JP2016223956A - Early coastal tsunami prediction method using tsunami propagation characteristics - Google Patents

Early coastal tsunami prediction method using tsunami propagation characteristics Download PDF

Info

Publication number
JP2016223956A
JP2016223956A JP2015111808A JP2015111808A JP2016223956A JP 2016223956 A JP2016223956 A JP 2016223956A JP 2015111808 A JP2015111808 A JP 2015111808A JP 2015111808 A JP2015111808 A JP 2015111808A JP 2016223956 A JP2016223956 A JP 2016223956A
Authority
JP
Japan
Prior art keywords
tsunami
waveform
coastal
coast
early
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015111808A
Other languages
Japanese (ja)
Other versions
JP6437883B2 (en
Inventor
靖士 津野
Seiji Tsuno
靖士 津野
了 藤原
Ryo Fujiwara
了 藤原
眞理子 是永
Mariko Korenaga
眞理子 是永
紀彦 橋本
Norihiko Hashimoto
紀彦 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Itochu Techno Solutions Corp
Original Assignee
Railway Technical Research Institute
Itochu Techno Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute, Itochu Techno Solutions Corp filed Critical Railway Technical Research Institute
Priority to JP2015111808A priority Critical patent/JP6437883B2/en
Publication of JP2016223956A publication Critical patent/JP2016223956A/en
Application granted granted Critical
Publication of JP6437883B2 publication Critical patent/JP6437883B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an early coastal tsunami prediction method using tsunami propagation characteristics, which early predicts a tsunami waveform in the vicinity of a coast and the maximum tsunami water level at the coast right after the incident of the tsunami waveform in a sea area, by using a tsunami incident waveform observed in the sea area and tsunami propagation characteristics according to seabed topography previously prepared.SOLUTION: An early coastal tsunami prediction method using tsunami propagation characteristics includes: a first step (a) of predicting a tsunami waveform in the vicinity of a coast by using a tsunami incident waveform observed in a sea area and tsunami propagation characteristics according to seabed topography previously prepared; and a second step (b) of performing small-scale two-dimensional tsunami simulation including target points between the vicinity of the coast and the coast by using the tsunami waveform in the vicinity of the coast, which is predicted in the first step (a), so as to predict a coastal tsunami waveform and a coastal wave height.SELECTED DRAWING: Figure 1

Description

本発明は、津波伝播特性を利用した沿岸の早期津波予測方法に関するものである。   The present invention relates to a coastal early tsunami prediction method using tsunami propagation characteristics.

従来、津波伝播特性を利用した沿岸の早期津波予測方法については、提案されていないのが現状である。   Conventionally, no coastal early tsunami prediction method using tsunami propagation characteristics has been proposed.

金沢敏彦:日本海溝海底地震津波観測網について、地震ジャーナル、Vol. 55、No. 6、pp. 28−33、2013Toshihiko Kanazawa: About the Japan Trench Submarine Earthquake Tsunami Observation Network, Earthquake Journal, Vol. 55, No. 6, pp. 28-33, 2013 杉野英治、呉長江、是永眞理子、根本信、岩渕洋子、蛯沢勝三:原子力サイトにおける2011東北地震津波の検証、日本地震工学会論文集、 13 、2(特集号)、pp. 2−21 、2013Eiji Sugino, Nagatake Kure, Riko Korenaga, Shin Nemoto, Yoko Iwabuchi, Katsuzo Serizawa: Verification of the 2011 Tohoku Earthquake Tsunami at the Nuclear Site, Proceedings of the Japan Earthquake Engineering Society, 13, 2 (Special Issue), pp. 2-21 2013 Satake, K., Fujii, Y., Harada, T. and Namegaya, Y. : Time and Space Distribution of Coseismic Slip of the 2011 Tohoku Earthquake as Inferred from Tsunami Waveform Data, Bull. Seismol. Soc. Am.,103, pp. 1473−1492, 2013Satake, K., Fujii, Y., Harada, T. and Namegaya, Y.:.... Time and Space Distribution of Coseismic Slip of the 2011 Tohoku Earthquake as Inferred from Tsunami Waveform Data, Bull Seismol Soc Am, 103, pp. 1473-1492, 2013 内閣府: 南海トラフの巨大地震モデル検討会、第12回会合参考資料、http;//www. bousai. go. jp/jishin/chubou/nankai_trough/12/sub_1. pdf、2012Cabinet Office: Nankai Trough Earthquake Review Committee, 12th meeting reference materials, http://www.bousai.go.jp/jishin/chubou/nankai_trou/12/sub_1.pdf, 2012 海上保安庁:海底地形デジタルデータ「M7000シリーズ」Japan Coast Guard: Digital undersea terrain data "M7000 series" 長谷川賢一、鈴木孝夫、稲垣和男、首藤伸夫:津波数値実験における格子間隔と時間積分間隔に関する研究、土木学会論文集、第381号/II−7、No. 2、pp. 111−120、1987Kenichi Hasegawa, Takao Suzuki, Kazuo Inagaki, Nobuo Shudo: Research on lattice spacing and time integration interval in tsunami numerical experiments, Journal of Japan Society of Civil Engineers, 381 / II-7, No. 2, pp. 111-120, 1987 国土地理院:「5mメッシュ標高データ」、http;//www. gsi. go. jp/Geographical Survey Institute: “5m mesh elevation data”, http://www.gsi.go.jp/ Okada, Y. : Internal Deformation due to Shear and Tensile Faults in a Half−Space, Bull. Seismol. Soc. Am.,Vol. 82, No. 2, pp. 1018−1040, 1992Okada, Y .: Internal Deformation due to Shear and Tensile Faults in a Half-Space, Bull. Seismol. Soc. Am., Vol. 82, No. 2, 1992. Imamura, F., Shuto, N. and Goto, C. : Numerical Simulations of the Transoceanic Propagation of Tsunamis, 6th Congress APD−IAHR, pp. 265−272, 1988Imamura, F., Shuto, N. and Goto, C .: Numeric Simulations of the Transnational Propagation of Tsunamis, 6th Congress APD-IAHR, pp. 26 pp. 26 後藤智明:津波数値計算、1986年度(第22回)水工学に関する夏期研修会講義集Bコース、土木学会水理委員会、B−3−1〜B−3−21、1986Tomoaki Goto: Tsunami Numerical Calculation, 1986 (22nd) Summer Workshop Lecture on Water Engineering, B Course, Japan Society of Civil Engineers, Hydraulic Committee, B-3-1 to B-3-21, 1986 ナウファス:国土交通省港湾局全国港湾海洋波浪情報網、http;//www. mlit. go. jp/kowan/nowphas/Naufus: Ministry of Land, Infrastructure, Transport and Tourism Port Bureau National Port Ocean Wave Information Network, http://www.mlit.go.jp/kouwan/nowphas/ 藤原了、田宮貴洋、是永真理子、橋本紀彦:津波波源モデルの違いによる津波波力の差異の評価、日本地震学会2013年度秋季大会、2013Ryo Fujiwara, Takahiro Tamiya, Mariko Korenaga, Norihiko Hashimoto: Evaluation of differences in tsunami wave power due to differences in tsunami wave source models, 2013 Seismological Society of Japan Fall Meeting, 2013 江原義郎:デジタル信号処理、東京電機大学出版局、p. 38、1991Yoshiro Ehara: Digital signal processing, Tokyo Denki University Press, p. 38, 1991 相田勇:三陸沖の古い津波のシミュレーション、地震研究所彙報、52、pp. 71−101、1977Isa Isamu: Simulation of an old tsunami off Sanriku, Bulletin of Earthquake Research Institute, 52, pp. 71-101, 1977

本発明は、上記状況に鑑みて、海域で観測された津波入射波形と事前に準備した海底地形による津波伝播特性を利用することにより、海域での津波波形入射直後に沿岸近傍の津波波形と沿岸の最大津波水位を早期に予測する、津波伝播特性を利用した沿岸の早期津波予測方法を提供することを目的とする。   In view of the above situation, the present invention uses the tsunami incident waveform observed in the sea area and the tsunami propagation characteristics by the seabed topography prepared in advance, so that the tsunami waveform near the coast immediately after the tsunami waveform incidence in the sea area and the coast The purpose of this project is to provide an early coastal tsunami prediction method using tsunami propagation characteristics, which predicts the maximum tsunami water level at an early stage.

