JP2016219994A - Power line communication system - Google Patents

Power line communication system Download PDF

Info

Publication number
JP2016219994A
JP2016219994A JP2015102158A JP2015102158A JP2016219994A JP 2016219994 A JP2016219994 A JP 2016219994A JP 2015102158 A JP2015102158 A JP 2015102158A JP 2015102158 A JP2015102158 A JP 2015102158A JP 2016219994 A JP2016219994 A JP 2016219994A
Authority
JP
Japan
Prior art keywords
voltage distribution
power line
distribution line
line
substation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015102158A
Other languages
Japanese (ja)
Inventor
佐々木 博之
Hiroyuki Sasaki
博之 佐々木
敏幸 前多
Toshiyuki Maeta
敏幸 前多
将一郎 長濱
Shoichiro Nagahama
将一郎 長濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Magnus Communications Ltd
Original Assignee
NEC Magnus Communications Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Magnus Communications Ltd filed Critical NEC Magnus Communications Ltd
Priority to JP2015102158A priority Critical patent/JP2016219994A/en
Publication of JP2016219994A publication Critical patent/JP2016219994A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/16Electric power substations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/121Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using the power network as support for the transmission

Abstract

PROBLEM TO BE SOLVED: To provide a power line communication system capable of improving communication quality in power line communication with a high voltage distribution line as a transmission path.SOLUTION: A power line communication system 1 includes: a high voltage distribution line 4 extended from a secondary side of a transformer 3S in a substation 2; a first power line modem 6S connected to a first connection point on the high voltage distribution line 4; power line modems 6A, 6B connected to a second connection point on the high voltage distribution line 4 positioned more on a downstream side than the first connection point when viewed from the substation 2, which communicate via the high voltage distribution line with the first power line modem 6S; and a signal regulator 15 provided on the high voltage distribution line 4, which includes magnetic cores 15a, 15b, 15c provided more on an upstream side than the first connection point. When a phase advance capacitor 11 is provided in the substation 2, an impedance at the substation 2 side to which the phase advance capacitor 11 is connected becomes low, and the impedance at the substation 2 side is increased by the signal regulator 15. Thus, it is possible to suppress the attenuation of a signal flowing to the downstream side of the high voltage distribution line 4.SELECTED DRAWING: Figure 1

Description

本発明は、電力線通信システムに関し、特に、高圧配電線上の開閉器を制御する配電制御システムに好適であり、高圧配電線を通信媒体として用いた電力線通信システムに関するものである。   The present invention relates to a power line communication system, and more particularly, to a power line communication system suitable for a power distribution control system for controlling a switch on a high voltage distribution line and using the high voltage distribution line as a communication medium.

電気は一般家庭だけでなく、工場・オフィスなどの産業分野および病院・交通等の社会インフラに必要不可欠であり、停電によるダメージは計り知れないものがある。停電から復旧までに要する時間は短時間であればあるほど社会が被る損失が少なくて済むことから、電力会社は配電システムの高度化を図ってきた(例えば特許文献1参照)。配電ルートの集中制御もその一環であり、電力会社が電力供給する高圧配電線は、ある場所で停電が発生しても他の地域へ停電が波及することを極力低減させる目的で、複数の配電ルートになるよう設計されている。各配電ルートの分岐点には開閉器(ルートスイッチ)が設けられ、配電ルートを切り替えることにより、停電エリアを最小限に抑えることが可能である。   Electricity is indispensable not only for ordinary households, but also for industrial fields such as factories and offices, and social infrastructure such as hospitals and transportation, and damage due to power outages is immeasurable. The shorter the time required from power failure to recovery, the less loss society suffers, so electric power companies have attempted to advance the power distribution system (see, for example, Patent Document 1). Centralized control of distribution routes is one part of this, and high-voltage distribution lines that are supplied by electric power companies are able to distribute multiple power distributions with the aim of minimizing the occurrence of power outages in other areas. Designed to be the root. A switch (route switch) is provided at the branch point of each distribution route, and the power failure area can be minimized by switching the distribution route.

図5は、高圧配電線の配電系統を示すブロック図である。   FIG. 5 is a block diagram showing a distribution system of the high-voltage distribution line.

図5に示すように、高圧配電線22は変電所21から複数系統に分岐しながら延びて需要家へ電力を供給している。高圧配電線22は重要なインフラであるため、冗長性を目的とした配線ルートの二重化やループ化が施されており、短絡・地絡事故が発生した場合でも配電系統を切り換えることで必要最小限のエリアでの停電で済ませることができる。配電系統の接続・切断を行う開閉器23は電力会社の監視センターから遠隔制御され、その制御信号を伝達する手段として、高圧配電線に高周波信号を重畳させるPLC(Power Line Communication:電力線通信)が利用される。   As shown in FIG. 5, the high-voltage distribution line 22 extends from the substation 21 while branching to a plurality of systems and supplies power to consumers. Since the high-voltage distribution line 22 is an important infrastructure, the wiring route is duplicated and looped for the purpose of redundancy, and even if a short circuit or ground fault occurs, the necessary minimum is achieved by switching the distribution system. It can be done with a power outage in the area. The switch 23 for connecting / disconnecting the distribution system is remotely controlled from the monitoring center of the electric power company. As a means for transmitting the control signal, a PLC (Power Line Communication) for superimposing a high-frequency signal on the high-voltage distribution line is used. Used.

