JP2016223924A - Method and device for measuring gas permeation amount - Google Patents

Method and device for measuring gas permeation amount Download PDF

Info

Publication number
JP2016223924A
JP2016223924A JP2015111007A JP2015111007A JP2016223924A JP 2016223924 A JP2016223924 A JP 2016223924A JP 2015111007 A JP2015111007 A JP 2015111007A JP 2015111007 A JP2015111007 A JP 2015111007A JP 2016223924 A JP2016223924 A JP 2016223924A
Authority
JP
Japan
Prior art keywords
container
measured
gas
gas permeation
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015111007A
Other languages
Japanese (ja)
Other versions
JP2016223924A5 (en
Inventor
弘次 辻井
Koji Tsujii
弘次 辻井
尚弘 坪井
Hisahiro Tsuboi
尚弘 坪井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GTR Tec Corp
Original Assignee
GTR Tec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GTR Tec Corp filed Critical GTR Tec Corp
Priority to JP2015111007A priority Critical patent/JP2016223924A/en
Publication of JP2016223924A publication Critical patent/JP2016223924A/en
Publication of JP2016223924A5 publication Critical patent/JP2016223924A5/ja
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a measuring device applying a principle of the differential pressure method to the gas permeation measurement of a container and having reproducibility of a measurement result.SOLUTION: A gas permeation measurement method for measuring a gas permeation amount of a container to be measured includes the following steps of a to e. (a) a step of making an internal space of a container to be measured and one space of an indoor space surrounded by an internal wall of a measurement chamber and an external wall of the container to be measured to be used as a vacuum partitioned chamber 6 and making the other internal space to be used as a normal pressure partitioned chamber 7 by positioning the container 2 to be measured in the internal part of the measurement chamber 21, (b) a step of filling a granular material 11 into the vacuum partitioned chamber and protecting the container to be measured from a deformation by resisting to a force deforming the wall surface of the container to be measured which is generated from a pressure difference between the inside of the container to be measured and the outside of the container to be measured, (c) a step of positioning a test gas 24 in the normal pressure partitioned chamber 7, (d) a step of reducing the pressure of the vacuum partitioned chamber 6, and (e) after performing the steps of (c) and (d), a step of measuring the test gas reaching the vacuum partitioned chamber from the normal pressure partitioned chamber by permeating the wall surface of the container to be measured.SELECTED DRAWING: Figure 1

Description

本発明は、プラスチックなどを材料とする容器について、そのガス透過度を測定する方法と装置に関するものである。   The present invention relates to a method and apparatus for measuring the gas permeability of a container made of plastic or the like.

従来、プラスチック材料からなるフィルム及びシートについて、そのガス透過度を試験する方法として、等圧法と差圧法が知られている(例えば特許文献1参照)。   Conventionally, an isobaric method and a differential pressure method are known as methods for testing the gas permeability of films and sheets made of plastic materials (see, for example, Patent Document 1).

フィルムの等圧法によるガス透過度試験方法は、試験片をAとBの二つのチャンバ間に配置し、チャンバAに試験ガスを供給し、チャンバBにキャリアガスを流す。試験ガスは試験片を透過してチャンバBのキャリアガス中に移動し、キャリアガスによってセンサに運ばれ、センサで計測される。   In the gas permeability test method using the film isobaric method, a test piece is placed between two chambers A and B, a test gas is supplied to chamber A, and a carrier gas is flowed to chamber B. The test gas passes through the test piece and moves into the carrier gas in the chamber B, is carried to the sensor by the carrier gas, and is measured by the sensor.

フィルムの差圧法によるガス透過度試験方法は、試験片をAとBの二つのチャンバ間に配置し、チャンバBを真空排気して、チャンバAに試験ガスを導入する。試験ガスは試験片を透過してチャンバBに移行する。試験片を透過した試験ガスの量は、チャンバB中の試験ガス量の計測又はチャンバBの圧力上昇の計測で知る。   In the gas permeability test method by the film differential pressure method, a test piece is placed between two chambers A and B, the chamber B is evacuated, and a test gas is introduced into the chamber A. The test gas passes through the test piece and moves to chamber B. The amount of test gas that has permeated through the test piece is known by measuring the amount of test gas in chamber B or measuring the increase in pressure in chamber B.

また、従来、流動体(マヨネーズ、ケチャップなど)や液体飲料(緑茶、ジュースなど)の容器について、ガス透過測定が行われている。その測定方法は被測定容器を試験ガス雰囲気中に配置し、被測定容器の出入口からキャリアガスを流入させる。そして被測定容器内に透過した試験ガスをキャリアガスの流れに乗せてセンサに導き、試験ガスをセンサで計測する方法である。当該測定方法にあって試験ガスとキャリアガスの圧力が等しいので、本明細書において当該測定方法を仮に容器等圧法と称する。   Conventionally, gas permeation measurement has been performed on containers of fluids (mayonnaise, ketchup, etc.) and liquid beverages (green tea, juice, etc.). In the measurement method, a container to be measured is arranged in a test gas atmosphere, and a carrier gas is caused to flow in from the inlet / outlet of the container to be measured. In this method, the test gas that has permeated into the container to be measured is guided to the sensor by being put on the flow of the carrier gas, and the test gas is measured by the sensor. Since the test gas and the carrier gas have the same pressure in this measurement method, the measurement method is temporarily referred to as a container isobaric method in this specification.

容器等圧法ではキャリアガス中の試験ガス量を計測する。計測可能な試験ガス下限値は、キャリアガスの流量とセンサの感度により定まる。キャリアガス流量の実用上の最小値は略数ml/minであり、キャリアガス流量を小さくして計測下限値を小さくするには限度がある。センサの感度を上げると装置が高価になる。   In the container isobaric method, the amount of test gas in the carrier gas is measured. The lower limit value of the test gas that can be measured is determined by the flow rate of the carrier gas and the sensitivity of the sensor. The practical minimum value of the carrier gas flow rate is approximately several ml / min, and there is a limit to reduce the measurement lower limit value by reducing the carrier gas flow rate. Increasing the sensitivity of the sensor makes the device expensive.

