JP2016224779A - Fire detection line - Google Patents

Fire detection line Download PDF

Info

Publication number
JP2016224779A
JP2016224779A JP2015111866A JP2015111866A JP2016224779A JP 2016224779 A JP2016224779 A JP 2016224779A JP 2015111866 A JP2015111866 A JP 2015111866A JP 2015111866 A JP2015111866 A JP 2015111866A JP 2016224779 A JP2016224779 A JP 2016224779A
Authority
JP
Japan
Prior art keywords
fire
fire detection
heat
detection line
solar panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015111866A
Other languages
Japanese (ja)
Inventor
浩志 上野
Hiroshi Ueno
浩志 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nohmi Bosai Ltd
Original Assignee
Nohmi Bosai Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nohmi Bosai Ltd filed Critical Nohmi Bosai Ltd
Priority to JP2015111866A priority Critical patent/JP2016224779A/en
Publication of JP2016224779A publication Critical patent/JP2016224779A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fire-Detection Mechanisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide low-cost fire detection means that can replace high-cost means for detecting a fire of a solar panel, such as an infrared camera or a detection sheet used attached on the entire solar panel.SOLUTION: A fire of a solar panel, for example, is detected using a fire detection line which includes: a core wire; an internal conductor spirally wound around the outside of the core wire; a fusible coating on the internal conductor, which melts by heat of a fire; an outer conductor spirally wound around the outside of the coating; and a heat-resisting sheath outside the outer conductor.SELECTED DRAWING: Figure 1

Description

本発明は、たとえば、太陽光パネル等の火災を検知することができる、火災用検知線に関する。   The present invention relates to a fire detection line capable of detecting a fire such as a solar panel.

一般的な住宅用太陽光発電システムでは、住宅の屋根に、直並列に接続された太陽電池モジュールからなる太陽光パネル(本願では、太陽電池アレイのことを「太陽光パネル」と称す)が設置されている。そして、太陽光パネルからの出力は、中継端子箱を介してパワーコンディショナに接続されており、交流化して電力が得られるように構成されている(たとえば、特許文献1参照)。
このような太陽光発電システムが普及する一方で、太陽光発電システムに起因する火災が問題となってきている。太陽光パネルは、光が照射されている状態では常に発電するため、太陽光パネル内の故障が発生すると発熱が生じて火災発生につながることがある。
In a general residential solar power generation system, a solar panel composed of solar cell modules connected in series and parallel is installed on the roof of a house (in this application, a solar cell array is referred to as a “solar panel”). Has been. And the output from a solar panel is connected to the power conditioner via the relay terminal box, and is comprised so that electric power can be obtained by alternating current (for example, refer patent document 1).
While such a solar power generation system is widespread, a fire caused by the solar power generation system has become a problem. Since the solar panel always generates power when it is irradiated with light, if a failure occurs in the solar panel, it may generate heat and cause a fire.

この太陽光パネルの火災を検知するには、たとえば、赤外線カメラを用いることができるが、それよりも安価に監視する装置として、熱検出シートを用いた火災検出装置が提案されている(特許文献2参照)。この火災検出装置は、所定の低融点で溶融する被覆を備えた1組の電線を面全体に引きまわした熱検出シートを、太陽光パネルの一面に貼付したものである。この火災検出装置では、太陽光パネルの発熱に起因して被覆が溶融すると1組の電線が短絡状態となるので、電線間の電圧を監視することで火災等を検知する。   In order to detect the fire of the solar panel, for example, an infrared camera can be used, but a fire detection device using a heat detection sheet has been proposed as a device for monitoring at a lower cost (Patent Literature). 2). In this fire detection device, a heat detection sheet in which a set of electric wires provided with a coating that melts at a predetermined low melting point is drawn over the entire surface is attached to one surface of a solar panel. In this fire detection device, when the coating melts due to the heat generated by the solar panel, one set of electric wires is short-circuited, so that a fire or the like is detected by monitoring the voltage between the electric wires.

特開2013−110290号公報JP 2013-110290 A 特開2015−014918号公報Japanese Patent Laying-Open No. 2015-014918

特許文献2の火災検出装置では、太陽光パネルの面においてどの場所で発熱や火災が生じても検出することができる。しかしながら、熱検出シートを太陽光パネルの面全体に貼付するため、太陽光パネルとほぼ同じ大きさの熱検出シートを用いなければならない。そのため、装置が大がかりとなって高コストとなるとともに、屋根上の施設が重くなるという課題があった。   With the fire detection device of Patent Document 2, heat can be detected at any location on the solar panel surface. However, in order to affix the heat detection sheet on the entire surface of the solar panel, a heat detection sheet having almost the same size as the solar panel must be used. For this reason, there is a problem that the apparatus becomes large and expensive, and the facility on the roof becomes heavy.

本発明は、前記のような課題を解決するためになされたものであり、太陽光パネル等の火災を安価で簡易な構成を用いて検出することのできる火災用検知線を得ることを目的とする。   The present invention has been made to solve the above-described problems, and an object thereof is to obtain a fire detection line capable of detecting a fire such as a solar panel using an inexpensive and simple configuration. To do.