高圧配電線22の6600Vの高圧はトランス24によって200/100Vに降圧され、戸建住宅などの小口需要家26には、トランス24の二次側に接続された低圧配電線25を通じて200/100Vの電力が供給される。一方、集合住宅や工場などの大口需要家27に対しては、高圧をそのまま需要家施設へ引き込み、その中にある電気室もしくはキュービクル内に設置された降圧トランスを通じて電力が供給される。   The high voltage of 6600 V of the high-voltage distribution line 22 is reduced to 200/100 V by the transformer 24, and the small consumer 26 such as a detached house is 200/100 V through the low-voltage distribution line 25 connected to the secondary side of the transformer 24. Power is supplied. On the other hand, high-voltage consumers 27 such as apartment houses and factories are supplied with high voltage as they are, and are supplied with electric power through step-down transformers installed in electric rooms or cubicles.

特開平9−23583号公報JP-A-9-23583

高圧配電線は通信媒体として設計されていないので、安定した通信を確保することに対し以下の問題がある。すなわち、変電所内にエレベータやポンプなどのモーターを使用した電気設備がある場合には、その力率改善のため、高圧配電線には位相を補償する進相コンデンサが設けられる場合がある。PLC信号の周波数において進相コンデンサは低インピーダンスに見えるため、変電所近くの高圧配電線に接続された電力線モデムから見て変電所側のインピーダンスの方が低くなり、高圧配電線の下流に流れるPLC信号のレベルが減衰する。そのため、高圧配電線上の相手方の電力線モデムに十分なレベルのPLC信号を届けることができず、通信品質が悪化するという問題がある。   Since the high-voltage distribution line is not designed as a communication medium, there are the following problems for ensuring stable communication. That is, when there is an electrical facility using a motor such as an elevator or a pump in the substation, a phase advance capacitor for compensating the phase may be provided in the high voltage distribution line in order to improve the power factor. Since the phase-advancing capacitor appears to be low impedance at the frequency of the PLC signal, the impedance on the substation side is lower when viewed from the power line modem connected to the high-voltage distribution line near the substation, and the PLC that flows downstream of the high-voltage distribution line The signal level is attenuated. Therefore, there is a problem in that a sufficient level of PLC signal cannot be delivered to the counterpart power line modem on the high-voltage distribution line, and communication quality deteriorates.

PLC信号の減衰をカバーするため、例えばPLC信号を中継するリピータ装置を通信路の途中に設けることも可能であるが、能動機器であるため価格やランニングコストが高くまた無停電で設置する場合には危険が伴うことから、設置工事を行う際には停電させる必要があり、設置コストの増加など、設置面でのハードルが高いという問題もある。   In order to cover the attenuation of the PLC signal, for example, it is possible to provide a repeater device that relays the PLC signal in the middle of the communication path. Since there is a danger, it is necessary to make a power outage when performing installation work, and there are also problems such as increased installation costs and high hurdles in installation.

したがって、本発明の目的は、高圧配電線を介して電力線通信を行う電力線モデムの通信品質を向上させることが可能な電力線通信システムを提供することにある。   Therefore, the objective of this invention is providing the power line communication system which can improve the communication quality of the power line modem which performs power line communication via a high voltage distribution line.

上記課題を解決するため、本発明による電力線通信システムは、変電所内のトランスの2次側から延びる高圧配電線と、前記高圧配電線上の第1の接続点に接続された第1の電力線モデムと、前記変電所から見て前記第1の接続点よりも下流側に位置する前記高圧配電線上の第2の接続点に接続され、前記高圧配電線を介して前記第1の電力線モデムと電力線通信を行う第2の電力線モデムと、前記高圧配電線上であって、前記第1の接続点よりも上流側に設けられた少なくとも一つの磁性コアを含む信号調整器とを備えることを特徴とする。   In order to solve the above problems, a power line communication system according to the present invention includes a high voltage distribution line extending from a secondary side of a transformer in a substation, and a first power line modem connected to a first connection point on the high voltage distribution line. , Connected to a second connection point on the high-voltage distribution line located downstream from the first connection point when viewed from the substation, and the first power line modem and power line communication via the high-voltage distribution line And a signal conditioner including at least one magnetic core provided on an upstream side of the first connection point on the high-voltage distribution line.