本発明は、上記目的を達成するために、
〔1〕津波伝播特性を利用した沿岸の早期津波予測方法において、
(a)海域で観測された津波入射波形と事前に準備した海底地形による津波伝播特性を利用することにより、沿岸近傍の津波波形を予測する第1のステップと、(b)前記第1のステップ(a)で予測した沿岸近傍の津波波形を用いて、沿岸近傍から沿岸の対象地点を含めた小規模な2次元津波シミュレーションを行うことにより、沿岸の津波波形と波高を予測する第2のステップとを施すことを特徴とする。
In order to achieve the above object, the present invention provides
[1] In coastal early tsunami prediction method using tsunami propagation characteristics,
(A) a first step of predicting a tsunami waveform in the vicinity of the coast by using a tsunami incident waveform observed in the sea area and a tsunami propagation characteristic by a seabed topography prepared in advance; and (b) the first step. The second step of predicting the coastal tsunami waveform and wave height by performing a small two-dimensional tsunami simulation from the coastal region to the coastal target point using the coastal tsunami waveform predicted in (a). It is characterized by giving.

〔2〕上記〔1〕記載の津波伝播特性を利用した沿岸の早期津波予測方法において、前記第1のステップの津波伝播特性G2(τ)は、小断層すべりに対する海域入射地点のシミュレーション波形S2(t)と沿岸近傍予測地点のシミュレーション波形X2(t)を周波数領域でデコンボリューションすることにより算出し、前記津波伝播特性G2(τ)と全断層すべりに対する海域入射地点の観測津波波形S1(t)をコンボリューションすることを特徴とする。   [2] In the coastal early tsunami prediction method using the tsunami propagation characteristic described in [1] above, the tsunami propagation characteristic G2 (τ) of the first step is a simulation waveform S2 ( t) and the simulation waveform X2 (t) of the near-shore prediction point are calculated by deconvolution in the frequency domain, and the tsunami propagation characteristic G2 (τ) and the observed tsunami waveform S1 (t) at the sea area incident point for all fault slips It is characterized by convolution.

〔3〕上記〔1〕記載の津波伝播特性を利用した沿岸の早期津波予測方法において、前記第2のステップは、小規模の2次元津波シミュレーションを利用した沿岸の津波波形と波高予測を行うことを特徴とする。   [3] In the coastal early tsunami prediction method using the tsunami propagation characteristic described in [1] above, the second step is to perform coastal tsunami waveform and wave height prediction using a small-scale two-dimensional tsunami simulation. It is characterized by.

〔4〕上記〔1〕記載の津波伝播特性を利用した沿岸の早期津波予測方法において、近距離地点の津波入射波形と長時間の津波入射波形を利用した際は、沿岸の津波波形と波高の予測精度向上が期待されることを特徴とする。   [4] In the coastal early tsunami prediction method using the tsunami propagation characteristics described in [1] above, when using a tsunami incident waveform at a short distance and a long-time tsunami incident waveform, the coastal tsunami waveform and wave height It is expected to improve prediction accuracy.

本発明によれば、次のような効果を奏することができる。   According to the present invention, the following effects can be achieved.

事前に海域入射地点と沿岸近傍予測地点(線形理論が成立する水深50m以上)の津波伝播特性を準備しておくことにより、津波発生後海域の地点に津波入射波形が収録された際に、対象とした沿岸近傍地点での津波波形の即時予測が可能である。   By preparing the tsunami propagation characteristics of the sea area incident point and the coastal vicinity prediction point (water depth of 50m or more where the linear theory is established) in advance, the target when the tsunami incident waveform is recorded at the sea area after the tsunami occurs It is possible to immediately predict the tsunami waveform near the coastal area.

更に、予測した沿岸近傍地点の津波波形を利用して、小規模の2次元津波シミュレーション(非線形理論を用いる水深50m未満)を実施することにより、海岸線汀線の詳細な津波波高分布を即時予測することができる。   In addition, a detailed two-dimensional tsunami simulation (less than 50m in depth using nonlinear theory) is carried out using the predicted tsunami waveform near the coast, thereby predicting the detailed tsunami height distribution on the coastline shoreline immediately. Can do.

本発明の津波伝播特性を利用した沿岸の早期津波予測方法の模式図である。It is a schematic diagram of the coastal early tsunami prediction method using the tsunami propagation characteristic of the present invention. 東北地方太平洋沖地震の断層すべりを示す図である。It is a figure which shows the fault slip of the Tohoku-Pacific Ocean Earthquake. 海底地形モデルを示す図である。It is a figure which shows a seafloor topographic model. 宮城県中部沖における観測津波波形と線形長波理論を用いた計算津波波形の比較を示す図である。It is a figure which shows the comparison of the observed tsunami waveform in the offing of central Miyagi Prefecture and the calculated tsunami waveform using the linear long wave theory. 本発明の津波伝播特性を利用した沿岸の早期津波予測方法の模式図(図1)の計算手順を示す図である。It is a figure which shows the calculation procedure of the schematic diagram (FIG. 1) of the coastal early tsunami prediction method using the tsunami propagation characteristic of this invention. 本発明にかかる津波シミュレーションの評価地点(●は約10km間隔)と主要断層すべり領域(□)を示す図である。It is a figure which shows the evaluation point (● is an interval of about 10 km) and the main fault slip region (□) of the tsunami simulation according to the present invention. 海域入射地点(846,895)の津波波形を示す図である。It is a figure which shows the tsunami waveform of a sea area incident point (846,895). 沿岸近傍予測地点(893)の津波波形を示す図である。It is a figure which shows the tsunami waveform of a coast vicinity prediction point (893). 牡鹿半島汀線での最大津波水位上昇量の比較を示す図である。It is a figure which shows the comparison of the maximum tsunami water level rise amount in the Oshika Peninsula shoreline. 海域地点846の津波入射波形から予測された沿岸近傍4地点(944,919,893,866)の津波波形を示す図である。It is a figure which shows the tsunami waveform of four coastal vicinity (944,919,893,866) estimated from the tsunami incident waveform of the sea area point 846. FIG. 異なる海域入射地点に対する沿岸近傍予測地点919の最大津波水位の誤差評価を示す図である。It is a figure which shows the error evaluation of the maximum tsunami water level of the coast vicinity prediction point 919 with respect to a different sea area incident point. 異なる海域入射地点に対する牡鹿半島汀線での最大津波水位上昇量の比較を示す図である。It is a figure which shows the comparison of the maximum tsunami water level rise amount in the Oshika Peninsula shoreline with respect to a different sea area incident point. 海域入射波形(地点846)の異なるデータ長に対する沿岸近傍予測地点919の最大津波水位の誤差評価を示す図である。It is a figure which shows the error evaluation of the maximum tsunami water level of the coast vicinity prediction point 919 with respect to the data length from which a sea area incident waveform (point 846) differs. 海域入射波形(地点846)の異なるデータ長に対する牡鹿半島汀線での最大津波水位上昇量の比較を示す図である。It is a figure which shows the comparison of the maximum tsunami water level rise amount in the Oshika Peninsula shoreline with respect to the data length from which a sea area incident waveform (point 846) differs.