一方、上述のようにフィルム及びシートのガス透過度測定方法として差圧法がある。フィルム及びシートにあって、差圧法と等圧法の両測定方法に同一検出器を使用すると、等圧法に比較して差圧法はより一層試験ガス透過が少ない試料の測定値を求めることができる。すなわち、ガス透過測定における最少検出能力が向上する。   On the other hand, as described above, there is a differential pressure method as a method for measuring the gas permeability of films and sheets. When the same detector is used for both the differential pressure method and the isobaric method in the film and the sheet, the differential pressure method can obtain the measured value of the sample with less test gas permeation compared to the isobaric method. That is, the minimum detection capability in gas permeation measurement is improved.

しかし、容器の測定にフィルムなどにおける差圧法の原理を適用するならば、容器の内部を真空にする操作が必要不可欠であり、この結果容器が変形し、容器の実態に応じたガス透過を求めることが困難で、再現性ある測定結果を得ることが困難である。特にポリエチレンなどを材料とした容器であって、容器外部から内容物を容器ごと圧搾可能な容器にあっては、容器内外の圧力差に起因する容器の変形が激しく、正確なガス透過測定と再現性ある測定結果を得ることが困難である。   However, if the principle of the differential pressure method in a film or the like is applied to the measurement of the container, it is indispensable to evacuate the inside of the container. As a result, the container is deformed and gas permeation according to the actual condition of the container is obtained. It is difficult to obtain reproducible measurement results. Especially for containers made of polyethylene, etc., where the contents can be squeezed from the outside of the container, the deformation of the container due to the pressure difference inside and outside the container is severe, and accurate gas permeation measurement and reproduction It is difficult to obtain a reliable measurement result.

実用新案登録第3096609号公報Utility Model Registration No. 3096609

本発明が解決しようとする課題は、容器のガス透過測定にあってフィルムなどの差圧法の原理を適用して、容器の実態(側壁、底面、出入口部の厚さがそれぞれ異なるなど単一容器全体としての性能)に応じた、かつ、測定結果の再現性があるガス透過測定方法と測定装置を得ることにある。   The problem to be solved by the present invention is to measure the gas permeation of a container and apply the principle of a differential pressure method such as a film, so that the actual condition of the container (the thickness of the side wall, bottom surface, inlet / outlet portion is different, etc.) The object is to obtain a gas permeation measuring method and a measuring apparatus that are in accordance with the performance of the whole and have reproducibility of measurement results.

本発明のその他の課題は、本発明の説明により明らかになる。   Other problems of the present invention will become apparent from the description of the present invention.

以下に課題を解決するための手段を述べる。理解を容易にするために、本発明の実施態様に対応する符号を付けて説明するが、本発明は当該実施態様に限定されるものではない。   Means for solving the problems will be described below. For ease of understanding, description will be made with reference numerals corresponding to the embodiments of the present invention, but the present invention is not limited to the embodiments.

本発明の一の態様にかかるガス透過測定方法は、被測定容器のガス透過量を測定するガス透過測定方法において、以下の工程からなる。
イ.測定室(21)の内部に被測定容器(2)を位置付けることにより、被測定容器の内部空間と、測定室の内壁と被測定容器の外壁に囲まれる室内空間の一方空間を減圧隔室(6)とし、他方空間を常圧隔室(7)とする工程
ロ.減圧隔室に粒状物(11)を充填する工程であり、粒状物は被測定容器内と被測定容器外の圧力差から生じる被測定容器壁面を変形させる力に抗して被測定容器を変形から保護するものである、
ハ.常圧隔室に試験ガス(24)を位置付ける工程
ニ.減圧隔室の圧力を減じる工程
ホ.ハの工程とニの工程を行った後に、被測定容器の壁面を透過して常圧隔室から減圧隔室に至った試験ガスを測定する工程
A gas permeation measuring method according to one aspect of the present invention is a gas permeation measuring method for measuring a gas permeation amount of a container to be measured, and includes the following steps.
A. By positioning the container to be measured (2) inside the measurement chamber (21), the internal space of the container to be measured and one space of the indoor space surrounded by the inner wall of the measurement chamber and the outer wall of the container to be measured are decompression compartments ( 6) and the other space is the normal pressure compartment (7). This is the process of filling the vacuum chamber with the granular material (11), and the granular material deforms the measured container against the force that deforms the measured container wall surface due to the pressure difference between the measured container and the measured container. That protects from the
C. Positioning the test gas (24) in the atmospheric pressure compartment; Step of reducing the pressure in the decompression compartment e. The step of measuring the test gas that has permeated through the wall of the container to be measured and has reached the decompression compartment after passing through the steps c and d.

本発明の好ましい実施態様にあって、被測定容器の内部空間が減圧隔室であってもよい。   In a preferred embodiment of the present invention, the internal space of the container to be measured may be a decompression compartment.

本発明のその他の好ましい実施態様にあって、粒状物は、その粒子の外接球の直径が0.05mm以上10.0mm以下であってもよく、その形状が球形であってもよく、また、粒状物は、金属からなるものであってもよい。   In another preferred embodiment of the present invention, the granular material may have a circumscribed sphere diameter of 0.05 mm or more and 10.0 mm or less, and may have a spherical shape. The granular material may be made of metal.

本発明の他の態様にかかる被測定容器のガス透過測定装置は、被測定容器のガス透過量を測定するガス透過測定装置において、
測定室(21)、粒状物(11)、真空ポンプ(31)、試験ガス(24)とガス検出器(32)からなり、
測定室の内部に被測定容器(2)が位置付けられ、
被測定容器の内部空間と、測定室の内壁と被測定容器の外壁に囲まれる空間の一方空間が減圧隔室(6)であり、他方空間が常圧隔室(7)であって、
減圧隔室に粒状物が充填され、粒状物は被測定容器内と被測定容器外の圧力差から生じる被測定容器壁面を変形させる力に抗して被測定容器を変形から保護し、
真空ポンプは減圧隔室と接続、切断され、
常圧隔室に試験ガスが位置付けられ、
減圧隔室の圧力が減じられ、常圧隔室から被測定容器の壁面を透過して減圧隔室に移行する試験ガスをガス検出器で測定するものである。
According to another aspect of the present invention, a gas permeation measuring apparatus for a container to be measured is a gas permeation measuring apparatus for measuring a gas permeation amount of a container to be measured.
Consists of measurement chamber (21), granular material (11), vacuum pump (31), test gas (24) and gas detector (32)
The container to be measured (2) is positioned inside the measurement chamber,
One space of the inner space of the container to be measured and the space surrounded by the inner wall of the measurement chamber and the outer wall of the container to be measured is a decompression compartment (6), and the other space is a normal pressure compartment (7),
The decompression compartment is filled with particulate matter, and the particulate matter protects the measured container from deformation against the force that deforms the measured container wall surface caused by the pressure difference between the measured container and outside the measured container.
The vacuum pump is connected to and disconnected from the decompression compartment,
The test gas is positioned in the atmospheric pressure compartment,
The pressure of the decompression compartment is reduced, and the test gas that passes through the wall of the container to be measured from the normal pressure compartment and moves to the decompression compartment is measured with a gas detector.

