JP2016222979A - Thermal barrier insulation material, production method thereof, thermal barrier insulation coating and formation method thereof - Google Patents

Thermal barrier insulation material, production method thereof, thermal barrier insulation coating and formation method thereof Download PDF

Info

Publication number
JP2016222979A
JP2016222979A JP2015111101A JP2015111101A JP2016222979A JP 2016222979 A JP2016222979 A JP 2016222979A JP 2015111101 A JP2015111101 A JP 2015111101A JP 2015111101 A JP2015111101 A JP 2015111101A JP 2016222979 A JP2016222979 A JP 2016222979A
Authority
JP
Japan
Prior art keywords
heat
insulating
zinc
oxide
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015111101A
Other languages
Japanese (ja)
Inventor
東英 巨
Haruhide Kyo
東英 巨
悦三 吉野
Etsuzo Yoshino
悦三 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2015111101A priority Critical patent/JP2016222979A/en
Publication of JP2016222979A publication Critical patent/JP2016222979A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermal barrier insulation material for forming a thermal barrier insulation coating having a thermal barrier property and a heat insulation property; and to provide a production method thereof, the thermal barrier insulation coating formed of the thermal barrier insulation material, and a formation method thereof.SOLUTION: A thermal barrier insulation material containing thermal barrier insulation powder in which the surface of metal oxide 22, 23 is coated with zinc 21 and boron oxide 20, boron oxide and zinc is sprayed onto the surface of a metal or ceramic substrate 10 by a flame coating method, to thereby form a thermal barrier insulation coating 1. The metal oxide is a mixture of magnesium oxide powder and silicon oxide, or a fired body.SELECTED DRAWING: Figure 1

Description

本発明は、遮熱性と断熱性を同時に有する遮熱断熱材及びその製造方法、並びにその遮熱断熱材で形成される遮熱断熱皮膜及び遮熱断熱皮膜の形成方法に関する。   The present invention relates to a heat insulating heat insulating material having both heat insulating properties and heat insulating properties, a method for producing the same, a heat insulating heat insulating film formed from the heat insulating heat insulating material, and a method for forming the heat insulating heat insulating film.

現在、建材や熱機器といったものは、ほとんどすべてが断熱材で覆われている。断熱材は、建物内の冷暖房の効率化や、冷蔵庫や湯沸かし器等の機器内部と機器外部との温度差を維持する目的で利用される。ここでいう断熱とは、熱の伝導や対流によって伝わる熱を防ぐことである。断熱材は、熱の伝わり方を遅くすることにより、熱の伝導や対流を防ぐものである。しかし、近年には省エネルギー技術が注目されており、建築の屋根・外壁や変電設備などの外壁に対しては断熱効果を重視するだけではなく、太陽光の放射熱を遮断する塗装が注目され、または自動車分野では、遮熱効果がある塗料は太陽光や熱を反射・吸収して温度の上昇を抑え、エアコンなどの室内設備の省エネ効果に抜群の性能を発揮するため、これからの新技術として遮熱塗料と塗装技術の発展が期待されている。   Currently, almost all building materials and thermal equipment are covered with thermal insulation. The heat insulating material is used for the purpose of improving the efficiency of air conditioning in the building and maintaining the temperature difference between the inside of the equipment such as a refrigerator and a water heater and the outside of the equipment. The heat insulation here is to prevent heat transmitted by heat conduction or convection. The heat insulating material prevents heat conduction and convection by slowing the way heat is transmitted. However, in recent years, energy-saving technology has been attracting attention, and not only the heat insulation effect is emphasized on the outer walls of roofs, outer walls, and substations of buildings, but also paints that block radiant heat from sunlight. Or, in the automotive field, heat-shielding paints reflect and absorb sunlight and heat to suppress temperature rise and demonstrate outstanding performance in energy-saving effects of indoor equipment such as air conditioners. The development of thermal barrier paint and painting technology is expected.

一方で、熱の移動には、伝導と対流の他に輻射がある。断熱材は、この輻射によって伝わる熱を防ぐ性能が低い。したがって、輻射による熱の移動を防ぐ方法としては、熱を跳ね返すような遮熱材を利用する方法が知られている。   On the other hand, heat transfer includes radiation in addition to conduction and convection. The heat insulating material has low performance to prevent heat transmitted by the radiation. Therefore, as a method for preventing the movement of heat due to radiation, a method using a heat shielding material that repels heat is known.

特許文献1は、遮熱材と断熱材の両方の性質を持つ遮熱断熱材が開示されている。特許文献1の技術は、断熱材の内部にネットワーク構造を構築して、微小な空孔を形成することで、輻射による熱の移動も妨げることを特徴とする。   Patent Document 1 discloses a heat insulating heat insulating material having both properties of a heat insulating material and a heat insulating material. The technology of Patent Document 1 is characterized in that a network structure is built inside a heat insulating material to form minute holes, thereby preventing heat transfer due to radiation.

特許文献1の技術は、熱源から伝わるエネルギーが小さな場合には、安価な材料で、遮熱断熱効果を奏するため有効である。しかしながら、例えば、太陽光からの輻射熱や、その他の熱源から伝わる熱伝導の影響が大きいような場合には、省エネルギー技術の観点から考えても、より優れた遮熱性と断熱性を持つ材料もしくは構造を提案する必要がある。   The technique of Patent Document 1 is effective because it provides a heat-insulating and heat-insulating effect with an inexpensive material when the energy transmitted from the heat source is small. However, for example, in the case where the influence of radiant heat from sunlight or heat conduction transmitted from other heat sources is large, a material or structure having better heat insulation and heat insulation properties from the viewpoint of energy saving technology. It is necessary to propose.

さらに、金属板材に輻射熱と伝導熱の両方の熱が伝わる場合には、遮熱材と断熱材の両方の特性がある皮膜を金属板材の表面に作製すれば省エネルギー効果は高くなる。そこで、遮熱性と断熱性の効果がある皮膜を作製することが求められている。   Furthermore, in the case where both radiant heat and conduction heat are transmitted to the metal plate material, the energy saving effect is enhanced if a film having the characteristics of both a heat shield and a heat insulating material is formed on the surface of the metal plate material. Therefore, it is required to produce a film having heat shielding and heat insulating effects.

特表2011−510167号公報Special table 2011-510167 gazette 特開2011−127145号公報JP 2011-127145 A

本発明は、このような従来の実情に鑑みて提案されたものであり、遮熱性と断熱性を有する遮熱断熱皮膜を形成する遮熱断熱材及びその製造方法、並びにその遮熱断熱材で形成される遮熱断熱皮膜及びその形成方法を提供することを目的とする。   The present invention has been proposed in view of such a conventional situation, and includes a heat insulating heat insulating material that forms a heat insulating heat insulating film having heat insulating properties and heat insulating properties, a manufacturing method thereof, and a heat insulating heat insulating material thereof. It is an object of the present invention to provide a heat-insulating and heat-insulating film to be formed and a method for forming the same.

上述した目的を達成するための本発明に係る遮熱断熱材は、金属基材又はセラミックス基材の表面に、溶射法による遮熱断熱皮膜の形成に用いられる遮熱断熱材において、金属酸化物の表面が亜鉛と酸化ホウ素で覆われた遮熱断熱粉末と、酸化ホウ素と、亜鉛とを含有する。   The thermal insulation heat insulating material according to the present invention for achieving the above-described object is a metal oxide in a thermal insulation thermal insulation material used for forming a thermal insulation thermal insulation film by a thermal spraying method on the surface of a metal substrate or a ceramic substrate. The heat shielding heat insulating powder whose surface is covered with zinc and boron oxide, boron oxide, and zinc are contained.

また、上述した目的を達成するための本発明に係る遮熱断熱材の製造方法は、金属基材又はセラミックス基材の表面に、溶射法による遮熱断熱皮膜の形成に用いられる遮熱断熱材の製造方法において、金属酸化物と亜鉛と酸化ホウ素とを混合して亜鉛及び酸化ホウ素の融点以上の温度で加熱することで製造した遮熱断熱粉末に、更に酸化ホウ素と亜鉛を添加する。   Moreover, the manufacturing method of the heat insulation heat insulating material which concerns on this invention for achieving the objective mentioned above is the heat insulation heat insulating material used for formation of the heat insulation heat insulation film by the thermal spraying method on the surface of a metal base material or a ceramic base material. In this production method, boron oxide and zinc are further added to the heat-insulating and heat-insulating powder produced by mixing a metal oxide, zinc and boron oxide and heating them at a temperature equal to or higher than the melting points of zinc and boron oxide.