(1)本発明は、芯線と、芯線の外周に螺旋状に巻き回して設けられた内側導線と、前記内側導線の外側に設けられ、火災の熱により溶融する可溶絶縁体からなる溶融被覆と、前記被覆の外周に螺旋状に巻き回して設けられた外側導線と、前記外側導線の外側に設けられた耐熱シースと、からなる火災用検知線である。   (1) The present invention relates to a melt coating comprising a core wire, an inner conductor spirally wound around the outer periphery of the core wire, and a fusible insulator that is provided outside the inner conductor and is melted by the heat of a fire. And a fire detection wire comprising an outer conductive wire spirally wound around the outer periphery of the coating and a heat-resistant sheath provided outside the outer conductive wire.

(2)また、本発明は、前記外側導線の巻き回し方向は、前記内側導線の巻き回し方向と逆方向である、(1)の火災用検知線である。   (2) Moreover, this invention is a detection line for fires of (1) whose winding direction of the said outside conducting wire is a direction opposite to the winding direction of the said inside conducting wire.

(3)また、本発明は、前記内側導線と前記外側導線の少なくとも一方は、複数の導線からなる、(1)または(2)の火災用検知線である。   (3) Moreover, this invention is a detection line for fire of (1) or (2) in which at least one of the said inner side conducting wire and the said outer side conducting wire consists of several conducting wires.

(4)また、本発明は、前記耐熱シースは熱吸収性が高い色である、(1)乃至(3)のいずれかの火災用検知線である。   (4) Moreover, this invention is a detection line for fires in any one of (1) thru | or (3) whose said heat resistant sheath is a color with high heat absorption.

(5)また、本発明は、前記芯線は、耐熱樹脂からなる、(1)乃至(4)のいずれかの火災用検知線である。   (5) Moreover, this invention is a detection wire for fires in any one of (1) thru | or (4) in which the said core wire consists of heat resistant resin.

本発明の請求項1に記載の構成によると、火災の熱により溶融被覆が溶融して、芯線に螺旋状に巻き回して設けた内側導線と、溶融被覆の外周に螺旋状に巻き回して設けた外側導線が短絡するため、火災を検出することができる。使用に際しては、監視対象物全体に貼り付ける必要はなく、火災を捉えることができる場所に火災用検知線という「線」を引き回すだけである。たとえば、傾斜して設置される太陽電池モジュールであれば、裏側であって太陽電池モジュールの上端部近傍に引き回せばよい。そのため施行しやすく、使用材料も少ないことから低コストとすることができる。また、赤外線カメラ等と比べても単純な構造であるため安価である。
また、内側導線は芯線に螺旋状に巻き回してあるため、中心からある程度の太さが得られる。そのため、溶融被覆が溶融した際に外側導線と接触しやすい。
According to the configuration of the first aspect of the present invention, the molten coating is melted by the heat of the fire, and the inner conductor wire is provided by being spirally wound around the core wire, and is provided by being spirally wound around the outer periphery of the melt coating. Because the outer conductor is short-circuited, a fire can be detected. In use, it is not necessary to stick to the entire monitoring object, and only a “line” called a fire detection line is drawn around a place where a fire can be caught. For example, in the case of a solar cell module installed at an inclination, it may be routed near the upper end of the solar cell module on the back side. For this reason, it is easy to implement, and the amount of materials used is small, so that the cost can be reduced. In addition, it is inexpensive because it has a simple structure compared to an infrared camera or the like.
Further, since the inner conductor is spirally wound around the core wire, a certain thickness can be obtained from the center. Therefore, it is easy to come into contact with the outer conductor when the melt coating is melted.

本発明の請求項2に記載の構成によると、外側導線の巻き回し方向は、内側導線の巻き回し方向と逆方向であるため、互いに交差する方向で巻き回されている。したがって、内側導線の間に外側導線が入って接触しないという状態になることはなく、溶融被覆が溶融した際に外側導線と確実に短絡する。   According to the configuration described in claim 2 of the present invention, the winding direction of the outer conductive wire is opposite to the winding direction of the inner conductive wire, and thus is wound in a direction crossing each other. Therefore, the outer conductor does not enter the inner conductor and does not come into contact with the inner conductor, and when the molten coating is melted, the outer conductor is reliably short-circuited.

本発明の請求項3に記載の構成によると、内側導線と外側導線の少なくとも一方は複数の導線により形成されているため、仮に導線が断線しても他の導線により導通した状態を保つ。そのため、故障し難い火災用検知線を提供することができる。内側導線と外側導線がともに複数の導線により形成されていると、この効果は大きい。   According to the configuration described in claim 3 of the present invention, since at least one of the inner conductor and the outer conductor is formed by a plurality of conductors, even if the conductor is disconnected, the conductive state is maintained by other conductors. Therefore, it is possible to provide a fire detection line that is less likely to fail. This effect is significant when both the inner and outer conductors are formed of a plurality of conductors.

本発明の請求項4に記載の構成によると、耐熱シースは熱吸収性が高い色であるため、遠赤外線を吸収して早期に火災の熱を感知することができる。   According to the configuration described in claim 4 of the present invention, the heat-resistant sheath has a color with high heat absorption, and therefore can absorb far infrared rays and sense fire heat at an early stage.

本発明の請求項5に記載の構成によると、芯線は耐熱樹脂からなるため、火災検知時に火災用検知線が断線し難く、内側導線と外側導線の短絡を確実に検知することができる。   According to the configuration described in claim 5 of the present invention, since the core wire is made of a heat-resistant resin, it is difficult for the fire detection wire to be disconnected when a fire is detected, and a short circuit between the inner conductor and the outer conductor can be reliably detected.

