JP2016223793A - Road surface unevenness measuring device - Google Patents

Road surface unevenness measuring device Download PDF

Info

Publication number
JP2016223793A
JP2016223793A JP2015107416A JP2015107416A JP2016223793A JP 2016223793 A JP2016223793 A JP 2016223793A JP 2015107416 A JP2015107416 A JP 2015107416A JP 2015107416 A JP2015107416 A JP 2015107416A JP 2016223793 A JP2016223793 A JP 2016223793A
Authority
JP
Japan
Prior art keywords
traveling body
road surface
gyro
unmanned
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015107416A
Other languages
Japanese (ja)
Inventor
真宏 三石
Masahiro Mitsuishi
真宏 三石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamagawa Seiki Co Ltd
Original Assignee
Tamagawa Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamagawa Seiki Co Ltd filed Critical Tamagawa Seiki Co Ltd
Priority to JP2015107416A priority Critical patent/JP2016223793A/en
Publication of JP2016223793A publication Critical patent/JP2016223793A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a road surface unevenness measuring device that can increase the accuracy of measuring the unevenness of a road surface.SOLUTION: The road surface unevenness measuring device according to the present invention includes: an unmanned travelling body 1 that can travel on a road surface 5 with wheels 11; a gyro 2 equipped to the unmanned travelling body 1; and operating means 4 obtaining, as the unevenness of the road surface 5, a change in attitude angle of the unmanned travelling body 1 calculated based on an angular velocity detected by the gyro 2 when the unmanned travelling body 1 is travelling. The operating means 4 stores a rest-time gyro output, which is the output of the gyro 2 when the unmanned travelling body 1 is resting, subtracts the rest-time gyro output from the output of the gyro 2 when the unmanned travelling body 1 is travelling, and uses the obtained output for measuring the unevenness of the road surface 5.SELECTED DRAWING: Figure 1

Description

本発明は、路面の凹凸を計測する路面凹凸計測装置に関する。   The present invention relates to a road surface unevenness measuring apparatus for measuring road surface unevenness.

従来用いられていたこの種の路面凹凸計測装置としては、例えば下記の特許文献1等に示されている構成を挙げることができる。すなわち、従来構成では、車輪により路面上を走行できる無人走行体にジャイロ及び加速度計を搭載し、これらジャイロ及び加速度計の出力に基づいて算出される無人走行体の姿勢角変化を路面の凹凸として計測している。   As this kind of road surface unevenness measuring apparatus conventionally used, for example, the configuration shown in the following Patent Document 1 can be exemplified. That is, in the conventional configuration, a gyroscope and an accelerometer are mounted on an unmanned traveling body that can travel on a road surface by wheels, and a change in the attitude angle of the unmanned traveling body calculated based on the output of the gyroscope and the accelerometer is used as road surface unevenness. Measuring.

特開2014−186612号公報JP 2014-186612 A

上記のような従来の路面凹凸計測装置において、MEMSジャイロ等の比較的安価なジャイロを用いた場合、ジャイロのオフセット誤差が路面凹凸の計測に悪影響を及ぼす。オフセット誤差とは、無人走行体が静止されているにも拘わらず無人走行体が変位しているかのように誤って検出される角速度である。また、基準軸に対して加速度計がずれて設置されることもあり、その搭載誤差角も路面凹凸の計測に悪影響を及ぼす。   In the conventional road surface unevenness measuring apparatus as described above, when a relatively inexpensive gyro such as a MEMS gyro is used, the offset error of the gyro adversely affects the measurement of the road surface unevenness. The offset error is an angular velocity that is erroneously detected as if the unmanned traveling body is displaced even though the unmanned traveling body is stationary. Also, the accelerometer may be installed with a deviation from the reference axis, and its mounting error angle also adversely affects the measurement of road surface unevenness.

本発明は、上記のような課題を解決するためになされたものであり、その目的は、路面凹凸の計測精度を向上できる路面凹凸計測装置を提供することである。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a road surface unevenness measuring apparatus capable of improving the road surface unevenness measurement accuracy.