本発明の津波伝播特性を利用した沿岸の早期津波予測方法は、(a)海域で観測された津波入射波形と事前に準備した海底地形による津波伝播特性を利用することにより、沿岸近傍の津波波形を予測する第1のステップと、(b)前記第1のステップ(a)で予測した沿岸近傍の津波波形を用いて、沿岸近傍から沿岸の対象地点を含めた小規模な2次元津波シミュレーションを行うことにより、沿岸の津波波形と波高を予測する第2のステップとを施す。   The coastal early tsunami prediction method using the tsunami propagation characteristics of the present invention includes (a) a tsunami waveform near the coast by using the tsunami incidence waveform observed in the sea area and the tsunami propagation characteristics prepared in advance in the seabed. And (b) a small-scale two-dimensional tsunami simulation including a coastal target point from the vicinity of the coast using the tsunami waveform near the coast predicted in the first step (a). By performing a second step of predicting the coastal tsunami waveform and wave height.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

2011年東北地方太平洋沖地震による東日本太平洋沿岸の壊滅的な津波被害の経験を受けて、海域で発生した地震直後に適切な地震と津波の予測を行うことを目的に、日本海溝海底地震津波観測網(Seafloor Observation Network for Earthquakes and Tsunamis along the Japan Trench:S−net)(上記非特許文献1参照)が東日本の太平洋沖で整備されつつある。今後、沿岸から遠く離れた海域で津波が地震発生直後に観測されるため、震源域やマグニチュードに対応した海底面変位に還元せず、海域で観測された津波記録を利用した沿岸での津波波形・波高の直接的な予測手法の開発が期待される。   Under the experience of the devastating tsunami damage on the Pacific coast of eastern Japan caused by the 2011 off the Pacific coast of Tohoku Earthquake, the Japan Trench Submarine Earthquake Tsunami Observation is aimed at predicting appropriate earthquakes and tsunamis immediately after the earthquake that occurred in the sea area. A network (Seafloor Observing Network for Earthquakes and Tsunami miss the Japan Trench: S-net) (see Non-Patent Document 1 above) is being developed off the Pacific coast of East Japan. In the future, since tsunamis will be observed immediately after the occurrence of an earthquake in areas far from the coast, they will not be reduced to seafloor displacement corresponding to the epicenter area or magnitude, and tsunami waveforms along the coast using tsunami records observed in the sea area.・ Development of a direct prediction method for wave height is expected.

そこで、本発明では、海域で観測された津波入射波形と事前に準備した海底地形による津波伝播特性を利用することにより、海域での津波波形入射直後に即時的な沿岸近傍の津波波形と沿岸の津波波高を予測する方法を開発した。   Therefore, in the present invention, by using the tsunami incident waveform observed in the sea area and the tsunami propagation characteristics by the seabed topography prepared in advance, the tsunami waveform near the coast immediately after the tsunami waveform incidence in the sea area and the coastal A method for predicting tsunami wave height was developed.

図1は本発明の津波伝播特性を利用した沿岸の早期津波予測方法の模式図である。   FIG. 1 is a schematic diagram of a coastal early tsunami prediction method using the tsunami propagation characteristics of the present invention.

具体的には、図1に示した2つのステップにより、沿岸の即時的な津波波形・波高の予測を行う。
(1)震源断層面1での地殻変動により、海域2で観測された津波入射波形3と事前に準備した海底地形による津波伝播特性を利用することにより、沿岸近傍4の津波波形5を予測する(1st step:津波伝播特性を用いた直接的予測)。
(2)1st stepで予測した沿岸近傍4の津波波形5を用いて、沿岸近傍4から沿岸6の対象地点を含めた小規模な2次元津波シミュレーション7を行うことにより、沿岸の津波波形8と波高9を予測する(2nd step:小規模な数値計算)。
Specifically, the coastal instantaneous tsunami waveform and wave height are predicted by the two steps shown in FIG.
(1) Predict the tsunami waveform 5 in the vicinity of the coast 4 by using the tsunami incident waveform 3 observed in the sea area 2 and the tsunami propagation characteristics of the seabed topography prepared in advance by the crustal deformation at the seismogenic fault plane 1 (1st step: direct prediction using tsunami propagation characteristics).
(2) By using the tsunami waveform 5 of the coastal vicinity 4 predicted in the 1st step, a small-scale two-dimensional tsunami simulation 7 including the target points from the coastal vicinity 4 to the coastal 6 is performed. The wave height 9 is predicted (2nd step: small-scale numerical calculation).

以下、1st stepと2nd stepについてその詳細を説明する。
(津波伝播特性を利用した沿岸近傍の波形予測)
(1)2011年東北地方太平洋沖地震の2次元津波シミュレーション
2011年東北地方太平洋沖地震の津波波源モデルについては、地震発生後、幾つかのモデル(上記非特許文献〔2〕,〔3〕,〔4〕参照)が提案されているが、各波源モデルによる線形の津波波形の差異は小さく、どの波源モデルを用いても2次元津波シミュレーション結果より観測記録を概ね説明できる。
Details of the 1st step and the 2nd step will be described below.
(Waveform prediction near the coast using tsunami propagation characteristics)
(1) Two-dimensional tsunami simulation of the 2011 Tohoku-Pacific Ocean Earthquake For the tsunami source model of the 2011 Tohoku-Pacific Ocean Earthquake, several models (the above non-patent documents [2], [3], (Refer to [4]). However, the difference in the linear tsunami waveform between each wave source model is small, and the observation record can be generally explained from the two-dimensional tsunami simulation result using any wave source model.

図2は東北地方太平洋沖地震の断層すべり(上記非特許文献〔4〕参照)を示す図であり、□は主要断層すべり領域を示している。   FIG. 2 is a diagram showing a fault slip of the Tohoku-Pacific Ocean Earthquake (see Non-Patent Document [4] above), and □ indicates a main fault slip region.

ここでは、その中でも波源モデルが最も詳細に表現されている内閣府の津波波源モデル(上記非特許文献〔4〕参照)である図2を用いることにした。   Here, the tsunami wave source model of the Cabinet Office in which the wave source model is expressed in the most detail (see the non-patent document [4] above) is used.

図3は海底地形モデル(上記非特許文献〔5〕参照)(格子間隔1215m、等深線間隔500m)を示す図である。   FIG. 3 is a diagram showing a seafloor topographic model (see Non-Patent Document [5] above) (lattice interval 1215 m, contour line interval 500 m).