実施例1における火災用検知線の構造。The structure of the detection line for fire in Example 1. 火災用検知線を屋根の上の太陽光パネルに設置した状態。A fire detection line installed on a solar panel on the roof. 太陽電池モジュールの断面と火災用検知線の位置。The cross section of the solar cell module and the position of the fire detection line. 火災の熱を受けた際の火災用検知線の状態の一例。An example of the state of the fire detection line when it receives the heat of a fire. 火災用検知線の内側導線と外側導線による電気回路。An electrical circuit with the inner and outer conductors of a fire detection line. 実施例2における火災用検知線の構造。The structure of the detection line for fire in Example 2.

以下、本発明の火災用検知線の好適な実施の形態につき図面を用いて説明する。
本発明は、火災の熱により溶融被覆が溶融することにより内側導線と外側導線が短絡し、火災を検知することができる火災用検知線に関するものである。なお、以下の説明では、面状の監視対象物の一例として、太陽光パネルを挙げて説明するが、その他の監視対象物に対しても、同様に、安価で簡易な構成によって火災を検出することができる。
Hereinafter, preferred embodiments of the fire detection line of the present invention will be described with reference to the drawings.
The present invention relates to a fire detection wire capable of detecting a fire by short-circuiting an inner conductor and an outer conductor due to melting of a molten coating by heat of fire. In the following description, a solar panel will be described as an example of a planar monitoring target. However, fires are similarly detected for other monitoring targets with an inexpensive and simple configuration. be able to.

図1は、実施例1における火災用検知線の構造を示す。この火災用検知線で太陽光パネルの火災を検知することができる。1は火災用検知線、2は芯線、3は内側導線、4は溶融被覆、5は外側導線、6は耐熱シースである   FIG. 1 shows the structure of a fire detection line in the first embodiment. The fire of the solar panel can be detected by this fire detection line. 1 is a fire detection wire, 2 is a core wire, 3 is an inner conductor, 4 is a melt coating, 5 is an outer conductor, and 6 is a heat-resistant sheath.

芯線2は火災用検知線1に引張強度を与えるとともに、内側導線3の位置を中心からある程度の太さ(たとえば、直径1mm程度)とする。そのため、溶融被覆4が溶融した際に内側導線3が外側導線5と接触しやすい。内側導線3は芯線2の外周に螺旋状に巻き回して設けられる。このことにより、細い導線であっても火災用検知線1の中心からある程度太い半径を得ることができ、火災の際に外側導線5と接触しやすくなっている。溶融被覆4は内側導線3の外側を筒状に覆って設けられ、外側導線5は溶融被覆4の外周に螺旋状に巻き回して設けられる。溶融被覆4は可溶絶縁体により形成され、通常時は内側導線3と外側導線5を絶縁しているが、火災時には熱により溶融して外側導線5が内側導線3に接触し、電気的な短絡を生じる。外側導線5の巻き回し方向は、内側導線3の巻き回し方向と同じ方向でも良いが、逆方向の方が確実に短絡させることができるので好ましい。耐熱シース6は外側導線5の外側を筒状に覆って設けられる。   The core wire 2 gives tensile strength to the fire detection wire 1, and the position of the inner conductor wire 3 is set to a certain degree of thickness (for example, about 1 mm in diameter) from the center. Therefore, the inner conductor 3 is likely to come into contact with the outer conductor 5 when the melt coating 4 is melted. The inner conducting wire 3 is provided by being spirally wound around the outer periphery of the core wire 2. Thereby, even if it is a thin conducting wire, a certain thick radius can be obtained from the center of the fire detection wire 1, and it is easy to contact the outer conducting wire 5 in the event of a fire. The melt coating 4 is provided so as to cover the outside of the inner conductor 3 in a cylindrical shape, and the outer conductor 5 is provided by spirally winding around the outer periphery of the melt coating 4. The melt coating 4 is formed of a fusible insulator and normally insulates the inner conductor 3 and the outer conductor 5, but in the event of a fire, it melts by heat so that the outer conductor 5 contacts the inner conductor 3 and is electrically Causes a short circuit. The winding direction of the outer conductor 5 may be the same as the winding direction of the inner conductor 3, but the opposite direction is preferable because it can be surely short-circuited. The heat-resistant sheath 6 is provided so as to cover the outside of the outer conductor 5 in a cylindrical shape.

芯線2を耐熱樹脂により形成すれば、火災を検知する際に火災用検知線1が簡単には断線することがない。溶融被覆4は火災の熱により溶融する絶縁性の物質であればよく、具体的には100〜200°Cで溶融する絶縁性物質が好ましい。耐熱シース6は、溶融被覆4より融点が高い物質であれば良く、溶融被覆4が溶融し火災を検知する100〜200°Cでは溶融や燃焼しない材質が好ましい。   If the core wire 2 is formed of a heat resistant resin, the fire detection wire 1 is not easily disconnected when a fire is detected. The melt coating 4 may be any insulating material that melts by the heat of a fire, and specifically, an insulating material that melts at 100 to 200 ° C. is preferable. The heat-resistant sheath 6 may be any material that has a higher melting point than the melt coating 4, and is preferably a material that does not melt or burn at 100 to 200 ° C. when the melt coating 4 melts and detects a fire.