本発明に係る路面凹凸計測装置は、車輪により路面上を走行できる無人走行体と、無人走行体に搭載されたジャイロと、無人走行体が走行した際にジャイロによって検出された角速度に基づいて算出される無人走行体の姿勢角変化を路面の凹凸として得る演算手段とを備え、演算手段は、無人走行体が静止されているときのジャイロの出力である静止時ジャイロ出力を記憶するとともに、無人走行体が走行している際のジャイロの出力から静止時ジャイロ出力を差し引いて路面の凹凸の計測に用いる。   The road surface unevenness measuring apparatus according to the present invention is calculated based on an unmanned traveling body that can travel on a road surface by wheels, a gyro mounted on the unmanned traveling body, and an angular velocity detected by the gyro when the unmanned traveling body travels. Calculating means for obtaining a change in posture angle of the unmanned traveling body as unevenness of the road surface, and the computing means stores a gyro output at rest, which is an output of the gyro when the unmanned traveling body is stationary, and unmanned The stationary gyro output is subtracted from the gyro output when the traveling body is traveling, and is used to measure the unevenness of the road surface.

また、本発明に係る路面凹凸計測装置は、車輪により路面上を走行できる無人走行体と、無人走行体に搭載された加速度計及びジャイロと、無人走行体が走行した際に加速度計によって検出された加速度に基づいて算出される無人走行体の姿勢角変化を路面の凹凸として得る演算手段とを備え、演算手段は、第1静止状態に無人走行体をおいたときに加速度によって測定される加速度をACCとし、第1静止状態から方位角を180°回転させた第2静止状態に無人走行体をおいたときに加速度によって測定される加速度をACCとし、重力加速度をgとしたときに、{sin−1(ACC/g)+sin−1(ACC/g)}/2で表される加速度計の搭載誤差角θを記憶するとともに、無人走行体が走行している際の加速度計の加速度及びジャイロの出力を用いて求められる姿勢角を搭載誤差角θで補正する。 The road surface unevenness measuring apparatus according to the present invention is detected by an unmanned traveling body that can travel on a road surface by wheels, an accelerometer and a gyro mounted on the unmanned traveling body, and an accelerometer when the unmanned traveling body travels. And calculating means for obtaining a change in the attitude angle of the unmanned traveling body as unevenness of the road surface calculated based on the measured acceleration, the computing means being an acceleration measured by the acceleration when the unmanned traveling body is placed in the first stationary state. Is ACC 1 , acceleration measured by acceleration when the unmanned traveling body is placed in the second stationary state rotated by 180 ° from the first stationary state is ACC 2, and gravitational acceleration is g , {Sin −1 (ACC 1 / g) + sin −1 (ACC 2 / g)} / 2 is stored, and the accelerometer mounting error angle θ e is stored, and the unmanned vehicle is traveling acceleration Correcting the posture angle obtained by using the acceleration and gyro output meter with mounting error angle theta e.

本発明の路面凹凸計測装置によれば、演算手段は、無人走行体が走行している際のジャイロの出力から静止時ジャイロ出力を差し引いて路面の凹凸の計測に用いるか、又は無人走行体が走行している際の加速度計の加速度を用いて求められる姿勢角を搭載誤差角θで補正するので、路面凹凸の計測精度を向上できる。 According to the road surface unevenness measuring apparatus of the present invention, the calculation means subtracts the stationary gyro output from the gyro output when the unmanned traveling body is traveling, and uses it to measure road surface unevenness, or the unmanned traveling body since corrects the posture angle obtained by using the acceleration of the accelerometer during that traveling by mounting error angle theta e, it can improve the measurement accuracy of the road surface irregularities.