上述した目的を達成するための本発明に係る遮熱断熱皮膜は、金属基材又はセラミックス基材の表面に形成される遮熱断熱皮膜であり、遮熱断熱皮膜は、遮熱断熱層を有し、遮熱断熱層は、金属酸化物の間隙に亜鉛と酸化ホウ素が介在している。   In order to achieve the above-mentioned object, the thermal barrier thermal insulation film according to the present invention is a thermal barrier thermal insulation film formed on the surface of a metal substrate or a ceramic substrate, and the thermal barrier thermal insulation film has a thermal barrier thermal insulation layer. In the heat insulating and heat insulating layer, zinc and boron oxide are interposed in the gap between the metal oxides.

また、上述した目的を達成するための本発明に係る遮熱断熱皮膜の形成方法は、金属酸化物の表面が亜鉛と酸化ホウ素で覆われた遮熱断熱粉末と、酸化ホウ素と、亜鉛とを含有する遮熱断熱材を、金属基材又はセラミックス基材の表面に溶射法により吹き付けて遮熱断熱層を有する。   In addition, a method for forming a thermal barrier heat insulating film according to the present invention for achieving the above-described object includes a thermal barrier thermal insulating powder in which a metal oxide surface is covered with zinc and boron oxide, boron oxide, and zinc. The heat insulation heat insulating material to contain is sprayed on the surface of a metal base material or a ceramic base material by a thermal spraying method, and has a heat insulation heat insulation layer.

本発明によれば、遮熱性と断熱性を有する皮膜を形成することができる遮熱断熱材が得られ、その遮熱断熱材から優れた遮熱性と断熱性を有する遮熱断熱皮膜が得られる。   ADVANTAGE OF THE INVENTION According to this invention, the heat insulation heat insulating material which can form the film which has heat insulation and heat insulation is obtained, and the heat insulation heat insulation film which has the outstanding heat insulation and heat insulation is obtained from the heat insulation heat insulating material. .

本発明を適用した遮熱断熱材を用いて溶射法とディップコート法によって形成された遮熱断熱皮膜の遮熱断熱効果を説明する図である。It is a figure explaining the heat insulation heat insulation effect of the heat insulation heat insulation film formed by the thermal spraying method and the dip coating method using the heat insulation heat insulating material to which this invention is applied. 実施例において熱源を未コーティングの金属側に設置することで、赤外線カメラを用いて、フレーム溶射による遮熱断熱皮膜の面と未コーティングの金属面の1点位置における表面温度の経時変化を測定した結果を示す図である。In the examples, by setting the heat source on the uncoated metal side, an infrared camera was used to measure the temporal change of the surface temperature at one point position of the surface of the thermal barrier thermal insulation film by flame spraying and the uncoated metal surface. It is a figure which shows a result. 実施例において熱源を遮熱断熱皮膜側に設置することで、赤外線カメラを用いてフレーム溶射による遮熱断熱皮膜の面と未コーティングの金属面の1点位置における表面温度の経時変化を測定した結果を示す図である。Results of measuring the temporal change of the surface temperature at one point on the surface of the thermal insulation thermal insulation film by flame spraying and the uncoated metal surface using an infrared camera by installing the heat source on the thermal insulation thermal insulation film side in the examples FIG.

以下、本発明を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。なお、本発明は、特に限定がない限り、以下の詳細な説明に限定されるものではない。
1.遮熱断熱皮膜
2.遮熱断熱皮膜の形成方法
3.実施例
Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings. Note that the present invention is not limited to the following detailed description unless otherwise specified.
1. 1. Thermal insulation thermal insulation film 2. Formation method of heat-insulating and heat-insulating film Example

≪1.遮熱断熱皮膜≫
(遮熱断熱皮膜)
遮熱断熱皮膜1は、基材10として金属基材又はセラミックス基材の表面に形成され、金属基材又はセラミックス基材の表面に遮熱効果と断熱効果を付与する。遮熱断熱皮膜1は、図1に示すように、基材10の表面に形成され、遮熱断熱層2、又は遮熱断熱層2と遮熱層3とからなる。基材10としては、例えば輻射熱を受ける建築構造物の表面や煉瓦などに用いられる鋼材やコンクリート等が挙げられる。遮熱断熱層2の上にさらに遮熱層3を形成した場合には、遮熱効果がより一層高くなり、構造物の内部に熱が伝わりにくくなる。
<< 1. Thermal barrier insulation film >>
(Thermal insulation film)
The heat-insulating and heat-insulating coating 1 is formed as a base material 10 on the surface of a metal base material or a ceramic base material, and imparts a heat shielding effect and a heat insulating effect to the surface of the metal base material or the ceramic base material. As shown in FIG. 1, the heat-insulating and heat-insulating film 1 is formed on the surface of the base material 10, and includes a heat-insulating and heat-insulating layer 2 or a heat-insulating and heat-insulating layer 2 and a heat-insulating layer 3. Examples of the base material 10 include steel and concrete used for the surface of a building structure that receives radiant heat, bricks, and the like. When the heat shield layer 3 is further formed on the heat shield heat insulating layer 2, the heat shield effect is further enhanced, and heat is not easily transmitted to the inside of the structure.

(遮熱断熱層)
遮熱断熱層2は、遮熱性及び断熱性を有する層である。遮熱断熱層2は、溶融して固化した酸化ホウ素20と亜鉛21と、例えば、酸化マグネシウム粉末22と酸化ケイ素23とからなる。遮熱断熱層2は、金属酸化物を含む遮熱断熱粉末と酸化ホウ素と亜鉛とを含有する遮熱断熱材を、酸化ホウ素及び亜鉛の融点以上の温度でフレーム溶射法により基材10の表面に吹き付けることで形成される。遮熱断熱粉末に含有される酸化ホウ素と亜鉛は、溶融して固化し酸化ホウ素20と亜鉛21となり、遮熱断熱層2中において金属酸化物間に介在する。
(Thermal insulation layer)
The heat insulation heat insulation layer 2 is a layer having heat insulation properties and heat insulation properties. The heat-insulating and heat-insulating layer 2 is composed of boron oxide 20 and zinc 21 that are melted and solidified, and, for example, magnesium oxide powder 22 and silicon oxide 23. The heat-insulating and heat-insulating layer 2 is formed by applying a heat-insulating and heat-insulating material containing a metal-oxide-containing heat-insulating and heat-insulating powder, boron oxide and zinc by flame spraying at a temperature equal to or higher than the melting points of boron oxide and zinc. It is formed by spraying. Boron oxide and zinc contained in the heat insulation heat insulating powder are melted and solidified to become boron oxide 20 and zinc 21, and are interposed between the metal oxides in the heat insulation heat insulation layer 2.

(遮熱断熱材)
遮熱断熱材は、金属酸化物の表面が酸化ホウ素と亜鉛で覆われた遮熱断熱粉末と、酸化ホウ素と亜鉛とからなる金属酸化物系粉末である。このような遮熱断熱材はコストが安いため、安価で製造することができる。建築、変電機器又は熱機器関係の場合、遮熱断熱材の比表面積は、150〜550cm/gの範囲であることが好ましい。自動車の場合、塗装表面の光沢度に対する要求が高いため、遮熱断熱材の比表面積は、550〜16500cm/gの範囲であることが好ましい。
(Thermal insulation)
The heat insulating heat insulating material is a heat insulating heat insulating powder in which the surface of the metal oxide is covered with boron oxide and zinc, and a metal oxide powder composed of boron oxide and zinc. Since such a heat insulation heat insulating material is low in cost, it can be manufactured at low cost. In the case of construction, substation equipment, or thermal equipment, the specific surface area of the heat insulating heat insulating material is preferably in the range of 150 to 550 cm 2 / g. In the case of an automobile, since the demand for the glossiness of the painted surface is high, the specific surface area of the heat insulating heat insulating material is preferably in the range of 550 to 16500 cm 2 / g.

また、遮熱断熱材は、フレーム溶射法により遮熱断熱層2を形成した後、さらにディップコート法が使用できる。このような遮熱断熱材は、さらにハイブリッド溶射にも使用できるため、溶射機器の使用制限がほとんどない。   Moreover, after forming the heat insulation heat insulation layer 2 by the flame spraying method, the heat insulation heat insulating material can further use a dip coat method. Since such a heat insulation heat insulating material can be used also for hybrid thermal spraying, there is almost no restriction on the use of thermal spray equipment.

(遮熱断熱粉末)
遮熱断熱粉末は、金属酸化物の表面が酸化ホウ素と亜鉛で覆われたものである。具体的に、遮熱断熱粉末は、金属酸化物として酸化マグネシウム粉末22と酸化ケイ素23との混合体、又は酸化マグネシウム粉末22と酸化ケイ素23の粉末との焼成体の表面を、酸化ホウ素と亜鉛で覆ったものである。
(Thermal insulation powder)
The heat-insulating and heat-insulating powder is a metal oxide whose surface is covered with boron oxide and zinc. Specifically, the heat-insulating and heat-insulating powder is composed of a mixture of magnesium oxide powder 22 and silicon oxide 23 as a metal oxide, or a surface of a fired body of magnesium oxide powder 22 and silicon oxide 23 powder, boron oxide and zinc. It is covered with.

