JP2016224315A - Method for driving waveguide type optical element, and waveguide type optical element used in drive method - Google Patents

Method for driving waveguide type optical element, and waveguide type optical element used in drive method Download PDF

Info

Publication number
JP2016224315A
JP2016224315A JP2015111616A JP2015111616A JP2016224315A JP 2016224315 A JP2016224315 A JP 2016224315A JP 2015111616 A JP2015111616 A JP 2015111616A JP 2015111616 A JP2015111616 A JP 2015111616A JP 2016224315 A JP2016224315 A JP 2016224315A
Authority
JP
Japan
Prior art keywords
electrode
substrate
electric field
optical waveguides
type optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015111616A
Other languages
Japanese (ja)
Other versions
JP6503900B2 (en
Inventor
太一 野村
Taichi Nomura
太一 野村
勝利 近藤
Katsutoshi Kondo
勝利 近藤
藤野 哲也
Tetsuya Fujino
哲也 藤野
市川 潤一郎
Junichiro Ichikawa
潤一郎 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2015111616A priority Critical patent/JP6503900B2/en
Publication of JP2016224315A publication Critical patent/JP2016224315A/en
Application granted granted Critical
Publication of JP6503900B2 publication Critical patent/JP6503900B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To effectively prevent the acceleration of a drift phenomenon caused by a high voltage applied to a bias electrode or discharge breakdown of the bias electrode in a waveguide type optical element having the bias electrode.SOLUTION: The waveguide type optical element comprises: a substrate 100 having an electro-optical effect; two optical waveguides 104, 106 formed on the substrate; control electrodes 152, 154, 156 for applying electric fields of mutually opposite directions along the orientation of spontaneous polarization of the substrate to each of the two optical waveguides, and generating a difference in refractive index between the two optical waveguides. The placement of the control electrodes and/or the applied voltage to the control electrodes is (are) set so that the electric field intensity of an electric field that is in an opposite direction to the orientation of spontaneous polarization made to occur in the substrate by the control electrodes is smaller than the electric field intensity of an electric field that is in the same direction as the orientation of spontaneous polarization.SELECTED DRAWING: Figure 1

Description

本発明は、光導波路と当該光導波路を伝搬する光波を制御するための電極とを備えた導波路型光素子の駆動方法に関し、特に、いわゆるドリフト電圧を補償するためのバイアス電極を備えた導波路型光素子の当該バイアス電極の駆動方法、及び当該駆動方法に用いられる導波路型光素子に関する。   The present invention relates to a method for driving a waveguide-type optical element including an optical waveguide and an electrode for controlling a light wave propagating through the optical waveguide, and more particularly, to a semiconductor device including a bias electrode for compensating for a so-called drift voltage. The present invention relates to a method for driving the bias electrode of a waveguide type optical element, and a waveguide type optical element used in the driving method.

近年、光通信や光計測の分野においては、電気光学効果を有する基板上に光導波路を形成した、光変調器などの導波路型光素子が多く用いられている。導波路型光素子は、一般に、上記光導波路と共に当該光導波路内を伝搬する光波を制御するための電極を備える。   In recent years, in the fields of optical communication and optical measurement, a waveguide type optical element such as an optical modulator in which an optical waveguide is formed on a substrate having an electro-optic effect is often used. A waveguide type optical element generally includes an electrode for controlling a light wave propagating in the optical waveguide together with the optical waveguide.

このような導波路型光素子として、例えば強誘電体結晶であるニオブ酸リチウム(LiNbO3)(「LN」とも称する)を基板に用いたマッハツェンダ型光変調器が広く用いられている。マッハツェンダ型光変調器は、外部から光を導入するための入射導波路と、当該入射導波路により導入された光を2つの経路に分けて伝搬させるための分岐部と、分岐部の後段に分岐されたそれぞれの光を伝搬させる2本の並行導波路と、当該2本の並行導波路を伝搬した光を合波して外部へ出力するための出射導波路とにより構成されるマッハツェンダ型光導波路を備える。また、マッハツェンダ型光変調器は、電圧を印加することで、電気光学効果を利用して上記並行導波路内を伝搬する光波の位相を変化させて制御するための電極を備える。当該電極は、一般に、上記並行導波路の上部又はその近傍に形成されたRF(高周波)信号電極(以下、「RF電極」と称する)と、当該RF電極に離間して配置された接地電極とで構成されている。 As such a waveguide type optical element, for example, a Mach-Zehnder type optical modulator using a ferroelectric crystal lithium niobate (LiNbO 3 ) (also referred to as “LN”) as a substrate is widely used. The Mach-Zehnder type optical modulator includes an incident waveguide for introducing light from the outside, a branching unit for propagating the light introduced by the incident waveguide in two paths, and a branching unit after the branching unit. Mach-Zehnder type optical waveguide composed of two parallel waveguides for propagating each of the generated light and an output waveguide for combining the light propagated through the two parallel waveguides and outputting them to the outside Is provided. The Mach-Zehnder type optical modulator includes an electrode for changing and controlling the phase of the light wave propagating in the parallel waveguide by applying the voltage and utilizing the electro-optic effect. In general, the electrodes include an RF (high frequency) signal electrode (hereinafter referred to as an “RF electrode”) formed on or near the parallel waveguide, and a ground electrode disposed apart from the RF electrode. It consists of

LNを基板に用いたマッハツェンダ型光変調器では、DCドリフト現象や温度ドリフト現象により、所望の光出力特性を得るのに必要なバイアス電圧がシフトするため、例えばマッハツェンダ型変調器から出力される光変調波形に歪等が発生し、変調特性の変化(例えば、波形品質の劣化)が生じ得る。DCドリフトは、マッハツェンダ光変調器の基板または、電極と基板の間の膜体中の空間電荷(キャリヤ)が、バイアスを調整するための外部電界を打ち消す方向に移動するために生じることが主原因であり、キャリヤが多いほど、外部電界を打ち消す効果が高く、DCドリフト現象は堅調になる傾向がある。温度ドリフトは、温度変化によって生じた電荷(焦電気)による外部電界の変化や、温度変化による基板の歪に伴うマッハツェンダ干渉計の変形、光路差の変化などが主原因である。   In a Mach-Zehnder type optical modulator using LN as a substrate, a bias voltage necessary for obtaining a desired optical output characteristic is shifted due to a DC drift phenomenon or a temperature drift phenomenon. For example, light output from a Mach-Zehnder type modulator is used. Distortion or the like occurs in the modulation waveform, and a change in modulation characteristics (for example, deterioration in waveform quality) may occur. The main cause of DC drift is that space charges (carriers) in the substrate of the Mach-Zehnder optical modulator or in the film body between the electrode and the substrate move in a direction that cancels the external electric field for adjusting the bias. As the number of carriers increases, the effect of canceling the external electric field is high, and the DC drift phenomenon tends to be firm. The main cause of the temperature drift is a change in the external electric field due to electric charges (pyroelectricity) generated by the temperature change, a deformation of the Mach-Zehnder interferometer due to the distortion of the substrate due to the temperature change, and a change in the optical path difference.

このようなドリフト現象に起因した変調特性の変化を防止する方法として、高周波信号電圧を印加するための上記RF電極および接地電極のほかに、並行導波路に沿ってバイアス電極を形成し、バイアス状態をモニタしながら当該バイアス電極に適切な電圧を印加することにより上記ドリフト現象による上記バイアス電圧のシフト量(ドリフト電圧)を補償し続ける方法が知られている(特許文献1)。   In order to prevent the modulation characteristic from changing due to such a drift phenomenon, in addition to the RF electrode and the ground electrode for applying a high-frequency signal voltage, a bias electrode is formed along the parallel waveguide, and the bias state A method is known in which a bias voltage shift amount (drift voltage) due to the drift phenomenon is continuously compensated by applying an appropriate voltage to the bias electrode while monitoring the above (Patent Document 1).

すなわち、バイアス電極に電圧を印加して2つの並行導波路にそれぞれ異なる電界を発生させ、当該2つの並行導波路間に屈折率差を発生させることで、上記バイアス電圧のシフト量を調整する。RF電極とバイアス電極を共用し、バイアスティ回路も用いて変調器を駆動することは可能である。バイアス電極の作用部の長さを40mm以上確保することも可能である。この構成の場合、並行導波路間に所望の屈折率差を発生させるため必要な電界は小さくて済むメリットがある。しかしながら、信号のマーク率が変化した際の光信号品質の劣化の防止や外部の高周波ノイズの光信号品質への影響低減のためには、RF信号とバイアス信号を別に設けることが望ましい。   That is, the bias voltage shift amount is adjusted by applying a voltage to the bias electrode to generate different electric fields in the two parallel waveguides and generating a difference in refractive index between the two parallel waveguides. It is possible to drive the modulator using both the RF electrode and the bias electrode and also using the bias tee circuit. It is also possible to secure the length of the action part of the bias electrode of 40 mm or more. In the case of this configuration, there is an advantage that a small electric field is required to generate a desired refractive index difference between the parallel waveguides. However, it is desirable to separately provide an RF signal and a bias signal in order to prevent deterioration of the optical signal quality when the signal mark rate changes and to reduce the influence of external high frequency noise on the optical signal quality.

現在、光送受信器の業界規格や民間合意仕様により光変調器のフットプリントの上限が規定されており、変調器を高周波駆動する電力の低減が常に求められている。この場合、たとえば、当該導波路型光素子のサイズが大きさなどから制限を受けた長さの並行導波路に沿ってRF電極とバイアス電極とを個別に形成することになる。マッハツェンダ型光変調器において、消費電力の低減、つまり半波長電圧(Vπ)を小さくするための方法としては、RF電極長を長くすることが基本的な解決策であるが、結果としてバイアス電極の長さが短くなってしまう場合がある。このような場合には、並行導波路間に所望の屈折率差を発生させるため必要な電界は大きくなり、従ってバイアス電極への印加電圧も高くなる。バイアス電極の作用部長を10mm以下、場合によっては、5mm以下にせざると得ないこともある。RF電極とバイアス電極を共用する場合に比べ、バイアスの調整に必要な電界は何倍も大きくなる。   Currently, the upper limit of the footprint of the optical modulator is defined by the industry standards of optical transceivers and privately agreed specifications, and reduction of the power for driving the modulator at a high frequency is always required. In this case, for example, the RF electrode and the bias electrode are individually formed along a parallel waveguide having a length limited by the size of the waveguide type optical element. In a Mach-Zehnder type optical modulator, as a method for reducing power consumption, that is, reducing the half-wave voltage (Vπ), the basic solution is to increase the RF electrode length. The length may be shortened. In such a case, the electric field required to generate the desired refractive index difference between the parallel waveguides is increased, and thus the voltage applied to the bias electrode is also increased. In some cases, the action length of the bias electrode may be 10 mm or less, and in some cases, 5 mm or less. The electric field required for adjusting the bias is many times larger than when the RF electrode and the bias electrode are shared.