本発明の好ましい実施態様にあって、被測定容器の内部空間が減圧隔室であってもよい。   In a preferred embodiment of the present invention, the internal space of the container to be measured may be a decompression compartment.

本発明のその他の好ましい実施態様にあって、粒状物は、その粒子の外接球の直径が0.05mm以上10.0mm以下であってもよく、その形状が球形であってもよく、また、粒状物は、金属からなるものであってもよい。   In another preferred embodiment of the present invention, the granular material may have a circumscribed sphere diameter of 0.05 mm or more and 10.0 mm or less, and may have a spherical shape. The granular material may be made of metal.

以上説明した本発明、本発明の好ましい実施態様、これらに含まれる構成要素は可能な限り組み合わせて実施することができる。   The present invention described above, preferred embodiments of the present invention, and components included in these can be implemented in combination as much as possible.

本発明にかかるガス透過測定方法は、他の発明を特定する工程とあわせて、減圧隔室に粒状物を充てんする工程を含んでいるので、当該工程の後に減圧隔室の圧力を減じても被測定容器の変形が生じない。このため、被測定容器の底面部分、側壁部分、出入口取付け部分と出入口部分などを含んだ被測定容器全体を透過するガス透過測定を行うことが出来て、容器全体としてのガス透過を評価できる測定値が得られる利点がある。また、被測定容器の変形が生じないので、測定値は再現性が良く、信頼性の高いガス透過測定方法である。さらに、フィルム等の差圧法によるガス透過測定と同じく、検出器の検知能力を十分に活用する測定方法という利点がある。   Since the gas permeation measurement method according to the present invention includes a step of filling the vacuum compartment with particulate matter in combination with the step of specifying another invention, even if the pressure in the vacuum compartment is reduced after the step. The container under measurement does not deform. For this reason, it is possible to perform a gas permeation measurement that permeates the entire measured container including the bottom surface portion, the side wall portion, the inlet / outlet attachment portion and the inlet / outlet portion of the measured container, and to measure the gas permeation as the entire container. There is an advantage that the value is obtained. Further, since the container to be measured is not deformed, the measured value is a highly reliable gas permeation measuring method with good reproducibility. Furthermore, there is an advantage of a measurement method that makes full use of the detection capability of the detector, as in the case of gas permeation measurement by a differential pressure method such as a film.

本発明にかかるガス透過測定装置は、他の発明を特定する事項とあわせて、減圧隔室に粒状物が充てんされているので、減圧隔室の圧力が減少しても被測定容器の変形が生じない。このため、被測定容器の底面部分、側壁部分、出入口取付け部分と出入口部分などを含んだ被測定容器全体を透過するガス透過測定を行うことが出来て、容器全体としてのガス透過を評価できる測定値が得られる利点がある。また、被測定容器の変形が生じないので、測定値は再現性が良く、信頼性の高い計測値が得られるガス透過測定装置である。さらに、フィルム等の差圧法によるガス透過測定装置と同じく、検出器の検知能力を十分に活用する測定装置という利点がある。   Since the gas permeation measuring device according to the present invention is filled with the particulate matter in the decompression compartment together with the matters specifying other inventions, even if the pressure in the decompression compartment is reduced, the measurement container is not deformed. Does not occur. For this reason, it is possible to perform a gas permeation measurement that permeates the entire measured container including the bottom surface portion, the side wall portion, the inlet / outlet attachment portion and the inlet / outlet portion of the measured container, and to measure the gas permeation as the entire container. There is an advantage that the value is obtained. In addition, since the container to be measured is not deformed, the measured value is a gas permeation measuring device with good reproducibility and a highly reliable measured value. Furthermore, as with a gas permeation measuring device using a differential pressure method such as a film, there is an advantage of a measuring device that fully utilizes the detection capability of the detector.

図1は、ガス透過測定装置1の説明図である。FIG. 1 is an explanatory diagram of a gas permeation measuring apparatus 1.

以下、図面を参照して本発明の実施例にかかる容器のガス透過測定方法と容器のガス透過測定装置をさらに説明する。本明細書において参照する図は、本発明の理解を容易にするため、一部の構成要素を誇張して表すなど模式的に表しているものがある。このため、構成要素間の寸法や比率などは実物と異なっている場合がある。また、本発明の実施例に記載した部材や部分の寸法、材質、形状、その相対位置などは、とくに特定的な記載のない限りは、この発明の範囲をそれらのみに限定する趣旨のものではなく、単なる説明例にすぎない。   Hereinafter, a gas permeation measuring method for a container and a gas permeation measuring apparatus for a container according to an embodiment of the present invention will be further described with reference to the drawings. In order to facilitate understanding of the present invention, some drawings referred to in this specification are schematically illustrated by exaggerating some components. For this reason, the dimension, ratio, etc. between components may differ from a real thing. Further, the dimensions, materials, shapes, relative positions, etc. of the members and parts described in the embodiments of the present invention are not intended to limit the scope of the present invention to those unless otherwise specified. It is merely an illustrative example.

図1は、ガス透過測定装置1の説明図である。   FIG. 1 is an explanatory diagram of a gas permeation measuring apparatus 1.