金属酸化物としては、酸化マグネシウム粉末22と酸化ケイ素23との混合体、又は酸化マグネシウム粉末22と酸化ケイ素23の粉末との焼成体を用いることが好ましい。酸化マグネシウムは、酸化物の中でも融点が高く、熱を反射することができるため、遮熱断熱効果を得るための材料として適している。   As the metal oxide, it is preferable to use a mixture of magnesium oxide powder 22 and silicon oxide 23 or a fired body of magnesium oxide powder 22 and silicon oxide 23 powder. Magnesium oxide has a high melting point among oxides and can reflect heat. Therefore, magnesium oxide is suitable as a material for obtaining a heat insulating and heat insulating effect.

混合体は、酸化マグネシウム粉末22と酸化ケイ素23とを混合したものである。酸化マグネシウム粉末22と酸化ケイ素23の混合体は、複数個のペリクレースが板状に凝集した板状一次凝集体を含んでいる。ペリクレース結晶子の平均結晶径は、30nm〜100nmの範囲であることが好ましく、50nm〜60nmの範囲にあることがより好ましい。ペリクレース結晶子の平均結晶子径は、内部標準にシリコンを用いたX線粉末回折法により測定することができる。   The mixture is a mixture of magnesium oxide powder 22 and silicon oxide 23. The mixture of the magnesium oxide powder 22 and the silicon oxide 23 includes a plate-like primary aggregate in which a plurality of periclases are aggregated in a plate shape. The average crystal diameter of the periclase crystallite is preferably in the range of 30 nm to 100 nm, and more preferably in the range of 50 nm to 60 nm. The average crystallite diameter of the periclase crystallite can be measured by an X-ray powder diffraction method using silicon as an internal standard.

板状一次凝集体は酸化マグネシウム粉末22の中に60質量%以上含まれていることが好ましく、80質量%以上含まれていることがより好ましい。なお、板状一次凝集体は、二次凝集体を形成していてもよい。X線回折法で測定した二次凝集体中の粒子径は、建築、変電機器又は熱機器関連用の場合、粒子径が80μm以下であることが好ましく、70μm以下であることがより好ましく、50μm以下であることが特に好ましい。自動車関連用の場合、粒子径が30μm以下であることが好ましく、10μm以下であることがより好ましく、1μm以下であることが特に好ましい。   The plate-like primary aggregate is preferably contained in the magnesium oxide powder 22 by 60% by mass or more, more preferably 80% by mass or more. The plate-like primary aggregate may form a secondary aggregate. The particle diameter in the secondary aggregate measured by the X-ray diffraction method is preferably 80 μm or less, more preferably 70 μm or less, more preferably 50 μm in the case of construction, substation equipment or thermal equipment related use. It is particularly preferred that In the case of automobiles, the particle size is preferably 30 μm or less, more preferably 10 μm or less, and particularly preferably 1 μm or less.

遮熱断熱層2では、楕円球形状の粒子による板状一次凝集体の配向は放射熱を受ける面積が大きく、形成膜を薄くすることができるので、楕円球形状の粒子表面における長軸方向の平均の長さが、建築、変電機器又は熱機器関連用の場合、30〜100μmの範囲であることが好ましく、50〜70μmの範囲であることがより好ましい。自動車関連用の場合、30μm以下であることが好ましく、10μm以下であることがより好ましく、1μm以下であることが特に好ましい。   In the heat-insulating and heat-insulating layer 2, the orientation of the plate-like primary aggregates by the elliptical sphere-shaped particles has a large area that receives radiant heat, and the formed film can be thinned. When the average length is for construction, substation equipment or thermal equipment, it is preferably in the range of 30 to 100 μm, and more preferably in the range of 50 to 70 μm. In the case of automobile use, it is preferably 30 μm or less, more preferably 10 μm or less, and particularly preferably 1 μm or less.

粒子の一次凝集体の平均サイズは、建築、変電機器又は熱機器関連用の場合、85μm以下の範囲であることが好ましく、10〜30μmの範囲であることがより好ましい。自動車用関連用の場合、板状一次凝集体の厚さが建築、変電機器又は熱機器関連用のものより薄いので、3〜30μmの範囲であることが好ましく、3〜15μmの範囲であることがより好ましい。長さに対して厚さが大きい板状一次凝集体は、構造体内部の熱の伝わりやすさを抑制する。粒子の一次凝集体の粒子径及び厚さは、電子顕微鏡の拡大画像から測定することができる。   The average size of the primary aggregate of particles is preferably in the range of 85 μm or less, and more preferably in the range of 10 to 30 μm, in the case of building, substation equipment or thermal equipment related applications. In the case of automotive use, the thickness of the plate-like primary aggregate is thinner than that for construction, substation equipment or thermal equipment, so it is preferably in the range of 3-30 μm, and in the range of 3-15 μm. Is more preferable. A plate-like primary aggregate having a large thickness with respect to the length suppresses the ease of heat transfer inside the structure. The particle diameter and thickness of the primary aggregate of particles can be measured from an enlarged image of an electron microscope.

焼成体は、酸化マグネシウム粉末22と酸化ケイ素23の粉末を混合した後、600〜900℃で焼成したものである。   The fired body is obtained by mixing magnesium oxide powder 22 and silicon oxide 23 powder and firing at 600 to 900 ° C.

混合体又は焼成体に用いられる酸化マグネシウム粉末22は、市販されているもの、又は後述する製造方法により得られたものを用いることができる。酸化マグネシウム粉末22としては、建築、変電機器又は熱機器関連用の場合、平均結晶子径が30〜100μmの範囲であることが好ましい。また、酸化マグネシウム粉末22の比表面積は、120〜600cm/gの範囲が好ましく、160〜550cm/gの範囲がより好ましい。自動車関連用の場合、平均結晶子径が1μm〜30μmの範囲であることが好ましく、比表面積は550〜16500cm/gの範囲が好ましい。酸化マグネシウム粉末22は、比表面積が大きいほど構造物内部に熱が伝わりにくくなり、遮熱断熱層2の遮熱断熱効果を高める。 As the magnesium oxide powder 22 used for the mixture or the fired body, a commercially available product or a product obtained by a production method described later can be used. The magnesium oxide powder 22 preferably has an average crystallite diameter in the range of 30 to 100 μm in the case of building, substation equipment or thermal equipment related applications. The specific surface area of the magnesium oxide powder 22 is preferably in the range of 120~600cm 2 / g, and more preferably in a range of from 160~550cm 2 / g. In the case of automobiles, the average crystallite diameter is preferably in the range of 1 μm to 30 μm, and the specific surface area is preferably in the range of 550 to 16500 cm 2 / g. As the specific surface area of the magnesium oxide powder 22 increases, it becomes difficult for heat to be transferred to the inside of the structure, and the heat insulating and heat insulating effect of the heat insulating and heat insulating layer 2 is enhanced.

酸化ケイ素23は、酸化マグネシウムと同様に遮熱断熱効果を有する。混合体に用いられる酸化ケイ素23としては、高温材料であるため焼成中にはほとんど粒子径が変わらず、粒子径が0.1〜3μmのものが好ましい。このような粒子径の酸化ケイ素23を用いることで、遮熱断熱層2に酸化ケイ素が点在し、熱が伝わりにくくなり、遮熱断熱効果を高める。   The silicon oxide 23 has a heat insulating and heat insulating effect similarly to magnesium oxide. As the silicon oxide 23 used for the mixture, since it is a high-temperature material, the particle diameter hardly changes during firing, and those having a particle diameter of 0.1 to 3 μm are preferable. By using the silicon oxide 23 having such a particle diameter, silicon oxide is interspersed in the heat-insulating and heat-insulating layer 2, and heat is hardly transmitted, and the heat-insulating and heat-insulating effect is enhanced.

溶融して固化した亜鉛21は、焼成過程において溶融するため、添加剤として特に平均粒子径に対する要求がないため、酸化マグネシウムの粒子径と同様なものでよい。なお、亜鉛21は、市販のものを用いることができる。また、遮熱断熱材に、遮熱断熱粉末と共に含有される亜鉛は、亜鉛21と同様なものでよい。   Since the molten and solidified zinc 21 melts in the firing process, there is no particular requirement for the average particle size as an additive, and therefore, the same particle size as that of magnesium oxide may be used. In addition, the zinc 21 can use a commercially available thing. Further, the zinc contained in the heat insulating heat insulating material together with the heat insulating heat insulating powder may be the same as zinc 21.