バイアス電極の間隔はRF電極の間隔に比べて小さくすることができ、これにより、バイアス調整のための所要印加電圧の上昇を避けることは可能である。LNを基板とした光変調器の場合、バッファ層の有無、基板の結晶方位、光導波路の形状や駆動方式(差動、片側駆動)などで電極間隔が異なる。RF電極では、高周波信号の損失低減が優先され、電極間隔の大きなコプレーナ線路を用いる必要があり、一般には電極間隔が20μm以上ある電極が用いられている。一方、バイアス電極は、高周波信号の減衰を考慮する必要がない。バイアス電極の間隔は光の損失の増大の回避、製法上の都合、バイアス回路の出力上限などの都合で設計されるが、バッファ層がある変調器の場合には2μm〜15μm、バッファ層のない変調器の場合には10μm〜20μmと電極の間隔を小さくすることができ、所要電圧をさげることができる。しかしながら、平行導波路間に所望の屈折率差を発生させるのに必要な電界が低減されたわけではない。   The gap between the bias electrodes can be made smaller than the gap between the RF electrodes, and thus it is possible to avoid an increase in the required applied voltage for bias adjustment. In the case of an optical modulator using LN as a substrate, the electrode spacing varies depending on the presence or absence of a buffer layer, the crystal orientation of the substrate, the shape of the optical waveguide, the driving method (differential, one-side driving), and the like. In the RF electrode, reduction of high-frequency signal loss is given priority, and it is necessary to use a coplanar line having a large electrode interval. Generally, electrodes having an electrode interval of 20 μm or more are used. On the other hand, the bias electrode does not need to consider the attenuation of the high-frequency signal. The distance between the bias electrodes is designed for avoiding an increase in light loss, for manufacturing reasons, for the upper limit of the output of the bias circuit, etc., but in the case of a modulator with a buffer layer, 2 μm to 15 μm, no buffer layer In the case of a modulator, the distance between the electrodes can be reduced to 10 μm to 20 μm, and the required voltage can be reduced. However, the electric field required to generate the desired refractive index difference between the parallel waveguides has not been reduced.

LN変調器において、作用部の長さが5mmのバイアス電極で、バイアスを調整するには、かなり大きな電界が必要となる。たとえば、QPSK変調器の各サブマッハ・ツェンダ変調部は、ヌルバイアス点をよばれる位置にバイアスを調整するために、マッハ・ツェンダ干渉計をなす2つの光導波路間の実効長の差を1/2波長にしなければならない。波長1.55μm帯で必要な屈折率差Δn(=1.55μm/5mm/2)は、1.55×10−4である。バイアス状態を差動制御で調整する場合は、各導波路に、その量の半分、つまり、±0.775×10−4の屈折率変化を生じさせれば良い。その屈折率差をLN結晶(ポッケルス定数r33=30.8×10−12m/V,異常光屈折率n≒2.2)を用いた変調器で生じさせるには、光導波路部における実効的な電界(Eeff=0.775×10−4/r33/(n)の大きさを0.5V/μm程度にする必要がある。この電界は、LN変調器の構成部材が直ちに破壊に至るほどのものではないが、変調器の部材の破壊現象や劣化現象が顕著になる電界にかなり近い。また、LN変調器には、DCドリフトとよばれる材料とデバイス構造に起因する本質的な問題があり、時間の経過と共にバイアス電圧が効かなくなり、所望のバイアス状態を維持するために必要な電圧が時間と共に大きくなってゆく現象が普遍的に見られる。 In the LN modulator, a considerably large electric field is required to adjust the bias with a bias electrode having a length of 5 mm for the action portion. For example, each sub-Mach-Zehnder modulator of the QPSK modulator uses the difference in effective length between two optical waveguides forming a Mach-Zehnder interferometer to adjust the bias to a position called a null bias point. Must be. The necessary refractive index difference Δn (= 1.55 μm / 5 mm / 2) in the 1.55 μm wavelength band is 1.55 × 10 −4 . When the bias state is adjusted by differential control, it is only necessary to cause each waveguide to have a refractive index change of half the amount, that is, ± 0.775 × 10 −4 . In order to generate the refractive index difference with a modulator using an LN crystal (Pockels constant r 33 = 30.8 × 10 −12 m / V, extraordinary refractive index n e ≈2.2), The magnitude of the effective electric field (E eff = 0.775 × 10 −4 / r 33 / (n e ) 3 ) needs to be about 0.5 V / μm. This electric field is not so much that the components of the LN modulator will be destroyed immediately, but is very close to an electric field in which the phenomenon of destruction and deterioration of the members of the modulator becomes remarkable. In addition, the LN modulator has an essential problem due to a material called DC drift and a device structure. The bias voltage does not work with time, and the voltage necessary to maintain a desired bias state is not obtained. There is a universal phenomenon that grows with time.

その結果、上記電界(電極間の電圧/電極間の距離)が1V/μmを超えるような使用条件では、バイアス電極からLN基板へキャリヤ(電荷)が注入されて上記ドリフト現象が加速されたり、バイアス電極間でコロナ放電や火花放電が発生することにより当該バイアス電極が破壊されるという現象が生じ得る。当該マッハツェンダ型変調器のバイアス電極間に絶縁体(誘電体)が存在する場合、コロナ放電あるいは火花放電では絶縁体の表面に沿って樹枝状あるいは針状の放電路が形成される。この様な放電を沿面放電と呼ぶが、放電の際に絶縁体表面の変質を伴わない場合(一般にフラッシュオーバーと呼ぶ)もあるし、誘電体の表層部の一部において、絶縁破壊の発生、クラックの発生、分極状態の変化や電気的特性(電気抵抗、低周波の誘電率の増大)などの変化や、放電路に沿って、電極材料の金属やハンダなどに含まれるIn,Sn等の蒸気圧の高い金属や、接着剤、導電性樹脂、シール剤、ハンダラックスなどからアウトガスとして発生する残留モノマーや溶剤、帯電防止剤、可塑剤、難燃剤、酸化防止剤およびそれらの反応物などの金属系、有機系の堆積物・付着物が焼き付けられ、放電路が固定され成長する場合(トラッキングと呼び)もある。バイアス電極が短い場合は、バイアス電極には常時高い電圧が印加されるため、トラッキングが発生しやすい。   As a result, under use conditions where the electric field (voltage between electrodes / distance between electrodes) exceeds 1 V / μm, carriers (charges) are injected from the bias electrode to the LN substrate, and the drift phenomenon is accelerated. The occurrence of corona discharge or spark discharge between the bias electrodes may cause a phenomenon that the bias electrodes are destroyed. When an insulator (dielectric) is present between the bias electrodes of the Mach-Zehnder modulator, a corona discharge or a spark discharge forms a dendritic or needle-like discharge path along the surface of the insulator. Such a discharge is called a creeping discharge, but there is a case where there is no alteration of the insulator surface during the discharge (generally called a flashover), and dielectric breakdown occurs in a part of the surface layer portion of the dielectric. Generation of cracks, changes in polarization state, changes in electrical characteristics (electrical resistance, increase in low-frequency dielectric constant), etc., along the discharge path, such as In, Sn contained in metal or solder of electrode materials Residual monomers and solvents generated as outgases from metals with high vapor pressure, adhesives, conductive resins, sealants, solder lux, antistatic agents, plasticizers, flame retardants, antioxidants and their reactants In some cases, metallic and organic deposits and deposits are baked, and the discharge path is fixed and grows (called tracking). When the bias electrode is short, tracking is likely to occur because a high voltage is always applied to the bias electrode.

特開平5−224163号公報JP-A-5-224163

上記背景より、バイアス電極を有する導波路型光素子において、当該バイアス電極に高電圧が印加されることにより発生するドリフト現象の加速や当該バイアス電極の放電破壊を、効果的に防止することでのきる構成の実現が望まれている。   From the above background, in a waveguide type optical element having a bias electrode, it is possible to effectively prevent acceleration of a drift phenomenon that occurs when a high voltage is applied to the bias electrode and discharge breakdown of the bias electrode. Realization of a configuration that can be achieved is desired.