各部材の材質としては、たとえば芯線2は難燃性であるアラミド繊維(パラ系アラミド繊維等)、内側導線3と外側導線5は銅、溶融被覆4はナイロン12、耐熱シース6は黒色のポリ塩化ビニルを用いることができる。耐熱シース6は黒色であることにより、遠赤外線を吸収して、火災である場合に早期に熱を感知することができる。なお、耐熱シース6は黒色系統や暗色が好ましいが、それだけに限らず、熱吸収性の高い色(茶色、緑色、等)であれば良い。   As the material of each member, for example, the core wire 2 is a flame retardant aramid fiber (para-aramid fiber, etc.), the inner conductor wire 3 and the outer conductor wire 5 are copper, the melt coating 4 is nylon 12, and the heat resistant sheath 6 is black poly Vinyl chloride can be used. Since the heat-resistant sheath 6 is black, it can absorb far-infrared rays and sense heat early in the case of a fire. The heat-resistant sheath 6 is preferably a black color or dark color, but is not limited thereto, and may be any color with high heat absorption (brown, green, etc.).

図2は、火災用検知線1を屋根の上の太陽光パネルに設置した状態を示す図である。図2(a)は太陽光パネルを屋根に設置した状態で横から見た図であり、図2(b)は太陽光パネルの面に垂直な上方から見た図である。10は太陽光パネル、11は太陽電池モジュール、12は取付台、13は屋根であり、複数の太陽電池モジュール11と取付台12により太陽光パネル10が形成される。図2(a)では図の右上側が棟、左下側が軒の方向であり、図2(b)では図の上側が棟、下側が軒の方向である。施工の際には、屋根13の上に取付台12を設け、その上に複数の太陽電池モジュール11を取り付ける工程が一般的であるが、これには限らない。   FIG. 2 is a diagram illustrating a state in which the fire detection line 1 is installed on a solar panel on the roof. Fig.2 (a) is the figure seen from the side in the state which installed the solar panel on the roof, and FIG.2 (b) is the figure seen from the upper direction perpendicular | vertical to the surface of a solar panel. Reference numeral 10 denotes a solar panel, 11 denotes a solar cell module, 12 denotes a mounting base, and 13 denotes a roof. The solar panel 10 is formed by the plurality of solar cell modules 11 and the mounting base 12. In FIG. 2 (a), the upper right side of the figure is the direction of the ridge and the lower left side is the direction of the eaves. In FIG. 2 (b), the upper side of the figure is the direction of the ridge and the lower side is the direction of the eaves. At the time of construction, a process of providing the mounting base 12 on the roof 13 and attaching a plurality of solar cell modules 11 thereon is not limited thereto.

図2(b)において火災用検知線1を点線で示した部分は、太陽電池モジュール11の下側に配線しているため表側からは隠れていることを表す。火災用検知線1は、太陽電池モジュール11の裏側に、棟側である太陽電池モジュール11の上端部側に沿って横方向(軒及び棟に平行な方向)に配線されている。太陽電池モジュール11は、屋根の軒側から棟側にかけて複数段に設けられて太陽光パネル10を形成している。図2(b)では太陽電池モジュール11を棟軒方向に3段設置しており、各太陽電池モジュール11の上端部を順次通過するようにS字状に火災用検知線1が配線されている。
なお、火災用検知線1を這わせる位置は太陽電池モジュール11の上端部(棟)側だけに限らず、上端部近傍であれば良い。たとえば、太陽電池モジュール11(太陽光パネル10の最下段の太陽電池モジュール11を除く)の下端部(軒)側に沿って配設すれば、一つ軒側の太陽電池モジュール11の上端部近傍で火災を検出することができる。
In FIG. 2B, the portion indicated by the dotted line of the fire detection line 1 represents that it is hidden from the front side because it is wired below the solar cell module 11. The fire detection line 1 is wired on the back side of the solar cell module 11 in the lateral direction (direction parallel to the eaves and the building) along the upper end side of the solar cell module 11 on the building side. The solar cell module 11 is provided in a plurality of stages from the eaves side of the roof to the ridge side to form a solar panel 10. In FIG.2 (b), the solar cell module 11 is installed in 3 steps | paragraphs in the building direction, and the fire detection line 1 is wired in S shape so that the upper end part of each solar cell module 11 may pass sequentially. .
In addition, the position where the fire detection line 1 is turned is not limited to the upper end (ridge) side of the solar cell module 11 but may be in the vicinity of the upper end. For example, if it is disposed along the lower end (eave) side of the solar cell module 11 (excluding the lowermost solar cell module 11 of the solar panel 10), the vicinity of the upper end portion of the solar cell module 11 on one eave side Can detect fire.