本発明の実施の形態1による路面凹凸計測装置を示す構成図である。It is a block diagram which shows the road surface unevenness | corrugation measuring apparatus by Embodiment 1 of this invention. 図1の無人走行体が静止されているときの加速度計の出力に基づいて求められる検出角度を示す説明図である。It is explanatory drawing which shows the detection angle calculated | required based on the output of the accelerometer when the unmanned traveling body of FIG. 1 is stationary. 図1の無人走行体を第1静止状態においたときの水平面と加速度計の検出軸との間の第1ずれ角を示す説明図である。It is explanatory drawing which shows the 1st deviation | shift angle between the horizontal surface and the detection axis of an accelerometer when the unmanned traveling body of FIG. 図1の無人走行体を第2静止状態においたときの水平面と加速度計の検出軸との間の第2ずれ角を示す説明図である。It is explanatory drawing which shows the 2nd deviation angle between the horizontal surface when the unmanned traveling body of FIG. 1 is made into a 2nd stationary state, and the detection axis of an accelerometer.

以下、本発明を実施するための形態について、図面を参照して説明する。
実施の形態1.
図1は、本発明の実施の形態1による路面凹凸計測装置を示す構成図である。図において、路面凹凸計測装置には、無人走行体1、ジャイロ2、加速度計3及び演算手段4が含まれている。
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
Embodiment 1 FIG.
FIG. 1 is a configuration diagram showing a road surface unevenness measuring apparatus according to Embodiment 1 of the present invention. In the figure, the road surface unevenness measuring apparatus includes an unmanned traveling body 1, a gyro 2, an accelerometer 3 and a calculation means 4.

無人走行体1には、走行体本体10、複数の車輪11及び取手12が含まれている。走行体本体10は、ジャイロ2及び加速度計3が搭載される躯体である。車輪11は、走行体本体10の下部に取り付けられている。取手12は、走行体本体10の後部から上方に突出されている。無人走行体1は、作業者が取手12を押すことで、作業者が乗車することなく、車輪11により路面5上を走行できるように構成されている。すなわち、無人走行体1とは作業者が乗車しない走行体である。車輪11の回転軸は、走行体本体10の下部に設けられた軸支体10aに回転自在に支持されている。軸支体10aは走行体本体10に対して固定されており、無人走行体1は直線状にしか走行できないように構成されている。   The unmanned traveling body 1 includes a traveling body main body 10, a plurality of wheels 11, and a handle 12. The traveling body main body 10 is a housing on which the gyro 2 and the accelerometer 3 are mounted. The wheels 11 are attached to the lower part of the traveling body main body 10. The handle 12 protrudes upward from the rear part of the traveling body main body 10. The unmanned traveling body 1 is configured such that the operator can travel on the road surface 5 with the wheels 11 without the operator getting on the vehicle by pressing the handle 12. That is, the unmanned traveling body 1 is a traveling body on which an operator does not get on. The rotating shaft of the wheel 11 is rotatably supported by a shaft support body 10 a provided at the lower part of the traveling body main body 10. The shaft support body 10a is fixed to the traveling body main body 10, and the unmanned traveling body 1 is configured to be able to travel only in a straight line.

ジャイロ2及び加速度計3は、無人走行体1に搭載されている。ジャイロ2は互いに直交する3軸回りの角速度を検出し、加速度計3はその3軸に沿う方向の加速度を検出する。   The gyro 2 and the accelerometer 3 are mounted on the unmanned traveling body 1. The gyro 2 detects angular velocities about three axes orthogonal to each other, and the accelerometer 3 detects acceleration in a direction along the three axes.

演算手段4は、ジャイロ2及び加速度計3に有線又は無線で接続されたコンピュータであり、無人走行体1が走行した際にジャイロ2によって検出された角速度、及び無人走行体1が走行した際に加速度計3によって検出された加速度に基づいて算出される無人走行体1の姿勢角(ピッチ角及びロール角)変化を路面5の凹凸として得る。図1では無人走行体1から離れた位置に演算手段4が設けられているように示しているが、演算手段4は無人走行体1に搭載されていてもよい。   The calculation means 4 is a computer connected to the gyro 2 and the accelerometer 3 by wire or wirelessly. When the unmanned traveling body 1 travels, the angular velocity detected by the gyro 2 and when the unmanned traveling body 1 travels. A change in posture angle (pitch angle and roll angle) of the unmanned traveling body 1 calculated based on the acceleration detected by the accelerometer 3 is obtained as unevenness of the road surface 5. Although FIG. 1 shows that the calculation means 4 is provided at a position away from the unmanned traveling body 1, the calculation means 4 may be mounted on the unmanned traveling body 1.

