JP2016218348A - Optical fiber lateral input and output device - Google Patents

Optical fiber lateral input and output device Download PDF

Info

Publication number
JP2016218348A
JP2016218348A JP2015105526A JP2015105526A JP2016218348A JP 2016218348 A JP2016218348 A JP 2016218348A JP 2015105526 A JP2015105526 A JP 2015105526A JP 2015105526 A JP2015105526 A JP 2015105526A JP 2016218348 A JP2016218348 A JP 2016218348A
Authority
JP
Japan
Prior art keywords
optical fiber
optical
refractive index
input
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015105526A
Other languages
Japanese (ja)
Other versions
JP6386971B2 (en
Inventor
卓威 植松
Takui Uematsu
卓威 植松
栄伸 廣田
Hidenobu Hirota
栄伸 廣田
孝規 清倉
Takanori Seiso
孝規 清倉
友裕 川野
Tomohiro Kawano
友裕 川野
哲也 真鍋
Tetsuya Manabe
哲也 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2015105526A priority Critical patent/JP6386971B2/en
Publication of JP2016218348A publication Critical patent/JP2016218348A/en
Application granted granted Critical
Publication of JP6386971B2 publication Critical patent/JP6386971B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical fiber lateral input and output device which suppresses an optical loss in an optical fiber lateral input and output technique.SOLUTION: An optical fiber lateral input and output device comprises a fixture and an input and output optical system for inputting and outputting an optical signal. The fixture has: an optical fiber 12 coated with optical fiber coating; a curved surface section for holding a bending portion at which the optical fiber 12 is bent; a flat surface section for linearly holding the optical fiber extending to both ends of the bending portion; and an abutment part formed at a predetermined position, for abutting and holding a probe fiber 13 of the input and output optical system. The probe fiber 13 is placed at the abutment part and includes an optical transmission part, which has a refraction index different from that of the optical fiber coating and is interposed between the fixture and the input and output optical system to make the optical signal transmit through.SELECTED DRAWING: Figure 1

Description

本発明は、湾曲させた光ファイバの側方から光を入出力する側方光入出力技術に関するものであり、具体的には、光ファイバ心線を湾曲させるための曲げ冶具及び光ファイバ側方入出力装置に関する。   The present invention relates to a lateral light input / output technology for inputting / outputting light from the side of a curved optical fiber, and more specifically, a bending jig for bending an optical fiber core and a side of the optical fiber. It relates to input / output devices.

光アクセス網における光線路保守において、曲げた光ファイバの側方から光を入出力する非特許文献1に記載される光ファイバ側方入出力技術が提案されている。関連技術に係る前述の光を入出力する光ファイバ側方入出力器は、曲げ形状を有する光学透明部材と光ファイバの側方から光を入出力するためのプローブファイバから構成されている。   In optical line maintenance in an optical access network, an optical fiber side input / output technique described in Non-Patent Document 1 that inputs and outputs light from the side of a bent optical fiber has been proposed. The above-mentioned optical fiber side input / output device for inputting / outputting light according to the related art includes an optical transparent member having a bent shape and a probe fiber for inputting / outputting light from the side of the optical fiber.

廣田栄伸 他,“光ファイバ側方入力技術を用いた試験光入射機構の設計検討”,OFT2011−84,pp.57−60,2012Enobu Hamada et al., “Design examination of test light incidence mechanism using optical fiber lateral input technology”, OFT 2011-84, pp. 57-60, 2012

湾曲させた光ファイバの側方から光を入出力する側方光入出力においては、ある曲げ損失条件下において、入受光効率を高めることが重要である。たとえば、関連技術に係る光通信線路切替においては、現用通信回線を遮断し迂回線路に切り替える必要があるため、曲げ損失及び入受光効率を高める必要がある。   In the side light input / output in which light is input / output from the side of the bent optical fiber, it is important to increase the light receiving / receiving efficiency under a certain bending loss condition. For example, in the optical communication line switching according to the related art, it is necessary to cut off the working communication line and switch to the detour line, so it is necessary to increase the bending loss and the light receiving / receiving efficiency.