測定室21の内部に被測定容器2が位置付けられている。被測定容器2の出入口に密封栓12を取り付けている。密封栓12は、被測定容器2の内部が真空になっても、被測定容器2の内部減圧状態が保持される性質を備えた栓である。また、密封栓12は、被測定容器2の内部が真空になっても、被測定容器2の内部減圧状態が保持されるように被測定容器に取り付ける。   The container 2 to be measured is positioned inside the measurement chamber 21. A sealing plug 12 is attached to the entrance / exit of the container 2 to be measured. The sealing stopper 12 is a stopper provided with a property that the internal decompression state of the measurement container 2 is maintained even when the measurement container 2 is evacuated. Further, the sealing plug 12 is attached to the measurement container so that the internal decompression state of the measurement container 2 is maintained even when the measurement container 2 is evacuated.

密閉栓12には、長パイプ17と短パイプ18が貫通している。長パイプ17は接続器兼水注入口16を介在して真空引きパイプ13と接続されている。短パイプ18の端部に開閉弁15が付いている。ガス透過測定中、開閉弁15は閉じている。   A long pipe 17 and a short pipe 18 pass through the sealing plug 12. The long pipe 17 is connected to the evacuation pipe 13 via a connector / water inlet 16. An open / close valve 15 is attached to the end of the short pipe 18. During the gas permeation measurement, the on-off valve 15 is closed.

本発明と本明細書にあって、真空とは、差圧法の測定原理を使用したガス透過度測定を行うにあたって必要な低圧力状態を意味するものである。   In the present invention and the present specification, the vacuum means a low pressure state necessary for gas permeability measurement using the measurement principle of the differential pressure method.

ここで、差圧法の測定原理とは、被測定対象を挟んで、一方を大気圧の隔室、他方を減圧の隔室とし、大気圧の隔室中に位置付けた試験ガスを、被測定対象を透過し減圧の隔室に移行させ、当該移行した試験ガスを計測する透過測定をいう。真空又は減圧の値は、被測定対象の試験ガス透過度に応じて適宜に定まる値である。真空又は減圧の値の一例を挙げると、1Pa(パスカル)〜100Paである。   Here, the measurement principle of the differential pressure method is that the test gas positioned in the atmospheric pressure compartment, with one being the atmospheric pressure compartment and the other being the decompression compartment across the object to be measured, Is measured by measuring the transferred test gas. The value of vacuum or reduced pressure is a value that is appropriately determined according to the test gas permeability of the object to be measured. An example of the vacuum or reduced pressure value is 1 Pa (Pascal) to 100 Pa.

真空引きパイプ13は長パイプ17と接続されて、被測定容器2の内部空間5と導通している。長パイプ17は、測定室21の壁面を通過して測定室21の外部に至り、真空引きパイプ13とつながり、第一バルブ41、計量パイプ14、第二バルブ42を経由して真空ポンプ31につながっている。   The evacuation pipe 13 is connected to the long pipe 17 and is electrically connected to the internal space 5 of the container 2 to be measured. The long pipe 17 passes through the wall surface of the measurement chamber 21, reaches the outside of the measurement chamber 21, is connected to the vacuum pulling pipe 13, and passes through the first valve 41, the measuring pipe 14, and the second valve 42 to the vacuum pump 31. linked.

真空ポンプの一例は、油拡散ポンプである。   An example of a vacuum pump is an oil diffusion pump.

図1に図示したガス透過測定装置1はガス検出器であるガスクロマトグラフ32を具備している。ガスクロマトグラフに関する流路系は、キャリアガスボンベ33、第三バルブ43、第二流路47と第四バルブ44からなる。第三バルブ43は第一流路46を経由して第一バルブ41につながっている。第四バルブ44は第三流路48を経由して第二バルブ42につながっている。   The gas permeation measuring apparatus 1 illustrated in FIG. 1 includes a gas chromatograph 32 that is a gas detector. The flow path system related to the gas chromatograph includes a carrier gas cylinder 33, a third valve 43, a second flow path 47 and a fourth valve 44. The third valve 43 is connected to the first valve 41 via the first flow path 46. The fourth valve 44 is connected to the second valve 42 via the third flow path 48.

第一バルブ41、第二バルブ42、第三バルブ43と第四バルブ44を操作して、計量パイプ14がガスクロマトグラフに関する流路系に接続され、また、切断される。   By operating the first valve 41, the second valve 42, the third valve 43 and the fourth valve 44, the measuring pipe 14 is connected to the flow path system related to the gas chromatograph and is disconnected.

被測定容器2は、特に制限なくどのような容器であっても測定可能である。好ましい被測定容器を例示すると、容器外部から内容物を容器ごと圧搾可能な容器、空容器をつぶしやすくデザインしたPETボトル、液体飲料用PETボトル、液体や流動体の小分け用ボトルなどが挙げられる。また、容器本体に対して出入り口部分を絞り込んだ形状の被測定容器が好ましい。密閉栓12の取り付けが容易だからであり、また、密閉栓自体の設計製造も容易だからである。被測定容器として好ましい容器の材料を例示すると、ポリエチレン(PE)、ポリプロピレン(PP)、ナイロン、これらの多層構造物、ポリエチレンテレフタレート(PET)などである。   Any container can be used for the container 2 to be measured without any particular limitation. Examples of preferred containers to be measured include containers that allow the contents to be squeezed together with the containers, PET bottles designed to easily crush empty containers, PET bottles for liquid beverages, bottles for subdividing liquids and fluids, and the like. Further, a container to be measured having a shape in which the entrance / exit portion is narrowed with respect to the container body is preferable. This is because it is easy to attach the sealing plug 12 and it is easy to design and manufacture the sealing plug itself. Examples of preferable container materials as the container to be measured include polyethylene (PE), polypropylene (PP), nylon, a multilayer structure thereof, and polyethylene terephthalate (PET).

被測定容器12の内部空間5に粒状物11が充てんされている。粒状物11は、被測定容器12の外部と内部の圧力差によって被測定容器の壁面を変形させる力に対抗して、被測定容器の壁面を変形から保護する役割を担う。   The granular material 11 is filled in the internal space 5 of the container 12 to be measured. The granular material 11 plays a role of protecting the wall surface of the measurement container from deformation against a force that deforms the wall surface of the measurement container due to a pressure difference between the outside and the inside of the measurement container 12.