本発明の一の態様は、電気光学効果を有する基板と、前記基板上に形成された2つの光導波路と、前記2つの光導波路に、前記基板の自発分極方位に沿って互いに逆向き方向の電界をそれぞれ印加して、当該2つの光導波路間に屈折率差を発生させるための制御電極と、を備え、前記制御電極は、前記2つの光導波路の間に配置された基準電極と、前記基準電極に対しそれぞれ前記2つの光導波路を挟んで当該基準電極と平行に又は略平行に配置された2つの動作電極と、を含み、且つ、前記基準電極と一の動作電極との離間距離が、前記基準電極と前記他の動作電極との離間距離よりも大きくなるように配置されている、導波路型光素子である。
本発明の他の態様は、電気光学効果を有する基板と、前記基板上に形成された2つの光導波路と、前記2つの光導波路に、前記基板の自発分極方位に沿って互いに逆向き方向の電界をそれぞれ印加して、当該2つの光導波路間に屈折率差を発生させるための制御電極と、を備え、前記制御電極は、前記2つの光導波路の間に配置された基準電極と、前記基準電極に対しそれぞれ前記2つの光導波路を挟んで当該基準電極と平行に又は略平行に配置された2つの動作電極と、を含み、且つ、一の前記動作電極と前記基板との間には非導電性の中間層が配置されており、他の前記動作電極と前記基板との間には非導電性の中間層が配置されていない、導波路型光素子である。
本発明の他の態様は、電気光学効果を有する基板と、前記基板上に形成された2つの光導波路と、前記2つの光導波路に、前記基板の自発分極方位に沿って互いに逆向き方向の電界をそれぞれ印加して、当該2つの光導波路間に屈折率差を発生させるための制御電極と、を備え、前記制御電極は、前記2つの光導波路の間に配置された基準電極と、前記基準電極に対しそれぞれ前記2つの光導波路を挟んで当該基準電極と平行に又は略平行に配置された2つの動作電極と、を含み、前記2つの動作電極と前記基板との間には非導電性の中間層が配置されており、且つ、一の前記動作電極と前記基板との間の前記中間層は、他の前記動作電極と前記基板との間の前記中間層より厚い、導波路型光素子である。
本発明の他の態様によると、前記基板はニオブ酸リチウムから成り、前記2つの光導波路は、マッハツェンダ型光導波路を構成する2つの並行導波路であって、前記制御電極は、ドリフト電圧を補償するためのバイアス電極である。
本発明の更に他の態様は、上記いずれかの導波路型光素子の駆動方法であって、前記一の動作電極と前記基準電極との間に第1の電圧を印加して、前記一の動作電極と前記基準電極との間の前記基板内に、前記自発分極方位に対し逆方向に電界を生じさせる工程と、前記他の動作電極と前記基準電極との間に第2の電圧を印加して、前記他の動作電極と前記基準電極との間の前記基板内に、前記自発分極方位と同じ方向に電界を生じさせる工程と、を有し、前記第1及び第2の電圧は、前記基板内に生ずる前記自発分極方位に対し逆方向の電界の電界強度が、前記自発分極方位と同じ方向の電界の電界強度よりも小さくなるように設定される。
One aspect of the present invention includes a substrate having an electro-optic effect, two optical waveguides formed on the substrate, and the two optical waveguides in directions opposite to each other along the spontaneous polarization direction of the substrate. A control electrode for applying an electric field to generate a refractive index difference between the two optical waveguides, and the control electrode includes a reference electrode disposed between the two optical waveguides, Each of the two optical waveguides with respect to the reference electrode, and two working electrodes arranged in parallel or substantially in parallel with the reference electrode, and a distance between the reference electrode and the one working electrode is The waveguide-type optical element is disposed so as to be larger than the distance between the reference electrode and the other working electrode.
Another aspect of the present invention is directed to a substrate having an electro-optic effect, two optical waveguides formed on the substrate, and the two optical waveguides in directions opposite to each other along a spontaneous polarization direction of the substrate. A control electrode for applying an electric field to generate a refractive index difference between the two optical waveguides, and the control electrode includes a reference electrode disposed between the two optical waveguides, Each of the two optical waveguides sandwiched between the two optical waveguides and arranged in parallel or substantially in parallel with the reference electrode, and between the one operating electrode and the substrate A waveguide-type optical element in which a non-conductive intermediate layer is disposed and no non-conductive intermediate layer is disposed between the other working electrode and the substrate.
Another aspect of the present invention is directed to a substrate having an electro-optic effect, two optical waveguides formed on the substrate, and the two optical waveguides in directions opposite to each other along a spontaneous polarization direction of the substrate. A control electrode for applying an electric field to generate a refractive index difference between the two optical waveguides, and the control electrode includes a reference electrode disposed between the two optical waveguides, And two working electrodes arranged in parallel or substantially in parallel with the reference electrode with the two optical waveguides interposed therebetween, and the two working electrodes and the substrate are non-conductive A waveguide type in which an intermediate layer is disposed, and the intermediate layer between one working electrode and the substrate is thicker than the intermediate layer between another working electrode and the substrate It is an optical element.
According to another aspect of the present invention, the substrate is made of lithium niobate, the two optical waveguides are two parallel waveguides constituting a Mach-Zehnder type optical waveguide, and the control electrode compensates for a drift voltage. This is a bias electrode.
Still another aspect of the present invention is the above-described method for driving a waveguide optical device, wherein a first voltage is applied between the one working electrode and the reference electrode, A step of generating an electric field in a direction opposite to the spontaneous polarization orientation in the substrate between the working electrode and the reference electrode; and applying a second voltage between the other working electrode and the reference electrode Generating an electric field in the same direction as the spontaneous polarization direction in the substrate between the other working electrode and the reference electrode, and the first and second voltages are: The electric field strength of the electric field in the opposite direction to the spontaneous polarization azimuth generated in the substrate is set to be smaller than the electric field strength of the electric field in the same direction as the spontaneous polarization azimuth.

本発明の第1の実施形態に係る導波路型光素子の構成及び駆動方法を説明する図である。It is a figure explaining the structure and drive method of the waveguide type optical element which concern on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る導波路型光素子の構成及び駆動方法を説明する図である。It is a figure explaining the structure and drive method of the waveguide type optical element which concern on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る導波路型光素子の構成及び駆動方法を説明する図である。It is a figure explaining the structure and drive method of the waveguide type optical element which concern on the 1st Embodiment of this invention. 図3に示す導波路型光素子のAA断面矢視図である。FIG. 4 is an AA cross-sectional view of the waveguide type optical element shown in FIG. 3.

以下、図面を参照して、本発明の実施の形態を説明する。以下に示す実施形態は、マッハツェンダ型光導波路で構成される光変調器であるが、本発明に係る導波路型光素子は、これに限らず、2つの光導波路に一定方向の電界をそれぞれ印加して当該2つの光導波路間に屈折率差を発生させるための電極を備えるマッハツェンダ型光導波路、方向性結合器型光導波路、Y分岐型光導波路、その他のタイプの光導波路で構成された光変調器、光スイッチ、その他の機能を有する導波路型光素子に、一般に適用することができる。   Embodiments of the present invention will be described below with reference to the drawings. The embodiment shown below is an optical modulator composed of a Mach-Zehnder type optical waveguide. However, the waveguide type optical element according to the present invention is not limited to this, and an electric field in a certain direction is applied to each of two optical waveguides. Then, a light composed of a Mach-Zehnder type optical waveguide, a directional coupler type optical waveguide, a Y-branch type optical waveguide, and other types of optical waveguides each having an electrode for generating a refractive index difference between the two optical waveguides. The present invention can be generally applied to a waveguide type optical element having a modulator, an optical switch, and other functions.

〔第1実施形態〕
まず、本発明の第1の実施形態について説明する。
図1は、本発明の第1の実施形態に係る導波路型光素子の構成及び駆動方法を説明する図である。
本導波路型光素子10は、基板100上にマッハツェンダ(MZ、Mach-Zehnder)型光導波路102が形成された、マッハツェンダ型光変調器である。
[First Embodiment]
First, a first embodiment of the present invention will be described.
FIG. 1 is a diagram for explaining the configuration and driving method of a waveguide type optical element according to the first embodiment of the present invention.
The waveguide optical device 10 is a Mach-Zehnder optical modulator in which a Mach-Zehnder (MZ) optical waveguide 102 is formed on a substrate 100.

基板100は、電気光学材料であるニオブ酸リチウム(LN)から成る基板であり、例えばXカットのLN基板である。MZ型光導波路102は、基板100を構成するLN結晶の自発分極方位と直交する方向に光が伝播されるように構成された並行導波路104、106を有する。本実施形態では、上記自発分極方位は、図1の図示上方を向いているものとする。基板100上の並行導波路104、106に挟まれた領域には、当該並行導波路104、106と平行または略平行に高周波(RF)電極108が配置されており、並行導波路104、106を挟んでRF電極108と対向する位置に接地電極110、112が配置されている。RF電極108と接地電極110、112との間には、MZ型光導波路102を伝搬する光を例えば強度変調するための高周波信号が印加される。   The substrate 100 is a substrate made of lithium niobate (LN), which is an electro-optic material, and is, for example, an X-cut LN substrate. The MZ type optical waveguide 102 has parallel waveguides 104 and 106 configured so that light is propagated in a direction orthogonal to the spontaneous polarization direction of the LN crystal constituting the substrate 100. In the present embodiment, it is assumed that the spontaneous polarization azimuth is directed upward in FIG. In a region sandwiched between the parallel waveguides 104 and 106 on the substrate 100, a radio frequency (RF) electrode 108 is disposed in parallel or substantially in parallel with the parallel waveguides 104 and 106. The ground electrodes 110 and 112 are arranged at positions facing the RF electrode 108 with being sandwiched therebetween. A high-frequency signal for modulating the intensity of light propagating through the MZ type optical waveguide 102 is applied between the RF electrode 108 and the ground electrodes 110 and 112, for example.

また、基板100上には、2つの並行導波路104、106にそれぞれ電界を印加して並行導波路104、106間の屈折率差を制御するための制御電極であるバイアス電極150が形成されている。バイアス電極150は、基準電極152と、当該基準電極152の電位に対する正電圧又は負電圧が印加される動作電極154、156と、により構成される。基準電極152は、基板100上の並行導波路104、106に挟まれた領域に、並行導波路104、106の長さ方向にRF電極108と並んで、当該並行導波路104、106と平行に配置されている。また、動作電極154、156は、それぞれ、並行導波路104、106を挟んで基準電極152と対向するように、それぞれ基準電極152から同じもしくは略同じ距離(離間距離)だけ離れて並行導波路104、106と平行または略平行に配置されている。   On the substrate 100, a bias electrode 150 is formed as a control electrode for controlling the refractive index difference between the parallel waveguides 104 and 106 by applying an electric field to each of the two parallel waveguides 104 and 106. Yes. The bias electrode 150 includes a reference electrode 152 and operation electrodes 154 and 156 to which a positive voltage or a negative voltage with respect to the potential of the reference electrode 152 is applied. The reference electrode 152 is aligned with the RF electrode 108 in the length direction of the parallel waveguides 104 and 106 in a region between the parallel waveguides 104 and 106 on the substrate 100 and in parallel with the parallel waveguides 104 and 106. Has been placed. Further, the working electrodes 154 and 156 are spaced apart from the reference electrode 152 by the same or substantially the same distance (separation distance) so as to face the reference electrode 152 with the parallel waveguides 104 and 106 interposed therebetween, respectively. , 106 are arranged in parallel or substantially in parallel.