一方、現用通信回線に影響を与えないことが求められる試験光入射、通信光モニタなどの応用先においては、曲げ損失を現用通信回線に影響を与えない程度に抑えつつ、入受光効率を高める必要がある。   On the other hand, for applications such as test light incidence and communication light monitors that are required to have no effect on the working communication line, it is necessary to increase the light receiving and receiving efficiency while suppressing the bending loss to the extent that the working communication line is not affected. There is.

また、光ファイバ側方入出力装置においては、漏洩光がプローブファイバに再結合する際の効率、すなわち光結合効率が重要である。光結合効率が小さいと光信号がロスしてS/N比の劣化などの多くの不具合がもたらされる。   Further, in the optical fiber side input / output device, the efficiency when the leaked light recombines with the probe fiber, that is, the optical coupling efficiency is important. If the optical coupling efficiency is low, the optical signal is lost, resulting in many problems such as deterioration of the S / N ratio.

関連技術では、プローブファイバの開口角狭さに起因する光信号(漏洩光)の捕捉困難性や、ウィスパリングギャラリーモード現象(光ファイバコアから漏れ出た光の一部が光ファイバ心線の被覆を貫通せずに被覆内に閉じ籠ってしまう現象)などから、光結合効率が頭打ちになってしまい、特に無瞬断切替器などへの適用において所期の効果を得られないという課題もある。   In related technologies, it is difficult to capture optical signals (leakage light) due to the narrow aperture angle of the probe fiber, whispering gallery mode phenomenon (part of the light leaking from the optical fiber core is covered with the optical fiber core wire) The optical coupling efficiency has reached its peak due to the phenomenon that it closes in the coating without penetrating it, and there is also a problem that the desired effect cannot be obtained especially in application to an uninterruptible switching device. .

前記課題を解決するために、本発明は、光ファイバ心線被覆に隣接する曲げ付与部材表面の屈折率を光ファイバ心線被覆の屈折率より高くすることで、光ファイバ側方入出力技術の光損失を抑制する光ファイバ側方入出力装置を提供することを目的とする。   In order to solve the above-mentioned problems, the present invention provides an optical fiber lateral input / output technology by making the refractive index of the surface of the bending member adjacent to the optical fiber core coating higher than the refractive index of the optical fiber core coating. An object of the present invention is to provide an optical fiber side input / output device that suppresses optical loss.

上記目的を達成するため、本発明では、光ファイバ心線を湾曲させるための対をなす凹型及び凸型部材からなる曲げ冶具の屈折率を制御することで、湾曲させた光ファイバ心線の側方からの漏洩光を制御し、曲げ損失及び入受光効率を制御する。   In order to achieve the above object, in the present invention, the side of the curved optical fiber core is controlled by controlling the refractive index of a bending jig made of a concave and convex member that forms a pair for bending the optical fiber. The leakage light from the direction is controlled, and the bending loss and light receiving / receiving efficiency are controlled.

具体的には、本発明に係る光ファイバ側方入出力装置は、
光信号を入出力する固定治具及び入出力光学系を有する光ファイバ側方入出力装置であって、
前記固定治具は、
光ファイバ被覆で被覆した光ファイバと、
前記光ファイバを曲げる曲げ部分を保持する曲面部と、
前記曲げ部分の両端に伸びる光ファイバを直線状に保持する平面部と、
前記入出力光学系を突き当てて保持し、予め定められた位置に形成された突き当て部と、を備え、
前記入出力光学系が前記突き当て部に配設され、前記固定治具及び前記入出力光学系の間に光信号を透過するように介在し、前記光ファイバ被覆と異なる屈折率を有する光透過部を、備える。
Specifically, the optical fiber side input / output device according to the present invention is:
An optical fiber side input / output device having a fixing jig for inputting / outputting an optical signal and an input / output optical system,
The fixing jig is
An optical fiber coated with an optical fiber coating;
A curved surface portion for holding a bent portion for bending the optical fiber;
A plane portion that holds the optical fiber extending at both ends of the bent portion in a straight line; and
Abutting part formed in a predetermined position, abutting and holding the input / output optical system,
The input / output optical system is disposed in the abutting portion, and is interposed between the fixing jig and the input / output optical system so as to transmit an optical signal, and has a refractive index different from that of the optical fiber coating. Part.

