく提供される以下の説明を読み、さらに添付の図面によって、本発明のより良い理解が得られ、他の利点が明らかとなるであろう。   A better understanding of the present invention and other advantages will be apparent from the following description, provided without implying limitation, and with reference to the accompanying drawings, in which:

PtCl 2−イオンのUV吸収スペクトルを示している。 2 shows the UV absorption spectrum of PtCl 6 2- ion. 本発明の方法により周囲温度および4℃で合成したPtSn/C触媒の粒子のサイズ分布を示している。2 shows the particle size distribution of Pt 3 Sn / C catalyst synthesized at ambient temperature and 4 ° C. by the method of the present invention. 25℃において0.5Mの濃度のHSO水溶液中で周囲温度において合成したPtSn/Cに関して得られたサイクリックボルタモグラムを示している。FIG. 5 shows a cyclic voltammogram obtained for Pt 3 Sn / C synthesized at ambient temperature in an aqueous solution of H 2 SO 4 at a concentration of 0.5 M at 25 ° C. FIG. 25℃において0.5Mの濃度のHSO水溶液中で4℃において合成したPtSn/Cに関して得られたサイクリックボルタモグラムを示している。FIG. 5 shows a cyclic voltammogram obtained for Pt 3 Sn / C synthesized at 4 ° C. in an aqueous solution of H 2 SO 4 at a concentration of 0.5 M at 25 ° C. FIG. 中50ppmのCOで構成されるガス混合物にRHE基準で0.24Vにおいて触媒を曝露し、経時による水素酸化電流の変化が実質的に定常状態に到達した後の、0.5Mの濃度のHSO水溶液中で周囲温度および4℃で合成したPtSn/C上でのHの電解酸化における電流の変化を示している。After exposure of the catalyst to a gas mixture composed of 50 ppm CO in H 2 at 0.24 V on an RHE basis, the change in hydrogen oxidation current over time reached a substantially steady state at a concentration of 0.5M. shows the change of the current in the electrolytic oxidation of H 2 that in H 2 SO 4 aqueous solution on ambient temperature and 4 ° C. with synthesized Pt 3 Sn / C.

白金−金属(Pt−M)合金触媒の合成の場合、本出願人は、論文E.I.Santiago et al.,“CO tolerance on PtMo/C electrocatalysts prepared by the formic acid method”,Electrochimica Acta,48(2003),3527−3534に記載されるようなFAM(ギ酸法)法を使用する。   For the synthesis of platinum-metal (Pt-M) alloy catalysts, Applicants I. Santiago et al. , “CO tolerance on PtMo / C electrocatalysts prepared by the formal acid method”, Electrochimica Acta, 48 (2003), 3527-3534, is used.

本発明によると、高比表面積カーボンブラック、金属酸化物(TiO、ZrO、Alなど)、金属窒化物(TiN、TaN、BN)、または金属炭化物(TiC、WC、WC、MoCなど)の上に担持される、または担持されないPt−M触媒の前駆体としてのPtおよび金属合金の塩または錯体の溶液の使用が提案される。 According to the present invention, high specific surface area carbon black, metal oxides (such as TiO 2, ZrO 2, Al 2 O 3), metal nitrides (TiN, TaN, BN), or metal carbides (TiC, WC, W 2 C Pt and metal alloy salts or complex solutions as precursors of Pt-M catalysts supported on or not supported on Mo 2 C, etc.) are proposed.

炭素担体の場合、Ptおよび類似の合金金属元素Mの塩または錯体の溶液を炭素担体とともに混合し、この組み合わせを、均一混合物を得るために必要な時間である少なくとも30分間にわたり、超音波を用いて激しく撹拌する。   In the case of a carbon support, a solution of a salt or complex of Pt and similar alloying metal elements M is mixed with the carbon support and the combination is subjected to ultrasound for at least 30 minutes, which is the time required to obtain a homogeneous mixture. Stir vigorously.

溶液の体積は、液の濃度から決定され、金属合金の所望の原子組成が得られるように決定される。合成に使用される金属ナノ粒子の担体の重量は、合成される触媒の重量の50%となるように決定される。ギ酸は、還元剤として使用され、上記の混合物に加えられる。   The volume of the solution is determined from the concentration of the solution and is determined so as to obtain the desired atomic composition of the metal alloy. The weight of the metal nanoparticle support used in the synthesis is determined to be 50% of the weight of the synthesized catalyst. Formic acid is used as a reducing agent and is added to the above mixture.