本発明では、図3に示すように、有限差分法より2次元津波シミュレーションを行い、メッシュサイズ(格子間隔)は海域から内陸に向かって段階的に小さくなるように設定した(4段階:1215m,405m,135m,45m格子間隔) 。津波の1波長に対して20程度の格子を配置し(上記非特許文献〔6〕参照)、時間刻みは線形理論で0.81秒、非線形理論で0.09秒とした。各領域の格子中心に、水深・標高データを割り付けて地形モデルを作成した。水深データについては海上保安庁の海底地形デジタルデータ「M7000シリーズ」(上記非特許文献〔5〕参照)、標高データについては国土地理院の「5mメッシュ標高データ」(上記非特許文献〔7〕参照)を用いた。津波の初期水位については、半無限弾性体中での鉛直成分の地殻変動(上記非特許文献〔8〕参照)より計算した。下記に、津波シミュレーション(上記非特許文献〔9〕参照)で用いる非線形浅水長波理論式を示す。   In the present invention, as shown in FIG. 3, a two-dimensional tsunami simulation is performed by a finite difference method, and the mesh size (lattice interval) is set to be gradually reduced from the sea area toward the inland (4 stages: 1215 m, 405 m, 135 m, 45 m lattice spacing). About 20 gratings were arranged for one wavelength of the tsunami (see Non-Patent Document [6] above), and the time step was set to 0.81 seconds in the linear theory and 0.09 seconds in the nonlinear theory. A topographic model was created by assigning water depth and elevation data to the grid centers of each region. For the water depth data, please refer to the Japan Coast Guard digital data “M7000 series” (see the above non-patent document [5]). For the elevation data, refer to the “5m mesh elevation data” from the Geospatial Information Authority of Japan (see the above non-patent document [7]) ) Was used. The initial water level of the tsunami was calculated from the crustal deformation of the vertical component in the semi-infinite elastic body (see Non-Patent Document [8] above). The nonlinear shallow water long wave theoretical formula used in the tsunami simulation (see the non-patent document [9]) is shown below.

Figure 2016223956
Figure 2016223956

Figure 2016223956
Figure 2016223956

Figure 2016223956
Figure 2016223956

ここで、x・y水平方向座標、z:鉛直方向座標、t:時間、g:重力加速度、η:水位、h:水深、M・N:流量、D=(h+η):全水深、である。   Here, x · y horizontal coordinate, z: vertical coordinate, t: time, g: gravitational acceleration, η: water level, h: water depth, MN: flow rate, D = (h + η): total water depth. .

線形長波理論を用いた2次元津波シミュレーションより、海域から沿岸近傍(水深50m程度)(上記非特許文献〔10〕参照)の津波波形を計算した。線形解析では、上記(2)・(3)式において移流項(第2項と第3項)と海底摩擦項(第5項)を考慮しない。線形波動場では、津波はc=√ghで表現される深さ依存の波速で伝播する。一方、非線形浅水長波理論を用いた2次元津波シミュレーションより、沿岸近傍から沿岸の津波波形を計算した。非線形波動場では、津波はc=√g(h+η)で表現される波速で伝播する。   From the two-dimensional tsunami simulation using the linear long wave theory, the tsunami waveform from the sea area to the coastal area (water depth of about 50 m) (see Non-Patent Document [10] above) was calculated. In the linear analysis, the advection terms (second term and third term) and the seabed friction term (fifth term) are not considered in the above equations (2) and (3). In a linear wave field, the tsunami propagates at a depth-dependent wave velocity expressed as c = √gh. On the other hand, the coastal tsunami waveform was calculated from the vicinity of the coast by two-dimensional tsunami simulation using nonlinear shallow water long wave theory. In a nonlinear wave field, the tsunami propagates at a wave speed expressed by c = √g (h + η).

図4は宮城県中部沖における観測津波波形と線形長波理論を用いた計算津波波形の比較を示す図である。   FIG. 4 is a diagram showing a comparison between the observed tsunami waveform off the central part of Miyagi Prefecture and the calculated tsunami waveform using the linear long wave theory.

図4に、一例として、宮城県中部沖での計算された津波波形とGPS波浪計(上記非特許文献〔11〕参照)(国土交通省)により観測された津波波形を比較した(上記非特許文献〔12〕参照)。計算された津波波形は観測波形を良く再現することから、本発明で用いた2次元津波シミュレーションの妥当性が分かる。
(2)津波入射波形と津波伝播特性による沿岸近傍の波形予測
本発明の1st stepでは、海域で観測された津波入射波形と事前に準備した海底地形による津波伝播特性を利用することにより、沿岸近傍の津波波形を予測する方法を開発する。津波入射波形は上記した2011年東北地方太平洋沖地震の全断層すべりによる2次元津波シミュレーション結果を利用した。海底地形による津波伝播特性については、なるべく小さな断層領域を対象とした海域入射地点と沿岸近傍予測地点{図2と図6(後述)}の津波伝播特性を抽出する必要がある。そこで、2011年東北地方太平洋沖地震の主要断層すべりによる2次元津波シミュレーションを上記した線形理論より行い、その結果を用いて海域入射地点と沿岸近傍予測地点の津波伝播特性を事前に準備した。本発明の計算手順を図5に示す。
As an example, FIG. 4 compares a tsunami waveform calculated off the central part of Miyagi Prefecture with a tsunami waveform observed by a GPS wave meter (see Non-Patent Document [11] above) (Ministry of Land, Infrastructure, Transport and Tourism) Reference [12]). Since the calculated tsunami waveform reproduces the observed waveform well, the validity of the two-dimensional tsunami simulation used in the present invention can be understood.
(2) Prediction of the vicinity of the coast by the tsunami incident waveform and the tsunami propagation characteristics In the first step of the present invention, the tsunami incidence waveform observed in the sea area and the tsunami propagation characteristics by the seafloor topography prepared in advance are used. Develop a method for predicting the tsunami waveform. As the tsunami incident waveform, the two-dimensional tsunami simulation result by the all fault slip of the 2011 Tohoku-Pacific Ocean Earthquake was used. Regarding the tsunami propagation characteristics due to the seafloor topography, it is necessary to extract the tsunami propagation characteristics of the sea area incident point and the coastal vicinity prediction point {FIGS. 2 and 6 (described later)} for the smallest possible fault region. Therefore, a two-dimensional tsunami simulation based on the major fault slip of the 2011 Tohoku-Pacific Ocean Earthquake was performed based on the linear theory described above, and the tsunami propagation characteristics at the sea area incident point and the near coastal prediction point were prepared in advance using the result. The calculation procedure of the present invention is shown in FIG.

図5は本発明の津波伝播特性を利用した沿岸の早期津波予測方法の模式図(図1)の計算手順を示す図、図6は本発明にかかる津波シミュレーションの評価地点(●は約10km間隔)と主要断層すべり領域(□)を示す図である。   FIG. 5 is a diagram showing a calculation procedure of a schematic diagram (FIG. 1) of a coastal early tsunami prediction method using the tsunami propagation characteristics of the present invention, and FIG. 6 is an evaluation point (● is an interval of about 10 km) according to the present invention. ) And the main fault slip region (□).

本発明の検証では、全断層すべりを用いた2次元津波シミュレーション結果を正解とし、本発明による計算結果の比較対象とした。   In the verification of the present invention, the two-dimensional tsunami simulation result using all fault slips was regarded as a correct answer, and the comparison result of the calculation result according to the present invention was used.