演算手段4は、オフセットキャンセル機能及びボアサイト補正処理機能を有している。オフセットキャンセル機能とは、無人走行体1が静止されているにも拘わらず無人走行体1が変位しているかのようにジャイロ2によって誤って検出される角速度を打ち消そうとするものである。すなわち、演算手段4は、無人走行体1が静止されているときのジャイロ2の出力である静止時ジャイロ出力を記憶するとともに、無人走行体1が走行している際のジャイロ2の出力から静止時ジャイロ出力を差し引いて路面の凹凸の計測に用いる。演算手段4は、外部から記憶指令が入力された際に、無人走行体1が静止されていると判断して、そのときのジャイロ2の出力を静止時ジャイロ出力として記憶する。   The calculation means 4 has an offset cancel function and a boresight correction processing function. The offset cancel function is intended to cancel the angular velocity erroneously detected by the gyro 2 as if the unmanned traveling body 1 is displaced even though the unmanned traveling body 1 is stationary. That is, the calculation means 4 stores the stationary gyro output, which is the output of the gyro 2 when the unmanned traveling body 1 is stationary, and is stationary from the output of the gyro 2 when the unmanned traveling body 1 is traveling. The gyro output is subtracted and used to measure road surface irregularities. When a storage command is input from the outside, the calculation means 4 determines that the unmanned traveling body 1 is stationary, and stores the output of the gyro 2 at that time as a stationary gyro output.

ボアサイト補正処理機能とは、基準軸に対する加速度計3の搭載ずれを補正しようとするものである。演算手段4は、{sin−1(ACC/g)+sin−1(ACC/g)}/2で表される加速度計3の搭載誤差角θを記憶するとともに、無人走行体1が走行している際の加速度計3の加速度を用いて求められる姿勢角を搭載誤差角θで補正する。なお、ACCは第1静止状態に無人走行体1をおいたときに加速度計3によって測定される加速度であり、ACCは第1静止状態から方位角を180°回転させた第2静止状態に無人走行体1をおいたときに加速度計3によって測定される加速度であり、gは重力加速度である。演算手段4は、外部から記憶指令が入力された際に加速度計3の加速度ACC1,2を記憶して、その加速度ACC1,2から算出される搭載誤差角θを記憶する。 The boresight correction processing function is intended to correct the mounting displacement of the accelerometer 3 with respect to the reference axis. The calculation means 4 stores the mounting error angle θ e of the accelerometer 3 represented by {sin −1 (ACC 1 / g) + sin −1 (ACC 2 / g)} / 2, and the unmanned traveling body 1 the attitude angle is determined using accelerometer 3 of acceleration when that traveling is corrected by mounting error angle theta e. ACC 1 is the acceleration measured by the accelerometer 3 when the unmanned vehicle 1 is placed in the first stationary state, and ACC 2 is the second stationary state in which the azimuth angle is rotated 180 ° from the first stationary state. Is an acceleration measured by the accelerometer 3 when the unmanned traveling body 1 is placed on g, and g is a gravitational acceleration. The calculation means 4 stores the accelerations ACC 1 and 2 of the accelerometer 3 when a storage command is input from the outside, and stores the mounting error angle θ e calculated from the accelerations ACC 1 and 2 .