本発明によれば、第1の電力線モデムの信号注入点から見て変電所側の高圧配電線のインピーダンスが信号調整器によって高められているので、高圧配電線の下流側へ送り出されるPLC信号の信号レベルの減衰を抑えることができる。したがって、高圧配電線上の一対の電力線モデム間の通信品質を確保することができる。   According to the present invention, since the impedance of the high-voltage distribution line on the substation side is increased by the signal conditioner as viewed from the signal injection point of the first power line modem, the PLC signal sent to the downstream side of the high-voltage distribution line Signal level attenuation can be suppressed. Therefore, the communication quality between a pair of power line modems on the high voltage distribution line can be ensured.

本発明による電力線通信システムは、前記高圧配電線上に設けられた開閉器をさらに備え、前記第2の電力線モデムは、前記開閉器を制御するための制御信号を送受信することが好ましい。この構成によれば、高圧配電線上の開閉器を制御する配電制御システムにおいて、開閉器の制御信号を送受信する一対の電力線モデム間の通信品質を確保することができる。   Preferably, the power line communication system according to the present invention further includes a switch provided on the high-voltage distribution line, and the second power line modem transmits and receives a control signal for controlling the switch. According to this configuration, in the power distribution control system that controls the switch on the high-voltage distribution line, the communication quality between the pair of power line modems that transmit and receive the control signal of the switch can be ensured.

本発明による電力線通信システムは、前記変電所内に設けられ、一端が前記高圧配電線に接続された高圧引込線と、前記高圧引込線に接続された進相コンデンサをさらに備え、前記信号調整器は、前記高圧引込線の接続点よりも下流側に設けられていることが好ましい。高圧配電線に接続された高圧引込線に進相コンデンサが接続されている場合には、第1の電力線モデムの信号注入点から見て変電所側の高圧配電線のインピーダンスが低くなるため、上記のように高圧配電線の下流側へ送り出されるPLC信号の信号レベルが減衰する。これに対し、信号調整器を設けることで変電所側のインピーダンスを高めることができ、高圧配電線上の電力線モデムの通信品質を確保することができる。   The power line communication system according to the present invention further includes a high voltage lead line provided in the substation, one end of which is connected to the high voltage distribution line, and a phase advance capacitor connected to the high voltage lead line, It is preferable that it is provided downstream from the connection point of the high-voltage lead-in wire. When a phase advance capacitor is connected to the high-voltage lead-in wire connected to the high-voltage distribution line, the impedance of the high-voltage distribution line on the substation side is low as viewed from the signal injection point of the first power line modem. Thus, the signal level of the PLC signal sent to the downstream side of the high-voltage distribution line is attenuated. In contrast, by providing a signal conditioner, the impedance on the substation side can be increased, and the communication quality of the power line modem on the high-voltage distribution line can be ensured.

本発明において、前記高圧配電線は、第1乃至第3の配電線を有し、前記信号調整器は、前記第1乃至第3の配電線にそれぞれ設けられた第1乃至第3の磁性コアを含むことが好ましい。この構成によれば、電力線通信の伝送路として第1乃至第3の配電線のいずれを用いたとしても信号調整器の効果を発揮させることができ、電力線ネットワークを構築する際の柔軟性を高めることができる。   In the present invention, the high-voltage distribution line has first to third distribution lines, and the signal conditioner is provided to the first to third magnetic cores provided on the first to third distribution lines, respectively. It is preferable to contain. According to this configuration, the effect of the signal conditioner can be exhibited regardless of which of the first to third distribution lines is used as the transmission line for power line communication, and the flexibility in constructing the power line network is increased. be able to.

本発明によれば、高圧配電線を伝送路とする電力線通信における通信品質を向上させることが可能な電力線通信システムを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the power line communication system which can improve the communication quality in the power line communication which uses a high voltage distribution line as a transmission line can be provided.

図1は、本発明の好ましい実施の形態による電力線通信システムの構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of a power line communication system according to a preferred embodiment of the present invention. 図2は、磁性コア15a,15b,15cの構造の一例を示す略斜視図である。FIG. 2 is a schematic perspective view showing an example of the structure of the magnetic cores 15a, 15b, and 15c. 図3は、信号調整器の作用を説明するための図であって、信号調整器が無い場合を示している。FIG. 3 is a diagram for explaining the operation of the signal conditioner, and shows a case where there is no signal conditioner. 図4は、信号調整器の作用を説明するための図であって、信号調整器がある場合を示している。FIG. 4 is a diagram for explaining the operation of the signal conditioner, and shows a case where the signal conditioner is provided. 図5は、高圧配電線の配電系統を示すブロック図である。FIG. 5 is a block diagram showing a distribution system of the high-voltage distribution line.

以下、添付図面を参照しながら、本発明の好ましい実施の形態について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明の好ましい実施の形態による電力線通信システムの構成を示すブロック図である。   FIG. 1 is a block diagram showing a configuration of a power line communication system according to a preferred embodiment of the present invention.