図3により、太陽電池モジュール11の断面と火災用検知線1の位置を示す。図3(a)は図2(b)のYの部分での断面図、図3(b)はXの部分での断面図である。111は上側封止樹脂、112は複数の太陽電池セルが並設された太陽電池板、113は下側封止樹脂、114はバックシートを示す。構造体として全体を支持するバックシート114の上で、上側封止樹脂111と下側封止樹脂113の間に太陽電池板112が封入されている。115は断面コの字型のモジュール枠であり、太陽電池板112の周囲に設けられて構造的に丈夫な太陽電池モジュール11を形成している。図3(a)に示すように、太陽電池モジュール11は傾いて設置され、モジュール枠115の裏側の棟側に火災用検知線1が配置されている。   FIG. 3 shows the cross section of the solar cell module 11 and the position of the fire detection line 1. FIG. 3A is a cross-sectional view at a Y portion in FIG. 2B, and FIG. 3B is a cross-sectional view at a X portion. 111 denotes an upper sealing resin, 112 denotes a solar battery plate on which a plurality of solar cells are arranged in parallel, 113 denotes a lower sealing resin, and 114 denotes a back sheet. A solar cell plate 112 is enclosed between an upper sealing resin 111 and a lower sealing resin 113 on a back sheet 114 that supports the entire structure. Reference numeral 115 denotes a U-shaped module frame, which is provided around the solar cell plate 112 to form a structurally strong solar cell module 11. As shown in FIG. 3A, the solar cell module 11 is installed with an inclination, and the fire detection line 1 is arranged on the ridge side on the back side of the module frame 115.

経年劣化等により太陽光パネル10に障害が生じると、太陽光パネル10で生み出される電力により太陽光パネル10自体が発熱する。そして、この発熱により太陽電池モジュール11の上側封止樹脂111,下側封止樹脂113やバックシート114が発火する。太陽電池モジュール11の裏側は熱がこもりやすい。更に、太陽電池モジュール11の裏側での火災は、傾斜したバックシート114に沿って斜め上方(棟側)へ炎や熱が移動するため、火災は太陽光パネル10の裏側で広がる傾向がある。そして、火災によって生じた炎や熱は斜めに設置された太陽光パネル10の裏面に沿って棟側へ向かって広がる。たとえば図2(a)では太陽光パネル10と屋根13の間を、棟側へ炎や熱が移動して火災が広がる。その結果、太陽光パネル10の裏側で横方向に設置された火災用検知線1が加熱される。   When a failure occurs in the solar panel 10 due to aging or the like, the solar panel 10 itself generates heat due to electric power generated by the solar panel 10. Then, the heat generation causes the upper sealing resin 111, the lower sealing resin 113, and the back sheet 114 of the solar cell module 11 to ignite. The back side of the solar cell module 11 tends to accumulate heat. Furthermore, the fire on the back side of the solar cell module 11 moves obliquely upward (ridge side) along the inclined back sheet 114, so that the fire tends to spread on the back side of the solar panel 10. And the flame and heat which arose by the fire spread toward the ridge side along the back surface of the solar panel 10 installed diagonally. For example, in FIG. 2 (a), a fire spreads by a flame and heat moving to the ridge side between the solar panel 10 and the roof 13. FIG. As a result, the fire detection line 1 installed in the lateral direction on the back side of the solar panel 10 is heated.

太陽光パネル10と屋根13の間には隙間があるため、鳥が巣を作ることがあるが、鳥の巣は一般的に可燃性の小枝等でできているため、このような場所で火災が生じると、火災が大きくなる傾向がある。この場合も太陽電池モジュール11の棟側である上端近傍の火災用検知線1の位置を通って延焼するため、火災用検知線1により火災を検知することができる。   Because there is a gap between the solar panel 10 and the roof 13, a bird may make a nest, but the bird's nest is generally made of flammable twigs and so on. If this happens, the fire tends to become large. Also in this case, since the fire spreads through the position of the fire detection line 1 near the upper end on the ridge side of the solar cell module 11, the fire can be detected by the fire detection line 1.

太陽電池モジュール11では、バックシート114の燃焼は、図3(a)の矢印のように棟側へ伝わり、モジュール枠115の裏側(背面側)を通って更に棟側の太陽電池モジュール11へ広がる。そのため、火災用検知線1が加熱される。このように炎や熱は棟側のような上方へ移動して広がるため、火災用検知線1を適切な場所に設置すれば、一定の2次元領域(モジュール枠115の背面に沿う領域)の火災を1次元の「線」の位置で検知することができる。   In the solar cell module 11, the combustion of the back sheet 114 is transmitted to the building side as indicated by the arrow in FIG. 3A, and further spreads to the solar cell module 11 on the building side through the back side (back side) of the module frame 115. . Therefore, the fire detection line 1 is heated. Since the flame and heat move and spread upward as in the building side as described above, if the fire detection line 1 is installed at an appropriate location, a certain two-dimensional area (area along the back of the module frame 115) A fire can be detected at a one-dimensional “line” position.

火災の炎や熱により火災用検知線1が加熱されると、その熱は耐熱シース6を通過して溶融被覆4が融解する。そして、溶融被覆4が融解すると、内側導線3と外側導線5が接触して電気的に短絡する。したがって、後述する火災検知装置7により、内側導線3と外側導線5の間の抵抗値が下がることを検出して、火災を検知することができる。短絡後に火災によって内側導線3や外側導線5が断線しても、火災検知装置7は短絡を記憶して、火災検知状態を保つことができる。   When the fire detection wire 1 is heated by a fire flame or heat, the heat passes through the heat-resistant sheath 6 and the melt coating 4 is melted. When the melt coating 4 is melted, the inner conductor 3 and the outer conductor 5 come into contact with each other and are electrically short-circuited. Therefore, it is possible to detect a fire by detecting that the resistance value between the inner conductor 3 and the outer conductor 5 is lowered by the fire detector 7 described later. Even if the inner conductor 3 or the outer conductor 5 is disconnected due to a fire after a short circuit, the fire detection device 7 can store the short circuit and maintain the fire detection state.