津波伝播特性G2(τ)は、主要断層すべりに対する海域入射地点のシミュレーション波形S2(t)と沿岸近傍予測地点のシミュレーション波形X2(t)を周波数領域でデコンボリューションすることにより算出した(式[4])。その津波伝播特性G2(τ)と全断層すべりに対する海域入射地点のシミュレーション波形S1(t)をコンボリューションする(式[5])ことにより沿岸近傍予測地点の津波波形Y(t)を簡便にかつ即時的に算出することができる。   The tsunami propagation characteristic G2 (τ) was calculated by deconvolution in the frequency domain of the simulation waveform S2 (t) at the sea area incident point and the simulation waveform X2 (t) at the near-shore prediction point for the main fault slip (formula [4 ]). Convolution of the tsunami propagation characteristic G2 (τ) and the simulation waveform S1 (t) at the sea area incident point for all fault slips (equation [5]) allows the tsunami waveform Y (t) at the coastal vicinity prediction point to be easily and It can be calculated immediately.

G2(ω)=X2(ω)/S2(ω) ・・・(4)
Y(ω)=S1(ω)×G2(ω) ・・・(5)
入射波形と出力波形、津波伝播関数には、以下のデータ処理(参考文献〔13〕参照)を施した。
・入力波形には、移動平均によるローパスフィルタ(180秒のタイム・ウィンドウ)を施し、後続波を除外するためにデータ長を主要動含む48分程度に短縮化した後、コサイン・テーパーを施した。
・以下の式より、7分間以下の高周波信号を遮断した。
G2 (ω) = X2 (ω) / S2 (ω) (4)
Y (ω) = S1 (ω) × G2 (ω) (5)
The incident data, output waveform, and tsunami propagation function were subjected to the following data processing (see reference [13]).
・ Low-pass filter (180 second time window) by moving average is applied to the input waveform, the data length is shortened to about 48 minutes including the main motion to exclude the following wave, and then cosine taper is applied. .
-The high frequency signal of 7 minutes or less was cut off from the following formula.

M=0.443×fs/fc ・・・(6)
ここで、fs:サンプリング周波数(1Hz)、M:サンプル数、fc:遮断周波数である。
・出力される合成波形、津波伝達関数については、移動平均によるローパスフィルタを施した。移動平均の際のタイム・ウィンドウは、合成波形に対しては60秒、津波伝播関数に対しては200秒とした。
M = 0.443 × fs / fc (6)
Here, fs: sampling frequency (1 Hz), M: number of samples, fc: cutoff frequency.
・ The output composite waveform and tsunami transfer function were low-pass filtered by moving average. The time window for the moving average was 60 seconds for the synthesized waveform and 200 seconds for the tsunami propagation function.

図7は海域入射地点(846,895)の津波波形を示す図、図8は沿岸近傍予測地点(893)の津波波形を示す図である。   FIG. 7 is a diagram showing the tsunami waveform at the sea area incident point (846, 895), and FIG. 8 is a diagram showing the tsunami waveform at the coastal vicinity predicted point (893).

東北地方太平洋沖地震の全断層すべりを用いた2次元津波シミュレーションにより計算された海域入射地点846と895の2地点の津波波形(本発明では、観測された津波入射波形を模擬) を図7に示す。最大振幅に顕著な差は見られないものの、最大振幅が出現する時間が異なっていることが分かる。一方で、本発明の1st stepにより計算された沿岸近傍地点893の予測波形(図8参照)については、海域入射地点846と895を利用した2つの予測波形の最大振幅出現時間に顕著な差はなく、このことは海域入射地点と沿岸近傍予測地点の津波伝播特性が適切に評価されていることによる。また、波形全体については、沿岸近傍予測地点と海域入射地点が近距離に位置する方(海域入射地点895)が、予測結果と正解の整合性が高く、津波が沿岸に近づいてきた際には本発明の予測精度が向上することが示唆される。   Fig. 7 shows two tsunami waveforms (simulated from the observed tsunami incident waveform in the present invention) calculated at the sea area incident points 846 and 895, calculated by a two-dimensional tsunami simulation using the whole fault slip of the Tohoku Earthquake. Show. Although no significant difference is observed in the maximum amplitude, it can be seen that the time when the maximum amplitude appears is different. On the other hand, regarding the predicted waveform of the coastal vicinity point 893 calculated by the 1st step of the present invention (see FIG. 8), there is a significant difference in the maximum amplitude appearance time of the two predicted waveforms using the sea area incident points 846 and 895. However, this is due to the fact that the tsunami propagation characteristics at the sea area incident point and the coastal vicinity prediction point are appropriately evaluated. As for the entire waveform, the one where the coastal vicinity prediction point and the sea area incident point are located at a short distance (sea area incident point 895) is highly consistent with the prediction result, and when the tsunami approaches the coast, It is suggested that the prediction accuracy of the present invention is improved.

本発明の結果は、2011年東北地方太平洋沖地震により発生した津波については、主要断層すべり領域と内陸を結んだある測線上に海域入射地点と沿岸近傍予測地点がある場合には、本発明より簡便かつ適切に津波の振幅と位相を予測することができることを示している。
(小規模の津波シミュレーションを利用した沿岸の波高予測)
図9は牡鹿半島汀線での最大津波水位上昇量の比較を示す図であり、図9(a)は小規模の2次元津波シミュレーションの計算領域を示す図であり、図9(b)は最大津波水位上昇量を示している。図10は海域地点846の津波入射波形から予測された沿岸近傍4地点(944,919,893,866)の津波波形を示す図である。
As a result of the present invention, for the tsunami generated by the 2011 off the Pacific coast of Tohoku Earthquake, if there is a sea area incident point and a coastal near prediction point on a certain survey line connecting the main fault slip region and inland, This shows that the tsunami amplitude and phase can be predicted easily and appropriately.
(Coastal wave height prediction using small-scale tsunami simulation)
FIG. 9 is a diagram showing a comparison of the maximum amount of tsunami water level rise along the Oshika Peninsula Minato Line. FIG. 9A is a diagram showing a calculation region of a small-scale two-dimensional tsunami simulation, and FIG. The amount of tsunami water level rise. FIG. 10 is a diagram showing a tsunami waveform at four points near the coast (944, 919, 893, 866) predicted from the tsunami incident waveform at the sea area point 846.