本発明に係る光ファイバ側方入出力装置では、
前記光透過部、前記曲面部及び前記平面部のうち少なくとも一部が前記光ファイバ被覆と同程度の屈折率又は前記光ファイバ被覆より高い屈折率を有してもよい。
In the optical fiber side input / output device according to the present invention,
At least a part of the light transmission part, the curved surface part, and the flat part may have a refractive index comparable to the optical fiber coating or a higher refractive index than the optical fiber coating.

本発明に係る光ファイバ側方入出力装置では、
前記曲面部及び前記平面部のうち少なくとも一部が前記光ファイバ被覆より低い屈折率を有してもよい。
In the optical fiber side input / output device according to the present invention,
At least a part of the curved surface portion and the flat surface portion may have a refractive index lower than that of the optical fiber coating.

本発明に係る光ファイバ側方入出力装置では、
前記平面部のうち少なくとも一部が前記光ファイバ被覆と同程度の屈折率又は前記光ファイバ被覆より高い屈折率を有し、前記曲面部及び前記透明部材のうち少なくとも一部が前記光ファイバの被覆より低い屈折率を有してもよい。
In the optical fiber side input / output device according to the present invention,
At least a portion of the flat portion has a refractive index comparable to that of the optical fiber coating or a higher refractive index than the optical fiber coating, and at least a portion of the curved portion and the transparent member is a coating of the optical fiber. It may have a lower refractive index.

なお、上記各発明は、可能な限り組み合わせることができる。   The above inventions can be combined as much as possible.

本発明によれば、光ファイバ心線被覆に隣接する曲げ付与部材表面の屈折率を光ファイバ心線被覆の屈折率より高くすることで、光ファイバ側方入出力技術の光損失を抑制する光ファイバ側方入出力装置を提供することができる。   According to the present invention, the refractive index of the surface of the bend imparting member adjacent to the optical fiber core coating is made higher than the refractive index of the optical fiber core coating, thereby suppressing the optical loss of the optical fiber side input / output technology. A fiber side input / output device can be provided.

実施形態1に係る光ファイバ側方入出力装置の構成図の一例を示す。An example of the block diagram of the optical fiber side input / output apparatus which concerns on Embodiment 1 is shown. 実施形態1に係る光ファイバ側方入出力装置における曲げ冶具の作製例を示す。An example of manufacturing a bending jig in the optical fiber side input / output device according to Embodiment 1 is shown. 実施形態1に係る光ファイバ側方入出力装置における曲げ冶具の構成図の一例を示す。An example of the block diagram of the bending jig in the optical fiber side input / output device which concerns on Embodiment 1 is shown. 実施形態2に係る曲げ冶具における被測定ファイバに光を入力し光線を追跡した結果を示す。The result of having input light into the fiber to be measured in the bending jig according to Embodiment 2 and tracing the light beam is shown. 実施形態3に係る光ファイバ側方入出力装置における曲げ冶具の平面部に低屈折率壁を設けた場合の一例を示す。An example at the time of providing a low-refractive-index wall in the plane part of the bending jig in the optical fiber side input / output device which concerns on Embodiment 3 is shown. 実施形態3に係る光ファイバ側方入出力装置における曲げ冶具の平面部に低屈折率壁を設けない場合の一例を示す。An example in case the low refractive index wall is not provided in the plane part of the bending jig in the optical fiber side input / output device which concerns on Embodiment 3 is shown. 実施形態4に係る光ファイバ側方入出力装置における曲げ冶具の曲面部に屈折率制御領域を有する場合の一例を示す。An example in case the refractive index control area | region is provided in the curved surface part of the bending jig in the optical fiber side input / output device which concerns on Embodiment 4 is shown. 実施形態4に係る光ファイバ側方入出力装置における曲げ冶具の光線を追跡した結果の拡大図の一例を示す。An example of the enlarged view of the result of having traced the light beam of the bending jig in the optical fiber side input / output device which concerns on Embodiment 4 is shown. 本実施形態に係る屈折率制御領域の屈折率を変えた場合の漏洩光のビーム幅を示す。The beam width of leaked light when the refractive index of the refractive index control region according to the present embodiment is changed is shown.

以下、本発明の実施形態について、図面を参照しながら詳細に説明する。なお、本発明は、以下に示す実施形態に限定されるものではない。これらの実施の例は例示に過ぎず、本発明は当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited to embodiment shown below. These embodiments are merely examples, and the present invention can be implemented in various modifications and improvements based on the knowledge of those skilled in the art. In the present specification and drawings, the same reference numerals denote the same components.