溶融して固化した酸化ホウ素20は、焼成過程において溶融するため、添加剤として特に平均粒子径に対する要求がないため、酸化マグネシウムの粒子径と同様なものでよい。また、遮熱断熱材に、遮熱断熱粉末と共に含有される酸化ホウ素は、酸化ホウ素20と同様なもので良い。   Since the melted and solidified boron oxide 20 is melted in the firing process, there is no particular requirement for the average particle size as an additive, and therefore, it may be the same as the particle size of magnesium oxide. Further, the boron oxide contained in the heat insulating heat insulating material together with the heat insulating heat insulating powder may be the same as the boron oxide 20.

遮熱断熱粉末は、酸化マグネシウム粉末22全体の質量に対して、25〜35質量%の酸化ケイ素23を混ぜた混合体と、1〜10質量%の酸化ホウ素と、5〜10質量%の亜鉛とからなる。又は、遮熱断熱粉末は、酸化マグネシウム粉末22全体の質量に対して、5〜10質量%の酸化ケイ素23の粉末と、1〜10質量%の酸化ホウ素と、5〜10質量%の亜鉛とからなる。   The heat-insulating and heat-insulating powder is a mixture of 25 to 35% by mass of silicon oxide 23, 1 to 10% by mass of boron oxide, and 5 to 10% by mass of zinc with respect to the total mass of the magnesium oxide powder 22. It consists of. Alternatively, the heat-insulating and heat-insulating powder is composed of 5 to 10% by mass of silicon oxide 23 powder, 1 to 10% by mass of boron oxide, and 5 to 10% by mass of zinc with respect to the total mass of the magnesium oxide powder 22. Consists of.

遮熱断熱材は、具体的に、酸化マグネシウム粉末22全体の質量に対して1〜10質量%の酸化ホウ素と、5〜15質量%の亜鉛とを含有した混合体と、さらに1〜10質量%の酸化ホウ素と5〜15質量%の亜鉛とからなる。   Specifically, the heat insulating heat insulating material is a mixture containing 1 to 10% by mass of boron oxide and 5 to 15% by mass of zinc with respect to the total mass of the magnesium oxide powder 22, and further 1 to 10% by mass. % Boron oxide and 5-15 mass% zinc.

(遮熱層)
遮熱層3は、フェノール樹脂、自動車用の溶剤型アクリル樹脂、自動車用アミノアルキド樹脂(アミラック)、建築用、変電設備外壁用の水性アクリル樹脂、建築用のウレタン樹脂のいずれか1種以上からなる。遮熱層3は、フェノール樹脂、溶剤型アクリル樹脂、アミノアルキド樹脂、水性アクリル樹脂、ウレタン樹脂の熱反射効果によって遮熱性を有する。そのため、遮熱層3は、遮熱断熱層2の上にさらに積層させることで、基材10の遮熱性を向上させる。また、フェノール樹脂、溶剤型アクリル樹脂、アミノアルキド樹脂、水性アクリル樹脂、ウレタン樹脂は、金属酸化物に接触すると、金属酸化物内部の微小空孔に入り込み、熱を反射する緻密な表面を形成し、強度の高い遮熱層3を形成する。したがって、遮熱層3を積層する際には、フェノール樹脂、溶剤型アクリル樹脂、アミノアルキド樹脂、水性アクリル樹脂、ウレタン樹脂のいずれか1種以上の樹脂に金属酸化物を添加してもよい。また、遮熱層3は、湿式法であるディップコート法により形成するため表面が均一である。そのため、遮熱層3を備える遮熱断熱材料は、乾式法である溶射法のみで作製した遮熱断熱材料よりも強度に優れる。
(Heat shield layer)
The heat shielding layer 3 is made of at least one of phenolic resin, solvent-type acrylic resin for automobiles, amino alkyd resin for automobiles (Amilac), aqueous acrylic resin for construction and outer walls of substation facilities, and urethane resin for construction. Become. The heat shielding layer 3 has a heat shielding property due to the heat reflection effect of phenol resin, solvent-type acrylic resin, amino alkyd resin, aqueous acrylic resin, and urethane resin. Therefore, the heat-insulating layer 3 is further laminated on the heat-insulating and heat-insulating layer 2 to improve the heat-insulating property of the substrate 10. In addition, phenol resin, solvent-type acrylic resin, amino alkyd resin, water-based acrylic resin, and urethane resin, when in contact with metal oxide, enter the micropores inside the metal oxide and form a dense surface that reflects heat. The heat shielding layer 3 having high strength is formed. Therefore, when the thermal barrier layer 3 is laminated, a metal oxide may be added to at least one of a phenol resin, a solvent-type acrylic resin, an aminoalkyd resin, an aqueous acrylic resin, and a urethane resin. Further, since the heat shielding layer 3 is formed by a dip coating method which is a wet method, the surface is uniform. Therefore, the heat-insulating and heat-insulating material provided with the heat-insulating layer 3 is superior in strength to the heat-insulating and heat-insulating material produced only by the thermal spraying method which is a dry method.

≪2.遮熱断熱皮膜の形成方法≫
次に、図1に示す遮熱断熱皮膜1の形成方法について、順を追って説明する。
≪2. Method of forming a thermal barrier thermal insulation film >>
Next, a method for forming the heat-insulating and heat-insulating film 1 shown in FIG. 1 will be described step by step.

(遮熱断熱粉末の製造方法)
遮熱断熱粉末は、酸化マグネシウム22と酸化ケイ素23の混合体の表面を酸化ホウ素及び亜鉛で覆い、遮熱断熱粉末を製造する。
(Method for producing thermal insulation heat insulating powder)
The heat insulation heat insulating powder covers the surface of the mixture of magnesium oxide 22 and silicon oxide 23 with boron oxide and zinc to produce a heat insulation heat insulation powder.

遮熱断熱粉末の製造方法では、まず、混合体を製造する。混合体の製造に用いられる酸化マグネシウム粉末22は、水酸化マグネシウム粉末を高温で焼成することによって製造することができる。具体的には、水酸化マグネシウム粉末を、350℃〜900℃、好ましくは400℃〜600℃の温度で焼成することによって製造する。なお、水酸化マグネシウムの平均粒径は、自動車用の混合体の場合は1μm〜30μm、建築、変電機器又は熱機器用の混合体の場合は30μm〜100μmである。またこれらの範囲にある板状水酸化マグネシウム粒子を含み、1400℃で加熱した後の酸化マグネシウムの含有量が98.0質量%以上であるものが好ましい。次に、この酸化マグネシウム粉末22全体の質量に対して25〜35質量%の酸化ケイ素23を混合して混合体を製造する。   In the method for producing the heat-insulating and heat-insulating powder, first, a mixture is produced. The magnesium oxide powder 22 used for manufacturing the mixture can be manufactured by firing magnesium hydroxide powder at a high temperature. Specifically, the magnesium hydroxide powder is produced by firing at a temperature of 350 ° C. to 900 ° C., preferably 400 ° C. to 600 ° C. In addition, the average particle diameter of magnesium hydroxide is 1 μm to 30 μm in the case of a mixture for automobiles, and 30 μm to 100 μm in the case of a mixture for construction, substation equipment or thermal equipment. Moreover, what contains the plate-shaped magnesium hydroxide particle | grains in these ranges and whose content of magnesium oxide after heating at 1400 degreeC is 98.0 mass% or more is preferable. Next, 25-35 mass% silicon oxide 23 is mixed with respect to the mass of this magnesium oxide powder 22, and a mixture is manufactured.

次に、製造した混合体の表面を酸化ホウ素及び亜鉛で覆う。遮熱断熱粉末の製造方法では、混合体に、酸化マグネシウム粉末22全体の質量に対して1〜10質量%の酸化ホウ素及び5〜15質量%の亜鉛を添加する。酸化ホウ素及び亜鉛の添加量は、酸化マグネシウム粉末22全体の質量に対してそれぞれ1〜10質量%、5〜15質量%とすることで、酸化ホウ素20と亜鉛21で覆われていない部分が生じることなく、十分に酸化マグネシウム粉末22を酸化ホウ素20と亜鉛21で覆うことができる。   Next, the surface of the produced mixture is covered with boron oxide and zinc. In the manufacturing method of heat insulation heat insulation powder, 1-10 mass% boron oxide and 5-15 mass% zinc are added to a mixture with respect to the mass of the magnesium oxide powder 22 whole. The addition amount of boron oxide and zinc is 1 to 10% by mass and 5 to 15% by mass with respect to the total mass of the magnesium oxide powder 22, respectively, so that a portion not covered with boron oxide 20 and zinc 21 is generated. Without this, the magnesium oxide powder 22 can be sufficiently covered with the boron oxide 20 and the zinc 21.