牡鹿半島汀線{図9(b)中、太線}において、沿岸の最大津波波高を予測した。図1と図5に示した2nd stepでは、東側境界面(図9中、点線)に対して1st stepで算出された沿岸近傍地点の予測津波波形を入射する。その4地点の予測波形が振幅と位相ともに同程度あることから、2nd stepの東側境界面(図9中、点線)への入射波形として、1st stepで算出された沿岸近傍地点919の予測津波波形を利用した。解析領域の北側、南側、西側の境界面を解放境界とし、それら3境界では津波が入射せず、東側の境界面では入射波により励起される津波波動場の流出入が自由な状態とした。本津波シミュレーションは、非線形浅水長波理論に基づき、45m格子間隔、0.09秒時間刻みで行った。
入射波形として沿岸近傍地点の予測津波波形(海域入射地点846からの予測津波波形)を利用した小規模の2次元津波シミュレーションより牡鹿半島汀線での最大津波水位上昇量を算出した。その結果を図9(b)に示す。全断層すべりを用いた2次元津波シミュレーション結果(本発明では正解)と比較して、本発明による結果は最大津波水位上昇量に差は認められるものの、その形状は概ね一致し空間分布の傾向を概ね捉えていることが分かる。北側の境界面付近の整合性が低いことは、解析範囲外から回折等してくる津波の寄与を本発明の条件(東側境界面のみの入射)では考慮していないためである。ある断層モデルによる津波痕跡高と計算値の空間的な適合度を表す指標(上記非特許文献〔14〕参照)として、幾何平均Kと幾何標準偏差k(K,kとも1が完全調和) があり、参考までに本ケースで得られた値はK=1.6,k=2.3である。本発明は、海域で入射された津波波形を利用し、沿岸での10mを超える最大津波水位上昇量を予測しており、即時的な沿岸の津波波高予測としての利用価値は高い。
(津波推定の精度)
(1)津波入射距離による精度検討
図11は異なる海域入射地点に対する沿岸近傍予測地点919の最大津波水位上昇量の誤差評価を示す図、図12は異なる海域入射地点に対する牡鹿半島汀線での最大津波水位上昇量の比較を示す図である。
The coastal maximum tsunami wave height was predicted in the Oshika Peninsula Line (bold line in FIG. 9B). In the 2nd step shown in FIGS. 1 and 5, the predicted tsunami waveform at the coastal vicinity calculated in 1st step is incident on the east boundary surface (dotted line in FIG. 9). Since the predicted waveforms at the four points are approximately the same in both amplitude and phase, the predicted tsunami waveform at the coastal neighboring point 919 calculated at the 1st step as the incident waveform on the eastern boundary surface of 2nd step (dotted line in FIG. 9). Was used. The boundary areas on the north, south, and west sides of the analysis area were set as open boundaries. No tsunami was incident on these three boundaries, and the tsunami wave field excited by the incident wave was free to flow into and out of the boundary on the east side. This tsunami simulation was performed at a grid interval of 45 m and a time increment of 0.09 seconds based on the nonlinear shallow water long wave theory.
The maximum tsunami water level rise along the Oshika Peninsula shoreline was calculated from a small-scale two-dimensional tsunami simulation using the predicted tsunami waveform at the coastal point as the incident waveform (the predicted tsunami waveform from the sea area incident point 846). The result is shown in FIG. Compared with the two-dimensional tsunami simulation result using the whole fault slip (correct answer in the present invention), the result of the present invention shows a difference in the maximum tsunami water level rise, but the shape is almost consistent and the spatial distribution tends to be You can see that it is generally captured. The low consistency in the vicinity of the north boundary is because the contribution of a tsunami that is diffracted from outside the analysis range is not considered in the conditions of the present invention (incident only on the east boundary). Geometric mean K and geometric standard deviation k (K and k are 1 perfectly harmonized) are used as an index (see Non-Patent Document [14] above) indicating the spatial suitability between the tsunami trace height and the calculated value from a fault model. Yes, for reference, the values obtained in this case are K = 1.6 and k = 2.3. The present invention uses a tsunami waveform incident in the sea area to predict a maximum tsunami water level rise of more than 10 m along the coast, and has high utility value as an immediate coastal tsunami height prediction.
(Tsunami estimation accuracy)
(1) Examination of accuracy by tsunami incident distance Fig. 11 shows an error evaluation of the maximum tsunami water level rise at the near-shore prediction point 919 for different sea area incident points, and Fig. 12 shows the maximum tsunami at the Oshika Peninsula shoreline for different sea area incident points. It is a figure which shows the comparison of a water level raise amount.

異なる海域入射地点に対して、沿岸近傍予測地点と牡鹿半島汀線の最大津波水位上昇量を比較検討し、津波入射距離による予測精度を検討した。沿岸近傍予測地点919の最大津波水位上昇量(1st stepによる本発明の結果)は距離が遠いほど誤差が増す傾向にあるが、100km以上離れた海域地点で津波入射を行った場合でも50%以内の精度で予測可能である。また、牡鹿半島汀線での最大津波水位上昇量(2nd stepによる本発明の結果)に対しても同様の傾向が認められた。沿岸近傍予測地点から20km程度離れた地点を海域津波入射とすれば20%程度の精度で予測ができており、沿岸近傍予測地点と海域入射地点の距離が近いほど、津波予測結果の精度が向上することを確認した。
(2)津波入射時間による精度検討
図13は海域入射波形(地点846)の異なるデータ長に対する沿岸近傍予測地点919の最大津波水位上昇量の誤差評価を示す図、図14は海域入射波形(地点846)の異なるデータ長に対する牡鹿半島汀線での最大津波水位上昇量の比較を示す図である。
For different sea area incidence points, we compared the maximum tsunami water level rise at the coastal vicinity prediction point and the Oshika Peninsula Minato Line, and examined the prediction accuracy by the tsunami incidence distance. The maximum tsunami water level rise at the coastal vicinity prediction point 919 (result of the present invention by 1st step) tends to increase as the distance increases, but within 50% even when tsunami incidence is performed at a sea area point of 100 km or more Can be predicted with the accuracy of. Moreover, the same tendency was recognized also with respect to the maximum amount of tsunami water level rise (result of this invention by 2nd step) in the Oshika Peninsula shoreline. If the point 20km away from the coastal vicinity prediction point is the sea area tsunami incidence, it can be predicted with an accuracy of about 20%, and the closer the distance between the coastal vicinity prediction point and the sea area incident point, the better the accuracy of the tsunami prediction result Confirmed to do.
(2) Examination of accuracy based on tsunami incident time Figure 13 shows an error evaluation of the maximum tsunami water level rise at the coastal vicinity prediction point 919 for different data lengths of the sea area incident waveform (point 846), and Fig. 14 shows the sea area incident waveform (point) It is a figure which shows the comparison of the maximum tsunami water level rise amount in the Oshika Peninsula shore line with respect to different data length of 846).

海域入射波形のデータ長に対して、沿岸近傍予測地点と牡鹿半島汀線の最大津波水位上昇量を比較検討し、津波入射時間による予測精度を検討した。データ長が短いほど誤差が増す傾向にあるが、15分程度の津波主要動(図7参照)が入射されれば全波形を用いた場合と同程度の精度で最大津波水位上昇量を予測できることを確認した。   For the data length of the sea area incident waveform, the maximum tsunami water level rise at the coastal vicinity prediction point and the Oshika Peninsula shore line was compared and the prediction accuracy by the tsunami incident time was examined. Although the error tends to increase as the data length is shorter, the maximum amount of tsunami water level can be predicted with the same degree of accuracy as when all the waveforms are used if a major tsunami motion of about 15 minutes (see Fig. 7) is incident. It was confirmed.