図1に示すように、この電力線通信システム1は、変電所2内のトランス3Sから延びる高圧配電線4と、高圧配電線4上の適所にそれぞれ設けられた開閉器5A,5Bと、高圧配電線4を介してPLC信号を送受信する電力線モデム6A,6B,6Sとを備えている。   As shown in FIG. 1, the power line communication system 1 includes a high-voltage distribution line 4 extending from a transformer 3S in a substation 2, switches 5A and 5B provided at appropriate positions on the high-voltage distribution line 4, respectively, Power line modems 6 </ b> A, 6 </ b> B, and 6 </ b> S that transmit and receive PLC signals via the electric wires 4 are provided.

高圧配電線4は線間電圧が6600Vの三相3線式の配電線であり、第1〜第3の配電線4a〜4cを有している。戸建住宅などの小口の需要家宅9A,9Bには、6600Vの高圧がトランス3A,3Bによって降圧された200V又は100Vの低圧が低圧配電線8A,8Bを通じて供給される。また図示しないが、集合住宅等の大口の需要家施設には6600Vの高圧が直接供給される。トランス3A、3Bは、例えば高圧配電線4が架線されている電柱上に設置された柱上トランスであり、その一次側端子は、3本の配電線4a,4b,4cのうちのいずれか2本にそれぞれ接続されている。   The high-voltage distribution line 4 is a three-phase three-wire distribution line having a line voltage of 6600 V, and includes first to third distribution lines 4a to 4c. Small consumer homes 9A and 9B such as detached houses are supplied with a low voltage of 200V or 100V obtained by stepping down a high voltage of 6600V by transformers 3A and 3B through low voltage distribution lines 8A and 8B. Although not shown, a high voltage of 6600 V is directly supplied to large-scale customer facilities such as apartment houses. The transformers 3A and 3B are, for example, pole-mounted transformers installed on a power pole on which the high-voltage distribution line 4 is wired, and the primary terminal thereof is any two of the three distribution lines 4a, 4b, and 4c. Each is connected to a book.

電力線モデム6A,6B,6Sはカプラ7を介して高圧配電線4に接続されており、高圧配電線4を介して相互に通信可能である。電力線モデム6S(第1の電力線モデム)は、例えば変電所2の監視センター内に設置されており、その高圧配電線4との接続点(第1の接続点)は、電力線モデム6A,6B(第2の電力線モデム)の高圧配電線4との接続点(第2の接続点)よりも上流側(変電所2側)にある。例えば、変電所2の監視センター内の電力線モデム6Sから送信されたPLC信号は、開閉器5A,5Bの制御するための制御信号として電力線モデム6A,6Bに送られる。電力線通信では10k〜450kHzの周波数帯が使用される。カプラ7の構成は特に限定されず、容量結合方式であってもよく、誘導結合方式(クランプ式カプラ)であってもよい。   The power line modems 6 </ b> A, 6 </ b> B, 6 </ b> S are connected to the high voltage distribution line 4 via the coupler 7, and can communicate with each other via the high voltage distribution line 4. The power line modem 6S (first power line modem) is installed, for example, in the monitoring center of the substation 2, and the connection points (first connection points) with the high voltage distribution lines 4 are the power line modems 6A, 6B ( It is on the upstream side (substation 2 side) of the connection point (second connection point) with the high-voltage distribution line 4 of the second power line modem). For example, a PLC signal transmitted from the power line modem 6S in the monitoring center of the substation 2 is sent to the power line modems 6A and 6B as a control signal for controlling the switches 5A and 5B. In power line communication, a frequency band of 10 k to 450 kHz is used. The configuration of the coupler 7 is not particularly limited, and may be a capacitive coupling method or an inductive coupling method (clamp coupler).

変電所2内にエレベータやポンプなどのモーターを使用した電気設備がある場合、モーターの力率改善を図るため、高圧配電線4から分岐した高圧引込線10には進相コンデンサ11が接続される。このような進相コンデンサ11は、PLC信号の周波数において低インピーダンスに見えるため、電力線通信に悪影響があることは上述の通りである。   When there is an electrical facility using a motor such as an elevator or a pump in the substation 2, a phase advance capacitor 11 is connected to the high-voltage lead-in wire 10 branched from the high-voltage distribution line 4 in order to improve the power factor of the motor. Since the phase advance capacitor 11 looks like a low impedance at the frequency of the PLC signal, it is as described above that power line communication is adversely affected.

本実施形態においては、高圧配電線4上に信号調整器15が設けられている。信号調整器15は、電力線モデム6Sの接続点CPよりも変電所2のトランス3S側に設けられている。信号調整器15は、配電線4a,4b,4cにそれぞれ設置された第1〜第3の磁性コア15a,15b,15cを有している。すなわち、第1の磁性コア15aは配電線4aに設けられており、第2の磁性コア15bは配電線4bに設けられており、第3の磁性コア15cは配電線4cに設けられている。このように、高圧配電線4を構成する3本の配電線4a,4b,4cのすべてに磁性コアを設ける理由は、電力線モデム6A,6B,6Sの一対の信号端子が高圧配電線4を構成する3本の配電線4a〜4cのいずれと接続されていてもPLC信号を拾えるようにするためである。   In the present embodiment, a signal conditioner 15 is provided on the high-voltage distribution line 4. The signal conditioner 15 is provided on the transformer 3S side of the substation 2 with respect to the connection point CP of the power line modem 6S. The signal conditioner 15 includes first to third magnetic cores 15a, 15b, and 15c installed on the distribution lines 4a, 4b, and 4c, respectively. That is, the first magnetic core 15a is provided in the distribution line 4a, the second magnetic core 15b is provided in the distribution line 4b, and the third magnetic core 15c is provided in the distribution line 4c. As described above, the reason why the magnetic cores are provided in all the three distribution lines 4a, 4b, 4c constituting the high-voltage distribution line 4 is that the pair of signal terminals of the power line modems 6A, 6B, 6S constitute the high-voltage distribution line 4. This is because the PLC signal can be picked up even if connected to any of the three distribution lines 4a to 4c.