(実施形態1)
本実施形態に係る光ファイバ側方入出力装置では、固定治具及び入出力光学系を備える。固定治具として機能する曲げ冶具は、光ファイバと、曲面部と、平面部と、突き当て部と、を備え、固定治具及び入出力光学系間として機能するプローブファイバには光透過部が介在している。光ファイバ側方入出力装置が備える曲げ冶具の屈折率を光ファイバ被覆より高くすることで、曲げ損失及び入出力効率が高くなることを示す。
(Embodiment 1)
The optical fiber side input / output device according to this embodiment includes a fixing jig and an input / output optical system. The bending jig that functions as a fixing jig includes an optical fiber, a curved surface portion, a flat surface portion, and an abutting portion, and the probe fiber that functions between the fixing jig and the input / output optical system has a light transmitting portion. Intervene. It shows that bending loss and input / output efficiency are increased by making the refractive index of the bending jig provided in the optical fiber side input / output device higher than that of the optical fiber coating.

図1は、光ファイバ側方入出力装置で用いる曲げ冶具11における屈折率と、光ファイバ心線12からの漏洩光の量とを制御し、曲げ損失及び入受光効率を制御するための曲げ冶具11を示す構成図である。ここで、光ファイバ側方入出力装置は、光入出力光学系として機能するプローブファイバ13をさらに備える。プローブファイバ13は、当該プローブファイバ13を突き当てて保持するように、曲げ冶具11における光ファイバと当該プローブファイバ13との光接続可能な位置に形成された突き当て部に配設される。   FIG. 1 shows a bending jig for controlling the refractive index in the bending jig 11 used in the optical fiber side input / output device and the amount of leaked light from the optical fiber core wire 12 to control bending loss and light receiving / receiving efficiency. FIG. Here, the optical fiber side input / output device further includes a probe fiber 13 that functions as an optical input / output optical system. The probe fiber 13 is disposed at an abutting portion formed at a position where the optical fiber and the probe fiber 13 in the bending jig 11 can be optically connected so as to abut and hold the probe fiber 13.

図2に示すように、光ファイバを内包する光ファイバ心線12に曲げ半径2mm、開き角度160度の曲げを形成するために曲げ冶具11を作製した。光透過部として機能する透明部材の材料は、ここでは例として光学プラスチックとして一般的に用いられており加工も容易なアクリル及びポリカーボネートを用いている。   As shown in FIG. 2, a bending jig 11 was produced in order to form a bend with a bending radius of 2 mm and an opening angle of 160 degrees in the optical fiber core 12 containing the optical fiber. As the material of the transparent member functioning as the light transmitting portion, acrylic and polycarbonate, which are generally used as an optical plastic as an example and are easy to process, are used here.

ここで用いたアクリル及びポリカーボネートの光通信帯(1.31〜1.55)における屈折率はそれぞれおよそ1.47および1.57であり、光ファイバ被覆の屈折率はおよそ1.5である。光ファイバの側方から光信号を前記光ファイバに入出力するため入出力光学系には、GRINレンズを先端に接続したGIファイバプローブを用いており、GRINレンズのビームウエスト径はおよそ230μmである。   The refractive indexes of the acrylic and polycarbonate used in the optical communication band (1.31 to 1.55) are approximately 1.47 and 1.57, respectively, and the refractive index of the optical fiber coating is approximately 1.5. In order to input / output optical signals from / to the side of the optical fiber, the input / output optical system uses a GI fiber probe having a GRIN lens connected to the tip, and the GRIN lens has a beam waist diameter of about 230 μm. .