本発明の特徴あるいは利点としては、事前に海域入射地点と沿岸近傍予測地点(線形理論が成立する水深50m以上)の津波伝播特性を準備しておくことにより、津波発生後海域の地点に津波入射波形が収録された際に、対象とした沿岸近傍地点での津波波形の即時予測が可能であることにある。更に、予測した沿岸近傍地点の津波波形を利用して、小規模の2次元津波シミュレーション(非線形理論を用いる水深50m未満)を実施することにより、海岸線汀線の詳細な津波波高分布を即時予測することができる。実際に本発明より沿岸近傍地点から海岸線汀線の津波波高を算出する(2nd step)までに掛かった時間は、45m格子間隔で約20分の時刻歴波形出力に対して、8コアによる並列計算機を用いて約20分であった。仮にコア数が現状の10倍程度(80〜100コア)に増える場合、小規模の2次元津波シミュレーションに要する計算時間は、飛躍的に短縮化されることが期待される。また、今回の津波予測地点である牡鹿半島沿岸は複雑な地形をしているため、詳細な格子間隔での計算が必要であったが、比較的海岸線が一様である仙台平野などでは格子間隔を粗くするなどの検討より、計算時間短縮化の工夫をすることは即時予測(可能であれば、津波検知後5分以内)を行う上で重要である。   As a feature or advantage of the present invention, by preparing tsunami propagation characteristics at the sea area incident point and the coastal vicinity prediction point (water depth of 50 m or more where linear theory is established) in advance, the tsunami incident at the sea area after the tsunami occurs When the waveform is recorded, it is possible to immediately predict the tsunami waveform at the target coastal point. In addition, a detailed two-dimensional tsunami simulation (less than 50m in depth using nonlinear theory) is carried out using the predicted tsunami waveform near the coast, thereby predicting the detailed tsunami height distribution on the coastline shoreline immediately. Can do. Actually, the time taken to calculate the tsunami wave height of the coastline shoreline from the point near the coast (2nd step) according to the present invention is about a time history waveform output of about 20 minutes with a 45 m grid interval. Used for about 20 minutes. If the number of cores increases to about 10 times the current number (80 to 100 cores), the calculation time required for a small-scale two-dimensional tsunami simulation is expected to be dramatically reduced. In addition, because the coast of the Oshika Peninsula, which is the tsunami prediction point, has a complex topography, it was necessary to calculate with detailed grid spacing, but in the Sendai Plain, where the coastline is relatively uniform, It is important to devise a method to shorten the calculation time based on considerations such as roughening the time when making an immediate prediction (if possible, within 5 minutes after tsunami detection).

本発明では、津波波形・波高の即時予測方法として、津波伝播特性を利用した沿岸近傍での津波波形予測方法と小規模の津波シミュレーションを利用した沿岸の津波波高予測方法を開発した。2011年東北地方太平洋沖地震(Mw9.0)の全断層すべりによる2次元津波シミュレーション結果と比較検討し、本発明の有効性を確認した。また、津波入射の距離と時間に対する津波推定の精度を検討し、100km離れた地点と半分のデータ長の津波入射波形を利用した場合でも50%以内の精度で即時予測が可能であることを示した。したがって、本発明による沿岸近傍及び海岸線汀線の津波波形と津波波高の即時予測は、避難行動を取る際の余裕時間や津波波高の程度を把握する上で非常に有効である。   In the present invention, a tsunami waveform prediction method in the vicinity of the coast using tsunami propagation characteristics and a coastal tsunami wave prediction method using a small-scale tsunami simulation have been developed as an immediate prediction method of the tsunami waveform and wave height. The effectiveness of the present invention was confirmed by comparing with the results of a two-dimensional tsunami simulation caused by the 2011 Tohoku-Pacific Ocean Earthquake (Mw 9.0). Also, the accuracy of tsunami estimation with respect to the tsunami incidence distance and time is examined, and it is shown that immediate prediction can be made with accuracy within 50% even when using a tsunami incident waveform with a distance of 100 km and half the data length. It was. Therefore, the immediate prediction of the tsunami waveform and the tsunami wave height in the vicinity of the coast and the coastline shoreline according to the present invention is very effective in grasping the margin time when taking evacuation action and the extent of the tsunami wave height.

なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、これらを本発明の範囲から排除するものではない。   In addition, this invention is not limited to the said Example, Based on the meaning of this invention, a various deformation | transformation is possible and these are not excluded from the scope of the present invention.

本発明の津波伝播特性を利用した沿岸の早期津波予測方法は、海域で観測された津波入射波形と事前に準備した海底地形による津波伝播特性を利用することにより、海域での津波波形入射直後に沿岸近傍の津波波形と沿岸の最大津波水位を早期に予測する早期津波予測方法として利用可能である。   The coastal early tsunami prediction method using the tsunami propagation characteristics of the present invention uses the tsunami incident waveform observed in the sea area and the tsunami propagation characteristics based on the seafloor topography prepared in advance, immediately after the tsunami waveform incidence in the sea area. It can be used as an early tsunami prediction method for early prediction of the tsunami waveform near the coast and the maximum tsunami water level on the coast.

1 震源断層面
2 海域入射地点
3 海域で観測された津波入射波形
4 沿岸近傍地点
5 沿岸近傍の予測津波波形
6 沿岸地点
7 沿岸から沿岸近傍
8 沿岸の予測津波波形
9 沿岸の予測津波波高
1 Seismic fault plane 2 Sea area incident point 3 Sea area tsunami incident waveform 4 Coastal point 5 Coastal predicted tsunami waveform 6 Coastal point 7 Coastal to coastal area 8 Coastal predicted tsunami waveform 9 Coastal predicted tsunami height

Claims (4)

(a)海域で観測された津波入射波形と事前に準備した海底地形による津波伝播特性を利用することにより、沿岸近傍の津波波形を予測する第1のステップと、
(b)前記第1のステップ(a)で予測した沿岸近傍の津波波形を用いて、沿岸近傍から沿岸の対象地点を含めた小規模な2次元津波シミュレーションを行うことにより、沿岸の津波波形と波高を予測する第2のステップとを施すことを特徴とする津波伝播特性を利用した沿岸の早期津波予測方法。
(A) a first step of predicting a tsunami waveform in the vicinity of the coast by utilizing the tsunami incident waveform observed in the sea area and the tsunami propagation characteristics of the seabed topography prepared in advance;
(B) Using the tsunami waveform near the coast predicted in the first step (a), a small-scale two-dimensional tsunami simulation including the target point from the coast to the coast is performed. An early coastal tsunami prediction method using tsunami propagation characteristics, characterized by performing a second step of predicting wave height.
請求項1記載の津波伝播特性を利用した沿岸の早期津波予測方法において、前記第1のステップの津波伝播特性G2(τ)は、小断層すべりに対する海域入射地点のシミュレーション波形S2(t)と沿岸近傍予測地点のシミュレーション波形X2(t)を周波数領域でデコンボリューションすることにより算出し、前記津波伝播特性G2(τ)と全断層すべりに対する海域入射地点の観測津波波形S1(t)をコンボリューションすることを特徴とする津波伝播特性を利用した沿岸の早期津波予測方法。   2. The coastal early tsunami prediction method using the tsunami propagation characteristic according to claim 1, wherein the tsunami propagation characteristic G2 (τ) of the first step is a simulation waveform S2 (t) of a sea area incident point with respect to a small fault slip and a coastal The simulation waveform X2 (t) at the vicinity prediction point is calculated by deconvolution in the frequency domain, and the tsunami propagation characteristic G2 (τ) and the observed tsunami waveform S1 (t) at the sea area incident point for all fault slips are convolved. An early coastal tsunami prediction method using tsunami propagation characteristics characterized by this. 請求項1記載の津波伝播特性を利用した沿岸の早期津波予測方法において、前記第2のステップは、小規模の2次元津波シミュレーションを利用した沿岸の津波波形と波高予測を行うことを特徴とする津波伝播特性を利用した沿岸の早期津波予測方法。   2. The coastal early tsunami prediction method using tsunami propagation characteristics according to claim 1, wherein the second step performs coastal tsunami waveform and wave height prediction using a small-scale two-dimensional tsunami simulation. An early coastal tsunami prediction method using tsunami propagation characteristics. 請求項1記載の津波伝播特性を利用した沿岸の早期津波予測方法において、近距離地点の津波入射波形と長時間の津波入射波形を利用した際は、沿岸の津波波形と波高の予測精度向上が期待されることを特徴とする津波伝播特性を利用した沿岸の早期津波予測方法。   In the coastal early tsunami prediction method using the tsunami propagation characteristic according to claim 1, when the tsunami incident waveform at a short distance and the tsunami incident waveform for a long time are used, the prediction accuracy of the coastal tsunami waveform and wave height is improved. A coastal early tsunami prediction method using tsunami propagation characteristics characterized by expectations.
JP2015111808A 2015-06-02 2015-06-02 Tsunami Prediction Method Using Tsunami Propagation Characteristics Expired - Fee Related JP6437883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015111808A JP6437883B2 (en) 2015-06-02 2015-06-02 Tsunami Prediction Method Using Tsunami Propagation Characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015111808A JP6437883B2 (en) 2015-06-02 2015-06-02 Tsunami Prediction Method Using Tsunami Propagation Characteristics