図2は、磁性コア15a,15b,15cの構造の一例を示す略斜視図である。   FIG. 2 is a schematic perspective view showing an example of the structure of the magnetic cores 15a, 15b, and 15c.

図2に示すように、磁性コア15a,15b,15cは、いわゆる二分割型のトロイダルコアであり、円筒形状(円環形状)の中心軸(Y軸)を含む平面で半割りしてなる第1コア部16aと第2コア部16bとで構成され、Y軸方向に電力線(ケーブル)を挿通可能な貫通孔16cを有している。磁性コアの材料は特に限定されないが、フェライト等の磁性体からなることが好ましい。第1コア部16aと第2コア部16bは不図示の樹脂ケース等に収容されて円筒形状に固定される。そして各磁性コア15a,15b,15cの中空部には電力線のみが挿通される。このように引込線10a〜10cに対する磁性コアの設置は非常にシンプルである。   As shown in FIG. 2, the magnetic cores 15a, 15b, and 15c are so-called two-divided toroidal cores, and are divided in half by a plane including a cylindrical (annular) central axis (Y-axis). The first core portion 16a and the second core portion 16b include a through hole 16c through which a power line (cable) can be inserted in the Y-axis direction. The material of the magnetic core is not particularly limited, but is preferably made of a magnetic material such as ferrite. The 1st core part 16a and the 2nd core part 16b are accommodated in the resin case etc. which are not illustrated, and are fixed to a cylindrical shape. And only a power line is inserted in the hollow part of each magnetic core 15a, 15b, 15c. Thus, the installation of the magnetic core for the lead-in wires 10a to 10c is very simple.

磁性コア15a,15b,15cは、電力線モデム6A,6B,6Sの一対の信号端子を高圧配電線4に接続するためのカプラ7(クランプ式カプラ)と同じものでもよい。すなわちカプラ7と同一製品を磁性コア15a,15b,15cとして用いることが可能である。これによれば、部品の統一化によりシステム全体のコストを下げることもできる。   The magnetic cores 15a, 15b, and 15c may be the same as the coupler 7 (clamping coupler) for connecting the pair of signal terminals of the power line modems 6A, 6B, and 6S to the high-voltage distribution line 4. That is, the same product as the coupler 7 can be used as the magnetic cores 15a, 15b, and 15c. According to this, the cost of the whole system can also be reduced by unifying parts.

図3及び図4は、信号調整器15の作用を説明するための図であって、図3は信号調整器15が無い場合、図4は信号調整器15がある場合をそれぞれ示している。なお、図3及び図4では電力線モデム6Bのみを示し、電力線モデム6Aの図示は省略している。   3 and 4 are diagrams for explaining the operation of the signal conditioner 15. FIG. 3 shows a case where the signal conditioner 15 is not provided, and FIG. 4 shows a case where the signal conditioner 15 is provided. 3 and 4 show only the power line modem 6B, and the illustration of the power line modem 6A is omitted.

図3に示すように、高圧引込線10に進相コンデンサ11が接続されている場合、PLC信号の周波数において進相コンデンサ11は低インピーダンスに見えるため、電力線モデム6Sの接続点CPから見て変電所2側の高圧配電線4のインピーダンスの方が低くなり、PLC信号の大部分は変電所2側へ流れ込んでしまい、高圧配電線4の下流に流れるPLC信号のレベルが減衰する。そのため、例えば電力線モデム6Sから電力線モデム6Bに高圧配電線4を通じてPLC信号を送信する場合、電力線モデム6Sから電力線モデム6Bに十分なレベルのPLC信号を届けることができず、通信品質が悪化する。   As shown in FIG. 3, when the phase advance capacitor 11 is connected to the high voltage lead-in wire 10, the phase advance capacitor 11 appears to have a low impedance at the frequency of the PLC signal, so that the substation is viewed from the connection point CP of the power line modem 6S. The impedance of the high-voltage distribution line 4 on the second side becomes lower, and most of the PLC signal flows into the substation 2 side, and the level of the PLC signal flowing downstream of the high-voltage distribution line 4 is attenuated. Therefore, for example, when a PLC signal is transmitted from the power line modem 6S to the power line modem 6B through the high-voltage distribution line 4, a sufficient level of PLC signal cannot be delivered from the power line modem 6S to the power line modem 6B, and communication quality deteriorates.