バイアス電極150を構成する基準電極152、動作電極154、156には、制御装置160の出力が接続されており、当該制御装置160により、基準電極152、動作電極154、156のそれぞれの電位Va0、Va1、Va2が制御される。制御装置160は、入力される制御信号に基づいて、基準電極152、動作電極154、156の電位Va0、Va1、Va2を制御する。これにより、基準電極152と動作電極154との電位差Va1−Va0により並行導波路106に電界が印加され、基準電極152と動作電極156との電位差Va2−Va0により並行導波路104に電界が印加されて、並行導波路104、106間に屈折率差が生じ、RF電極108によるMZ型光導波路102の光変調動作におけるドリフト現象が補償される。 The output of the control device 160 is connected to the reference electrode 152 and the working electrodes 154 and 156 that constitute the bias electrode 150, and the control device 160 causes the potentials V a0 of the reference electrode 152 and the working electrodes 154 and 156 to be connected. , V a1 and V a2 are controlled. The control device 160 controls the potentials V a0 , V a1 , and V a2 of the reference electrode 152 and the working electrodes 154 and 156 based on the input control signal. Thereby, an electric field is applied to the parallel waveguide 106 by the potential difference V a1 −V a0 between the reference electrode 152 and the working electrode 154, and the parallel waveguide 104 is caused by the potential difference V a2 −V a0 between the reference electrode 152 and the working electrode 156. When an electric field is applied, a refractive index difference is generated between the parallel waveguides 104 and 106, and the drift phenomenon in the light modulation operation of the MZ type optical waveguide 102 by the RF electrode 108 is compensated.

特に、本実施形態における導波路型光素子10において、電位差Va1−Va0が負で、一方の動作電極154(又は156)と基準電極152との間には、結晶の自発分極方位と逆向きの電界(負方向電界)を生じ、また、電位差Va2−Va0が正で、他方の動作電極156(又は154)と基準電極152との間に結晶の自発分極方位と同じ向きの電界(正方向電界)を生じ、且つ、上記負方向電界の電界強度が上記正方向電界の電界強度よりも小さくなるように、制御装置160により基準電極152、動作電極154、156に印加する電位Va0、Va1、Va2が制御される。 In particular, in the waveguide type optical element 10 according to the present embodiment, the potential difference V a1 −V a0 is negative, and the spontaneous polarization orientation of the crystal is opposite between one working electrode 154 (or 156) and the reference electrode 152. An electric field in the direction (negative direction electric field) is generated, the electric potential difference V a2 −V a0 is positive, and an electric field in the same direction as the spontaneous polarization orientation of the crystal between the other working electrode 156 (or 154) and the reference electrode 152. The potential V applied to the reference electrode 152 and the working electrodes 154 and 156 by the control device 160 so as to generate (positive electric field) and the electric field strength of the negative electric field is smaller than the electric field strength of the positive electric field. a0 , V a1 and V a2 are controlled.

本実施形態では、基準電極152と動作電極154及び156とのそれぞれの離間距離が互いに同じであるので、上記条件を満たす電界強度は、たとえば、|Va1−Va0|<|Va2−Va0|とする。また、Va0は、例えば接地電位又は接地電位に近い電位に設定してもよい。 In the present embodiment, the distances between the reference electrode 152 and the working electrodes 154 and 156 are the same, so the electric field strength that satisfies the above condition is, for example, | V a1 −V a0 | <| V a2 −V Let a0 |. V a0 may be set to, for example, a ground potential or a potential close to the ground potential.

本願発明の発明者の知見によれば、結晶の自発分極方位と逆向きのバイアス電界を印加(以下負の電位差とよぶ)される光導波路においては、結晶の自発分極方位と同じ向きのバイアス電界を印加される光導波路よりも、DCドリフト現象が進みやすい(すなわち、電圧シフトの増加が進みやすい)。このDCドリフトは、LN基板内部におけるLN結晶欠陥などにより生じた局在サイトに、LN基板表面に形成された電極からキャリヤが注入されやすいことで発生するものと考えられる。   According to the knowledge of the inventors of the present invention, in an optical waveguide to which a bias electric field opposite in direction to the spontaneous polarization orientation of the crystal is applied (hereinafter referred to as a negative potential difference), the bias electric field in the same direction as the spontaneous polarization orientation of the crystal. The DC drift phenomenon is more likely to proceed than the optical waveguide to which is applied (that is, the increase in voltage shift is likely to proceed). This DC drift is considered to occur because carriers are likely to be injected from an electrode formed on the surface of the LN substrate into a localized site caused by an LN crystal defect or the like inside the LN substrate.

そして、当該キャリヤは、ホール(正電荷)よりも電子(負電荷)のほうが、より注入されやすいこと、また、電極の下地材料との依存性があること、電子はLN基板中でホールに比べて移動度が大きいことなどから、負の電位差で駆動される光導波路に対しては、キャリヤの注入が起き、LN基板中の電荷が増えてバイアス電極による外部電界が打ち消されやすくなって、上記DCドリフト現象が進みやすくなったと考えられる。発明者らは、この現象を熱破壊または電子なだれの前駆現象のひとつと考えており、その発生しやすさに極性があるために発生すると推定している。   In the carrier, electrons (negative charges) are more likely to be injected than holes (positive charges), and there is a dependency on the base material of the electrodes. Electrons are compared with holes in the LN substrate. Because of its high mobility, carrier injection occurs in an optical waveguide driven with a negative potential difference, and the electric charge in the LN substrate increases to easily cancel the external electric field due to the bias electrode. It is thought that the DC drift phenomenon has become easier to proceed. The inventors consider this phenomenon as one of the precursory phenomena of thermal destruction or electron avalanche, and presume that this phenomenon occurs due to the polarity.

極性がある原因はまだ明らかになっていないが、LN結晶の分極操作に必要な電界である抗電界、および、結晶中のマイクロドメインの存在などと関係がある可能性があると考えられる。LNの様な高絶縁性の材料ではもとから電子注入やホール注入は起きにくく、マッハツェンダ型光変調器に使われる調和熔融組成のLNでの発生確認の報告は、発明者の知る限り存在しない。しかし、マイクロドメイン壁や光導波路形成のために不純物がドープされた領域は、結晶欠陥であり、結晶欠陥はキャリヤの注入部位や伝導経路になり、漏れ電流が優先的に流れてジュール熱の発生箇所となりうる。また、電子なだれは、電極から注入された電子が高電界下の誘電体材料内で増殖的に衝突を繰り返すことにより生ずる現象だが、上記の欠陥箇所は電子の優先的注入と衝突を繰り返す箇所となり得る。   Although the cause of the polarity is not yet clarified, it is considered that it may be related to the coercive electric field, which is an electric field necessary for the polarization operation of the LN crystal, and the presence of microdomains in the crystal. Electron injection and hole injection are unlikely to occur in the case of a highly insulating material such as LN, and as far as the inventor knows, there is no report of confirming the generation of harmonic melt composition used in Mach-Zehnder type optical modulators in LN. . However, regions doped with impurities to form microdomain walls and optical waveguides are crystal defects, which become carrier injection sites and conduction paths, and leakage current flows preferentially to generate Joule heat. Can be a place. Electron avalanche is a phenomenon that occurs when electrons injected from the electrode repeatedly collide proliferatively in a dielectric material under a high electric field, but the above-mentioned defect location is a location where the preferential injection and collision of electrons repeat. obtain.

マッハツェンダ型光変調器に使われる調和熔融組成のLNの分極反転閾値である抗電界は、室温でおよそ21kV/mm程度であるが、Liの欠損サイトがLiで埋められた化学量論組成のLN結晶では、2kV/mm程度に低下することが知られている。光導波路を形成するために不純物であるTiをドープするが、TiはLiの欠損部に入ることが知られており、化学量論組成のLN結晶同様に抗電界は低くなっていると考えられる。ここで、基準電極152と動作電極154及び156とのそれぞれの離間距離が14μmである場合、たとえば28VをLN基板の自発分極方位と逆向きに印加した基準電極152と動作電極154間では、電界強度がその抗電界に達し、マイクロドメインが成長しドメイン壁は増大するとともに、新たなマイクロドメインの発生も誘起する。また、電界強度が抗電界に達しなくとも、抗電界に近いならば、マイクロドメインの成長、ドメイン壁の増大は起きる。   The coercive electric field, which is the polarization reversal threshold value of the LN of harmonic melt composition used in the Mach-Zehnder type optical modulator, is about 21 kV / mm at room temperature, but the stoichiometric composition of LN in which the defect sites of Li are filled with Li. It is known that the crystal drops to about 2 kV / mm. It is known that Ti, which is an impurity, is doped to form an optical waveguide. However, Ti is known to enter a defect portion of Li, and the coercive electric field is considered to be low like LN crystals of stoichiometric composition. . Here, when the separation distance between the reference electrode 152 and the working electrodes 154 and 156 is 14 μm, for example, an electric field is applied between the reference electrode 152 and the working electrode 154 to which 28 V is applied in the direction opposite to the spontaneous polarization direction of the LN substrate. The intensity reaches its coercive field, the microdomain grows and the domain wall increases, and also induces the generation of new microdomains. Even if the electric field strength does not reach the coercive electric field, if it is close to the coercive electric field, microdomain growth and domain wall increase occur.

逆に、LN基板の自発分極方位と同じ向きに印加した場合は、マイクロドメインドメイン壁は縮小、消滅するため、欠陥部が増大することがない。つまり、LN基板の自発分極方位と逆向きに印加すると、上述の欠陥箇所が増え、熱破壊および電子なだれが、ともに起きやすい状態になる。筆者者らの知見では、制御電極とLN基板の間にバッファ層を有さない構成のマッハツェンダ型光変調器において上記推定現象と思われるドリフト現象の極性依存性が発生する電界強度は、プロセスバッチやマッハツェンダ型変調器構造、特に制御電極の下地材料やバッファ層の組成にも依存するが、およそ1kV/mmであり、2kV/mmではその現象がより明確に確認された。また、LN基板を10ミクロン以下に加工したマッハツェンダ型光変調器でも、この現象が明確に確認された。これは、加工された結晶の表面は原子の配列の途切れるところであり、最も著しい結晶欠陥であること、また、加工により、結晶基板内部にも転位や滑り面などの結晶欠陥が多く形成されていることによると考えている。また、そのような結晶欠陥が多い薄い結晶基板は自由エネルギーが高い状態であり、欠陥の少ない状態の結晶基板に比べて、結晶欠陥の一形態である分極反転壁の形成や移動が、エネルギー論的に容易であるためであると考えられる。   On the other hand, when applied in the same direction as the spontaneous polarization orientation of the LN substrate, the microdomain domain wall shrinks and disappears, so that the defect portion does not increase. That is, when applied in the direction opposite to the spontaneous polarization direction of the LN substrate, the number of the above-described defect points increases, and both thermal breakdown and electron avalanche are likely to occur. According to the knowledge of the authors, in the Mach-Zehnder type optical modulator having no buffer layer between the control electrode and the LN substrate, the electric field strength at which the polarity dependence of the drift phenomenon considered to be the above-mentioned estimation phenomenon occurs is Although it depends on the structure of the Mach-Zehnder type modulator, particularly the base material of the control electrode and the composition of the buffer layer, it is about 1 kV / mm, and the phenomenon was confirmed more clearly at 2 kV / mm. This phenomenon was also clearly confirmed in a Mach-Zehnder type optical modulator in which an LN substrate was processed to 10 microns or less. This is because the surface of the processed crystal is where the arrangement of atoms is interrupted, which is the most significant crystal defect, and due to the processing, many crystal defects such as dislocations and sliding surfaces are also formed inside the crystal substrate. I think it depends. In addition, such a thin crystal substrate with many crystal defects has a high free energy state. Compared with a crystal substrate with few defects, the formation and movement of a domain-inverted wall, which is one form of crystal defects, is energetically This is considered to be easy.