Publications (2)

Publication Number Publication Date
JP2016223956A true JP2016223956A (en) 2016-12-28
JP6437883B2 JP6437883B2 (en) 2018-12-12

Family

ID=57748656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015111808A Expired - Fee Related JP6437883B2 (en) 2015-06-02 2015-06-02 Tsunami Prediction Method Using Tsunami Propagation Characteristics

Country Status (1)

Country Link
JP (1) JP6437883B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021047092A (en) * 2019-09-19 2021-03-25 エー・シー・エス株式会社 Tsunami information providing method and tsunami information providing system
CN114895358A (en) * 2022-07-13 2022-08-12 海南浙江大学研究院 Earthquake and tsunami rapid early warning method and system
CN115495941A (en) * 2022-11-18 2022-12-20 海南浙江大学研究院 Response surface-based rapid forecasting method for submarine landslide tsunami

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08292273A (en) * 1995-04-21 1996-11-05 Yuseisho Tsushin Sogo Kenkyusho Tidal wave and maritime weather monitoring prediction device
JP2007018291A (en) * 2005-07-08 2007-01-25 Port & Airport Research Institute Tsunami information provision method and tsunami information provision system
JP2008089316A (en) * 2006-09-29 2008-04-17 Kyoto Univ Method of estimating seismic sea wave source, method of predicting seismic sea wave height, and technique related thereto
JP2012058062A (en) * 2010-09-08 2012-03-22 Nippon Telegr & Teleph Corp <Ntt> Tsunami scale prediction apparatus, method, and program
JP2012167950A (en) * 2011-02-10 2012-09-06 Tokyo Electric Power Co Inc:The Tsunami height calculation method and tsunami height calculation apparatus
KR20130045650A (en) * 2011-10-26 2013-05-06 한양대학교 산학협력단 Dynamic calculation range type numerical simulation method of tsunami
JP2014081900A (en) * 2012-10-18 2014-05-08 Fujitsu Ltd Simulation program, simulation method, and simulation device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08292273A (en) * 1995-04-21 1996-11-05 Yuseisho Tsushin Sogo Kenkyusho Tidal wave and maritime weather monitoring prediction device
JP2007018291A (en) * 2005-07-08 2007-01-25 Port & Airport Research Institute Tsunami information provision method and tsunami information provision system
JP2008089316A (en) * 2006-09-29 2008-04-17 Kyoto Univ Method of estimating seismic sea wave source, method of predicting seismic sea wave height, and technique related thereto
JP2012058062A (en) * 2010-09-08 2012-03-22 Nippon Telegr & Teleph Corp <Ntt> Tsunami scale prediction apparatus, method, and program
JP2012167950A (en) * 2011-02-10 2012-09-06 Tokyo Electric Power Co Inc:The Tsunami height calculation method and tsunami height calculation apparatus
KR20130045650A (en) * 2011-10-26 2013-05-06 한양대학교 산학협력단 Dynamic calculation range type numerical simulation method of tsunami
JP2014081900A (en) * 2012-10-18 2014-05-08 Fujitsu Ltd Simulation program, simulation method, and simulation device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021047092A (en) * 2019-09-19 2021-03-25 エー・シー・エス株式会社 Tsunami information providing method and tsunami information providing system
CN114895358A (en) * 2022-07-13 2022-08-12 海南浙江大学研究院 Earthquake and tsunami rapid early warning method and system
CN115495941A (en) * 2022-11-18 2022-12-20 海南浙江大学研究院 Response surface-based rapid forecasting method for submarine landslide tsunami
CN115495941B (en) * 2022-11-18 2023-03-28 海南浙江大学研究院 Response surface-based rapid forecasting method for submarine landslide tsunami

Also Published As

Publication number Publication date
JP6437883B2 (en) 2018-12-12

Similar Documents

Publication Publication Date Title
Pakoksung et al. Simulation of the submarine landslide tsunami on 28 September 2018 in Palu Bay, Sulawesi Island, Indonesia, using a two-layer model
Furumura et al. Anomalous propagation of long-period ground motions recorded in Tokyo during the 23 October 2004 M w 6.6 Niigata-ken Chuetsu, Japan, Earthquake
Mori et al. Recent process in probabilistic tsunami hazard analysis (PTHA) for mega thrust subduction earthquakes
Romano et al. Tsunamis generated by landslides at the coast of conical islands: experimental benchmark dataset for mathematical model validation
Mori et al. Probabilistic tsunami hazard analysis of the pacific coast of Mexico: case study based on the 1995 Colima earthquake tsunami
Goda et al. Tsunami simulations of mega-thrust earthquakes in the Nankai–Tonankai Trough (Japan) based on stochastic rupture scenarios
Shennan et al. Great tsunamigenic earthquakes during the past 1000 yr on the Alaska megathrust
JP6437883B2 (en) Tsunami Prediction Method Using Tsunami Propagation Characteristics
Watson Acceleration in European mean sea level? A new insight using improved tools
Cao et al. Field investigation into wave attenuation in the mangrove environment of the South China Sea coast
Roshan et al. Tsunami hazard assessment of Indian coast
Muhammad et al. Tsunami hazard analysis of future megathrust sumatra earthquakes in Padang, Indonesia using stochastic tsunami simulation
Bender et al. STWAVE simulation of Hurricane Ike: Model results and comparison to data
Sørensen et al. Simulated strong ground motions for the great M 9.3 Sumatra–Andaman earthquake of 26 December 2004
Masaya et al. Investigating beach erosion related with tsunami sediment transport at Phra Thong Island, Thailand, caused by the 2004 Indian Ocean tsunami
KR101219352B1 (en) Dynamic calculation range type numerical simulation method of tsunami based on flux
Thiebaut et al. Prediction of coastal far infragravity waves from sea-swell spectra
Jadhav Field investigation of wave and surge attenuation in salt marsh vegetation and wave climate in a Shallow Estuary
Bastami et al. Seismicity and seismic hazard assessment for greater Tehran region using Gumbel first asymptotic distribution
Liu et al. Large effects of Moho reflections (SmS) on peak ground motion in northwestern Taiwan
Donnelly et al. A numerical model of coastal overwash
Regina et al. Modeling study of tsunami wave propagation
Kalmbacher et al. Effects of tides and currents on tsunami propagation in large rivers: Columbia River, United States
Zhao et al. Relation between the period of leading tsunami wave and source parameters
Xu et al. Insights on the small tsunami from January 28, 2020, Caribbean Sea M W7. 7 earthquake by numerical simulation and spectral analysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171205

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20171201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181115

R150 Certificate of patent or registration of utility model

Ref document number: 6437883

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350