ギ酸の体積は、金属塩または錯体の化学的還元を完了させるために過剰である必要がある。   The volume of formic acid needs to be in excess to complete the chemical reduction of the metal salt or complex.

続いて混合物全体を、水の凍結温度とギ酸の凍結温度との間の温度にする。12〜72時間後、化学的還元が完了し、触媒となる金属粉末が得られる。   The entire mixture is then brought to a temperature between that of water and that of formic acid. After 12 to 72 hours, the chemical reduction is completed, and a metal powder serving as a catalyst is obtained.

温度を下げることで、ナノ粒子の成長速度の低下が促進され、その結果として金属塩の化学的還元の時間が延長される。この時間の延長を克服するために、化学的還元反応を促進するが成長速度は増加させないことが望ましい。   Lowering the temperature promotes a decrease in the growth rate of the nanoparticles, resulting in an extended time for the chemical reduction of the metal salt. In order to overcome this extended time, it is desirable to promote the chemical reduction reaction but not increase the growth rate.

混合物の入ったフラスコをエネルギー源、たとえば紫外(UV)線源に有利に曝露することができ、このエネルギーの寄与によって、反応(粒子のグレーン成長)が促進され、それによってナノ粒子状態の多数のシードが促進されるが、それらの成長は促進しないことが可能となる。UV線の波長は、好ましくは、図1に示されるような白金錯体の吸収領域に相当する200〜300nmの間で選択される。   The flask containing the mixture can be advantageously exposed to an energy source, such as an ultraviolet (UV) radiation source, and this energy contribution promotes the reaction (grain growth of the particles), thereby increasing the number of nanoparticles in the nanoparticulate state. It is possible to promote seeds but not to promote their growth. The wavelength of the UV rays is preferably selected between 200 and 300 nm corresponding to the absorption region of the platinum complex as shown in FIG.

モル組成が3:1のPt−Sn/C触媒を、ギ酸を用いた化学的還元によって合成した。   A Pt—Sn / C catalyst with a molar composition of 3: 1 was synthesized by chemical reduction with formic acid.

Sigma−AldrichのKPtCl・6HOおよびSnCl・2HOの溶液を、高比表面積カーボンブラック(Vulcan XC−72R、Cabot Corp.、250m/g)上に担持されるPt−Snから形成される触媒の前駆体として使用した。 A solution of Sigma-Aldrich's K 2 PtCl 6 · 6H 2 O and SnCl 2 · 2H 2 O was supported on Pt— supported on high specific surface area carbon black (Vulcan XC-72R, Cabot Corp., 250 m 2 / g). Used as a precursor for the catalyst formed from Sn.

0.01Mの濃度の白金およびスズの塩の水溶液をカーボンブラックの存在下で混合し、超音波下で約1時間激しく撹拌した。混合されるKPtCl・6HO溶液およびSnCl・2HO溶液の体積はそれぞれ15mlおよび5mlであり、これによって3:1の原子比が得られる。 An aqueous solution of 0.01M platinum and tin salts was mixed in the presence of carbon black and stirred vigorously under ultrasound for about 1 hour. The volume of the K 2 PtCl 6 · 6H 2 O solution and SnCl 2 · 2H 2 O solution to be mixed is 15 ml and 5 ml, respectively, which gives an atomic ratio of 3: 1.

白金およびスズの塩の同時還元を可能にするために、還元剤として使用されるギ酸と金属塩との間のモル比が約1000:1の多量のギ酸HCOOH(ACS試薬、98%以上、Sigma−Aldrich)を混合物に加える。   To allow simultaneous reduction of platinum and tin salts, a large amount of formic acid HCOOH (ACS reagent, 98% or more, Sigma, molar ratio between formic acid and metal salt used as reducing agent is about 1000: 1. -Aldrich) is added to the mixture.