次に、図2〜図4を用いてボアサイト補正処理機能についてより詳しく説明する。図2は、図1の無人走行体1が静止されているときの加速度計3の出力に基づいて求められる検出角度θを示す説明図である。図2に示すように、無人走行体1が静止されているとき、加速度計3には重力加速度gが作用する。このとき、加速度計3の検出軸と水平方向とのずれ角をθとした場合、加速度計3によって検出される加速度ACCは以下の式1のように表すことができる。
ACC=g×sinθ・・・式1
この式1を変形することにより、ずれ角θを下記の式2のように表すことができる。
θ=sin−1(ACC/g)・・・式2
Next, the boresight correction processing function will be described in more detail with reference to FIGS. FIG. 2 is an explanatory diagram showing the detected angle θ obtained based on the output of the accelerometer 3 when the unmanned traveling body 1 of FIG. 1 is stationary. As shown in FIG. 2, when the unmanned traveling body 1 is stationary, the gravitational acceleration g acts on the accelerometer 3. At this time, when the deviation angle between the detection axis of the accelerometer 3 and the horizontal direction is θ, the acceleration ACC detected by the accelerometer 3 can be expressed as the following Expression 1.
ACC = g × sin θ (1)
By changing Equation 1, the deviation angle θ can be expressed as Equation 2 below.
θ = sin −1 (ACC / g) Equation 2

図3は図1の無人走行体1を第1静止状態においたときの水平面と加速度計3の検出軸との間の第1ずれ角θを示す説明図であり、図4は図1の無人走行体1を第2静止状態においたときの水平面と加速度計3の検出軸との間の第2ずれ角θを示す説明図である。 FIG. 3 is an explanatory diagram showing a first deviation angle θ 1 between the horizontal plane and the detection axis of the accelerometer 3 when the unmanned traveling body 1 of FIG. 1 is in a first stationary state, and FIG. It is explanatory drawing which shows 2nd shift | offset | difference angle (theta) 2 between the horizontal surface when the unmanned traveling body 1 is made into a 2nd stationary state, and the detection axis of the accelerometer 3. FIG.

図3,4に示すように、無人走行体1が載置されている路面5は水平面と平行とは限らない。すなわち、加速度計3によって検出される加速度ACCの出力に基づいて求められるずれ角θには、搭載誤差角θだけでなく、路面5と水平面との間のずれ角θも含まれている。 As shown in FIGS. 3 and 4, the road surface 5 on which the unmanned traveling body 1 is placed is not always parallel to the horizontal plane. That is, the deviation angle theta obtained on the basis of the output of the acceleration ACC detected by the acceleration meter 3, not only the mounting error angle theta e, are also included deviation angle theta t between the road surface 5 and the horizontal plane .

以下のように、無人走行体1を図3,4に示す第1及び第2静止状態においた際の加速度計3の検出加速度ACC1,2から搭載誤差角θを求めることができる。図3のような状況においては、加速度計3の検出加速度ACCの出力に基づいて求められる第1ずれ角θは、搭載誤差角θに路面5と水平面との間のずれ角θを加算した角度となる。
θ=sin−1(ACC/g)=θ+θ・・・式3
As described below, the mounting error angle θ e can be obtained from the detected accelerations ACC 1 and ACC 2 of the accelerometer 3 when the unmanned traveling body 1 is placed in the first and second stationary states shown in FIGS. In the situation as shown in FIG. 3, the first deviation angle θ 1 obtained based on the output of the detected acceleration ACC 1 of the accelerometer 3 is the deviation angle θ t between the road surface 5 and the horizontal plane as the mounting error angle θ e. The angle is obtained by adding
θ 1 = sin −1 (ACC 1 / g) = θ e + θ t Equation 3

一方、図4のように無人走行体1の方位向きを第1静止状態から180°回転させた際の加速度計3の検出加速度ACCの出力に基づいて求められる第2ずれ角θは、搭載誤差角θから路面5と水平面との間のずれ角θを減算した角度となる。
θ=sin−1(ACC/g)=θ−θ・・・式4
On the other hand, as shown in FIG. 4, the second deviation angle θ 2 obtained based on the output of the detected acceleration ACC 2 of the accelerometer 3 when the azimuth direction of the unmanned traveling body 1 is rotated 180 ° from the first stationary state is an angle obtained by subtracting the deviation angle theta t between the mounting error angle theta e between the road surface 5 and the horizontal plane.
θ 2 = sin −1 (ACC 2 / g) = θ e −θ t Expression 4