粒状物11の役割を、図示したガス透過装置1で具体的に例示する。被測定容器12は500mlの飲料水が充てんされ、容器と飲料水が一体として市販されているPETボトルである。被測定容器12が空であって、被測定容器12の外部が大気圧に保持されていて、被測定容器12の内部空間が減圧されると、外部と内部の圧力差により被測定容器12の壁面が外部から内部へ向かう方向に力を受け、被測定容器12が押しつぶされる。   The role of the granular material 11 is specifically illustrated by the illustrated gas permeation device 1. The container 12 to be measured is a PET bottle filled with 500 ml of drinking water and commercially available as a container and drinking water. When the container 12 to be measured is empty and the outside of the container 12 to be measured is maintained at atmospheric pressure, and the internal space of the container 12 to be measured is depressurized, the pressure difference between the outside and the inside of the container 12 to be measured The wall 12 receives a force in the direction from the outside to the inside, and the container 12 to be measured is crushed.

被測定容器12の内壁3は、多数の点で粒状物11と接触し、同時に粒状物11は個々の粒状体が各々接触し、圧力差により生じる壁面を変形させる力に対抗する。そのため粒状物を充てんした被測定容器12は、内部空間を減圧しても、被測定容器が押しつぶされることが無い。   The inner wall 3 of the container 12 to be measured comes into contact with the granular material 11 at a number of points, and at the same time, the granular material 11 comes into contact with the individual granular materials, and counteracts the force that deforms the wall surface caused by the pressure difference. Therefore, the measured container 12 filled with the granular material is not crushed even if the internal space is decompressed.

加えて、粒状物11は被測定容器の内壁3と点または微小面積で接触する。このため、試験ガスの被測定容器の壁面透過は、粒状物11の有無に影響されない。粒状物11は試験ガスを吸収しない粒状物を使用する。そして、粒状物11は剛性に富むものとする。被測定容器の壁面を変形から保護する役割を担うためである。   In addition, the granular material 11 contacts the inner wall 3 of the container to be measured at a point or a small area. For this reason, the wall permeation of the test gas to the measurement container is not affected by the presence or absence of the granular material 11. The granular material 11 uses a granular material that does not absorb the test gas. And the granular material 11 shall be rich in rigidity. This is to play a role of protecting the wall of the container to be measured from deformation.

本発明と本明細書において、被測定容器の壁面とは、被測定容器の底面部分、側壁部分、出入口取付け部分と出入口部分などを含んだ被測定容器全体を構成する面を意味する。また、内壁とは壁面の内面を意味する。   In the present invention and this specification, the wall surface of the container to be measured means a surface constituting the entire container to be measured including the bottom surface portion, the side wall portion, the entrance / exit attachment portion and the entrance / exit portion of the container to be measured. Moreover, an inner wall means the inner surface of a wall surface.

粒状物11は、金属、ガラスから成ることが好ましい。また、合成樹脂製、木製、セラミック製の粒状物に金属で被覆した粒状物も好ましい。これらは、試験ガスを吸収しないからである。金属は、単一元素からなる金属であってもよく、合金であってもよい。単一元素からなる金属は、アルミニウム、ニッケル、金、銀、白金、銅、鉄などが挙げられる。合金である金属は、鋼、ステンレス(例えばSUA304、SUS403、SUS430等)、真鍮、白銅などが挙げられる。ガラスは、ソーダガラス、硼珪酸ガラス、サファイアガラスなどが挙げられる。   The granular material 11 is preferably made of metal or glass. Moreover, the granular material which coat | covered the synthetic resin, wooden, and ceramic granular material with the metal is also preferable. This is because they do not absorb the test gas. The metal may be a metal composed of a single element or an alloy. Examples of the metal composed of a single element include aluminum, nickel, gold, silver, platinum, copper, and iron. Examples of the metal that is an alloy include steel, stainless steel (eg, SUA304, SUS403, SUS430, etc.), brass, and white copper. Examples of the glass include soda glass, borosilicate glass, and sapphire glass.

粒状物の形状は、球、楕円球、正多角形、多角形、不定形などである。これらの中で球形が好ましい。被測定容器内壁と点で接するからである。   The shape of the granular material is a sphere, an elliptic sphere, a regular polygon, a polygon, an indefinite shape, or the like. Of these, spherical shapes are preferred. This is because the inner wall of the container to be measured is in contact with the point.

粒状物の大きさは、その外接球の半径が、通常0.05mm以上10mm以下、好ましくは0.1mm以上5.0mm以下、より好ましくは0.1mm以上1.0mm以下である。この大きさ範囲の中で、被測定容器の容量、壁面の厚さ、材質、出入口の寸法等を勘案して試行錯誤により定めればよい。   The radius of the circumscribed sphere is usually 0.05 mm or more and 10 mm or less, preferably 0.1 mm or more and 5.0 mm or less, more preferably 0.1 mm or more and 1.0 mm or less. Within this size range, it may be determined by trial and error in consideration of the capacity of the container to be measured, the thickness of the wall surface, the material, the dimensions of the entrance / exit.

例えば、飲料液体(水、ソフトドリンク、緑茶、紅茶、調味液等)のPET容器でその容量が100ml〜2000ml、断面円形で半径6mm〜15mmの出入口を有する被測定容器の場合、粒状物の外接球の半径が0.1mm以上1.0mm以下が好ましい。   For example, in the case of a PET container of beverage liquid (water, soft drink, green tea, black tea, seasoning liquid, etc.) with a capacity of 100 ml to 2000 ml, a circular cross section and a radius of 6 mm to 15 mm, the outer circumference of the granular material The radius of the sphere is preferably from 0.1 mm to 1.0 mm.

測定室21の室内空間23に試験ガス24を満たす。室内空間23は、測定室内壁22と被測定容器外壁4と密封栓の外壁面に囲まれる空間である。測定室21は試験ガス流入口25と試験ガス流出口26を有する。試験ガス流入口25から試験ガス24を室内空間23に一定時間流し続ければ、室内空間23に試験ガス24が満たされる。あるいは、被測定容器2の内部空間5を減圧し、ガス透過試験の期間中、常時又は断続的に試験ガス流入口から試験ガス24を流し続けてもよい。   A test gas 24 is filled in the indoor space 23 of the measurement chamber 21. The indoor space 23 is a space surrounded by the measurement indoor wall 22, the measured container outer wall 4, and the outer wall surface of the sealing plug. The measurement chamber 21 has a test gas inlet 25 and a test gas outlet 26. If the test gas 24 continues to flow from the test gas inlet 25 to the indoor space 23 for a certain time, the indoor space 23 is filled with the test gas 24. Alternatively, the internal space 5 of the container 2 to be measured may be depressurized, and the test gas 24 may be continuously supplied from the test gas inflow port during the gas permeation test.