なお、電界をさらに大きくし、2倍の4kV/mm以上にしても、上記のDCドリフトについての非対称は一層顕著になるものの、熱破壊または電子なだれに起因すると思われる誘電破壊は観察されない。高い絶縁性を維持しており、電極間に流れるリーク電流、なだれ効果による電子の増殖ともに、結晶を破壊する以上のエネルギーには至らない。しかし、電極間の放電に起因すると思われる諸現象が顕著となる。   Note that even when the electric field is further increased to 4 kV / mm or more, which is twice as much, the above asymmetry with respect to the DC drift becomes more remarkable, but dielectric breakdown that is probably caused by thermal breakdown or electron avalanche is not observed. High insulation is maintained, and the leakage current flowing between the electrodes and the multiplication of electrons due to the avalanche effect do not lead to more energy than destroying the crystal. However, various phenomena that appear to be caused by the discharge between the electrodes become significant.

なお、近年、基板の一部を分極反転させたマッハツェンダ型光変調器が提案されているが、もとの基板に対して分極反転処理を行った領域においては、上記の現象の発現の極性が逆である。分極反転処理を行った領域では、結晶の自発分極方位と同じ向きのバイアス電界を印加される光導波路においては、結晶の自発分極方位と逆向きのバイアス電界を印加される光導波路より、DCドリフト現象が進みやすい。分極反転プロセスの履歴によって、正方向、負方向の電界の強弱を考慮する必要がある。   In recent years, a Mach-Zehnder type optical modulator in which a part of a substrate is inverted in polarization has been proposed. However, in the region where the polarization inversion process is performed on the original substrate, the polarity of the above phenomenon is exhibited. The reverse is true. In the region where the polarization inversion process is performed, in the optical waveguide to which the bias electric field having the same direction as the spontaneous polarization direction of the crystal is applied, the DC drift is larger than that in the optical waveguide to which the bias electric field having the opposite direction to the spontaneous polarization direction of the crystal is applied. The phenomenon is easy to progress. It is necessary to consider the strength of the electric field in the positive and negative directions depending on the history of the polarization inversion process.

また、一般に、電極間に発生するコロナ放電は、その放電発生閾値が、接地電位に対する正電圧が印加された物体からの放電の場合よりも、接地電位に対する負電圧が印加された物体からの放電の場合のほうが低いことが知られている。通信用のマッハツェンダ型光変調器は、筐体内を窒素ガスで置換することが一般的であり、窒素の負コロナ放電閾値は、3.8kV/mmである。実際には、基板の表面に沿ってこれより低い電界でも発生(沿面放電)していると思われる。この程度の電界で発生した放電はたかだかμA程度であり、LN基板を定常的に流れるリーク電流に比べて小さい。   Also, in general, corona discharge generated between electrodes has a discharge occurrence threshold of discharge from an object to which a negative voltage with respect to the ground potential is applied, compared to discharge from an object to which a positive voltage with respect to the ground potential is applied. Is known to be lower. In a Mach-Zehnder type optical modulator for communication, the inside of a housing is generally replaced with nitrogen gas, and the negative corona discharge threshold of nitrogen is 3.8 kV / mm. Actually, it seems that even a lower electric field is generated along the surface of the substrate (surface discharge). The discharge generated by this level of electric field is at most about μA, which is smaller than the leak current that constantly flows through the LN substrate.

放電によるバイアス状態の変動は極めて小さくデジタル通信品質の維持に影響がない。つまり、コロナ放電、沿面放電がフラッシュオーバーモードである限りは、実質的に問題がない。しかしながら、マッハツェンダ型光変調器の筐体内部の電極材料の金属ハンダなどに含まれるIn,Sn等の蒸気圧の高い金属や接着剤、導電性樹脂、シール剤、ハンダラックスなどからアウトガスとして発生する残留モノマーや溶剤、帯電防止剤、可塑剤、難燃剤、酸化防止剤およびそれらの反応物などの有機系の堆積物・付着物が焼き付けられ、放電路が固定され成長してしまうといった問題が生じる。   The fluctuation of the bias state due to the discharge is extremely small and does not affect the maintenance of digital communication quality. That is, as long as corona discharge and creeping discharge are in the flashover mode, there is substantially no problem. However, it is generated as outgas from metals with high vapor pressure such as In, Sn, etc. contained in the metal solder of the electrode material inside the housing of the Mach-Zehnder type optical modulator, adhesives, conductive resins, sealants, solderlux, etc. Organic deposits and deposits such as residual monomers and solvents, antistatic agents, plasticizers, flame retardants, antioxidants and their reactants are baked in, causing the discharge path to be fixed and grow. .

コロナ放電の状態から、さらに電圧を上昇させる、あるいは導体の突端部分と他の導体との距離を減少させると、導体の突端部分と他の導体との間が間欠的に火花でつながる火花放電が発生する。火花放電の電流はさほど大きくないが、間欠的で不安定な放電である。マッハツェンダ型変調器のバイアス電極においては、完全なトラッキング状態に至る前に火花放電が発生する場合がある。火花放電による通電箇所の破壊の際に、バイアス状態が変動し、信号品質が劣化する。その影響は、バッファ層や電荷分散膜を介さずに電極を電気光学基板上に形成する構成で特に顕著である。明確な火花放電がないまま、あるいは火花放電を繰り返しながら、トラッキングが進むこともある。トラッキングが進んだ状態で、火花放電あるいはフューズ現象で、通電箇所が開放され通電量が急激に変化すると、バイアス状態が大きく変動し信号品質が劣化する。   If the voltage is further increased from the state of corona discharge, or the distance between the conductor's protruding portion and another conductor is decreased, a spark discharge in which the protruding portion of the conductor and the other conductor are intermittently connected by sparks will occur. Occur. Although the current of the spark discharge is not so large, it is an intermittent and unstable discharge. In the bias electrode of the Mach-Zehnder type modulator, a spark discharge may occur before reaching the complete tracking state. When the energized portion is destroyed by the spark discharge, the bias state changes and the signal quality deteriorates. The influence is particularly remarkable in the configuration in which the electrode is formed on the electro-optic substrate without using the buffer layer or the charge dispersion film. Tracking may progress without clear spark discharge or with repeated spark discharge. If the energized part is opened and the energization amount changes abruptly due to a spark discharge or a fuse phenomenon in a state where tracking is advanced, the bias state fluctuates greatly and signal quality deteriorates.

また、筐体内のハロゲン系などの残留ガスやSn、Inなど蒸気圧の高い金属あるいはその合金が存在すると、電極間への蒸気圧の高い金属の析出などが顕著になり、トラッキング状態の発生、火花放電による通電箇所の破壊が繰り返される。   In addition, if there is a residual gas such as halogen in the housing, or a metal with a high vapor pressure such as Sn or In or an alloy thereof, the deposition of a metal with a high vapor pressure between the electrodes becomes noticeable, the occurrence of a tracking state, The destruction of the energized part by the spark discharge is repeated.

コロナ放電開始の閾値を考慮して、電極間隔の設定や電極間に印加する電圧を適宜設定することが対策の一つであるが、火花放電あるいはフューズ現象によるバイアス変動の影響を軽減するには、電極間の抵抗を下げて常時流れるリーク電流を増やせば良い。バッファ層や電荷分散膜を介さずに電極を電気光学基板上に形成する構成の場合、バイアス電極間の一部に半導電性薄膜を設け、電極間抵抗を1MΩ以下にすれば、火花放電あるいはフューズ現象によるバイアス点変動の影響は実質的に見えなくなる。   Considering the threshold value for the start of corona discharge, setting the electrode spacing and setting the voltage applied between the electrodes is one of the countermeasures, but to reduce the influence of bias fluctuation due to spark discharge or fuse phenomenon It is sufficient to reduce the resistance between the electrodes and increase the leak current that always flows. In the case where the electrode is formed on the electro-optic substrate without using the buffer layer or the charge dispersion film, if a semiconductive thin film is provided in a part between the bias electrodes and the interelectrode resistance is 1 MΩ or less, spark discharge or The effect of bias point fluctuation due to the fuse phenomenon is virtually invisible.

バッファ層や電荷分散膜を介して電極が形成されている場合は、電極間抵抗はおおむね1MΩ以下になっており、電極間に半導電性の膜を形成する必要はない。これにより、電極間の電界を4kV/mm以上としても、トラッキングの発生やトラッキング部の開放によるバイアス状態の変動の影響を回避することが可能となる。バイアス電極間の電界強度については、DCドリフトの非対称性を考慮して、電極間隔や印加電圧を設定すれば良い。   When electrodes are formed via a buffer layer or a charge dispersion film, the interelectrode resistance is generally 1 MΩ or less, and there is no need to form a semiconductive film between the electrodes. Thereby, even if the electric field between the electrodes is set to 4 kV / mm or more, it is possible to avoid the influence of the fluctuation of the bias state due to the occurrence of tracking or the opening of the tracking portion. Regarding the electric field strength between the bias electrodes, the electrode interval and the applied voltage may be set in consideration of the asymmetry of the DC drift.