表1の上段及び下段に、現在一般的に使用されている、メーカの異なる2種類の単一モードファイバ(R30)に対する測定結果をそれぞれ示す。表1中の受光効率は、被測定光ファイバに入力された光パワーとファイバプローブ後段から出力された光パワーの比を示している。表1より、どちらのファイバについてもポリカーボネートで作製した冶具のほうが曲げ損失及び受光効率が高くなっていることがわかる。

Figure 2016218348
The upper and lower parts of Table 1 show the measurement results for two types of single-mode fibers (R30), which are commonly used at present, from different manufacturers. The light receiving efficiency in Table 1 indicates the ratio between the optical power input to the optical fiber to be measured and the optical power output from the latter stage of the fiber probe. From Table 1, it can be seen that a jig made of polycarbonate has higher bending loss and light receiving efficiency for both fibers.
Figure 2016218348

(実施形態2)
本実施形態では、曲げ冶具11の屈折率を光ファイバ被覆の屈折率より低くすると曲げ損失を低減可能であることを示す。図3に示すように、光ファイバに曲げ半径2mm、開き角度160度の曲げを形成するために曲げ冶具を想定し、ここでは一例として透明部材の材料をフッ素樹脂(屈折率1.33)とする。
(Embodiment 2)
In this embodiment, it is shown that bending loss can be reduced by making the refractive index of the bending jig 11 lower than the refractive index of the optical fiber coating. As shown in FIG. 3, a bending jig is assumed to form a bend with a bending radius of 2 mm and an opening angle of 160 degrees in an optical fiber. Here, as an example, the material of the transparent member is fluororesin (refractive index 1.33). To do.

図4に、被測定ファイバに光を入力し光線を追跡した結果を示す。図4より光信号が光ファイバ被覆内に閉じこもっていることがわかる。これにより、曲げ損失を低減することができる。なお、透明部材の屈折率は1.37以下とすることで上記と同様に光ファイバ被覆内に光信号を閉じ込めることができる。   FIG. 4 shows the result of tracing light by inputting light into the fiber to be measured. FIG. 4 shows that the optical signal is confined within the optical fiber coating. Thereby, bending loss can be reduced. Note that, by setting the refractive index of the transparent member to 1.37 or less, an optical signal can be confined in the optical fiber coating as described above.

(実施形態3)
本実施形態では、曲げ損失を低減しつつ入出力効率の向上が可能であることを示す。光ファイバに曲げ半径2mm、開き角度160度の曲げを形成するために曲げ冶具11を想定し、ここでは一例として透明部材の材料をポリカーボネート(屈折率1.57)とする。
(Embodiment 3)
In the present embodiment, it is shown that the input / output efficiency can be improved while reducing the bending loss. In order to form a bend with a bend radius of 2 mm and an opening angle of 160 degrees in the optical fiber, a bending jig 11 is assumed. Here, as an example, the material of the transparent member is polycarbonate (refractive index 1.57).

また、実施形態2で示したように光信号を光ファイバ被覆内に閉じ込めるために、図5に示すように平面部に低屈折率壁15(たとえばフッ素樹脂)を設ける。図5、6に、それぞれ低屈折率壁15を設けた場合または設けない場合における被測定ファイバに光を入力し光線を追跡した結果を示す。図5は平面部に低屈折率壁15を設けた場合を示し、図6は平面部に低屈折率壁15を設けない場合を示す図である。図5、6より、低屈折率壁15を設けることで光ファイバ側方から漏れ出る光の位置及び量を変えずに、曲げ損失を低減可能であることがわかる。   Further, as shown in the second embodiment, in order to confine the optical signal in the optical fiber coating, a low refractive index wall 15 (for example, a fluororesin) is provided on the flat portion as shown in FIG. FIGS. 5 and 6 show the results of tracking the light beam by inputting light into the fiber under measurement when the low refractive index wall 15 is provided or not provided, respectively. FIG. 5 shows a case where the low refractive index wall 15 is provided in the flat portion, and FIG. 6 is a view showing a case where the low refractive index wall 15 is not provided in the flat portion. 5 and 6, it can be seen that by providing the low refractive index wall 15, bending loss can be reduced without changing the position and amount of light leaking from the side of the optical fiber.

(実施形態4)
本実施形態では、曲げ損失を低減しつつ入出力効率の向上し、さらに光ファイバ側方から出力される光信号の漏洩パターンを制御することができることを示す。光ファイバに曲げ半径2mm、開き角度160度の曲げを形成するために曲げ冶具を想定し、ここでは一例として透明部材の材料をポリカーボネート(屈折率1.57)とする。
(Embodiment 4)
In the present embodiment, it is shown that the input / output efficiency is improved while reducing the bending loss, and that the leakage pattern of the optical signal output from the side of the optical fiber can be controlled. In order to form a bend with a bend radius of 2 mm and an opening angle of 160 degrees in the optical fiber, a bending jig is assumed. Here, as an example, the material of the transparent member is polycarbonate (refractive index of 1.57).