合成作業条件の2つの例を実施し:
− 第1の例は周囲温度において24時間であり;
− 第2の例は4℃において72時間であった。上記指定の時間の終了後、金属粉末を得た。Pt+Snの重量は触媒の50重量%となる。4℃の温度は0℃〜8℃の間となるように選択した。
Perform two examples of composition work conditions:
The first example is 24 hours at ambient temperature;
-The second example was 72 hours at 4 ° C. After completion of the specified time, a metal powder was obtained. The weight of Pt + Sn is 50% by weight of the catalyst. The temperature of 4 ° C. was selected to be between 0 ° C. and 8 ° C.

この温度で合成を行う目的は、合成中に、温度依存性のある成長が起こるナノ粒子の成長速度を低下させることである。   The purpose of synthesizing at this temperature is to reduce the growth rate of the nanoparticles, during which the temperature-dependent growth occurs.

得られた結果を以下の表に示しており、これらは周囲温度および4℃で合成したPtSn/C触媒の物理化学的性質に関連するものである。 The results obtained are shown in the following table, which relates to the physicochemical properties of the Pt 3 Sn / C catalyst synthesized at ambient temperature and 4 ° C.

Figure 2016513013
Figure 2016513013

電気活性表面は、より具体的には、増加させることが望ましい考慮中の反応に対して電気化学的に活性である表面に相当する。   An electroactive surface corresponds more specifically to a surface that is electrochemically active for the reaction under consideration that it is desirable to increase.

図2は、周囲温度(25℃)および4℃で合成したPtSn/C触媒の粒子のサイズ分布を示しており、本発明の合成方法を用いると、典型的には3〜4nmの小さなサイズの粒子が高いパーセント値となることを示している。 FIG. 2 shows the particle size distribution of the Pt 3 Sn / C catalyst synthesized at ambient temperature (25 ° C.) and 4 ° C., which is typically as small as 3-4 nm using the synthesis method of the present invention. It shows that the size particles have a high percentage value.

特に、以下の表に列挙したサイズパラメータが得られる。   In particular, the size parameters listed in the table below are obtained.

Figure 2016513013
Figure 2016513013

エネルギー分散型X線分光(EDS)分析によって行った測定では、以下に示す結果も得られる。   In the measurement performed by energy dispersive X-ray spectroscopy (EDS) analysis, the following results are also obtained.

Figure 2016513013
Figure 2016513013

したがって4℃で調製した触媒の電気活性表面は、25℃で合成した同じ触媒の電気活性表面よりもはるかに大きい。   Thus, the electroactive surface of the catalyst prepared at 4 ° C. is much larger than the electroactive surface of the same catalyst synthesized at 25 ° C.

これは、たとえば、本発明により得られた触媒粒子および炭化水素化合物を含むガス混合物の存在下での接触改質反応を含む水素の電気化学的製造のための系を十分に操作するために必要な触媒量は、従来技術の方法で得られた触媒の使用量よりも有利に少なくすることができることを意味する。   This is necessary, for example, to fully operate a system for electrochemical production of hydrogen including catalytic reforming reaction in the presence of a gas mixture containing catalyst particles and hydrocarbon compounds obtained according to the present invention. A small amount of catalyst means that it can be advantageously reduced below the amount of catalyst used obtained by the prior art process.

本出願人は、調製した種々の触媒に関して、10mV/sの走査速度で25℃における電気化学半電池のサイクリックボルタモグラムを作製した。   Applicants have made cyclic voltammograms of electrochemical half-cells at 25 ° C. at a scan rate of 10 mV / s for the various catalysts prepared.

サイクリックボルタンメトリーは、基準電極として知られる規定の電位を有する電極の電位差の制御された変動の影響下で作用電極(調べられるサンプル)と接触する化合物の還元または酸化によって得られる電流の測定に基づく電気化学的分析方法であることに留意されたい。これによって、多数の化合物の同定および定量測定が可能となり、これらの化合物を含む化学反応の研究も可能となる。   Cyclic voltammetry is based on the measurement of the current obtained by reduction or oxidation of a compound in contact with the working electrode (sample to be examined) under the influence of a controlled variation in the potential difference of an electrode with a defined potential known as the reference electrode. Note that this is an electrochemical analysis method. This makes it possible to identify and quantitatively measure a large number of compounds, and to study chemical reactions involving these compounds.