試験ガス24は例えば、酸素ガス、水蒸気、二酸化炭素ガス、窒素ガスである。   The test gas 24 is, for example, oxygen gas, water vapor, carbon dioxide gas, or nitrogen gas.

図1に図示するガス透過測定装置1にあって、室内空間23が常圧隔室7であり試験ガスが満たされる。また、常圧隔室7は大気圧に保持される。   In the gas permeation measuring apparatus 1 illustrated in FIG. 1, the indoor space 23 is the atmospheric pressure compartment 7 and is filled with the test gas. The normal pressure compartment 7 is maintained at atmospheric pressure.

一方、第一バルブ41、第二バルブ42を操作して、被測定容器2の内部空間5、長パイプ17、真空引きパイプ13、計量パイプ14を真空ポンプ31に接続し、内部空間5、長パイプ17、真空引きパイプ13、第一バルブ41、計量パイプ14と第二バルブ42を真空引きする。所定の真空値に達すれば第二バルブ42を操作して、内部空間5から計量パイプ14までの系路と真空ポンプ31を切り離す。ガス透過測定装置1にあって内部空間5は減圧隔室6である。   On the other hand, by operating the first valve 41 and the second valve 42, the internal space 5, the long pipe 17, the vacuum pipe 13, and the measuring pipe 14 of the container to be measured 2 are connected to the vacuum pump 31, and the internal space 5, long The pipe 17, the vacuum pipe 13, the first valve 41, the measuring pipe 14 and the second valve 42 are evacuated. When the predetermined vacuum value is reached, the second valve 42 is operated to disconnect the system path from the internal space 5 to the measuring pipe 14 and the vacuum pump 31. In the gas permeation measuring apparatus 1, the internal space 5 is a decompression compartment 6.

常圧隔室に試験ガスを位置付ける工程と減圧隔室の圧力を減じる工程は、前後を逆にしてもよく、両者を同時並行して行ってもよい。被測定容器が試験ガスを比較的多く透過する場合には、減圧の工程を先にして、試験ガス位置付けの工程を後にすればよい。   The step of positioning the test gas in the normal pressure compartment and the step of reducing the pressure in the decompression compartment may be reversed, or both may be performed in parallel. When the container to be measured permeates a relatively large amount of test gas, the step of positioning the test gas may be performed after the step of depressurization.

この状態で一定時間保持する。試験ガスが被測定容器壁内を透過して内部空間5に至り、内部空間5から計量パイプ14までの系路中で試験ガスの濃度が一定になる。一定時間は、例えば、数分間〜数日間である。   Hold this state for a certain period of time. The test gas permeates the measured container wall and reaches the internal space 5, and the concentration of the test gas becomes constant in the system path from the internal space 5 to the measuring pipe 14. The certain time is, for example, several minutes to several days.

次に第一バルブ41、第二バルブ42、第三バルブ43と第四バルブ44を操作して計量パイプ14をガスクロマトグラフ系の流路に接続する。これによりキャリアガスがボンベ33から第一流路46を通り、計量パイプ14に至り、計量パイプ14内に存在した試験ガスと共に第三流路48を通りガスクロマトグラフ32に導入される。導入された試験ガスはガスクロマトグラフ32で定量される。   Next, the first valve 41, the second valve 42, the third valve 43, and the fourth valve 44 are operated to connect the measuring pipe 14 to the gas chromatograph flow path. As a result, the carrier gas passes from the cylinder 33 through the first flow path 46 to the measuring pipe 14 and is introduced into the gas chromatograph 32 through the third flow path 48 together with the test gas existing in the measuring pipe 14. The introduced test gas is quantified by the gas chromatograph 32.

ガス検出器はガスクロマトグラフに限られず、試験ガスに応じた個別ガス濃度計(酸素ガス濃度計、二酸化炭素ガス濃度計など)であってもよい。ガスクロマトグラフが好ましい。一般に最小検出濃度が小さいこと、異なる試験ガスに対応可能なこと、多成分のガスが同時に測定できることなどの理由からである。   The gas detector is not limited to a gas chromatograph, and may be an individual gas concentration meter (oxygen gas concentration meter, carbon dioxide gas concentration meter, etc.) corresponding to the test gas. A gas chromatograph is preferred. This is because, in general, the minimum detected concentration is small, it is possible to cope with different test gases, and multi-component gases can be measured simultaneously.

被測定容器の内部空間体積(粒状物の体積を除いた体積)は別に求める。例えば、被測定容器に粒状物を充填した状態で、内部空間に水を満たし、被測定容器全体の重さを計量し、水を入れない粒状物を含む被測定容器の重さとの差を求めて、体積を算出すればよい。   The internal space volume of the container to be measured (the volume excluding the volume of the granular material) is obtained separately. For example, with the container to be measured filled with particulate matter, fill the internal space with water, weigh the entire container to be measured, and determine the difference from the weight of the container to be measured containing particulate matter without water. Then, the volume may be calculated.

具体的には、接続器兼水注入口16を取り外して被測定容器2と真空引きパイプ13を切り離し、開閉弁15を開にして、接続器兼水注入口16から被測定容器2の内部空間に水を満たして、被測定容器全体の重さを計量すればよい。   Specifically, the connector / water inlet 16 is removed, the measured container 2 and the vacuum pipe 13 are disconnected, the open / close valve 15 is opened, and the internal space of the measured container 2 from the connector / water inlet 16 is opened. Fill the container with water and weigh the entire container to be measured.