また、実施形態2で示したように光信号を光ファイバ被覆内に閉じ込めるために、図7に示すように平面部に低屈折率壁15(たとえばフッ素樹脂)を設ける。さらに図7に示すように、曲面部に屈折率制御領域16(たとえばアクリル)を配設する。図7に、屈折率制御領域16の屈折率を1.47にした場合における被測定ファイバに光を入力し光線を追跡した結果を示す。また図8に、光線を追跡した結果の拡大図を示す。   Further, as shown in the second embodiment, in order to confine the optical signal in the optical fiber coating, a low refractive index wall 15 (for example, a fluororesin) is provided on the flat portion as shown in FIG. Further, as shown in FIG. 7, a refractive index control region 16 (for example, acrylic) is disposed on the curved surface portion. FIG. 7 shows the result of tracking the light beam by inputting light into the measured fiber when the refractive index of the refractive index control region 16 is 1.47. FIG. 8 shows an enlarged view of the result of tracing the light beam.

図5、7を比較すると、屈折率制御領域16の屈折率を適切に設定することで光ファイバ側方から漏れ出る光を集光することが可能であることがわかる。これは、曲げ部からの漏洩光については屈折率の高いほうから低い方へ進むため光ファイバ側方向に屈折するが、直線部からの漏洩光については屈折率の低い方から高い方へ進むため光ファイバの反対方向に屈折するため、漏洩光を集光できる。   5 and 7, it can be seen that the light leaking from the side of the optical fiber can be condensed by appropriately setting the refractive index of the refractive index control region 16. This is because the leaked light from the bent portion is refracted in the direction of the optical fiber because it proceeds from the higher refractive index to the lower one, but the leaked light from the straight portion proceeds from the lower refractive index to the higher one. Since the light is refracted in the opposite direction of the optical fiber, leakage light can be collected.

図9に、屈折率制御領域16の屈折率を変えた時の漏洩光のビーム幅を示す。屈折率制御領域16の屈折率をおよそ1.42としたときにビーム幅が狭くなっていることがわかる。これにより、実施形態1で記述したようなプローブファイバ13に漏洩光が入光しやすくなり、受光効率が向上する。また、屈折率制御領域16の屈折率を制御することで漏洩光の集光位置を制御することも可能である。   FIG. 9 shows the beam width of leaked light when the refractive index of the refractive index control region 16 is changed. It can be seen that the beam width is narrow when the refractive index of the refractive index control region 16 is about 1.42. This makes it easy for leaked light to enter the probe fiber 13 as described in the first embodiment, and the light receiving efficiency is improved. It is also possible to control the condensing position of the leaked light by controlling the refractive index of the refractive index control region 16.

上述した本実施形態に係る光ファイバ側方入出力装置によれば、光ファイバ心線12を湾曲させるための曲げ冶具11の屈折率を制御することで、曲げ損失及び入受光効率を制御することができるため、曲げ損失を押さえつつ入受光効率を高めることや、曲げ損失及び入受光効率を高めることが可能となる。たとえば、曲げ冶具11の屈折率を光ファイバ心線12の被覆より高くすることで、光ファイバ心線12からの漏洩光を増大させ、損失及び入受光効率を高めることができる。   According to the optical fiber side input / output device according to this embodiment described above, the bending loss and the light receiving / receiving efficiency are controlled by controlling the refractive index of the bending jig 11 for bending the optical fiber core wire 12. Therefore, it is possible to increase the light receiving / receiving efficiency while suppressing the bending loss, and to increase the bending loss and the light receiving / receiving efficiency. For example, by making the refractive index of the bending jig 11 higher than the coating of the optical fiber core wire 12, the leakage light from the optical fiber core wire 12 can be increased, and the loss and light receiving / receiving efficiency can be increased.