図4は、火災の熱を受けた際の火災用検知線1の状態の一例を示す。熱を受けた部分は耐熱シース6の外径が細くなり、内部では内側導線3に外側導線5が接触して電気的な短絡を生じている。また、溶けた溶融被覆4は火災用検知線1を部分的に膨張させて溶融溜りを形成する。溶融溜りは、耐熱シース6の熱収縮や溶けた溶融被覆4の表面張力等により、溶けた溶融被覆4が火災用検知線1の長さ方向へ移動して生じるものと考えられる。   FIG. 4 shows an example of the state of the fire detection line 1 when it receives the heat of fire. The outer diameter of the heat-resistant sheath 6 is reduced at the portion that has received heat, and the outer conductor 5 is in contact with the inner conductor 3 to cause an electrical short circuit inside. Further, the melted molten coating 4 partially expands the fire detection wire 1 to form a molten pool. It is considered that the melt pool is caused by the melted molten coating 4 moving in the length direction of the fire detection wire 1 due to the thermal contraction of the heat-resistant sheath 6 or the surface tension of the melted molten coating 4.

図5は、内側導線3と外側導線5による電気回路を示す図であり、図5(a)は通常時、図5(b)は火災検知時の状態を示す。7は火災検知装置であり、内側導線3との接続端子3a,3b、外側導線5との接続端子5a,5bが設けられている。太陽電池モジュール11の裏側に内側導線3と外側導線5を有した火災用検知線1が設置されている。   FIGS. 5A and 5B are diagrams showing an electric circuit formed by the inner conductor 3 and the outer conductor 5. FIG. 5A shows a normal state, and FIG. 5B shows a state when a fire is detected. Reference numeral 7 denotes a fire detection device, which is provided with connection terminals 3 a and 3 b for the inner conductor 3 and connection terminals 5 a and 5 b for the outer conductor 5. A fire detection line 1 having an inner conductor 3 and an outer conductor 5 is installed on the back side of the solar cell module 11.

図5(a)の通常の状態では、火災検知装置7は、接続端子3a,3bの間には微弱電流を間欠的または連続的に流しており、内側導線3が断線すれば検出するようになっている。接続端子5a,5b及び外側導線5についても同様である。そして、内側導線3と外側導線5の間が短絡しているか、すなわち接続端子3a,3bと接続端子5a,5bの間の抵抗値を間欠的または連続的に監視している。
なお、短絡を検出する方法としては、抵抗値の監視だけに限らず、例えば電圧値を監視する方法、電流値を監視する方法でも良い。
In the normal state of FIG. 5 (a), the fire detection device 7 allows a weak current to flow intermittently or continuously between the connection terminals 3a and 3b, and detects if the inner conductor 3 is disconnected. It has become. The same applies to the connection terminals 5a and 5b and the outer conductor 5. Then, the inner conductor 3 and the outer conductor 5 are short-circuited, that is, the resistance value between the connection terminals 3a and 3b and the connection terminals 5a and 5b is monitored intermittently or continuously.
Note that the method of detecting a short circuit is not limited to monitoring of a resistance value, and for example, a method of monitoring a voltage value or a method of monitoring a current value may be used.

火災が発生して溶融被覆4が融解すると、図5(b)のように内側導線3と外側導線5が短絡する。そのため、接続端子3a,3bと接続端子5a,5bの間の抵抗値が下がって、火災検知装置7は火災を検知することができる。火災検知装置7は検知状態を記憶するため、火災の検知後に火災用検知線1が仮に断線しても火災検知状態を保つことができる。   When a fire occurs and the melt coating 4 is melted, the inner conductor 3 and the outer conductor 5 are short-circuited as shown in FIG. Therefore, the resistance value between the connection terminals 3a and 3b and the connection terminals 5a and 5b decreases, and the fire detection device 7 can detect a fire. Since the fire detection device 7 stores the detection state, the fire detection state can be maintained even if the fire detection line 1 is disconnected after the fire is detected.

図6は、実施例2における火災用検知線20の説明図である。芯線2は火災用検知線20に引張強度を与える。内側導線3は複数の導線からなり、芯線2の外側に螺旋状に巻き回して設けられる。内側導線3を芯線2の外側に螺旋状に巻き回して設けられることにより、細い導線であっても火災用検知線20の中心からの距離がある太い半径を得ることができ、火災の際に外側導線5と接触しやすい。溶融被覆4は内側導線3の外側を筒状に覆って設けられる。外側導線5も複数の導線からなり、溶融被覆4の外側に螺旋状に巻き回して設けられる。溶融被覆4は可溶絶縁体により形成され、通常時は内側導線3と外側導線5を絶縁している。耐熱シース6は外側導線5の外側を筒状に覆って設けられる。   FIG. 6 is an explanatory diagram of the fire detection line 20 in the second embodiment. The core wire 2 gives tensile strength to the fire detection wire 20. The inner conductor 3 is composed of a plurality of conductors, and is provided on the outer side of the core 2 by being spirally wound. By providing the inner conducting wire 3 spirally around the outside of the core wire 2, a thick radius with a distance from the center of the fire detection wire 20 can be obtained even in the case of a thin conducting wire, and in the event of a fire It is easy to come into contact with the outer conductor 5. The melt coating 4 is provided so as to cover the outside of the inner conductor 3 in a cylindrical shape. The outer conductor 5 is also composed of a plurality of conductors, and is provided by being spirally wound around the outer surface of the melt coating 4. The melt coating 4 is formed of a soluble insulator and normally insulates the inner conductor 3 and the outer conductor 5 from each other. The heat-resistant sheath 6 is provided so as to cover the outside of the outer conductor 5 in a cylindrical shape.