式3,4に示される第1ずれ角θと第2ずれ角θとの加算式は、以下の式5のように表される。
θ+θ=sin−1(ACC/g)+sin−1(ACC/g)=2θ・・・式5
この式5を搭載誤差角θについて整理することで、搭載誤差角θを表す{sin−1(ACC/g)+sin−1(ACC/g)}/2が得られる。上述のように、演算手段4は、{sin−1(ACC/g)+sin−1(ACC/g)}/2で表される加速度計3の搭載誤差角θを記憶しており、無人走行体1が走行している際の加速度計3の加速度を用いて求められる姿勢角を搭載誤差角θで補正する。
The addition formula of the first deviation angle θ 1 and the second deviation angle θ 2 shown in the expressions 3 and 4 is expressed as the following expression 5.
θ 1 + θ 2 = sin −1 (ACC 1 / g) + sin −1 (ACC 2 / g) = 2θ e Formula 5
By arranging this equation 5 for the mounting error angle θ e , {sin −1 (ACC 1 / g) + sin −1 (ACC 2 / g)} / 2 representing the mounting error angle θ e is obtained. As described above, the calculation means 4 stores the mounting error angle θ e of the accelerometer 3 represented by {sin −1 (ACC 1 / g) + sin −1 (ACC 2 / g)} / 2. The attitude angle obtained by using the acceleration of the accelerometer 3 when the unmanned traveling body 1 is traveling is corrected by the mounting error angle θ e .

このような路面凹凸計測装置では、演算手段4は、無人走行体1が走行している際のジャイロ2の出力から静止時ジャイロ出力を差し引いて路面の凹凸の計測に用いるので、ジャイロ2のオフセット誤差を打ち消すことができ、路面凹凸の計測精度を向上できる。   In such a road surface unevenness measuring apparatus, the calculation means 4 subtracts the stationary gyro output from the output of the gyro 2 when the unmanned traveling body 1 is traveling and uses it to measure the unevenness of the road surface. The error can be canceled and the measurement accuracy of the road surface unevenness can be improved.

また、演算手段4は、無人走行体1が走行している際の加速度計3の加速度を用いて求められる姿勢角を搭載誤差角θで補正するので、搭載誤差角θを打ち消すことができ、路面凹凸の計測精度を向上できる。 Further, since the calculation means 4 corrects the attitude angle obtained by using the acceleration of the accelerometer 3 when the unmanned traveling body 1 is traveling with the mounting error angle θ e , the mounting error angle θ e can be canceled out. This can improve the measurement accuracy of road surface unevenness.

なお、実施の形態では、演算手段4はオフセットキャンセル機能とボアサイト補正機能との両方を有しているように説明したが、演算手段4はオフセットキャンセル機能及びボアサイト補正機能のいずれか一方のみを行ってもよい。   In the embodiment, the calculation means 4 has been described as having both the offset cancellation function and the boresight correction function. However, the calculation means 4 has only one of the offset cancellation function and the boresight correction function. May be performed.

1 無人走行体
11 車輪
2 ジャイロ
3 加速度計
4 演算手段
5 路面
DESCRIPTION OF SYMBOLS 1 Unmanned traveling body 11 Wheel 2 Gyro 3 Accelerometer 4 Calculation means 5 Road surface

Claims (3)