また、曲げ冶具11の屈折率を光ファイバ心線12の被覆より低くすることで曲げ損失が低減され、入光効率を高めることができる。光ファイバ心線12を小さい曲げ半径で曲げると、コアから漏れ出た光が光ファイバ心線12の被覆内に閉じこまりウィスパリングギャラリーモードとなり、多重経路干渉(MPI)が生じて信号品質が劣化してしまうが、曲げ冶具11の屈折率を光ファイバ心線12の被覆より高くすることで、ウィスパリングギャラリーモードを抑制することができる。曲げ冶具の屈折率分布を適切に設定することで、曲げファイバからの漏洩光の位置及び漏洩光の分布を制御することができる。   Further, by making the refractive index of the bending jig 11 lower than that of the coating of the optical fiber core wire 12, the bending loss can be reduced and the light incident efficiency can be increased. When the optical fiber core 12 is bent with a small bending radius, the light leaked from the core is confined within the coating of the optical fiber core 12 to be in the whispering gallery mode, resulting in multipath interference (MPI) and signal quality degradation. However, the whispering gallery mode can be suppressed by making the refractive index of the bending jig 11 higher than the coating of the optical fiber core wire 12. By appropriately setting the refractive index distribution of the bending jig, the position of the leakage light from the bending fiber and the distribution of the leakage light can be controlled.

本発明は情報通信産業に適用することができる。   The present invention can be applied to the information communication industry.

11:曲げ冶具
12:光ファイバ心線
13:プローブファイバ
15:低屈折率壁
16:屈折率制御領域
11: Bending jig 12: Optical fiber core wire 13: Probe fiber 15: Low refractive index wall 16: Refractive index control region

Claims (4)

光信号を入出力する固定治具及び入出力光学系を有する光ファイバ側方入出力装置であって、
前記固定治具は、
光ファイバ被覆で被覆した光ファイバと、
前記光ファイバを曲げる曲げ部分を保持する曲面部と、
前記曲げ部分の両端に伸びる光ファイバを直線状に保持する平面部と、
前記入出力光学系を突き当てて保持し、予め定められた位置に形成された突き当て部と、を備え、
前記入出力光学系が前記突き当て部に配設され、前記固定治具及び前記入出力光学系の間に光信号を透過するように介在し、前記光ファイバ被覆と異なる屈折率を有する光透過部を、
備えることを特徴とする光ファイバ側方入出力装置。
An optical fiber side input / output device having a fixing jig for inputting / outputting an optical signal and an input / output optical system,
The fixing jig is
An optical fiber coated with an optical fiber coating;
A curved surface portion for holding a bent portion for bending the optical fiber;
A plane portion that holds the optical fiber extending at both ends of the bent portion in a straight line; and
Abutting part formed in a predetermined position, abutting and holding the input / output optical system,
The input / output optical system is disposed in the abutting portion, and is interposed between the fixing jig and the input / output optical system so as to transmit an optical signal, and has a refractive index different from that of the optical fiber coating. Part
An optical fiber side input / output device comprising:
前記光透過部、前記曲面部及び前記平面部のうち少なくとも一部が前記光ファイバ被覆と同程度の屈折率又は前記光ファイバ被覆より高い屈折率を有する
ことを特徴とする請求項1に記載の光ファイバ側方入出力装置。
The at least part of the light transmission part, the curved surface part, and the flat part has a refractive index comparable to the optical fiber coating or a higher refractive index than the optical fiber coating. Optical fiber side input / output device.
前記曲面部及び前記平面部のうち少なくとも一部が前記光ファイバ被覆より低い屈折率を有する
ことを特徴とする請求項1に記載の光ファイバ側方入出力装置。
2. The optical fiber side input / output device according to claim 1, wherein at least a part of the curved surface portion and the flat surface portion has a refractive index lower than that of the optical fiber coating.
前記平面部のうち少なくとも一部が前記光ファイバ被覆と同程度の屈折率又は前記光ファイバ被覆より高い屈折率を有し、前記曲面部及び前記透明部材のうち少なくとも一部が前記光ファイバの被覆より低い屈折率を有する
ことを特徴とする請求項1に記載の光ファイバ側方入出力装置。
At least a portion of the flat portion has a refractive index comparable to that of the optical fiber coating or a higher refractive index than the optical fiber coating, and at least a portion of the curved portion and the transparent member is a coating of the optical fiber. 2. The optical fiber side input / output device according to claim 1, wherein the optical fiber side input / output device has a lower refractive index.
JP2015105526A 2015-05-25 2015-05-25 Optical fiber side input / output device Active JP6386971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015105526A JP6386971B2 (en) 2015-05-25 2015-05-25 Optical fiber side input / output device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015105526A JP6386971B2 (en) 2015-05-25 2015-05-25 Optical fiber side input / output device