内側導線3と外側導線5は複数の導線により形成されて強度が増すとともに一部の導線が断線しても導通するため、断線による非導通が生じにくく、火災時に短絡する場所も多いため、確実に火災を検知することができる。内側導線3と外側導線5の一方だけを複数の導線とし、他方は一つの導線としても良いが、両方を複数の導線とした方が上記の効果が高い。
上記実施例1,2では、芯線2を耐熱樹脂により形成した。しかし、内側導線3と外側導線5の短絡を火災検知装置7で一度検知すれば、その状態を記憶できるため、火災による短絡を火災検知装置7で検知するまでの時間は断線しない程度の耐熱性が芯線2にあれば火災用検知線として機能する。
The inner conductor 3 and the outer conductor 5 are formed of a plurality of conductors to increase the strength and to conduct even if some of the conductors are disconnected. A fire can be detected. Only one of the inner conductor 3 and the outer conductor 5 may be a plurality of conductors and the other may be a single conductor. However, the above effect is higher when both conductors are a plurality of conductors.
In the said Example 1, 2, the core wire 2 was formed with the heat resistant resin. However, once the short-circuit between the inner conductor 3 and the outer conductor 5 is detected by the fire detection device 7, the state can be memorized. If it is in the core wire 2, it functions as a fire detection wire.

また、実施例1において火災用検知線1を設置する太陽光パネル10は屋根13の上に設置されているが、太陽光パネル10は瓦一体型であっても据え置き型であっても良い。また、住宅の屋根だけでなく工場等の屋根に設置した太陽光パネル10に本発明の火災用検知線を配線してもよい。傾いた屋根13の上に太陽光パネル10を設置すると、屋根13と太陽光パネル10の間の空間に熱がこもりやすく、延焼しやすいので本発明の火災用検知線による検知は特に有効である。しかし、太陽光パネル10を傾いた屋根13の上に設置しなくても、太陽光パネル10や太陽電池モジュール11が傾いて設けられれば良く、これらの裏側を火災が斜め上方へ延焼するので、本発明の火災用検知線で確実に火災を検知できる。たとえば、広大な土地に太陽光パネル10を並べる、いわゆるメガソーラーであっても、太陽光パネル10を傾けて設置するため、本発明の火災用検知線を適用することが可能である。   Moreover, although the solar panel 10 which installs the fire detection line 1 in Example 1 is installed on the roof 13, the solar panel 10 may be a tile-integrated type or a stationary type. Moreover, you may wire the detection line for fires of this invention not only on the roof of a house but the solar panel 10 installed in the roof of a factory etc. When the solar panel 10 is installed on the inclined roof 13, heat is easily trapped in the space between the roof 13 and the solar panel 10, and it is easy to spread the fire. Therefore, detection by the fire detection line of the present invention is particularly effective. . However, even if the solar panel 10 is not installed on the inclined roof 13, the solar panel 10 and the solar cell module 11 need only be provided inclined, and the fire spreads obliquely upward on the back side of these, The fire can be reliably detected by the fire detection line of the present invention. For example, even in the case of so-called mega solar in which the solar panels 10 are arranged on a vast land, the solar panel 10 is inclined and installed, so that the fire detection line of the present invention can be applied.

更に、太陽光パネルや太陽電池モジュールに限らず、本発明の火災用検知線は種々の場所に配線して火災を検知することができる。   Furthermore, not only a solar panel or a solar cell module, the fire detection line of the present invention can be wired to various places to detect a fire.

1,20 火災用検知線、2 芯線、3 内側導線、3a,3b 接続端子、4 溶融被覆、5 外側導線、5a,5b 接続端子、6 耐熱シース、7 火災検知装置、10 太陽光パネル、11 太陽電池モジュール、12 取付台、111 上側封止樹脂、112 太陽電池板、113 下側封止樹脂、114 バックシート、115 モジュール枠 1,20 Fire detection wire, 2 core wire, 3 inner conductor, 3a, 3b connection terminal, 4 melt coating, 5 outer conductor, 5a, 5b connection terminal, 6 heat-resistant sheath, 7 fire detection device, 10 solar panel, 11 Solar cell module, 12 mounting base, 111 upper sealing resin, 112 solar cell plate, 113 lower sealing resin, 114 back sheet, 115 module frame

Claims (5)