測定室内の減圧隔室と常圧隔室は逆であってもよい。すなわち、被測定容器の内部空間を常圧隔室とし、測定室内壁と被測定容器外壁などに囲まれる室内空間を減圧隔室としてもよい。常圧隔室内に試験ガスが位置付けられ、減圧隔室に粒状物が充てんされ、減圧される。   The decompression compartment and the normal pressure compartment in the measurement chamber may be reversed. That is, the internal space of the measurement container may be a normal pressure compartment, and the indoor space surrounded by the measurement chamber wall and the measurement container outer wall may be a decompression compartment. The test gas is positioned in the atmospheric pressure chamber, and the decompression chamber is filled with particulate matter and depressurized.

以上本発明にかかる一実施の形態について図面を参照して詳述してきたが、具体的な構成例はこの一実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更などがあっても本発明に含まれる。   Although one embodiment of the present invention has been described in detail with reference to the drawings, a specific configuration example is not limited to this one embodiment, and the design can be changed without departing from the gist of the present invention. Are included in the present invention.

1 ガス透過測定装置
2 被測定容器
3 被測定容器内壁
4 被測定容器外壁
5 内部空間
6 減圧隔室
7 常圧隔室
11 粒状物
12 密封栓
13 真空引きパイプ
14 計量パイプ
15 開閉弁
16 接続器兼水注入口
17 長パイプ
18 短パイプ
21 測定室
22 測定室内壁
23 室内空間
24 試験ガス
25 試験ガス流入口
26 試験ガス流出口
31 真空ポンプ
32 ガス検出器であるガスクロマトグラフ
33 キャリアガスボンベ
34 データ処理装置
41 第一バルブ
42 第二バルブ
43 第三バルブ
44 第四バルブ
46 第一流路
47 第二流路
48 第三流路
1 Gas permeation measuring device
2 Container to be measured
3 inner wall of the container to be measured
4 Container outer wall to be measured
5 Internal space
6 decompression compartment 7 normal pressure compartment 11 granular material 12 sealing plug 13 vacuum pipe 14 metering pipe 15 on-off valve 16 connector / water inlet 17 long pipe 18 short pipe 21 measurement room 22 measurement room wall 23 room space 24 test Gas 25 Test gas inlet 26 Test gas outlet 31 Vacuum pump 32 Gas chromatograph as gas detector 33 Carrier gas cylinder 34 Data processing device 41 First valve 42 Second valve 43 Third valve 44 Fourth valve 46 First flow path 47 Second channel 48 Third channel

Claims (10)

被測定容器のガス透過量を測定するガス透過測定方法において、以下の工程からなるガス透過測定方法。
イ.測定室の内部に被測定容器を位置付けることにより、被測定容器の内部空間と、測定室の内壁と被測定容器の外壁に囲まれる室内空間の一方空間を減圧隔室とし、他方空間を常圧隔室とする工程
ロ.減圧隔室に粒状物を充填する工程であり、粒状物は被測定容器内と被測定容器外の圧力差から生じる被測定容器壁面を変形させる力に抗して被測定容器を変形から保護するものである、
ハ.常圧隔室に試験ガスを位置付ける工程
ニ.減圧隔室の圧力を減じる工程
ホ.ハの工程とニの工程を行った後に、被測定容器の壁面を透過して常圧隔室から減圧隔室に至った試験ガスを測定する工程
A gas permeation measuring method for measuring a gas permeation amount of a container to be measured, comprising the following steps.
A. By positioning the container to be measured inside the measurement chamber, one space of the inner space of the container to be measured and the indoor space surrounded by the inner wall of the measurement chamber and the outer wall of the container to be measured is a decompression compartment, and the other space is at normal pressure. B. This is a step of filling the decompression compartment with particulate matter, and the particulate matter protects the measurement container from deformation against the force that deforms the measurement container wall surface caused by the pressure difference between the measurement container and the measurement container. Is,
C. Positioning the test gas in the normal pressure chamber; d. Step of reducing the pressure in the decompression compartment e. The step of measuring the test gas that has permeated through the wall of the container to be measured and has reached the decompression compartment after passing through the steps c and d.
被測定容器の内部空間が減圧隔室である請求項1に記載したガス透過測定方法。 The gas permeation measuring method according to claim 1, wherein the internal space of the container to be measured is a decompression compartment. 粒状物は、その粒子の外接球の直径が0.05mm以上10.0mm以下である請求項1又は請求項2に記載したガス透過測定方法。 The gas permeation measuring method according to claim 1 or 2, wherein the particle has a circumscribed sphere diameter of 0.05 mm or more and 10.0 mm or less. 粒状物は球形である請求項1乃至3いずれかに記載したガス透過測定方法。 The gas permeation measuring method according to any one of claims 1 to 3, wherein the granular material is spherical. 粒状物は、金属からなる請求項1乃至4いずれかに記載したガス透過測定方法。 The gas permeation measuring method according to any one of claims 1 to 4, wherein the granular material is made of metal. 被測定容器のガス透過量を測定するガス透過測定装置において、
測定室、粒状物、真空ポンプ、試験ガスとガス検出器からなり、
測定室の内部に被測定容器が位置付けられ、
被測定容器の内部空間と、測定室の内壁と被測定容器の外壁に囲まれる空間の一方空間が減圧隔室であり、他方空間が常圧隔室であって、
減圧隔室に粒状物が充填され、粒状物は被測定容器内と被測定容器外の圧力差から生じる被測定容器壁面を変形させる力に抗して被測定容器を変形から保護し、
真空ポンプは減圧隔室と接続、切断され、
常圧隔室に試験ガスが位置付けられ、
減圧隔室の圧力が減じられ、常圧隔室から被測定容器の壁面を透過して減圧隔室に移行する試験ガスをガス検出器で測定する被測定容器のガス透過測定装置。
In the gas permeation measuring device for measuring the gas permeation amount of the container to be measured,
Consists of measurement chamber, granular material, vacuum pump, test gas and gas detector,
The container to be measured is positioned inside the measurement chamber,
One space of the inner space of the container to be measured and the space surrounded by the inner wall of the measurement chamber and the outer wall of the container to be measured is a decompression compartment, and the other space is a normal pressure compartment,
The decompression compartment is filled with particulate matter, and the particulate matter protects the measured container from deformation against the force that deforms the measured container wall surface caused by the pressure difference between the measured container and outside the measured container.
The vacuum pump is connected to and disconnected from the decompression compartment,
The test gas is positioned in the atmospheric pressure compartment,
A gas permeation measuring device for a container to be measured, in which a test gas which is reduced in pressure in the decompression compartment and passes through the wall of the container to be measured from the normal pressure compartment and moves to the decompression compartment is measured by a gas detector.
被測定容器の内部空間が減圧隔室である請求項6に記載したガス透過測定装置。 The gas permeation measuring apparatus according to claim 6, wherein the internal space of the container to be measured is a decompression compartment. 粒状物は、その粒子の外接球の直径が0.05mm以上10.0mm以下である請求項6又は請求項7に記載したガス透過測定装置。 The gas permeation measuring device according to claim 6 or 7, wherein the particle has a circumscribed sphere diameter of 0.05 mm or more and 10.0 mm or less. 粒状物は球形である請求項6乃至8いずれかに記載したガス透過測定装置。 The gas permeation measuring apparatus according to any one of claims 6 to 8, wherein the granular material is spherical. 粒状物は、金属からなる請求項6乃至9いずれかに記載したガス透過測定装置。 The gas permeation measuring apparatus according to any one of claims 6 to 9, wherein the granular material is made of metal.
JP2015111007A 2015-06-01 2015-06-01 Method and device for measuring gas permeation amount Pending JP2016223924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015111007A JP2016223924A (en) 2015-06-01 2015-06-01 Method and device for measuring gas permeation amount