一方、図4に示すように、高圧配電線4上に磁性コア15a〜15cからなる信号調整器15が図示の位置に設けられている場合、磁性コアはPLC信号の周波数に対するインピーダンスが高いため、電力線モデム6Sの接続点CPから見て変電所2側の高圧配電線4のインピーダンスが高くなり、高圧配電線4の上流側に流れるPLC信号が抑えられ、逆に下流側に流れるPLC信号が強くなる。これにより、電力線モデム6Sから電力線モデム6BにPLC信号が届くようになるので、電力線モデム6Sと電力線モデム6Bとの間の通信品質を確保することができる。   On the other hand, as shown in FIG. 4, when the signal conditioner 15 including the magnetic cores 15a to 15c is provided on the high voltage distribution line 4 at the illustrated position, the magnetic core has high impedance with respect to the frequency of the PLC signal. When viewed from the connection point CP of the power line modem 6S, the impedance of the high voltage distribution line 4 on the substation 2 side is increased, the PLC signal flowing upstream of the high voltage distribution line 4 is suppressed, and conversely the PLC signal flowing downstream is strong. Become. Thereby, since the PLC signal reaches the power line modem 6B from the power line modem 6S, the communication quality between the power line modem 6S and the power line modem 6B can be ensured.

進相コンデンサ11による低インピーダンスの影響は、電力線モデム6Sの接続点が変電所2に近づくほど大きくなるため、信号調整器15を設けない図3の構成では、低インピーダンスの影響を抑えるために電力線モデム6Sの接続点を変電所2から十分遠くに設置する必要があり、変電所2から遠く離れた電力線モデム6Sを制御するためも専用線を設ける必要も生じる。しかし、電力線モデム6Sの接続点CPよりも変電所2側の高圧配電線4上に信号調整器15を設ける場合には、変電所2から電力線モデム6Sの接続点CPまでの距離を近づけることが可能であり、電力線モデム6Sを制御するための専用線を不要とし、電力線モデム6Sが設置される監視センターを変電所2内に設けることも可能となる。   Since the influence of the low impedance due to the phase advance capacitor 11 increases as the connection point of the power line modem 6S approaches the substation 2, in the configuration of FIG. 3 in which the signal conditioner 15 is not provided, the power line is suppressed in order to suppress the influence of the low impedance. The connection point of the modem 6S needs to be installed sufficiently far from the substation 2, and it is necessary to provide a dedicated line for controlling the power line modem 6S far from the substation 2. However, when the signal conditioner 15 is provided on the high-voltage distribution line 4 on the substation 2 side from the connection point CP of the power line modem 6S, the distance from the substation 2 to the connection point CP of the power line modem 6S may be reduced. This is possible, and a dedicated line for controlling the power line modem 6S is unnecessary, and a monitoring center in which the power line modem 6S is installed can be provided in the substation 2.

上記のように、電力線上の信号を減衰させる装置としてブロッキングフィルタも知られている。しかし、ブロッキングフィルタは需要家内に設置した電力線モデムの信号が他系統や隣家に伝わらないように十分に減衰させる(実質的に遮断する)ための装置であり、互いに分離したい2つの電力線ネットワークの境界に設置されるものである。これに対し、本実施形態による信号調整器15は、同一ネットワーク内に設置されるものであり、信号を減衰させることよりむしろ、信号注入点から見て信号調整器15の設置位置とは反対方向に広がるネットワークのできるだけ遠方まで信号が伝わりやすくすることを目的としており、非常に簡易な構造で設置も容易である。このように、信号調整器15は、ブロッキングフィルタとはその使用目的、設置場所、作用効果が異なる。   As described above, a blocking filter is also known as a device for attenuating a signal on a power line. However, the blocking filter is a device for sufficiently attenuating (substantially blocking) the signal of the power line modem installed in the consumer so that it is not transmitted to other systems or neighbors. Is to be installed. On the other hand, the signal conditioner 15 according to the present embodiment is installed in the same network, and rather than attenuating the signal, the direction opposite to the installation position of the signal conditioner 15 as viewed from the signal injection point. The purpose is to make it easy for signals to travel as far as possible over a network that spreads over the network, and the installation is easy with a very simple structure. Thus, the signal conditioner 15 differs from the blocking filter in its intended purpose, installation location, and operational effect.

以上説明したように、本実施形態による電力線通信システム1は、電力線モデム6Sの信号注入点よりも変電所2側の高圧配電線4のインピーダンスが磁性コア15a,15b,15cを含む信号調整器15によって高められているので、高圧配電線4上を流れるPLC信号の減衰を抑えることができる。したがって、高圧配電線4上の一対の電力線モデム間の通信品質を確保することができる。   As described above, in the power line communication system 1 according to the present embodiment, the signal conditioner 15 in which the impedance of the high-voltage distribution line 4 on the substation 2 side from the signal injection point of the power line modem 6S includes the magnetic cores 15a, 15b, 15c. Therefore, the attenuation of the PLC signal flowing on the high voltage distribution line 4 can be suppressed. Therefore, the communication quality between a pair of power line modems on the high voltage distribution line 4 can be ensured.