車輪により路面上を走行できる無人走行体と、
前記無人走行体に搭載されたジャイロと、
前記無人走行体が走行した際に前記ジャイロによって検出された角速度に基づいて算出される前記無人走行体の姿勢角変化を路面の凹凸として得る演算手段と
を備え、
前記演算手段は、前記無人走行体が静止されているときの前記ジャイロの出力である静止時ジャイロ出力を記憶するとともに、前記無人走行体が走行している際の前記ジャイロの出力から前記静止時ジャイロ出力を差し引いて前記路面の凹凸の計測に用いる
ことを特徴とする路面凹凸計測装置。
An unmanned vehicle that can run on the road surface with wheels,
A gyro mounted on the unmanned vehicle,
Calculating means for obtaining a change in posture angle of the unmanned traveling body as unevenness on the road surface, which is calculated based on an angular velocity detected by the gyro when the unmanned traveling body travels,
The calculating means stores a stationary gyro output, which is an output of the gyro when the unmanned traveling body is stationary, and calculates the stationary state from the output of the gyro when the unmanned traveling body is traveling. A road surface unevenness measuring apparatus characterized by subtracting the gyro output and measuring the unevenness of the road surface.
前記無人走行体に搭載された加速度計をさらに備え、
前記演算手段は、第1静止状態に前記無人走行体をおいたときに前記加速度によって測定される加速度をACCとし、第1静止状態から方位角を180°回転させた第2静止状態に前記無人走行体をおいたときに前記加速度によって測定される加速度をACCとし、重力加速度をgとしたときに、{sin−1(ACC/g)+sin−1(ACC/g)}/2で表される前記加速度計の搭載誤差角θを記憶するとともに、前記無人走行体が走行している際の前記加速度計の加速度及び前記ジャイロの出力を用いて求められる姿勢角を前記搭載誤差角θで補正する
ことを特徴とする請求項1記載の路面凹凸計測装置。
An accelerometer mounted on the unmanned vehicle;
The computing means sets the acceleration measured by the acceleration when the unmanned traveling body is placed in the first stationary state as ACC 1, and changes the azimuth angle from the first stationary state to the second stationary state by 180 °. Accel 2 measured by the acceleration when an unmanned traveling body is placed is ACC 2 and gravitational acceleration is g, {sin −1 (ACC 1 / g) + sin −1 (ACC 2 / g)} / The accelerometer mounting error angle θ e represented by 2 is stored, and the attitude angle obtained using the acceleration of the accelerometer and the output of the gyroscope when the unmanned traveling body is traveling is mounted. road irregularities measuring apparatus according to claim 1, wherein the correcting the error angle theta e.
車輪により路面上を走行できる無人走行体と、
前記無人走行体に搭載された加速度計及びジャイロと、
前記無人走行体が走行した際に前記加速度計によって検出された加速度に基づいて算出される前記無人走行体の姿勢角変化を路面の凹凸として得る演算手段と
を備え、
前記演算手段は、第1静止状態に前記無人走行体をおいたときに前記加速度によって測定される加速度をACCとし、第1静止状態から方位角を180°回転させた第2静止状態に前記無人走行体をおいたときに前記加速度によって測定される加速度をACCとし、重力加速度をgとしたときに、{sin−1(ACC/g)+sin−1(ACC/g)}/2で表される前記加速度計の搭載誤差角θを記憶するとともに、前記無人走行体が走行している際の前記加速度計の加速度及び前記ジャイロの出力を用いて求められる姿勢角を前記搭載誤差角θで補正する
ことを特徴とする路面凹凸計測装置。
An unmanned vehicle that can run on the road surface with wheels,
An accelerometer and a gyro mounted on the unmanned vehicle,
Calculating means for obtaining a change in posture angle of the unmanned traveling body as unevenness of a road surface calculated based on an acceleration detected by the accelerometer when the unmanned traveling body travels,
The computing means sets the acceleration measured by the acceleration when the unmanned traveling body is placed in the first stationary state as ACC 1, and changes the azimuth angle from the first stationary state to the second stationary state by 180 °. Accel 2 measured by the acceleration when an unmanned traveling body is placed is ACC 2 and gravitational acceleration is g, {sin −1 (ACC 1 / g) + sin −1 (ACC 2 / g)} / The accelerometer mounting error angle θ e represented by 2 is stored, and the attitude angle obtained using the acceleration of the accelerometer and the output of the gyroscope when the unmanned traveling body is traveling is mounted. road unevenness measuring device and correcting the error angle theta e.
JP2015107416A 2015-05-27 2015-05-27 Road surface unevenness measuring device Pending JP2016223793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015107416A JP2016223793A (en) 2015-05-27 2015-05-27 Road surface unevenness measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015107416A JP2016223793A (en) 2015-05-27 2015-05-27 Road surface unevenness measuring device