作用電極における印加電位Eの関数として測定される電流密度を示すボルタモグラム上に酸化ピーク(正電流)がないことによって、高い吸着力を特徴付けることができる。ボルタモグラム上にこれらのピークがないことは、別の要素による触媒の吸着部位の妨害を反映している。   The high adsorptive power can be characterized by the absence of an oxidation peak (positive current) on the voltammogram showing the current density measured as a function of the applied potential E at the working electrode. The absence of these peaks on the voltammogram reflects interference with the adsorption site of the catalyst by another factor.

図3は、25℃で調製したPtSn/C粒子で得られた結果に関連する。曲線3aは、COを吸着させて触媒を汚染させた後に得られたボルタンメトリー曲線(N下、25℃および10mV・s−1における0.5MのHSO中)に関連する。 FIG. 3 relates to the results obtained with Pt 3 Sn / C particles prepared at 25 ° C. Curve 3a is related to the voltammetric curve obtained after adsorbing CO and contaminating the catalyst (under N 2 in 0.5 M H 2 SO 4 at 25 ° C. and 10 mV · s −1 ).

COを脱着させた後で得られた曲線3b(ボルタンメトリーサイクル:VC)を用いて比較を行うことができる。   A comparison can be made using curve 3b (Voltammetry cycle: VC) obtained after desorption of CO.

触媒は完全に汚染され、電気吸着した水素(Hupd:アンダーポテンシャル堆積したH)の脱着に対応する電位範囲であるRHE基準で0.1〜0.4Vの間において、曲線3A上で酸化電流は観察されない。COの酸化は、電極電位がRHE基準で0.4Vを超えるときに始まる。   The catalyst is completely contaminated and the oxidation current on curve 3A is between 0.1 and 0.4 V on the RHE basis, which is the potential range corresponding to the desorption of electroadsorbed hydrogen (Hupd: underpotential deposited H). Not observed. CO oxidation begins when the electrode potential exceeds 0.4 V on an RHE basis.

図4は、4℃で調製したPtSn/C粒子sで得られた結果に関連する。4℃で調製した触媒の場合、COの吸着によって触媒を汚染した後の同じサイクリックボルタンメトリー曲線(曲線4a)は、触媒が完全には汚染されていないことを示しており、水素脱着のピークは、RHE基準で0.1〜0.4Vの間で曲線4a上に依然として観察され、COの酸化は、RHE基準で0.3Vの電極電位で始まる。 FIG. 4 relates to the results obtained with Pt 3 Sn / C particles s prepared at 4 ° C. For a catalyst prepared at 4 ° C., the same cyclic voltammetry curve (curve 4a) after fouling the catalyst by CO adsorption shows that the catalyst is not completely fouled, and the peak for hydrogen desorption is , Still observed on curve 4a between 0.1 and 0.4V on RHE basis, CO oxidation begins with an electrode potential of 0.3V on RHE basis.

COを脱着させた後で得られた曲線4b(ボルタンメトリーサイクル:VC)を用いて比較を行うことができる。   A comparison can be made using curve 4b (Voltammetry cycle: VC) obtained after desorption of CO.

微量の汚染ガスの存在下での水素の酸化に関するエネルギー項の増加は30%(4℃で合成した触媒の0.72kWh/Sm H2対25℃で合成した触媒の0.96kWh/Sm H2)に近い。 30% increase in energy terms regarding the oxidation of hydrogen in the presence of a contaminant gas traces (4 ° C. of the catalyst synthesized in 0.72kWh / Sm 3 H2 pairs 25 ° C. of the synthesized catalyst 0.96kWh / Sm 3 H2 Close to).

本出願人は、電極にH中50ppmのCOで構成されるガス混合物を供給し、RHE基準で0.24Vの電位を印加したときの、電気化学半電池装置中の周囲温度および4℃で合成したPtSn/C上でのHの電解酸化の電流の変化も監視した。 Applicants supply the electrode with a gas mixture composed of 50 ppm CO in H 2 and at an ambient temperature in the electrochemical half-cell device and 4 ° C. when a potential of 0.24 V is applied on a RHE basis. The change in current of electrolytic oxidation of H 2 over the synthesized Pt 3 Sn / C was also monitored.