また、信号調整器15の構成はシンプル(受動素子)であることから、信頼性も高く、無停電で設置工事できることから、従来のリピータ装置やブロッキングフィルタと比較して設置が容易であり、設置の承認を得やすく、導入コストも低く抑えることが可能である。   In addition, since the signal conditioner 15 is simple (passive element), it is highly reliable and can be installed without a power outage. Therefore, it is easier to install than conventional repeater devices and blocking filters. It is easy to obtain approval and the introduction cost can be kept low.

以上、本発明の好ましい実施形態について説明したが、本発明は、上記の実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。   The preferred embodiments of the present invention have been described above, but the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention. Needless to say, it is included in the range.

例えば、上記実施形態においては、高圧配電線4を構成する配電線4a,4b,4cのすべてに磁性コアを設けたが、本発明はそのような構成に限定されず、例えば図1において実際に信号伝送路として使用する配電線4a,4bに磁性コア15a,15bを設け、配電線4c上の磁性コア15cを省略してもよい。あるいは、磁性コア15a,15bのいずれか一方であってもよく、さらには磁性コア15cのみであってもよい。すなわち、少なくとも一つの配電線に磁性コアが設けられていればよい。   For example, in the above embodiment, the magnetic core is provided in all of the distribution lines 4a, 4b, 4c constituting the high-voltage distribution line 4. However, the present invention is not limited to such a configuration. For example, in FIG. The magnetic cores 15a and 15b may be provided in the distribution lines 4a and 4b used as the signal transmission path, and the magnetic core 15c on the distribution line 4c may be omitted. Or any one of magnetic core 15a, 15b may be sufficient, and also only magnetic core 15c may be sufficient. That is, it is only necessary that at least one distribution line is provided with a magnetic core.

また、上記実施形態においては、高圧配電線4のインピーダンスを低下させる要素が進相コンデンサ11である場合を例に挙げたが、本発明はこれに限定されず、様々な要素を対象とすることができる。   Moreover, in the said embodiment, although the case where the element which reduces the impedance of the high voltage distribution line 4 was the phase-advancing capacitor 11 was mentioned as an example, this invention is not limited to this and targets various elements. Can do.

1 電力線通信システム
2 変電所
3A,3B,3S トランス
4 高圧配電線
4a 第1の配電線
4b 第2の配電線
4c 第3の配電線
5A,5B 開閉器
6A 電力線モデム
6B 電力線モデム
6S 電力線モデム
7 カプラ
8A,8B 低圧配電線
9A,9B 需要家宅
10 高圧引込線
10a〜10c 引込線
11 進相コンデンサ
15 信号調整器
15a,15b,15c 磁性コア
16a 第1コア部
16b 第2コア部
16c 貫通孔
21 変電所
22 高圧配電線
23 開閉器
24 トランス
25 低圧配電線
26 小口需要家
27 大口需要家
CP 接続点
DESCRIPTION OF SYMBOLS 1 Power line communication system 2 Substation 3A, 3B, 3S Transformer 4 High voltage distribution line 4a 1st distribution line 4b 2nd distribution line 4c 3rd distribution line 5A, 5B Switch 6A Power line modem 6B Power line modem 6S Power line modem 7 Coupler 8A, 8B Low voltage distribution line 9A, 9B Customer's house 10 High voltage service line 10a-10c Service line 11 Phase advance capacitor 15 Signal conditioner 15a, 15b, 15c Magnetic core 16a First core part 16b Second core part 16c Through hole 21 Substation 22 High voltage distribution line 23 Switch 24 Transformer 25 Low voltage distribution line 26 Small customer 27 Large customer CP Connection point

Claims (4)