遮熱断熱粉末の製造方法では、次に、亜鉛の融点(419.5℃)及び酸化ホウ素の融点(450℃)以上の温度で、混合体と酸化ホウ素及び亜鉛を混合したものを加熱する。加熱温度は、450℃以上600℃以下であることが好ましい。この方法では、酸化ホウ素及び亜鉛の融点以上の温度で加熱することにより、酸化ホウ素及び亜鉛の液相が生じ、この液相が混合体の表面を覆う。表面を覆った液相の酸化ホウ素及び亜鉛は、冷却されると固相状態の酸化ホウ素20及び亜鉛21となる。この方法では、このようにして混合体の表面を酸化ホウ素20と亜鉛21で覆い、遮熱断熱粉末を得る。   In the method for producing the heat-insulating and heat-insulating powder, the mixture, boron oxide and zinc are then heated at a temperature equal to or higher than the melting point of zinc (419.5 ° C.) and the melting point of boron oxide (450 ° C.). The heating temperature is preferably 450 ° C. or higher and 600 ° C. or lower. In this method, a liquid phase of boron oxide and zinc is formed by heating at a temperature equal to or higher than the melting points of boron oxide and zinc, and this liquid phase covers the surface of the mixture. The liquid phase boron oxide and zinc covering the surface become solid phase boron oxide 20 and zinc 21 when cooled. In this method, the surface of the mixture is thus covered with boron oxide 20 and zinc 21 to obtain a heat insulating and heat insulating powder.

また、混合体を酸化ホウ素及び亜鉛で覆う他の方法としては、酸化ホウ素の代わりにホウ酸を添加する方法がある。具体的には、混合体に、酸化マグネシウム粉末22全体の質量に対して1〜10質量%のホウ酸と5〜10質量%の亜鉛を添加する。ホウ酸は、300℃で脱水するため、加熱温度を300℃以上とすることで、2HBO→B+3HOという反応が進行し、酸化ホウ素となる。そのため、混合体と、ホウ酸と亜鉛を300℃〜460℃で加熱することで、酸化マグネシウム粉末22と酸化ケイ素23と酸化ホウ素と亜鉛の混合物となる。そして、この方法では、さらに酸化ホウ素の融点以上の温度で加熱することで、遮熱断熱粉末が得られる。 Another method for covering the mixture with boron oxide and zinc is to add boric acid instead of boron oxide. Specifically, 1-10 mass% boric acid and 5-10 mass% zinc are added to a mixture with respect to the mass of the magnesium oxide powder 22 whole. Since boric acid is dehydrated at 300 ° C., the reaction of 2H 2 BO 3 → B 2 O 3 + 3H 2 O proceeds and becomes boron oxide by setting the heating temperature to 300 ° C. or higher. Therefore, it becomes a mixture of magnesium oxide powder 22, silicon oxide 23, boron oxide and zinc by heating the mixture, boric acid and zinc at 300 ° C. to 460 ° C. In this method, the heat-insulating and heat-insulating powder is obtained by further heating at a temperature equal to or higher than the melting point of boron oxide.

また、遮熱断熱粉末の製造方法としては、酸化マグネシウム粉末22と酸化ケイ素23の混合体を酸化ホウ素及び亜鉛で覆うだけでなく、酸化マグネシウム粉末22と酸化ケイ素23の粉末の焼成体を酸化ホウ素及び亜鉛で覆うことにより遮熱断熱粉末を製造してもよい。   Further, as a method for producing the heat insulating and heat insulating powder, not only the mixture of the magnesium oxide powder 22 and the silicon oxide 23 is covered with boron oxide and zinc, but also the fired body of the magnesium oxide powder 22 and the silicon oxide 23 powder is boron oxide. And you may manufacture a heat insulation heat insulation powder by covering with zinc.

次に焼成体を用いた遮熱断熱粉末の製造方法について説明する。   Next, the manufacturing method of the heat insulation heat insulation powder using a sintered body is demonstrated.

焼成体を用いた遮熱断熱粉末の製造方法では、まず、焼成体を製造する。具体的には、まず、酸化マグネシウム粉末22全体の質量に対して5〜10質量%の酸化ケイ素23の粉末を添加する。酸化ケイ素23の粉末の添加量は、5〜10質量%とすることで、酸化ケイ素による遮熱断熱効果が得られ、酸化マグネシウム単体よりも高い遮熱断熱効果を奏する。焼成体の製造方法では、次いで、酸化マグネシウム粉末22と酸化ケイ素23の粉末の混合物を600℃〜900℃で焼成する。焼成する際の焼成炉は、特に制限はないが、例えば、ロータリーキルン、ヘレシヨフ炉及び電気炉といったものが使用できる。   In the manufacturing method of the heat insulation heat insulation powder using a sintered body, a sintered body is first manufactured. Specifically, first, 5 to 10% by mass of silicon oxide 23 powder is added to the total mass of the magnesium oxide powder 22. By adding 5 to 10% by mass of the powder of silicon oxide 23, a heat insulating and heat insulating effect by silicon oxide can be obtained, and a higher heat insulating and heat insulating effect than that of magnesium oxide alone can be achieved. In the method for manufacturing a fired body, a mixture of magnesium oxide powder 22 and silicon oxide powder 23 is then fired at 600 ° C to 900 ° C. The firing furnace for firing is not particularly limited, and for example, a rotary kiln, a Heleshov furnace, and an electric furnace can be used.

次に、得られた焼成体を酸化ホウ素及び亜鉛で覆い遮熱断熱粉末を製造する。焼成体を酸化ホウ素及び亜鉛で覆う方法は、混合体を覆う方法と同様に、焼成体に酸化ホウ素及び亜鉛を添加する。次に、焼成体と酸化ホウ素及び亜鉛の混合物を、450℃〜600℃で加熱する。この方法では、液相状となった酸化ホウ素及び亜鉛が焼成体の表面を覆い、遮熱断熱粉末が得られる。この方法では、酸化ホウ素及び亜鉛が液相状態となることで、生じた液相が焼成体の結晶粒を覆うため、低い温度で酸化マグネシウム粉末22と酸化ケイ素23の粉末との表面の結合形成が促進される。   Next, the obtained fired body is covered with boron oxide and zinc to produce a heat insulating and heat insulating powder. In the method of covering the fired body with boron oxide and zinc, boron oxide and zinc are added to the fired body in the same manner as the method of covering the mixture. Next, the mixture of the fired body, boron oxide and zinc is heated at 450 ° C. to 600 ° C. In this method, the liquid phase boron oxide and zinc cover the surface of the fired body, and a heat insulating and heat insulating powder can be obtained. In this method, since boron oxide and zinc are in a liquid phase state, and the resulting liquid phase covers the crystal grains of the fired body, the surface bond formation between the magnesium oxide powder 22 and the silicon oxide 23 powder is performed at a low temperature. Is promoted.

また、上述したように、焼成体を酸化ホウ素及び亜鉛で覆う方法としては、酸化ホウ素の代わりにホウ酸を用いてもよい。ホウ酸を用いて焼成体を覆う方法は、まず、焼成体全体の質量に対して、平均粒子径が50μm〜100μmである亜鉛を5〜10質量%と、1〜10質量%のホウ酸を添加する。次に、ホウ酸を用いて焼成体を覆う方法では、この混合物を300℃〜460℃で加熱し、ホウ酸を酸化ホウ素とし、更に酸化ホウ素の融点よりも高い温度で加熱することで、酸化ホウ素及び亜鉛で覆われた焼成体を得ることができる。   As described above, boric acid may be used in place of boron oxide as a method of covering the fired body with boron oxide and zinc. In the method of covering the fired body with boric acid, first, 5 to 10% by weight of zinc having an average particle diameter of 50 μm to 100 μm and 1 to 10% by weight of boric acid with respect to the weight of the whole fired body. Added. Next, in the method of covering the fired body with boric acid, this mixture is heated at 300 ° C. to 460 ° C., boric acid is converted into boron oxide, and further heated at a temperature higher than the melting point of boron oxide, thereby oxidizing the mixture. A fired body covered with boron and zinc can be obtained.

添加した亜鉛は、酸化マグネシウム粉末22と酸化ケイ素23の粉末と酸化ホウ素の微粒子間に介在する。亜鉛が介在することで生じる空孔が、金属酸化物のネットワーク構造の強度を向上させる。   The added zinc is interposed between the magnesium oxide powder 22, the silicon oxide 23 powder, and the boron oxide fine particles. The void | hole which arises by interposing zinc improves the intensity | strength of the network structure of a metal oxide.