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015111007A JP2016223924A (en) 2015-06-01 2015-06-01 Method and device for measuring gas permeation amount

Publications (2)

Publication Number Publication Date
JP2016223924A true JP2016223924A (en) 2016-12-28
JP2016223924A5 JP2016223924A5 (en) 2017-02-16

Family

ID=57748068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015111007A Pending JP2016223924A (en) 2015-06-01 2015-06-01 Method and device for measuring gas permeation amount

Country Status (1)

Country Link
JP (1) JP2016223924A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109813645A (en) * 2019-03-19 2019-05-28 苏州开洛泰克科学仪器科技有限公司 A kind of the radial penetration rate measuring system and method for hypotonic rock ore-rock stem plug
KR102589777B1 (en) * 2023-08-17 2023-10-13 강정민 Hydrogen transmission measurement system and measurement method using it
CN117782941A (en) * 2024-02-23 2024-03-29 山东省地矿工程勘察院(山东省地质矿产勘查开发局八〇一水文地质工程地质大队) Medium permeability coefficient test device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4047422A (en) * 1975-04-18 1977-09-13 Lyssy Georges H Process for measuring permeability to gas of walls and/or closure of three-dimensional encasing elements
JP2007085807A (en) * 2005-09-21 2007-04-05 Meiji Univ Evaluation method of gas barrier properties of plastic bottle, and container and apparatus used therein
JP2010091431A (en) * 2008-10-08 2010-04-22 Toyo Seikan Kaisha Ltd Device and method for measuring gas penetration amount

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4047422A (en) * 1975-04-18 1977-09-13 Lyssy Georges H Process for measuring permeability to gas of walls and/or closure of three-dimensional encasing elements
JP2007085807A (en) * 2005-09-21 2007-04-05 Meiji Univ Evaluation method of gas barrier properties of plastic bottle, and container and apparatus used therein
JP2010091431A (en) * 2008-10-08 2010-04-22 Toyo Seikan Kaisha Ltd Device and method for measuring gas penetration amount

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109813645A (en) * 2019-03-19 2019-05-28 苏州开洛泰克科学仪器科技有限公司 A kind of the radial penetration rate measuring system and method for hypotonic rock ore-rock stem plug
CN109813645B (en) * 2019-03-19 2021-07-02 苏州开洛泰克科学仪器科技有限公司 System and method for measuring radial permeability of core plunger of low-permeability rock ore
KR102589777B1 (en) * 2023-08-17 2023-10-13 강정민 Hydrogen transmission measurement system and measurement method using it
CN117782941A (en) * 2024-02-23 2024-03-29 山东省地矿工程勘察院(山东省地质矿产勘查开发局八〇一水文地质工程地质大队) Medium permeability coefficient test device

Similar Documents

Publication Publication Date Title
US6598463B2 (en) Method for determining gas accumulation rates
JP4262989B2 (en) Method and apparatus for measuring transmittance of barrier layer
CN107003204B (en) Leak free testing with foil chamber carrier gas
CN203191274U (en) Film air-permeability tester
GB2437136A (en) Measuring rate of permeation
RU2721588C2 (en) Method of measuring levels of saturation with carbon dioxide in beverages in an open container
Caner et al. Effect of high‐pressure processing on the permeance of selected high‐barrier laminated films
JP2016223924A (en) Method and device for measuring gas permeation amount
GB2289944A (en) Gas sensing system
EP3588056B1 (en) Device for evaluating gas barrier properties and method for evaluating gas barrier properties
CN106568630B (en) All-metal small-volume container and volume measuring system and method thereof
WO2017159481A1 (en) Leakage inspection method and leakage inspection device for container to be inspected
ES2753188T3 (en) Device for measuring the permeability of bottle caps and corresponding method
CN202854017U (en) Oxygen permeability testing device based on equal-pressure method
CN105593660A (en) Apparatus for leak detection
US8316697B1 (en) Fixture to hermetically isolate a capped opening on a container for gas transmission testing
US20220042873A1 (en) Device and Method for Leakage Testing of a Connection Between a Rubber Stopper and a Corresponding Drug Container
JP5134626B2 (en) Method for measuring gas permeability of container and sealing member
JP2004085254A (en) Leakage inspection method and equipment
EP3021103A1 (en) System and method for gas diffusion coefficient measurement of three-dimensional hollow bodies having one opening
KR101616254B1 (en) Pretreatment device for providing concentrated and non-contaminated gas for electronic nose apparatus
US10018528B2 (en) Method and device for testing the tightness of cork stoppers
WO2005031281A2 (en) Method and apparatus for determining the volume of a container through permeation measures
US20090229347A1 (en) System for gas permeation testing
Gibbs Oxygen Permeation of BetterBottle® Carboys–Direct Measurement–

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170112

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170112

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170112

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170307

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170912