ただし、電極間のエレクトロマイグレーションによる発生の閾値は十分に考慮する必要がある。エレクトロマイグレーションは電極材料および筐体内のハロゲンなどの存在に強く依存する現象であるが、電極に金(Au)を用いた場合は、10kV/mmでもエレクトロマイグレーションによるトラッキングの発生は軽微であるが、銅(Cu)や銀(Ag)を用いた電極の場合は、5kV/mm程度でもエレクトロマイグレーションの発生が顕著になる。適切な対策が必要である。   However, it is necessary to sufficiently consider the threshold value for occurrence due to electromigration between electrodes. Electromigration is a phenomenon that strongly depends on the presence of the electrode material and halogen in the housing. When gold (Au) is used for the electrode, tracking due to electromigration is slight even at 10 kV / mm. In the case of an electrode using copper (Cu) or silver (Ag), electromigration occurs remarkably even at about 5 kV / mm. Appropriate measures are necessary.

また、マッハツェンダ型光変調器の個体でのばらつきはおおきいが、印加電界が10kV/mmを超えると、LN結晶の絶縁破壊現象の発生が観察されるようになる。また、結晶の自発分極方位と同じ向きのバイアス電界を印加される光導波路においても、DCドリフトが大きく加速される。換言すれば、本技術は、印加電界が1kV/mm〜10kV/mm程度まで、DCバイアスを低減するために有効な技術であるといえる。   In addition, the variation among individual Mach-Zehnder type optical modulators is large, but when the applied electric field exceeds 10 kV / mm, the occurrence of dielectric breakdown of the LN crystal is observed. Also, DC drift is greatly accelerated in an optical waveguide to which a bias electric field having the same direction as the spontaneous polarization orientation of the crystal is applied. In other words, this technique can be said to be an effective technique for reducing the DC bias until the applied electric field is about 1 kV / mm to 10 kV / mm.

本実施形態に係る導波路型光素子10では、上述のように、基準電極152の電位に対する負電圧が印加された動作電極154(又は156)と基準電極152とにより基板100内に発生する電界強度が、基準電極152の電位に対する正電圧が印加された動作電極156(又は154)と基準電極152とにより基板100内に発生する電界強度よりも小さくなるように、基準電極152、動作電極154、156の電位Va0、Va1、Va2が制御されるので、基板100へのキャリヤ(電子)注入を抑制してDCドリフトの増加を抑制し、かつ基準電極152の電位に対する負電圧で駆動される動作電極(例えば、動作電極154)と基準電極152との間の放電を抑制しつつ、全体として、並行導波路104、106間にドリフト補償に必要な屈折率差を確保することができる。   In the waveguide type optical element 10 according to the present embodiment, as described above, an electric field generated in the substrate 100 by the working electrode 154 (or 156) to which a negative voltage with respect to the potential of the reference electrode 152 is applied and the reference electrode 152. The reference electrode 152 and the working electrode 154 have a strength smaller than the electric field strength generated in the substrate 100 by the working electrode 156 (or 154) to which a positive voltage with respect to the potential of the reference electrode 152 is applied and the reference electrode 152. Since the potentials Va0, Va1, Va2 of 156 are controlled, the carrier (electron) injection into the substrate 100 is suppressed to suppress an increase in DC drift, and the operation is driven by a negative voltage with respect to the potential of the reference electrode 152. As a whole, drift between the parallel waveguides 104 and 106 is suppressed while suppressing discharge between the electrode (for example, the working electrode 154) and the reference electrode 152. It is possible to ensure the refractive index difference required compensation.

なお、本実施形態では、基板100とバイアス電極150との間に非導電性の中間層(例えばSiO2等のバッファ層)が形成されない構成としたが、本願発明の発明者の知見によれば、そのような非導電性の中間層(例えばSiO2等のLNよりも低誘電率の材料を用いたバッファ層)が形成される場合でも、負電圧で駆動される光導波路においては、正電圧で駆動される光導波路よりも、DCドリフト現象が進みやすい(すなわち、電圧シフトの増加が進みやすい)。このDCドリフトは、バッファ層内部における酸素欠損や金属不純物が存在すると電極からキャリヤが注入されやすくなるものと考えられ、当該キャリヤとしては、ホール(正電荷)よりも移動度の高い電子(負電荷)のほうが、より注入されやすいことから、負の電位差で駆動される光導波路において上記DCドリフト現象が進みやすいものと考えられる。   In the present embodiment, a non-conductive intermediate layer (for example, a buffer layer such as SiO2) is not formed between the substrate 100 and the bias electrode 150, but according to the knowledge of the inventors of the present invention, Even when such a non-conductive intermediate layer (for example, a buffer layer using a material having a lower dielectric constant than LN such as SiO 2) is formed, the optical waveguide driven with a negative voltage is driven with a positive voltage. The DC drift phenomenon is more likely to proceed than the optical waveguide that is formed (that is, the increase in voltage shift is likely to proceed). This DC drift is considered to facilitate the injection of carriers from the electrode when oxygen vacancies or metal impurities are present inside the buffer layer. As the carriers, electrons (negative charges) having a higher mobility than holes (positive charges). ) Is more likely to be injected, so the DC drift phenomenon is likely to proceed in an optical waveguide driven with a negative potential difference.

したがって、本実施形態における制御装置160によるバイアス電極150の駆動方法は、LN基板100とバイアス電極150との間にバッファ層がある場合においても、ドリフトの増加と電極間放電とを抑制しつつ、全体としてドリフト補償に必要な屈折率差を並行導波路104、106に発生させるという効果を奏することができる。   Therefore, the driving method of the bias electrode 150 by the control device 160 in the present embodiment suppresses increase in drift and inter-electrode discharge even when there is a buffer layer between the LN substrate 100 and the bias electrode 150. As a whole, an effect of generating a difference in refractive index necessary for drift compensation in the parallel waveguides 104 and 106 can be achieved.

また、本実施形態では、基板100がXカットのLN基板であるものとして説明したが、ZカットのLN基板を用いるものとしても良い。この場合には、動作電極154、156は、例えば上述したSiO2等から成るバッファ層(非導電性の中間層に対応する)を介して並行導波路104、106の直上部に形成され、基準電極152は、動作電極154、156と所定距離だけ離れて平行にまたは略平行に配置する。   In the present embodiment, the substrate 100 is described as an X-cut LN substrate. However, a Z-cut LN substrate may be used. In this case, the working electrodes 154 and 156 are formed immediately above the parallel waveguides 104 and 106 via the buffer layer (corresponding to the non-conductive intermediate layer) made of, for example, SiO 2 described above, and the reference electrode 152 is arranged in parallel or substantially parallel to the working electrodes 154 and 156 by a predetermined distance.

〔第2実施形態〕
次に、本発明の第2の実施形態について説明する。
図2は、本発明の第2の実施形態に係る導波路型光素子の構成及び駆動方法を説明する図である。なお、図2においては、図1に示す第1の実施形態に係る導波路型光素子10と同じ構成要素については、図1と同じ符号を用いるものとし、上述した第1の実施形態に係る導波路型光素子10における説明を援用するものとする。
[Second Embodiment]
Next, a second embodiment of the present invention will be described.
FIG. 2 is a diagram for explaining the configuration and driving method of a waveguide type optical device according to the second embodiment of the present invention. 2, the same reference numerals as those in FIG. 1 are used for the same components as those of the waveguide type optical element 10 according to the first embodiment shown in FIG. 1, and according to the above-described first embodiment. The description of the waveguide type optical element 10 is incorporated.

本導波路型光素子20は、第1の実施形態に係る導波路型光素子10と同様の構成を有するが、バイアス電極150に代えて、バイアス電極250を備える。バイアス電極250は、バイアス電極150と同様の構成を有するが、基準電極152、動作電極154、156に代えて基準電極252、動作電極254、256を有する。動作電極254、256は、それぞれ、並行導波路104、106を挟んで基準電極252と対向するように、並行導波路104、106と平行に形成されている。ただし、動作電極254と基準電極252との離間距離が、動作電極256と基準電極252との離間距離よりも大きくなるように構成されている。   The waveguide type optical element 20 has the same configuration as the waveguide type optical element 10 according to the first embodiment, but includes a bias electrode 250 instead of the bias electrode 150. The bias electrode 250 has the same configuration as the bias electrode 150, but includes a reference electrode 252 and working electrodes 254 and 256 instead of the reference electrode 152 and the working electrodes 154 and 156. The working electrodes 254 and 256 are formed in parallel with the parallel waveguides 104 and 106 so as to face the reference electrode 252 with the parallel waveguides 104 and 106 interposed therebetween, respectively. However, the distance between the working electrode 254 and the reference electrode 252 is configured to be larger than the distance between the working electrode 256 and the reference electrode 252.

このため、本実施形態の導波路型光素子20では、制御装置260から制御される基準電極252、動作電極254、256の各電位Vb0、Vb1、Vb2を、Vb2=Vb1<Vb0としても、基準電極252と動作電極254とにより基板100内に発生する負方向電界(即ち、基板100の自発分極方位に対し逆方向の電界)の電界強度を、動作電極256と基準電極252とにより基板100内に発生する正方向電界(即ち、基板100の自発分極方位と同じ方向の電界)の電界強度よりも小さくなるようにすることができる。このような構成は、特に、Vb0を接地電位に設定すれば、Vb1及びVb2を同じ電位として生成することができるので、制御装置260の構成を簡略化することができる。また、Vb1及びVb2を接地電位に設定し、Vb0を0V以上の電位としてもよい。   For this reason, in the waveguide type optical element 20 of the present embodiment, even if the potentials Vb0, Vb1, and Vb2 of the reference electrode 252 and the operation electrodes 254 and 256 controlled by the control device 260 are Vb2 = Vb1 <Vb0, the reference The electric field strength of the negative direction electric field generated in the substrate 100 by the electrode 252 and the working electrode 254 (that is, the electric field in the direction opposite to the spontaneous polarization direction of the substrate 100) is set in the substrate 100 by the working electrode 256 and the reference electrode 252. Can be made smaller than the electric field strength of the positive direction electric field (that is, the electric field in the same direction as the spontaneous polarization direction of the substrate 100). Such a configuration can simplify the configuration of the control device 260 because Vb1 and Vb2 can be generated with the same potential, particularly when Vb0 is set to the ground potential. Further, Vb1 and Vb2 may be set to the ground potential, and Vb0 may be set to a potential of 0 V or higher.