以上のように作られた酸化ホウ素及び亜鉛で覆われた金属酸化物の混合体又は焼成体からなる遮熱断熱粉末は、結晶性のものであり、自動車用の混合体又は焼成体の平均粒子径が1μm〜30μm、建築、変電機器又は熱機器用の混合体又は焼成体の平均粒子径は30μm〜100μmである。平均粒子径は、電子顕微鏡により測定できる。   The heat-insulating and heat-insulating powder made of a mixture or fired body of boron oxide and zinc-covered metal oxide made as described above is crystalline, and is an average particle of a mixture or fired body for automobiles. The average particle diameter of the mixture or the fired body is 30 μm to 100 μm. The average particle diameter can be measured with an electron microscope.

(遮熱断熱材の製造方法)
次に遮熱断熱材の製造方法について説明する。遮熱断熱材は、遮熱断熱粉末に酸化ホウ素及び亜鉛を添加することで製造する。具体的には、酸化ホウ素と亜鉛に覆われた金属酸化物の混合体又は焼成体からなる遮熱断熱粉末全体の質量に対して、1〜10質量%の酸化ホウ素及び5〜15質量%の亜鉛を添加して撹拌することで、遮熱断熱材を製造する。
(Method of manufacturing heat insulation material)
Next, the manufacturing method of a heat insulation heat insulating material is demonstrated. The heat insulating heat insulating material is manufactured by adding boron oxide and zinc to the heat insulating heat insulating powder. Specifically, 1 to 10% by mass of boron oxide and 5 to 15% by mass with respect to the total mass of the heat-insulating and heat-insulating powder composed of a mixture or fired body of a metal oxide covered with boron oxide and zinc. A heat insulation heat insulating material is manufactured by adding and stirring zinc.

(遮熱断熱層の形成方法)
遮熱断熱層2は、遮熱断熱材をフレーム溶射等の溶射法により金属又はセラミックスの基材10の表面に吹き付けることで形成する。遮熱断熱材は、溶射法による制限がないため、遮熱断熱材を加熱溶融し、基材10の表面に吹き付けることができればどのような溶射法を用いてもよい。遮熱断熱層2の形成方法では、遮熱断熱材を溶射材料として使用し、遮熱断熱材が溶射される瞬間に加熱されることで、混合体や焼成体を覆っている酸化ホウ素と亜鉛及び添加した酸化ホウ素及び亜鉛が液状となる。この方法では、酸化ホウ素と亜鉛が液相となった状態で、基材10に高速で噴射され、酸化ホウ素と亜鉛が冷えて固相となることで、遮熱断熱層2が形成される。遮熱断熱層2の形成方法では、酸化ホウ素と亜鉛の液相が急冷凝固されて固相状態になるときに、酸化マグネシウム粉末22同士が繋がる。さらに、酸化マグネシウム粉末22同士の隙間には酸化ケイ素23が介在する。これにより、遮熱断熱層2の内部には、空孔が形成されてネットワーク構造のような微細組織が形成される。このような遮熱断熱層2の形成方法は、ネットワーク構造を作ることにより、断熱性を有しつつ、遮熱効果も高めるため、遮熱断熱効果を向上させる。
(Method of forming a heat insulating and heat insulating layer)
The heat-insulating and heat-insulating layer 2 is formed by spraying the heat-insulating and heat-insulating material onto the surface of the metal or ceramic substrate 10 by a thermal spraying method such as flame spraying. Since there is no restriction | limiting by a thermal spraying method, the thermal insulation heat insulating material may use what kind of thermal spraying method, if the thermal insulation thermal insulation material can be heat-melted and sprayed on the surface of the base material 10. FIG. In the method of forming the thermal insulation heat insulating layer 2, the thermal insulation thermal insulation material is used as a thermal spray material, and the thermal insulation thermal insulation material is heated at the moment of thermal spraying, so that boron oxide and zinc covering the mixture or the fired body are used. And the added boron oxide and zinc become liquid. In this method, in a state where boron oxide and zinc are in a liquid phase, the heat insulating and heat insulating layer 2 is formed by spraying the base material 10 at a high speed and cooling the boron oxide and zinc into a solid phase. In the method for forming the heat-insulating and heat-insulating layer 2, the magnesium oxide powders 22 are connected when the liquid phase of boron oxide and zinc is rapidly solidified by solidification. Further, silicon oxide 23 is interposed in the gap between the magnesium oxide powders 22. As a result, pores are formed inside the heat-insulating and heat-insulating layer 2 to form a fine structure like a network structure. Such a method for forming the heat-insulating and heat-insulating layer 2 improves the heat-insulating and heat-insulating effect by creating a network structure, thereby increasing the heat-insulating effect while having heat insulation properties.

この遮熱断熱層2を形成する方法では、溶射法により基材10に遮熱断熱材を吹き付けるため、溶射粒子の運ぶ熱量が小さく、基材10への熱による影響を抑えることができる。さらに、この遮熱断熱層2を形成する方法では、基材10と遮熱断熱層2との密着性も高くできる。また、遮熱断熱層2は、遮熱断熱層2の表面に、フェノール樹脂からなる遮熱層3をさらに積層することで、遮熱効果をより一層高めることができる。   In this method of forming the heat insulating and heat insulating layer 2, since the heat insulating heat insulating material is sprayed onto the base material 10 by the thermal spraying method, the amount of heat carried by the spray particles is small, and the influence of the heat on the base material 10 can be suppressed. Furthermore, in the method of forming the heat insulation heat insulation layer 2, the adhesion between the substrate 10 and the heat insulation heat insulation layer 2 can be improved. Moreover, the heat insulation heat insulation layer 2 can further enhance the heat insulation effect by further laminating the heat insulation layer 3 made of phenol resin on the surface of the heat insulation heat insulation layer 2.

(遮熱層の形成方法)
遮熱層3は、フェノール樹脂、溶剤型アクリル樹脂、アミノアルキド樹脂、水性アクリル樹脂、ウレタン樹脂のいずれか1種以上の溶液に遮熱断熱層2を形成した基材10を浸すディップコート法により形成することができる。また、フェノール樹脂は、金属酸化物に接触すると、金属酸化物内部の微小空孔に入り込み、熱を反射する緻密な表面を形成し、強度の高い遮熱層3に形成する。したがって、遮熱層3を積層する際には、フェノール樹脂に金属酸化物を添加してもよい。
(Method of forming a thermal barrier layer)
The heat shielding layer 3 is formed by a dip coating method in which the base material 10 on which the heat shielding heat insulating layer 2 is formed is immersed in one or more solutions of phenol resin, solvent-type acrylic resin, amino alkyd resin, aqueous acrylic resin, and urethane resin. Can be formed. Further, when the phenolic resin comes into contact with the metal oxide, it enters into the micropores inside the metal oxide, forms a dense surface that reflects heat, and forms the heat shielding layer 3 with high strength. Therefore, when laminating the heat shielding layer 3, a metal oxide may be added to the phenol resin.

以上のように、遮熱断熱材を用いた遮熱断熱皮膜1を形成する方法は、フレーム溶射法により遮熱断熱層2を形成した後、さらにディップコート法により遮熱層3を積層させることができる。   As described above, the method for forming the thermal insulation thermal insulation film 1 using the thermal insulation thermal insulation material is to form the thermal insulation thermal insulation layer 2 by the flame spraying method, and then laminate the thermal insulation layer 3 by the dip coating method. Can do.

≪3.実施例≫
以下、本発明の実施例について説明するが本発明はこれらの実施例に限定されるものではない。
≪3. Examples >>
Examples of the present invention will be described below, but the present invention is not limited to these examples.

<遮熱断熱材の作製>
本実施例では、まず、30〜100μm程度の酸化マグネシウムの粉末に、この粉末の全体の質量に対して5〜15質量%の亜鉛と25〜35質量%の酸化ケイ素を添加したものを作製した。さらに、本実施例では、混合体に、酸化マグネシウム粉末全体の質量に対して5質量%の酸化ホウ素を添加して、焼成炉にて600℃で加熱した。600℃で加熱することで、亜鉛と酸化ホウ素を液相状態にし、1時間加熱することで、混合体の表面を酸化ホウ素と亜鉛で覆った。次に、表面が酸化ホウ素と亜鉛で覆われた混合体を冷却し、更に5〜15質量%の亜鉛と5質量%の酸化ホウ素を添加し、撹拌して遮熱断熱材を作製した。
<Preparation of thermal insulation>
In this example, first, magnesium oxide powder of about 30 to 100 μm was prepared by adding 5 to 15 mass% zinc and 25 to 35 mass% silicon oxide with respect to the total mass of the powder. . Furthermore, in this example, 5% by mass of boron oxide was added to the mixture with respect to the total mass of the magnesium oxide powder, and the mixture was heated at 600 ° C. in a baking furnace. By heating at 600 ° C., zinc and boron oxide were brought into a liquid phase state, and the surface of the mixture was covered with boron oxide and zinc by heating for 1 hour. Next, the mixture whose surface was covered with boron oxide and zinc was cooled, 5 to 15% by mass of zinc and 5% by mass of boron oxide were further added, and the mixture was stirred to prepare a heat shield heat insulating material.