変電所内のトランスの2次側から延びる高圧配電線と、
前記高圧配電線上の第1の接続点に接続された第1の電力線モデムと、
前記変電所から見て前記第1の接続点よりも下流側に位置する前記高圧配電線上の第2の接続点に接続され、前記高圧配電線を介して前記第1の電力線モデムと電力線通信を行う第2の電力線モデムと、
前記高圧配電線上であって、前記第1の接続点よりも上流側に設けられた少なくとも一つの磁性コアを含む信号調整器とを備えることを特徴とする電力線通信システム。
A high-voltage distribution line extending from the secondary side of the transformer in the substation;
A first power line modem connected to a first connection point on the high voltage distribution line;
Connected to a second connection point on the high-voltage distribution line located downstream from the first connection point when viewed from the substation, and performs power line communication with the first power line modem via the high-voltage distribution line. A second power line modem to perform;
A power line communication system comprising: a signal conditioner including at least one magnetic core provided on the high-voltage distribution line and upstream of the first connection point.
前記高圧配電線上に設けられた開閉器をさらに備え、
前記第2の電力線モデムは、前記開閉器を制御するための制御信号を送受信する、請求項1に記載の電力線通信システム。
A switch provided on the high-voltage distribution line;
The power line communication system according to claim 1, wherein the second power line modem transmits and receives a control signal for controlling the switch.
前記変電所内に設けられ、一端が前記高圧配電線に接続された高圧引込線と、前記高圧引込線に接続された進相コンデンサをさらに備え、
前記信号調整器は、前記高圧引込線の接続点よりも下流側に設けられている、請求項1又は2に記載の電力線通信システム。
A high-voltage lead wire provided in the substation, one end of which is connected to the high-voltage distribution line, and a phase advance capacitor connected to the high-voltage lead wire;
The power signal communication system according to claim 1, wherein the signal conditioner is provided on a downstream side of a connection point of the high-voltage lead-in line.
前記高圧配電線は、第1乃至第3の配電線を有し、前記信号調整器は、前記第1乃至第3の配電線にそれぞれ設けられた第1乃至第3の磁性コアを含む、請求項1乃至3のいずれか一項に記載の電力線通信システム。   The high-voltage distribution line includes first to third distribution lines, and the signal conditioner includes first to third magnetic cores provided on the first to third distribution lines, respectively. Item 4. The power line communication system according to any one of Items 1 to 3.
JP2015102158A 2015-05-19 2015-05-19 Power line communication system Pending JP2016219994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015102158A JP2016219994A (en) 2015-05-19 2015-05-19 Power line communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015102158A JP2016219994A (en) 2015-05-19 2015-05-19 Power line communication system

Publications (1)

Publication Number Publication Date
JP2016219994A true JP2016219994A (en) 2016-12-22

Family

ID=57581813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015102158A Pending JP2016219994A (en) 2015-05-19 2015-05-19 Power line communication system

Country Status (1)

Country Link
JP (1) JP2016219994A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03162019A (en) * 1989-11-20 1991-07-12 Nissin Electric Co Ltd Signal injection device for distribution line carrier
JPH04207721A (en) * 1990-11-30 1992-07-29 Mitsubishi Electric Corp Power line carrier communication system
JPH09238097A (en) * 1996-02-29 1997-09-09 Takaoka Electric Mfg Co Ltd Amplifier for distribution line carrier signal and distribution line carrier system using the amplifier
JP2003188780A (en) * 2001-12-20 2003-07-04 Sumitomo Electric Ind Ltd Power line carrier communication system
JP2010531599A (en) * 2007-06-26 2010-09-24 イアンディス Distribution power line communication system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03162019A (en) * 1989-11-20 1991-07-12 Nissin Electric Co Ltd Signal injection device for distribution line carrier
JPH04207721A (en) * 1990-11-30 1992-07-29 Mitsubishi Electric Corp Power line carrier communication system
JPH09238097A (en) * 1996-02-29 1997-09-09 Takaoka Electric Mfg Co Ltd Amplifier for distribution line carrier signal and distribution line carrier system using the amplifier
JP2003188780A (en) * 2001-12-20 2003-07-04 Sumitomo Electric Ind Ltd Power line carrier communication system
JP2010531599A (en) * 2007-06-26 2010-09-24 イアンディス Distribution power line communication system

Similar Documents

Publication Publication Date Title
KR101532466B1 (en) Device for determining a common-mode signal in a power line communication network
KR20100042265A (en) Distributor power line communicaion system
JPS5829013B2 (en) Signal coupling circuit device for distribution line carrier communication system
JP2008245202A (en) Bridge circuit for power line carrier communication, and network system therefor
JP5643283B2 (en) Power line communication cutoff filter
JP4757123B2 (en) Transmission equipment for power line carrier communication, outlet plug, outlet plug box, table tap, coupling device, communication device, and communication system
KR101288148B1 (en) Signal coupling appratus for power line communication
US7675386B2 (en) Inductive coupling circuit and telecommunication method by sheathed cables of an electrical current distribution network
US8097973B2 (en) Power mains transformer data bridge
JP6405516B2 (en) Power line communication system
JP6539837B2 (en) Remote meter reading system
JP6060411B2 (en) Power line communication system
JP2016219994A (en) Power line communication system
JP6405515B2 (en) Remote meter reading system
JP2008187806A (en) Distributed power supply transfer interrupting system and its communicating method
TWI740303B (en) Coupling device
JP6442689B2 (en) Remote meter reading system
JP2016019241A (en) Remote meter reading system
JP6600781B2 (en) Remote meter reading system
JP4217751B2 (en) Signal leakage prevention method and signal leakage prevention apparatus in power line communication system
JP2017220729A (en) Coupler for power line carrier communication
JP6446825B2 (en) Remote meter reading system
JP2016220141A (en) Remote meter reading system
KR101166368B1 (en) Powerline communication system, communication module, and coupling device for the same system
JP2018056850A (en) Communication system, termination device, and communication subsystem

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190806