〔第3実施形態〕
次に、本発明の第3の実施形態について説明する。
図3は、本発明の第3の実施形態に係る導波路型光素子の構成及び駆動方法を説明する図である。なお、図3及び後述する図4においては、図1に示す第1の実施形態に係る導波路型光素子10と同じ構成要素については、図1と同じ符号を用いるものとし、上述した第1の実施形態に係る導波路型光素子10における説明を援用するものとする。
[Third Embodiment]
Next, a third embodiment of the present invention will be described.
FIG. 3 is a diagram for explaining the configuration and driving method of a waveguide type optical element according to the third embodiment of the present invention. In FIG. 3 and FIG. 4 to be described later, the same reference numerals as those in FIG. 1 are used for the same components as those of the waveguide type optical element 10 according to the first embodiment shown in FIG. The description of the waveguide type optical element 10 according to the embodiment is incorporated.

本導波路型光素子30は、第1の実施形態に係る導波路型光素子10と同様の構成を有するが、バイアス電極150に代えて、バイアス電極350を備える。バイアス電極250は、バイアス電極150と同様の構成を有するが、基準電極152、動作電極154、156に代えて基準電極352、動作電極354、356を有する。   The waveguide type optical element 30 has the same configuration as the waveguide type optical element 10 according to the first embodiment, but includes a bias electrode 350 instead of the bias electrode 150. The bias electrode 250 has the same configuration as the bias electrode 150, but includes a reference electrode 352 and working electrodes 354 and 356 instead of the reference electrode 152 and the working electrodes 154 and 156.

図4は、図3に示す導波路型光素子30のAA断面矢視図である。基準電極352、動作電極354、356は、それぞれ基準電極152、動作電極154、156と同様の構成を有するが、動作電極354と基板100との間に非導電性の中間層370が形成されている点が異なる。   4 is a cross-sectional view of the waveguide type optical element 30 shown in FIG. The reference electrode 352 and the working electrodes 354 and 356 have the same configuration as the reference electrode 152 and the working electrodes 154 and 156, respectively, but a non-conductive intermediate layer 370 is formed between the working electrode 354 and the substrate 100. Is different.

このため、本実施形態の導波路型光素子30では、制御装置360から制御される基準電極352、動作電極354、356の各電位Vc0、Vc1、Vc2を、Vc2=Vc1<Vc0としても、基準電極352と動作電極354とにより基板100内に発生する負方向電界(即ち、基板100の自発分極方位に対し逆方向の電界)の電界強度を、動作電極356と基準電極352とにより基板100内に発生する正方向電界(即ち、基板100の自発分極方位と同じ方向の電界)の電界強度よりも小さくなるようにすることができる。このような構成は、特に、Vc0を接地電位に設定すれば、Vc1及びVc2を同じ電位として生成することができるので、制御装置360の構成を簡略化することができる。また、Vc1及びVc2を接地電位に設定し、Vc0を0V以上の電位としてもよい。   For this reason, in the waveguide type optical element 30 of the present embodiment, even if the potentials Vc0, Vc1, and Vc2 of the reference electrode 352 and the working electrodes 354 and 356 controlled by the control device 360 are Vc2 = Vc1 <Vc0, the reference The electric field strength of the negative direction electric field generated in the substrate 100 by the electrode 352 and the working electrode 354 (that is, the electric field in the direction opposite to the spontaneous polarization direction of the substrate 100) is Can be made smaller than the electric field strength of the positive direction electric field (that is, the electric field in the same direction as the spontaneous polarization direction of the substrate 100). In such a configuration, in particular, if Vc0 is set to the ground potential, Vc1 and Vc2 can be generated as the same potential, so that the configuration of the control device 360 can be simplified. Further, Vc1 and Vc2 may be set to the ground potential, and Vc0 may be set to a potential of 0 V or higher.

なお、本実施形態では、基準電極352及び動作電極356と基板100との間には中間層370が形成されていないものとしたが、これに限らず、非導電性の中間層370を基準電極352及び動作電極356とLN基板100との間にも形成するものとし、動作電極354と基板100との間に形成される中間層370の厚さを、基準電極352及び動作電極356と基板100との間に形成される中間層370の厚さより厚くすることで、上記と同様の効果を得ることができる。   In this embodiment, the intermediate layer 370 is not formed between the reference electrode 352 and the working electrode 356 and the substrate 100. However, the present invention is not limited to this, and the non-conductive intermediate layer 370 is used as the reference electrode. 352 and the working electrode 356 and the LN substrate 100 are formed, and the thickness of the intermediate layer 370 formed between the working electrode 354 and the substrate 100 is set to be the reference electrode 352 and the working electrode 356 and the substrate 100. By making it thicker than the thickness of the intermediate layer 370 formed between the two, an effect similar to the above can be obtained.

以上、説明したように、上述した第1〜第3の実施形態に係る導波路型光素子(10等)は、2つの並行導波路(104、106)に互いに逆方向の電界をそれぞれ印加して当該2つの並行導波路間に屈折率差を発生させるためのバイアス電極(150等)を有し、バイアス電極は、基準となる電位が与えられる基準電極(152等)と、当該基準電極の電位に対する正電圧又は負電圧が印加される2つの動作電極(154、156等)と、を備え、一方の動作電極(154等)と基準電極との間に基板(100)を構成する結晶の自発分極方位と逆向きの電界(負方向電界)を生じ、他方の動作電極(156等)と基準電極との間に上記結晶の自発分極方位と同じ向きの電界(正方向電界)を生じ、且つ、上記負方向電界の電界強度が上記正方向電界の電界強度よりも小さくなるように、上記基準電極及び2つの動作電極に印加する電位が制御される。   As described above, the waveguide type optical elements (10, etc.) according to the first to third embodiments described above apply electric fields in opposite directions to the two parallel waveguides (104, 106), respectively. A bias electrode (150, etc.) for generating a refractive index difference between the two parallel waveguides, and the bias electrode includes a reference electrode (152, etc.) to which a reference potential is applied, and the reference electrode Two working electrodes (154, 156, etc.) to which a positive voltage or a negative voltage with respect to the potential is applied, and the crystal constituting the substrate (100) between one working electrode (154, etc.) and the reference electrode An electric field opposite to the spontaneous polarization orientation (negative electric field) is generated, and an electric field (positive electric field) in the same direction as the spontaneous polarization orientation of the crystal is generated between the other working electrode (156, etc.) and the reference electrode, And, the electric field strength of the negative direction electric field is As it is smaller than the electric field strength in the direction the electric field, the potential applied to the reference electrode and two working electrodes is controlled.

これにより、本導波路型光素子(10等)は、基板(100)又は中間層(370)へのキャリヤ(電子)注入を抑制してドリフトの増加を抑制し、かつ基準電極(152等)の電位に対する負電圧が印加される動作電極(154等)と基準電極との間の放電を抑制しつつ、全体として、並行導波路(104、106)間にドリフト補償に必要な屈折率差を確保することができる。   As a result, the waveguide type optical element (such as 10) suppresses carrier (electron) injection into the substrate (100) or the intermediate layer (370) to suppress an increase in drift, and the reference electrode (such as 152). As a whole, the difference in refractive index required for drift compensation between the parallel waveguides (104, 106) is suppressed while suppressing the discharge between the working electrode (154, etc.) to which a negative voltage is applied and the reference electrode. Can be secured.

上述した実施形態においては、説明と図示を簡単にするため、基板100としてLNのX板、Y板を用いた構成で説明してきたが、本発明に係る導波路型光素子は、基板100としてLN−Z板や、そのほかの方位の基板、あるいは凹凸構造のある基板を用いても構成することができる。すなわち、一方の動作電極と基準電極との間に基板100を構成する結晶の自発分極方位と逆向きの電界(負方向電界)を生じ、他方の動作電極と基準電極との間に基板100を構成する結晶の自発分極方位と同じ向きの電界(正方向電界)を生じ、且つ、上記負方向電界の電界強度が上記正方向電界の電界強度よりも小さくなるように、上記基準電極及び2つの動作電極に印加する電位を制御することで、ドリフト電圧を低減することが可能となる。なお、並行する光導波路の片方にのみバイアス電界を印加する場合には、自発分極方位と同じ方位で電界を印加した方が有利であることは、言うまでもない。また、RF電極とバイアス電極を別に設けた事例を示してきたが、RF電極とバイアス電極を共用する構成においても、電極間の電界が高い場合には同様の現象が起き、上記に示してきた構成が対策として有効であることは、言うまでもない。   In the above-described embodiment, for the sake of simplicity of explanation and illustration, the substrate 100 has been described as being configured using an LN X plate and a Y plate. However, the waveguide optical element according to the present invention is the substrate 100. An LN-Z plate, a substrate having another orientation, or a substrate having a concavo-convex structure can be used. That is, an electric field (negative electric field) opposite to the spontaneous polarization orientation of the crystal constituting the substrate 100 is generated between one working electrode and the reference electrode, and the substrate 100 is placed between the other working electrode and the reference electrode. An electric field (positive electric field) having the same direction as the spontaneous polarization orientation of the crystal constituting the crystal is generated, and the electric field strength of the negative electric field is smaller than the electric field strength of the positive electric field. By controlling the potential applied to the working electrode, the drift voltage can be reduced. Needless to say, when a bias electric field is applied only to one of the parallel optical waveguides, it is advantageous to apply the electric field in the same direction as the spontaneous polarization direction. In addition, an example in which the RF electrode and the bias electrode are separately provided has been shown, but even in the configuration in which the RF electrode and the bias electrode are shared, the same phenomenon occurs when the electric field between the electrodes is high, and has been described above. Needless to say, the configuration is effective as a countermeasure.

10、20、30・・・導波路型光素子、100・・・基板、102・・・MZ型光導波路、104、106・・・並行導波路、108・・・RF電極、110、112・・・接地電極、150、250、350・・・バイアス電極、152、252、352・・・基準電極、154、156、254、256、354、356・・・動作電極、160、260、360・・・制御装置、370・・・中間層。   10, 20, 30 ... waveguide type optical element, 100 ... substrate, 102 ... MZ type optical waveguide, 104, 106 ... parallel waveguide, 108 ... RF electrode, 110, 112 ..Ground electrode, 150, 250, 350 ... Bias electrode, 152,252,352 ... Reference electrode, 154,156,254,256,354,356 ... Operating electrode, 160,260,360 ..Control device, 370 ... intermediate layer.