Publications (2)

Publication Number Publication Date
JP2016218348A true JP2016218348A (en) 2016-12-22
JP6386971B2 JP6386971B2 (en) 2018-09-05

Family

ID=57580905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015105526A Active JP6386971B2 (en) 2015-05-25 2015-05-25 Optical fiber side input / output device

Country Status (1)

Country Link
JP (1) JP6386971B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020149157A1 (en) * 2019-01-18 2020-07-23 日本電信電話株式会社 Optical fiber lateral input/output device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5972402A (en) * 1982-09-09 1984-04-24 ウエスタ−ン・エレクトリツク・カムパニ−・インコ−ポレ−テツド Apparatus and method of branching and outputting light ener-gy from optical fiber
US4889403A (en) * 1987-11-02 1989-12-26 Raychem Corp. Distribution optical fiber tap
JP2007040911A (en) * 2005-08-05 2007-02-15 Nippon Telegr & Teleph Corp <Ntt> Bending tool for collating coated fiber
JP2015040916A (en) * 2013-08-20 2015-03-02 日本電信電話株式会社 Optical fiber lateral input and output device and optical fiber lateral input and output method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5972402A (en) * 1982-09-09 1984-04-24 ウエスタ−ン・エレクトリツク・カムパニ−・インコ−ポレ−テツド Apparatus and method of branching and outputting light ener-gy from optical fiber
US4889403A (en) * 1987-11-02 1989-12-26 Raychem Corp. Distribution optical fiber tap
JP2007040911A (en) * 2005-08-05 2007-02-15 Nippon Telegr & Teleph Corp <Ntt> Bending tool for collating coated fiber
JP2015040916A (en) * 2013-08-20 2015-03-02 日本電信電話株式会社 Optical fiber lateral input and output device and optical fiber lateral input and output method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020149157A1 (en) * 2019-01-18 2020-07-23 日本電信電話株式会社 Optical fiber lateral input/output device
JP2020115190A (en) * 2019-01-18 2020-07-30 日本電信電話株式会社 Optical fiber lateral input/output device
JP7139966B2 (en) 2019-01-18 2022-09-21 日本電信電話株式会社 Optical fiber side input/output device

Also Published As

Publication number Publication date
JP6386971B2 (en) 2018-09-05

Similar Documents

Publication Publication Date Title
JP6018988B2 (en) Optical fiber side input / output device and optical fiber side input / output method
WO2012003103A1 (en) Fiberoptic device with long focal length gradient-index or grin fiber lens
CN106461868B (en) Multicore multimode fibre coupling device
CN105723262B (en) The branching method of the light of photo-coupler and the utilization photo-coupler
CN108490546B (en) Optical waveguide mode converter for improving optical waveguide transmission characteristics
KR920701848A (en) Optical coupling method using phase-space matching through coupler on optical fiber optical waveguide
TW200411215A (en) Symmetric, bi-aspheric lens for use in transmissive and reflective optical fiber components
JP2000206359A (en) Optical fiber coupling device
EP3239749B1 (en) Photo coupler and method for optically coupling grin lens-attached optical fibers
JP6386971B2 (en) Optical fiber side input / output device
US20190278026A1 (en) Fiber coupling device
EP2500755A2 (en) Optical connector and endoscope system
JP6636273B2 (en) Connection method of multi-core optical fiber
CN208860997U (en) A kind of light wavelength division multiplexing of high return loss
SE1450257A1 (en) Collimating lens
Mohamed-Kassim et al. High resolution tunable POF multimode power splitter
JP2005250221A (en) Optical coupler
JP6014004B2 (en) Signal light acquisition structure
JP6182503B2 (en) Optical branching device
JP2017102139A (en) Probe fiber and optical fiber side input/output device
JP2014123147A (en) Optical connector and endoscope system
JP2003241002A5 (en)
US20230049757A1 (en) Multimode Coupling for Fiber Waveguide
JP6438372B2 (en) Optical fiber side input / output device and optical fiber side input / output method
JP4627020B2 (en) Method for measuring optical characteristics of multimode optical waveguide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180810

R150 Certificate of patent or registration of utility model

Ref document number: 6386971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150