Publications (1)

Publication Number Publication Date
JP2016223793A true JP2016223793A (en) 2016-12-28

Family

ID=57745601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015107416A Pending JP2016223793A (en) 2015-05-27 2015-05-27 Road surface unevenness measuring device

Country Status (1)

Country Link
JP (1) JP2016223793A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110203143A (en) * 2019-06-04 2019-09-06 深圳市华芯技研科技有限公司 One kind is based on unmanned with automatic detection road conditions device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5107598A (en) * 1990-09-04 1992-04-28 Woznow Leon J Surface profiler
JPH05306936A (en) * 1991-04-17 1993-11-19 Alpine Electron Inc Angle calculation device
JPH07128062A (en) * 1993-11-08 1995-05-19 Sumitomo Electric Ind Ltd Azimuth detector
JP2008190980A (en) * 2007-02-05 2008-08-21 Epson Toyocom Corp Gyrosensor module and angular speed detection method
JP2014186612A (en) * 2013-03-25 2014-10-02 Tamagawa Seiki Co Ltd Linearity measuring apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5107598A (en) * 1990-09-04 1992-04-28 Woznow Leon J Surface profiler
JPH05306936A (en) * 1991-04-17 1993-11-19 Alpine Electron Inc Angle calculation device
JPH07128062A (en) * 1993-11-08 1995-05-19 Sumitomo Electric Ind Ltd Azimuth detector
JP2008190980A (en) * 2007-02-05 2008-08-21 Epson Toyocom Corp Gyrosensor module and angular speed detection method
JP2014186612A (en) * 2013-03-25 2014-10-02 Tamagawa Seiki Co Ltd Linearity measuring apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110203143A (en) * 2019-06-04 2019-09-06 深圳市华芯技研科技有限公司 One kind is based on unmanned with automatic detection road conditions device
CN110203143B (en) * 2019-06-04 2022-09-16 深圳市华芯技研科技有限公司 Automatic road condition detection device for unmanned driving

Similar Documents

Publication Publication Date Title
JP4285548B2 (en) Gyro sensor module and angular velocity detection method
JP6094026B2 (en) Posture determination method, position calculation method, and posture determination apparatus
JP5643334B2 (en) Angular velocity detection device, angular velocity detection method, moving state detection device, and navigation device
JP2009002735A (en) Angular velocity detector
JP2010271086A5 (en)
WO2007148818A1 (en) Posture angle detecting device and posture angle detecting method
JP2012193965A (en) Position estimating device, and position estimating method and position estimating position program for position estimating device
JP6383907B2 (en) Vehicle position measuring apparatus and method
JP6604175B2 (en) Pitch angular velocity correction value calculation device, attitude angle calculation device, and pitch angular velocity correction value calculation method
JP2016223793A (en) Road surface unevenness measuring device
JP2011209162A (en) Navigation system
JP4840301B2 (en) Control parameter determining device and multi-axis moving body device for each driving device of multi-axis moving body
JP7155562B2 (en) Attitude angle calculation device, movement device, attitude angle calculation method, and program
US8473160B2 (en) Device for detecting steering operation force
US20170240203A1 (en) Method and device for ascertaining the steering angle of a one-track vehicle
WO2020175313A1 (en) Control device, moving body, and control method
JP6594546B2 (en) Angle measuring device
JP2011191243A (en) Offset correction device for on-vehicle gyro
JP6045517B2 (en) Vehicle tilt angle measuring device and optical axis control signal generating device
JP2012141219A (en) Inclination angle detection device, method, program, and storage medium
JP6632727B2 (en) Angle measuring device
JP2008151681A (en) Gyro sensor module and angular velocity detection method
JP2005147696A (en) Attaching angle calculation system
JP2843903B2 (en) Inertial navigation device
JP4866989B2 (en) Hole measurement method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190604