作製した遮熱断熱材について、酸化マグネシウム粉末の結晶粒子の平均粒子径、遮熱断熱材の平均粒子径、アスペクト比及び比表面積を測定した。酸化マグネシウム粉末の粒子の平均粒子径は、粉末X線回折法により測定した。遮熱断熱材の平均粒子径及びアスペクト比は、電子顕微鏡を用いた画像解析法により測定した。遮熱断熱材の比表面積はBET法により測定した。   About the produced heat insulation heat insulating material, the average particle diameter of the crystal particle of magnesium oxide powder, the average particle diameter of the heat insulation heat insulating material, the aspect ratio, and the specific surface area were measured. The average particle diameter of the magnesium oxide powder particles was measured by a powder X-ray diffraction method. The average particle diameter and the aspect ratio of the heat insulating heat insulating material were measured by an image analysis method using an electron microscope. The specific surface area of the heat insulation heat insulating material was measured by the BET method.

酸化マグネシウム粉末の結晶粒子の平均粒子径は50μmであった。また、遮熱断熱材の平均粒子径は65μm〜100μmであり、アスペクト比は1.1、比表面積は160〜250cm/gであった。 The average particle diameter of the crystal particles of the magnesium oxide powder was 50 μm. Moreover, the average particle diameter of the heat insulation heat insulating material was 65 μm to 100 μm, the aspect ratio was 1.1, and the specific surface area was 160 to 250 cm 2 / g.

<フレーム溶射とディップコート法による遮熱断熱層の形成>
次に、作製した遮熱断熱材を100mlの樹脂塗料の中に3g〜9gを添加して10分間撹拌し、板厚0.9mmと3mmの板状のSUS304基材を二つ用意し、表面にはフレーム溶射あるいはディップコート法をそれぞれ行うことによって、基材の表面に遮熱断熱層を形成した。溶射時間は15分〜30分間であり、遮熱断熱層の厚さは80〜300μmとした。
<Formation of thermal barrier and heat insulating layer by flame spraying and dip coating>
Next, 3g-9g was added to 100ml resin paint for the heat insulating heat insulating material thus prepared and stirred for 10 minutes to prepare two plate-shaped SUS304 base materials with thicknesses of 0.9mm and 3mm. A thermal barrier heat insulating layer was formed on the surface of the substrate by flame spraying or dip coating, respectively. The thermal spraying time was 15 minutes to 30 minutes, and the thickness of the heat shield heat insulating layer was 80 to 300 μm.

<遮熱断熱効果の評価>
遮熱断熱効果の評価方法は、フレーム溶射によって遮熱断熱層を形成した基材について、裏面側と表面側からそれぞれ輻射加熱し、温度の経時変化を測定して行った。具体的には、裏面側又は表面側を輻射加熱しつつ、赤外線カメラで基材の表面と裏面の表面温度についてそれぞれ1点を測定することで、電熱評価を行った。裏面側から輻射加熱した温度の経時変化と、表面側から輻射加熱した温度の経時変化はそれぞれ図2、図3に示すようになった。図中では、遮熱断熱層を有している面をC2’−500、生身の基材面をSUS304と記載している。図2及び図3の結果から、裏面側と表面側のどちらから輻射加熱した場合でも、表面温度が遮熱断熱層を有する面の方が低く、最大50℃も低かった。このことから、遮熱断熱層が形成された基材は、遮熱断熱効果があることが明らかになった。
<Evaluation of thermal insulation effect>
The evaluation method of the heat-insulating and heat-insulating effect was performed by subjecting the base material on which the heat-insulating and heat-insulating layer was formed by flame spraying to radiation heating from the back surface side and the surface side, respectively, and measuring the change with time of temperature. Specifically, electrothermal evaluation was performed by measuring one point for each of the surface temperature of the substrate and the back surface with an infrared camera while radiatively heating the back surface or the front surface. The time-dependent change of the temperature radiantly heated from the back side and the time-dependent change of the radiantly heated temperature from the front side are as shown in FIGS. In the drawing, the surface having the heat insulating and heat insulating layer is described as C2′-500, and the raw substrate surface is described as SUS304. From the results shown in FIGS. 2 and 3, the surface temperature of the surface having the heat-insulating and heat-insulating layer was lower and the maximum was 50 ° C., regardless of whether it was radiantly heated from either the back side or the front side. From this, it became clear that the base material on which the heat insulation heat insulation layer was formed has a heat insulation heat insulation effect.

以上のように、亜鉛及び酸化ホウ素で覆われた金属酸化物の混合体と、酸化ホウ素と、亜鉛とからなる遮熱断熱材を用い、フレーム溶射法によって基材上に遮熱断熱層を形成することによって、高い遮熱断熱効果が得られることが分かった。   As described above, a thermal barrier thermal insulation layer is formed on a substrate by flame spraying using a thermal barrier thermal insulation material composed of a mixture of metal oxides covered with zinc and boron oxide, boron oxide, and zinc. By doing so, it was found that a high thermal insulation effect can be obtained.

1 遮熱断熱皮膜、2 遮熱断熱層、3 遮熱層 、10 基材、20 酸化ホウ素、21 亜鉛、22 酸化マグネシウム粉末、23 酸化ケイ素、30 熱源 DESCRIPTION OF SYMBOLS 1 Thermal insulation heat insulation film, 2 Thermal insulation thermal insulation layer, 3 Thermal insulation layer, 10 Base material, 20 Boron oxide, 21 Zinc, 22 Magnesium oxide powder, 23 Silicon oxide, 30 Heat source

Claims (15)