図5は、曲線5aおよび5bによって、4℃の温度において本発明により製造した触媒を、周囲温度で製造した触媒と比較した場合の挙動の差を示している。   FIG. 5 shows, by curves 5a and 5b, the difference in behavior when a catalyst produced according to the invention at a temperature of 4 ° C. is compared with a catalyst produced at ambient temperature.

時間(j)にわたって測定した電流密度は、サンプルに純水素が供給される場合に測定される電流密度(jmax)が基準となる。最初は、触媒は汚染されていないため、j=jmaxおよびj/jmax=1となる。 The current density measured over time (j) is based on the current density (j max ) measured when pure hydrogen is supplied to the sample. Initially, since the catalyst is not contaminated, j = j max and j / j max = 1.

25℃で合成した触媒の場合(曲線5a)、時間とともに測定される電流密度は急速に減少し、COで1時間阻害した後に初期電流の71%となる。4℃で合成した触媒の場合、1時間の阻害後に測定した電流は初期電流の93%となる。したがって4℃で合成した触媒は、25℃で合成した触媒よりもCOに対する耐性がはるかに高い(図5b)。   In the case of the catalyst synthesized at 25 ° C. (curve 5a), the current density measured with time decreases rapidly and becomes 71% of the initial current after inhibition with CO for 1 hour. In the case of a catalyst synthesized at 4 ° C., the current measured after 1 hour of inhibition is 93% of the initial current. Thus, the catalyst synthesized at 4 ° C. is much more resistant to CO than the catalyst synthesized at 25 ° C. (FIG. 5b).

Claims (12)