Claims (5)

電気光学効果を有する基板と、
前記基板上に形成された2つの光導波路と、
前記2つの光導波路に、前記基板の自発分極方位に沿って互いに逆向き方向の電界をそれぞれ印加して、当該2つの光導波路間に屈折率差を発生させるための制御電極と、
を備え、
前記制御電極は、前記2つの光導波路の間に配置された基準電極と、前記基準電極に対しそれぞれ前記2つの光導波路を挟んで当該基準電極と平行に又は略平行に配置された2つの動作電極と、を含み、且つ、
前記基準電極と一の動作電極との離間距離が、前記基準電極と前記他の動作電極との離間距離よりも大きくなるように配置されている、
導波路型光素子。
A substrate having an electro-optic effect;
Two optical waveguides formed on the substrate;
A control electrode for applying an electric field in a direction opposite to each other along the spontaneous polarization direction of the substrate to the two optical waveguides to generate a refractive index difference between the two optical waveguides;
With
The control electrode includes a reference electrode disposed between the two optical waveguides, and two operations disposed in parallel or substantially in parallel with the reference electrode with the two optical waveguides interposed therebetween. An electrode, and
The distance between the reference electrode and one working electrode is arranged to be larger than the distance between the reference electrode and the other working electrode.
Waveguide type optical element.
電気光学効果を有する基板と、
前記基板上に形成された2つの光導波路と、
前記2つの光導波路に、前記基板の自発分極方位に沿って互いに逆向き方向の電界をそれぞれ印加して、当該2つの光導波路間に屈折率差を発生させるための制御電極と、
を備え、
前記制御電極は、前記2つの光導波路の間に配置された基準電極と、前記基準電極に対しそれぞれ前記2つの光導波路を挟んで当該基準電極と平行に又は略平行に配置された2つの動作電極と、を含み、且つ、
一の前記動作電極と前記基板との間には非導電性の中間層が配置されており、
他の前記動作電極と前記基板との間には非導電性の中間層が配置されていない、
導波路型光素子。
A substrate having an electro-optic effect;
Two optical waveguides formed on the substrate;
A control electrode for applying an electric field in a direction opposite to each other along the spontaneous polarization direction of the substrate to the two optical waveguides to generate a refractive index difference between the two optical waveguides;
With
The control electrode includes a reference electrode disposed between the two optical waveguides, and two operations disposed in parallel or substantially in parallel with the reference electrode with the two optical waveguides interposed therebetween. An electrode, and
A non-conductive intermediate layer is disposed between one working electrode and the substrate;
No non-conductive intermediate layer is disposed between the other working electrode and the substrate,
Waveguide type optical element.
電気光学効果を有する基板と、
前記基板上に形成された2つの光導波路と、
前記2つの光導波路に、前記基板の自発分極方位に沿って互いに逆向き方向の電界をそれぞれ印加して、当該2つの光導波路間に屈折率差を発生させるための制御電極と、
を備え、
前記制御電極は、前記2つの光導波路の間に配置された基準電極と、前記基準電極に対しそれぞれ前記2つの光導波路を挟んで当該基準電極と平行に又は略平行に配置された2つの動作電極と、を含み、
前記2つの動作電極と前記基板との間には非導電性の中間層が配置されており、且つ、
一の前記動作電極と前記基板との間の前記中間層は、他の前記動作電極と前記基板との間の前記中間層より厚い、
導波路型光素子。
A substrate having an electro-optic effect;
Two optical waveguides formed on the substrate;
A control electrode for applying an electric field in a direction opposite to each other along the spontaneous polarization direction of the substrate to the two optical waveguides to generate a refractive index difference between the two optical waveguides;
With
The control electrode includes a reference electrode disposed between the two optical waveguides, and two operations disposed in parallel or substantially in parallel with the reference electrode with the two optical waveguides interposed therebetween. An electrode, and
A non-conductive intermediate layer is disposed between the two working electrodes and the substrate; and
The intermediate layer between one working electrode and the substrate is thicker than the intermediate layer between another working electrode and the substrate;
Waveguide type optical element.
前記基板はニオブ酸リチウムから成り、
前記2つの光導波路は、マッハツェンダ型光導波路を構成する2つの並行導波路であって、
前記制御電極は、ドリフト現象を補償するためのバイアス電極である、
請求項1ないし3のいずれか一項に記載の導波路型光素子。
The substrate comprises lithium niobate;
The two optical waveguides are two parallel waveguides constituting a Mach-Zehnder type optical waveguide,
The control electrode is a bias electrode for compensating for a drift phenomenon.
The waveguide type optical device according to any one of claims 1 to 3.
請求項1ないし4のいずれか一項に記載の導波路型光素子の駆動方法であって、
前記一の動作電極と前記基準電極との間に第1の電圧を印加して、前記一の動作電極と前記基準電極との間の前記基板内に、前記自発分極方位に対し逆方向に電界を生じさせる工程と、
前記他の動作電極と前記基準電極との間に第2の電圧を印加して、前記他の動作電極と前記基準電極との間の前記基板内に、前記自発分極方位と同じ方向に電界を生じさせる工程と、
を有し、
前記第1及び第2の電圧は、前記基板内に生ずる前記自発分極方位に対し逆方向の電界の電界強度が、前記自発分極方位と同じ方向の電界の電界強度よりも小さくなるように設定される、方法。
A method for driving a waveguide-type optical element according to any one of claims 1 to 4,
A first voltage is applied between the one working electrode and the reference electrode, and an electric field is applied in a direction opposite to the spontaneous polarization orientation in the substrate between the one working electrode and the reference electrode. A step of generating
A second voltage is applied between the other working electrode and the reference electrode, and an electric field is applied in the same direction as the spontaneous polarization azimuth in the substrate between the other working electrode and the reference electrode. A process of generating;
Have
The first and second voltages are set such that the electric field strength of the electric field in the direction opposite to the spontaneous polarization direction generated in the substrate is smaller than the electric field strength of the electric field in the same direction as the spontaneous polarization direction. The way.
JP2015111616A 2015-06-01 2015-06-01 Method of driving waveguide type optical device, and waveguide type optical device used in the driving method Active JP6503900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015111616A JP6503900B2 (en) 2015-06-01 2015-06-01 Method of driving waveguide type optical device, and waveguide type optical device used in the driving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015111616A JP6503900B2 (en) 2015-06-01 2015-06-01 Method of driving waveguide type optical device, and waveguide type optical device used in the driving method

Publications (2)

Publication Number Publication Date
JP2016224315A true JP2016224315A (en) 2016-12-28
JP6503900B2 JP6503900B2 (en) 2019-04-24

Family

ID=57747831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015111616A Active JP6503900B2 (en) 2015-06-01 2015-06-01 Method of driving waveguide type optical device, and waveguide type optical device used in the driving method

Country Status (1)

Country Link
JP (1) JP6503900B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018180248A1 (en) * 2017-03-31 2018-10-04 住友大阪セメント株式会社 Light modulation element
WO2018181297A1 (en) * 2017-03-31 2018-10-04 住友大阪セメント株式会社 Optical modulation element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02269309A (en) * 1989-03-14 1990-11-02 Fujitsu Ltd Optical modulating system
JPH04304415A (en) * 1991-04-01 1992-10-27 Nippon Telegr & Teleph Corp <Ntt> Optical control element
JPH11505337A (en) * 1995-05-18 1999-05-18 インテグレイテッド オプティカル コンポーネンツ リミテッド Integrated optical modulator
JP2001290115A (en) * 2000-03-08 2001-10-19 Jds Uniphase Corp Bias stability reinforced electrooptical modulator
US6532315B1 (en) * 2000-10-06 2003-03-11 Donald J. Lenkszus Variable chirp optical modulator having different length electrodes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02269309A (en) * 1989-03-14 1990-11-02 Fujitsu Ltd Optical modulating system
JPH04304415A (en) * 1991-04-01 1992-10-27 Nippon Telegr & Teleph Corp <Ntt> Optical control element
JPH11505337A (en) * 1995-05-18 1999-05-18 インテグレイテッド オプティカル コンポーネンツ リミテッド Integrated optical modulator
JP2001290115A (en) * 2000-03-08 2001-10-19 Jds Uniphase Corp Bias stability reinforced electrooptical modulator
US6532315B1 (en) * 2000-10-06 2003-03-11 Donald J. Lenkszus Variable chirp optical modulator having different length electrodes

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018180248A1 (en) * 2017-03-31 2018-10-04 住友大阪セメント株式会社 Light modulation element
WO2018181297A1 (en) * 2017-03-31 2018-10-04 住友大阪セメント株式会社 Optical modulation element
JP2018173453A (en) * 2017-03-31 2018-11-08 住友大阪セメント株式会社 Light modulation element
JP2018173454A (en) * 2017-03-31 2018-11-08 住友大阪セメント株式会社 Light modulation element

Also Published As

Publication number Publication date
JP6503900B2 (en) 2019-04-24

Similar Documents

Publication Publication Date Title
US7324257B2 (en) Low bias drift modulator with buffer layer
US7408693B2 (en) Electro-optic device
EP1271220B1 (en) Coplanar integrated optical waveguide electro-optical modulator
US9946100B2 (en) Waveguide type optical element
JPH03253815A (en) Optical waveguide device
JP3943019B2 (en) Broadband electro-optic modulator
JP6503900B2 (en) Method of driving waveguide type optical device, and waveguide type optical device used in the driving method
US7627200B2 (en) Optical device
US20030031400A1 (en) Integrated optical waveguide device
JP2006317550A (en) Optical modulator
JP2015014715A (en) Electro-optic device
Courjal et al. LiNbO 3 Mach-Zehnder modulator with chirp adjusted by ferroelectric domain inversion
EP1271221A1 (en) Integrated optical waveguide device
JP2007199500A (en) Optical modulator
US9348156B2 (en) Optical waveguide element and method for manufacturing optical waveguide element
US20030012480A1 (en) Integrated optical waveguide device
JP5573855B2 (en) Optical device
JP2007121515A (en) Optical element substrate and wavelength conversion device using substrate
JPH0829745A (en) Optical waveguide device
US20230022900A1 (en) Electro-optic plasmonic devices
EP1273960A1 (en) Integrated ferroelectric optical waveguide device
WO2013015294A1 (en) Optical waveguide element
US20200409188A1 (en) Light modulation element
JP2006139236A (en) Optical modulator
JP2007071896A (en) Optical modulator

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170719

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170727

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190311

R150 Certificate of patent or registration of utility model

Ref document number: 6503900

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150