金属基材又はセラミックス基材の表面に、溶射法による遮熱断熱皮膜の形成に用いられる遮熱断熱材において、
金属酸化物の表面が亜鉛と酸化ホウ素で覆われた遮熱断熱粉末と、酸化ホウ素と、亜鉛とを含有する遮熱断熱材。
In the heat insulation heat insulating material used for the formation of the heat insulation heat insulation film by the thermal spraying method on the surface of the metal substrate or the ceramic substrate,
A heat-insulating and heat-insulating material containing a heat-insulating and heat-insulating powder having a metal oxide surface covered with zinc and boron oxide, boron oxide, and zinc.
上記金属酸化物は、酸化マグネシウム粉末と酸化ケイ素との混合体、又は酸化マグネシウム粉末と酸化ケイ素粉末との焼成体である請求項1記載の遮熱断熱材。   The heat-insulating heat insulating material according to claim 1, wherein the metal oxide is a mixture of magnesium oxide powder and silicon oxide, or a fired body of magnesium oxide powder and silicon oxide powder. 上記金属酸化物の平均粒径は、該遮熱断熱材が自動車用の場合には1μm〜30μmであり、建築用、変電機器用又は熱機器用の場合には30μm〜100μmである請求項1又は2記載の遮熱断熱材。   2. The average particle diameter of the metal oxide is 1 μm to 30 μm when the heat-insulating and heat insulating material is used for automobiles, and 30 μm to 100 μm when used for construction, substation equipment, or thermal equipment. Or the heat insulation heat insulating material of 2. 金属基材又はセラミックス基材の表面に、溶射法による遮熱断熱皮膜の形成に用いられる遮熱断熱材の製造方法において、
金属酸化物と亜鉛と酸化ホウ素とを混合して該亜鉛及び該酸化ホウ素の融点以上の温度で加熱することで製造した遮熱断熱粉末に、更に酸化ホウ素と亜鉛を添加して製造する遮熱断熱材の製造方法。
In the method of manufacturing a heat insulating heat insulating material used for forming a heat insulating heat insulating film by a thermal spraying method on the surface of a metal substrate or a ceramic substrate,
Heat shield manufactured by adding boron oxide and zinc to a heat shield heat insulating powder manufactured by mixing metal oxide, zinc and boron oxide and heating at a temperature equal to or higher than the melting point of zinc and boron oxide. A method of manufacturing a heat insulating material.
上記金属酸化物は、酸化マグネシウム粉末と酸化ケイ素との混合体、又は酸化マグネシウム粉末と酸化ケイ素粉末との焼成体であることを特徴とする請求項4記載の遮熱断熱材の製造方法。   The method for producing a thermal barrier heat insulating material according to claim 4, wherein the metal oxide is a mixture of magnesium oxide powder and silicon oxide, or a fired body of magnesium oxide powder and silicon oxide powder. 金属基材又はセラミックス基材の表面に形成される遮熱断熱皮膜であり、
上記遮熱断熱皮膜は、遮熱断熱層を有し、
上記遮熱断熱層は、金属酸化物の間隙に亜鉛と酸化ホウ素が介在している遮熱断熱皮膜。
It is a heat insulating heat insulating film formed on the surface of a metal substrate or ceramic substrate,
The thermal barrier thermal insulation film has a thermal barrier thermal insulation layer,
The heat insulation heat insulation layer is a heat insulation heat insulation film in which zinc and boron oxide are interposed in a gap between metal oxides.
上記遮熱断熱層の上に遮熱層をさらに有する請求項6記載の遮熱断熱皮膜。   The heat insulation heat insulation film of Claim 6 which further has a heat insulation layer on the said heat insulation heat insulation layer. 上記遮熱層は、フェノール樹脂、溶剤型アクリル樹脂、アミノアルキド樹脂、水性アクリル樹脂、ウレタン樹脂のいずれか1種以上を含有する請求項7記載の遮熱断熱皮膜。   The heat-insulating and heat-insulating coating according to claim 7, wherein the heat-insulating layer contains at least one of phenol resin, solvent-type acrylic resin, aminoalkyd resin, aqueous acrylic resin, and urethane resin. 上記遮熱層は、金属酸化物を含有する請求項7又は8記載の遮熱断熱皮膜。   The said heat insulation layer is a heat insulation heat insulation film of Claim 7 or 8 containing a metal oxide. 上記金属酸化物は、酸化マグネシウム粉末と酸化ケイ素との混合体、又は酸化マグネシウム粉末と酸化ケイ素粉末との焼成体であることを特徴とする請求項6乃至9の何れか1項記載の遮熱断熱皮膜。   10. The heat shield according to claim 6, wherein the metal oxide is a mixture of magnesium oxide powder and silicon oxide, or a fired body of magnesium oxide powder and silicon oxide powder. 11. Thermal insulation film. 金属酸化物の表面が亜鉛と酸化ホウ素で覆われた遮熱断熱粉末と、酸化ホウ素と、亜鉛とを含有する遮熱断熱材を、金属基材又はセラミックス基材の表面に溶射法により吹き付けて遮熱断熱層を有する遮熱断熱皮膜を形成する遮熱断熱皮膜の形成方法。   A thermal barrier heat insulating material containing a metal oxide surface covered with zinc and boron oxide, a thermal barrier heat insulating material containing boron oxide and zinc is sprayed onto the surface of a metal substrate or ceramic substrate by a thermal spraying method. A method for forming a heat-insulating and heat-insulating film, comprising forming a heat-insulating and heat-insulating film having a heat-insulating and heat-insulating layer. 上記遮熱断熱層上に、ディップコート法により遮熱層を形成する請求項11記載の遮熱断熱皮膜の形成方法。   The method for forming a thermal barrier thermal insulation film according to claim 11, wherein the thermal barrier layer is formed on the thermal barrier thermal insulation layer by a dip coating method. 上記遮熱層は、フェノール樹脂、溶剤型アクリル樹脂、アミノアルキド樹脂、水性アクリル樹脂、ウレタン樹脂のいずれか1種以上の樹脂を含有する請求項12記載の遮熱断熱皮膜の形成方法。   The said heat insulation layer is a formation method of the heat insulation heat insulation film of Claim 12 containing any 1 or more types of resin of a phenol resin, a solvent-type acrylic resin, an amino alkyd resin, a water-based acrylic resin, and a urethane resin. 上記遮熱層は、金属酸化物を含有する請求項13記載の遮熱断熱皮膜の形成方法。   The method for forming a thermal barrier thermal insulation film according to claim 13, wherein the thermal barrier layer contains a metal oxide. 上記金属酸化物は、酸化マグネシウム粉末と酸化ケイ素との混合体、又は酸化マグネシウム粉末と酸化ケイ素粉末との焼成体であることを特徴とする請求項11乃至14の何れか1項記載の遮熱断熱皮膜の形成方法。   15. The heat shield according to claim 11, wherein the metal oxide is a mixture of magnesium oxide powder and silicon oxide, or a fired body of magnesium oxide powder and silicon oxide powder. A method of forming a heat insulation film.
JP2015111101A 2015-06-01 2015-06-01 Thermal barrier insulation material, production method thereof, thermal barrier insulation coating and formation method thereof Pending JP2016222979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015111101A JP2016222979A (en) 2015-06-01 2015-06-01 Thermal barrier insulation material, production method thereof, thermal barrier insulation coating and formation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015111101A JP2016222979A (en) 2015-06-01 2015-06-01 Thermal barrier insulation material, production method thereof, thermal barrier insulation coating and formation method thereof

Publications (1)

Publication Number Publication Date
JP2016222979A true JP2016222979A (en) 2016-12-28

Family

ID=57745519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015111101A Pending JP2016222979A (en) 2015-06-01 2015-06-01 Thermal barrier insulation material, production method thereof, thermal barrier insulation coating and formation method thereof

Country Status (1)

Country Link
JP (1) JP2016222979A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS596366A (en) * 1982-06-30 1984-01-13 Shinto Paint Co Ltd Pore sealing and coloring finish of surface of alminum plasma sprayed steel material
JP2003003247A (en) * 2001-06-20 2003-01-08 Nippon Steel Corp Parts for combustor and production method therefor
JP2003183806A (en) * 2001-12-19 2003-07-03 Tocalo Co Ltd Sealing agent, sealing method, and sealed spray-film- covered member
JP2012057240A (en) * 2010-09-13 2012-03-22 Tocalo Co Ltd Method of forming cermet coating having dense surface layer, and cermet coating cover member
JP2014019876A (en) * 2012-07-12 2014-02-03 Yoshino:Kk Thermal barrier material and manufacturing method of the same, and thermal barrier coating film and formation method of the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS596366A (en) * 1982-06-30 1984-01-13 Shinto Paint Co Ltd Pore sealing and coloring finish of surface of alminum plasma sprayed steel material
JP2003003247A (en) * 2001-06-20 2003-01-08 Nippon Steel Corp Parts for combustor and production method therefor
JP2003183806A (en) * 2001-12-19 2003-07-03 Tocalo Co Ltd Sealing agent, sealing method, and sealed spray-film- covered member
JP2012057240A (en) * 2010-09-13 2012-03-22 Tocalo Co Ltd Method of forming cermet coating having dense surface layer, and cermet coating cover member
JP2014019876A (en) * 2012-07-12 2014-02-03 Yoshino:Kk Thermal barrier material and manufacturing method of the same, and thermal barrier coating film and formation method of the same

Similar Documents

Publication Publication Date Title
Mahadik et al. Double layer SiO2/Al2O3 high emissivity coatings on stainless steel substrates using simple spray deposition system
CN109423067B (en) Oriented silicon steel insulating coating solution, preparation method and application thereof
US20150291801A1 (en) Inorganic paint composition and method for forming inorganic paint film by using the same
CN103484857B (en) Metallic matrix ceramic coating is prepared the method for nano modification amorphous ceramic coating
CN103274617B (en) A kind of Aluminum dihydrogen phosphate nano/micro-binder and preparation method thereof
CN104129984B (en) The preparation method of the aluminophosphate-based high temperature resistant wave-permeable ceramic coating of a kind of metallic surface amorphous
CN112266648B (en) Steel structure with fireproof coating layer and preparation method thereof
CN103305039A (en) Infrared radiation coating, preparation method thereof and infrared radiation coating
CN104402466A (en) Porous corundum aggregate with core-shell structure and preparation method thereof
KR102190623B1 (en) Film-attached metal, film-forming treatment liquid, and method for producing film-attached metal
US10843970B2 (en) Thermally insulating materials including spherical, hollow inorganic particles
CN102701790A (en) Heat-insulating ceramic fiber material and preparation method thereof
JP2017075358A (en) Insulation film of directive electrical steel sheet, and forming method thereof
US20050208338A1 (en) Heat resistant product
TWI406968B (en) An electromagnetic steel sheet having an insulating film excellent in thermal conductivity, and a method of manufacturing the same
JP2016222979A (en) Thermal barrier insulation material, production method thereof, thermal barrier insulation coating and formation method thereof
AU2017395200B2 (en) Thermal collecting film for solar thermal power generation and manufacturing method for same
JP5984540B2 (en) Heat shielding material and method for manufacturing the same, and heat shielding film and method
JP6389373B2 (en) Micro mullite hollow particles
CN105315005A (en) Heat insulating material
CN105694543A (en) Flame retardant coating layer and preparation method thereof
Komatsu et al. Synthesis of a Violet S r–A l–O: E u2+ Phosphor Particle Using Elemental A l Diffusion
JP7018169B2 (en) Manufacturing method of grain-oriented electrical steel sheet and grain-oriented electrical steel sheet
Boakye et al. Two Phase Monazite/Xenotime 30LaPO4–70YPO4 Coating of Ceramic Fiber Tows
JP5942813B2 (en) Manufacturing method of ceramic composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180313

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181204