白金と少なくとも1種類の第2の金属とを主成分とするバイメタル触媒の粒子の合成方法において、第1の白金を主成分とする塩または錯体と、前記第2の金属を主成分とする少なくとも1種類の第2の塩または錯体との化学的還元を含み、前記化学的還元が:
− 周囲温度および圧力条件(ATPC)下で液体形態である純還元剤の存在下で、前記第1の白金を主成分とする塩または錯体と、前記第2の金属を主成分とする前記第2の塩または錯体とを含む混合物を調製するステップであって、前記条件がそれぞれ25℃および100kPaに等しいと定義されるステップと;
− 前記混合物を、ほぼ水の凍結温度と前記還元剤の凍結温度との間の温度に到達させるステップと
を含むことを特徴とする、合成方法。
In the method for synthesizing particles of a bimetallic catalyst mainly comprising platinum and at least one second metal, a salt or complex mainly comprising the first platinum and at least the second metal being a main component. Including chemical reduction with one second salt or complex, the chemical reduction comprising:
The first platinum-based salt or complex and the second metal as the main component in the presence of a pure reducing agent in liquid form under ambient temperature and pressure conditions (ATPC); Preparing a mixture comprising two salts or complexes, wherein the conditions are defined as equal to 25 ° C. and 100 kPa, respectively;
-Allowing the mixture to reach a temperature approximately between the freezing temperature of water and the freezing temperature of the reducing agent.
前記還元剤がギ酸であり、前記温度に到達させるステップが約0℃〜8℃の間で行われることを特徴とする請求項1に記載のバイメタル触媒の粒子の合成方法。   The method for synthesizing bimetallic catalyst particles according to claim 1, wherein the reducing agent is formic acid, and the step of reaching the temperature is performed between about 0 ° C and 8 ° C. 前記還元剤がヒドラジン(N)であり、前記温度に到達させるステップが約0℃〜2℃の間で行われることを特徴とする請求項1に記載のバイメタル触媒の粒子の合成方法。 Wherein a reducing agent is hydrazine (N 2 H 4), synthesis of bimetallic catalysts particles according to claim 1, characterized in that steps to reach the temperature is carried out between about 0 ° C. to 2 ° C. . カーボンブラックまたは金属酸化物または金属窒化物または金属炭化物の粒子の存在下で白金の塩または錯体と、前記第2の金属の塩または錯体とを混合するステップを含むことを特徴とする請求項1〜3のいずれか一項に記載のバイメタル触媒の粒子の合成方法。   2. A step of mixing a platinum salt or complex with said second metal salt or complex in the presence of particles of carbon black or metal oxide or metal nitride or metal carbide. The synthesis | combining method of the particle | grains of the bimetal catalyst as described in any one of -3. 還元剤の量が、前記白金の塩または錯体と、前記第2の金属の前記塩または錯体とのすべての前記化学的還元を行うために必要な量以上であることを特徴とする請求項1〜4のいずれか一項に記載のバイメタル触媒の粒子の合成方法。   2. The amount of reducing agent is greater than or equal to the amount necessary to perform all of the chemical reductions of the platinum salt or complex and the salt or complex of the second metal. The synthesis | combining method of the particle | grains of the bimetallic catalyst as described in any one of -4. 前記反応が、化学的還元作業を促進し、ナノ粒子の成長は促進しないことを可能にする追加のエネルギー源の存在下で行われることを特徴とする請求項1〜5のいずれか一項に記載のバイメタル触媒の粒子の合成方法。   6. The reaction according to any one of the preceding claims, wherein the reaction is performed in the presence of an additional energy source that facilitates a chemical reduction operation and does not promote the growth of nanoparticles. A method for synthesizing the particles of the bimetal catalyst described. 前記追加のエネルギー源が紫外線放射源であることを特徴とする請求項6に記載のバイメタル触媒の粒子の合成方法。   7. The method of synthesizing bimetallic catalyst particles according to claim 6, wherein the additional energy source is an ultraviolet radiation source. 前記紫外線放射源が約200nm〜300nmの間の波長範囲内で放射することを特徴とする請求項7に記載のバイメタル触媒の粒子の合成方法。   8. The method of synthesizing bimetallic catalyst particles according to claim 7, wherein the ultraviolet radiation source emits within a wavelength range between about 200 nm and 300 nm. 前記第2の金属がスズまたはルテニウムまたはモリブデンまたはコバルトであることを特徴とする請求項1〜8のいずれか一項に記載のバイメタル触媒の粒子の合成方法。   The method for synthesizing particles of a bimetallic catalyst according to any one of claims 1 to 8, wherein the second metal is tin, ruthenium, molybdenum, or cobalt. 前記粒子のサイズ分布が、4nmのメジアンサイズおよび1.1の標準偏差を示すことを特徴とする請求項9に記載のバイメタル触媒の粒子の合成方法。   10. The method for synthesizing bimetallic catalyst particles according to claim 9, wherein the particle size distribution shows a median size of 4 nm and a standard deviation of 1.1. 前記触媒粒子と炭化水素化合物を含むガス混合物との存在下での接触改質反応を含む水素の電気化学的製造方法における、請求項1〜10のいずれか一項に記載のバイメタル触媒の粒子の合成方法の使用。   In the electrochemical production method of the hydrogen containing the catalytic reforming reaction in presence of the said catalyst particle and the gas mixture containing a hydrocarbon compound, the particle | grains of the bimetallic catalyst as described in any one of Claims 1-10. Use synthetic methods. 前記ガス混合物が一酸化炭素、二酸化炭素、およびメタンを含むことを特徴とする請求項11に記載のバイメタル触媒の粒子の合成方法の使用。   The use of the bimetallic catalyst particle synthesis method of claim 11, wherein the gas mixture comprises carbon monoxide, carbon dioxide, and methane.
JP2015558484A 2013-02-26 2014-02-24 Method for the synthesis of bimetallic catalyst particles made of platinum and another metal and its use in an electrochemical hydrogen production method Pending JP2016513013A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1351679 2013-02-26
FR1351679A FR3002464A1 (en) 2013-02-26 2013-02-26 PROCESS FOR THE SYNTHESIS OF BIMETALLIC CATALYST PARTICLES BASED ON PLATINUM AND ANOTHER METAL AND METHOD FOR THE ELECTROCHEMICAL PRODUCTION OF HYDROGEN USING THE SYNTHESIS METHOD
PCT/EP2014/053535 WO2014131724A1 (en) 2013-02-26 2014-02-24 Method for synthesizing bimetal catalyst particles made of platinum and of another metal and use thereof in an electrochemical hydrogen production method

Publications (1)

Publication Number Publication Date
JP2016513013A true JP2016513013A (en) 2016-05-12

Family

ID=48140086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015558484A Pending JP2016513013A (en) 2013-02-26 2014-02-24 Method for the synthesis of bimetallic catalyst particles made of platinum and another metal and its use in an electrochemical hydrogen production method

Country Status (5)