芯線と、
芯線の外周に螺旋状に巻き回して設けられた内側導線と、
前記内側導線の外側に設けられ、火災の熱により溶融する可溶絶縁体からなる溶融被覆と、
前記溶融被覆の外周に螺旋状に巻き回して設けられた外側導線と、
前記外側導線の外側に設けられた耐熱シースと、
からなる火災用検知線。
Core wire,
An inner conductor wire spirally wound around the outer periphery of the core wire;
A melt coating made of a soluble insulator that is provided outside the inner conductor and melts by the heat of a fire;
An outer conductor provided by spirally winding around the outer periphery of the melt coating;
A heat-resistant sheath provided outside the outer conductor,
Fire detection line consisting of
前記外側導線の巻き回し方向は、前記内側導線の巻き回し方向と逆方向である、
請求項1の火災用検知線。
The winding direction of the outer conducting wire is opposite to the winding direction of the inner conducting wire.
The fire detection line according to claim 1.
前記内側導線と前記外側導線の少なくとも一方は、複数の導線からなる、
請求項1または2の火災用検知線。
At least one of the inner conductor and the outer conductor is composed of a plurality of conductors.
The fire detection line according to claim 1 or 2.
前記耐熱シースは熱吸収性が高い色である、
請求項1乃至3のいずれかの火災用検知線。
The heat-resistant sheath is a color with high heat absorption,
The fire detection line according to any one of claims 1 to 3.
前記芯線は、耐熱樹脂からなる、
請求項1乃至4のいずれかの火災用検知線。
The core wire is made of a heat resistant resin.
The fire detection line according to any one of claims 1 to 4.
JP2015111866A 2015-06-02 2015-06-02 Fire detection line Pending JP2016224779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015111866A JP2016224779A (en) 2015-06-02 2015-06-02 Fire detection line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015111866A JP2016224779A (en) 2015-06-02 2015-06-02 Fire detection line

Publications (1)

Publication Number Publication Date
JP2016224779A true JP2016224779A (en) 2016-12-28

Family

ID=57746621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015111866A Pending JP2016224779A (en) 2015-06-02 2015-06-02 Fire detection line

Country Status (1)

Country Link
JP (1) JP2016224779A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0511035U (en) * 1991-07-22 1993-02-12 株式会社フジクラ Distributed optical fiber temperature sensor
JPH07272156A (en) * 1994-03-29 1995-10-20 Hochiki Corp Fire alarming system
JPH0896630A (en) * 1994-09-26 1996-04-12 Furukawa Electric Co Ltd:The Fire detecting wire
JP2008066105A (en) * 2006-09-07 2008-03-21 Toyobo Co Ltd Small-diameter electric wire cord
JP2008293831A (en) * 2007-05-25 2008-12-04 Toyobo Co Ltd Small-diameter wire cord
JP2009004123A (en) * 2007-06-19 2009-01-08 Hitachi Plant Technologies Ltd Heat sensitive wire, and non-contact power feeding device equipped with the heat sensitive wire
JP2014086392A (en) * 2012-10-26 2014-05-12 Teijin Ltd Wire code and cable using the same
JP2015014918A (en) * 2013-07-05 2015-01-22 能美防災株式会社 Fire detection device and fire detection method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0511035U (en) * 1991-07-22 1993-02-12 株式会社フジクラ Distributed optical fiber temperature sensor
JPH07272156A (en) * 1994-03-29 1995-10-20 Hochiki Corp Fire alarming system
JPH0896630A (en) * 1994-09-26 1996-04-12 Furukawa Electric Co Ltd:The Fire detecting wire
JP2008066105A (en) * 2006-09-07 2008-03-21 Toyobo Co Ltd Small-diameter electric wire cord
JP2008293831A (en) * 2007-05-25 2008-12-04 Toyobo Co Ltd Small-diameter wire cord
JP2009004123A (en) * 2007-06-19 2009-01-08 Hitachi Plant Technologies Ltd Heat sensitive wire, and non-contact power feeding device equipped with the heat sensitive wire
JP2014086392A (en) * 2012-10-26 2014-05-12 Teijin Ltd Wire code and cable using the same
JP2015014918A (en) * 2013-07-05 2015-01-22 能美防災株式会社 Fire detection device and fire detection method

Similar Documents

Publication Publication Date Title
US11062588B2 (en) Conductor temperature detector
EP3108557B1 (en) Protecting electrical power systems from unsafe conditions
JP6629524B2 (en) Fire detection system
JP6077408B2 (en) Fire detection device and fire detection method
CN103250299B (en) Heat interlocking, equipment, the system and method for set of cells
JP7244693B2 (en) Conductor temperature detector
US9437350B2 (en) Electrical line for a motor vehicle
CN211699808U (en) Temperature-sensing fire detection cable
JP2016224779A (en) Fire detection line
KR102273217B1 (en) Functional Heating Cable
CN111462950A (en) Temperature-sensing fire detection cable
CN107764430B (en) Conductor temperature detector
JP2021105759A (en) Fire detection device for solar panel
CN211087955U (en) Early warning cable
US20210166539A1 (en) Socket fire alarm system
CN211702806U (en) Offline self-checking device based on fire-fighting Internet of things
US4315256A (en) Chimney fire detector
JP7426232B2 (en) Fire detection device for solar panels
CN211828246U (en) Take temperature measurement function environmental protection house ornamentation line
JP2520089B2 (en) Bird damage prevention device
CN210662674U (en) Solar lamp
CN212180663U (en) Fusing testing device for building membrane material
KR20000004517U (en) Cable Heat Detection Device
CN206990121U (en) High voltage power cable Wound-rotor type temperature detection device
JP2005294232A (en) Cable equipped with abnormal temperature rise sensing function

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190910

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200310