Country Link
US (1) US20160010229A1 (en)
EP (1) EP2961527A1 (en)
JP (1) JP2016513013A (en)
FR (1) FR3002464A1 (en)
WO (1) WO2014131724A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108161021A (en) * 2017-11-29 2018-06-15 清华大学 A kind of ice is mutually sustained the method for preparing atom level dispersion
CN109014238A (en) * 2018-05-24 2018-12-18 清华大学 A kind of method of low temperature liquid phase synthesized high-performance metal material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8201396A (en) * 1982-04-01 1983-11-01 Dow Chemical Nederland SILVER CATALYST AND A METHOD FOR THE PREPARATION THEREOF.
JP3912377B2 (en) * 2003-12-25 2007-05-09 日産自動車株式会社 Method for producing exhaust gas purification catalyst powder

Also Published As

Publication number Publication date
FR3002464A1 (en) 2014-08-29
US20160010229A1 (en) 2016-01-14
EP2961527A1 (en) 2016-01-06
WO2014131724A1 (en) 2014-09-04

Similar Documents

Publication Publication Date Title
Cai et al. Bi-modified Pd/C catalyst via irreversible adsorption and its catalytic activity for ethanol oxidation in alkaline medium
Ehteshami et al. A review of electrocatalysts with enhanced CO tolerance and stability for polymer electrolyte membarane fuel cells
Chetty et al. Effect of reduction temperature on the preparation and characterization of Pt− Ru nanoparticles on multiwalled carbon nanotubes
CA2805293C (en) Electrode catalyst and method for producing the same
Su et al. Recent advances in alkaline hydrogen oxidation reaction
Tsiouvaras et al. PtRuMo/C catalysts for direct methanol fuel cells: Effect of the pretreatment on the structural characteristics and methanol electrooxidation
JP4541458B2 (en) Solid polymer fuel cell
Bak et al. Boosting the role of Ir in mitigating corrosion of carbon support by alloying with Pt
Bao et al. Composition-dependent electrocatalytic activity of palladium–iridium binary alloy nanoparticles supported on the multiwalled carbon nanotubes for the electro-oxidation of formic acid
Yongprapat et al. Au/C catalyst prepared by polyvinyl alcohol protection method for direct alcohol alkaline exchange membrane fuel cell application
Liu et al. Preparation and characterization of carbon-supported Pt, PtSnO2 and PtRu nanoparticles for direct methanol fuel cells
Bhalothia et al. Local Structural Disorder Enhances the Oxygen Reduction Reaction Activity of Carbon-Supported Low Pt Loading CoPt Nanocatalysts
Pittayaporn et al. Au/C catalysts promoted with Ni for glycerol electrooxidation in alkaline media
Ribeiro et al. Carbon-supported Pt and Pt–Ir nanowires for methanol electro-oxidation in acidic media
Zhao et al. Composition–Structure–Activity Correlation of Platinum–Ruthenium Nanoalloy Catalysts for Ethanol Oxidation Reaction
Ke et al. Understanding of correlation between electronic properties and sulfur tolerance of Pt-based catalysts for hydrogen oxidation
Xu A comparative study on electrocatalytic performance of PtAu/C and PtRu/C nanoparticles for methanol oxidation reaction
Torres-Pacheco et al. Sorbitol electro-oxidation reaction on sub< 10 nm PtAu bimetallic Nanoparticles
Kurdin et al. Synthesis and characterization of Pt-HxMoO3 catalysts for CO-tolerant PEMFCs
Oishi et al. Correlation between the physico-chemical properties and the oxygen reduction reaction electro catalytic activity in acid medium of Pd–Co alloys synthesized by ultrasonic spray method
Kim et al. Confinement effects of hollow structured Pt–Rh electrocatalysts toward complete ethanol electrooxidation
Fornazier Filho et al. Development of palladium catalysts modified by ruthenium and molybdenum as anode in direct ethanol fuel cell
Belenov et al. PtCu/C materials doped with different amounts of gold as the catalysts of oxygen electroreduction and methanol electrooxidation
JP2016513013A (en) Method for the synthesis of bimetallic catalyst particles made of platinum and another metal and its use in an electrochemical hydrogen production method
Tonnis et al. Aqueous synthesis of highly dispersed Pt2Bi alloy nanoplatelets for dimethyl ether electro-oxidation