JP2016217885A - Temperature measuring device, thermal conductivity measuring device and thermal conductivity measuring method - Google Patents

Temperature measuring device, thermal conductivity measuring device and thermal conductivity measuring method Download PDF

Info

Publication number
JP2016217885A
JP2016217885A JP2015103156A JP2015103156A JP2016217885A JP 2016217885 A JP2016217885 A JP 2016217885A JP 2015103156 A JP2015103156 A JP 2015103156A JP 2015103156 A JP2015103156 A JP 2015103156A JP 2016217885 A JP2016217885 A JP 2016217885A
Authority
JP
Japan
Prior art keywords
temperature
sensor
thermal conductivity
measuring device
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015103156A
Other languages
Japanese (ja)
Inventor
重直 圓山
Shigenao Maruyama
重直 圓山
淳之介 岡島
Junnosuke Okajima
淳之介 岡島
孝裕 岡部
Takahiro Okabe
孝裕 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2015103156A priority Critical patent/JP2016217885A/en
Publication of JP2016217885A publication Critical patent/JP2016217885A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a temperature measuring device, a thermal conductivity measuring device and a thermal conductivity measuring method capable of measuring surface temperatures of several objects with high accuracy and reliability in a relatively simple configuration.SOLUTION: A temperature measuring sensor 11a can measure a temperature of a measurement object 1 by being brought into contact with a surface thereof. A protection heat source sensor 11b is arranged next to or in touch with the temperature measuring sensor 11a in a manner that can exchange heat with the temperature measuring sensor 11a. The temperature measuring sensor 11a and the protection heat source sensor 11b have identical thermistors which can measure the temperature on the basis of electric resistance varied depending on the temperature and generate power at the temperature corresponding to the varied electric resistance. Control means 13 can control the electric resistance of the protection heat source sensor 11b so that the same has equal electric resistance to the temperature measuring sensor 11a when measuring the temperature with the temperature measuring sensor 11a.SELECTED DRAWING: Figure 1

Description

本発明は、温度測定装置、熱伝導率測定装置および熱伝導率測定方法に関する。   The present invention relates to a temperature measuring device, a thermal conductivity measuring device, and a thermal conductivity measuring method.

工業分野や医療分野においては、物体の表面温度を高精度・高確度で計測することが非常に重要となっている。従来、物体の表面温度を正確に計測するために、熱電対や白金測温抵抗体、サーミスタ、放射温度計などが一般的に使用されている。これらのうち、熱電対は、物体表面に接触させて、熱電効果を利用して温度計測を行うものであるが、温度差によって発生する電圧が微小であることや、温度を決定するためには冷接点の正確な温度が必要であることから、精度や確度を高めるには限界があるという問題があった。また、測定対象の物体と周囲とに温度差がある場合、リード線や固定用テープ等への熱損失によって物体の温度が変化し、正確な表面温度を計測することは困難であるという問題もあった。   In the industrial field and the medical field, it is very important to measure the surface temperature of an object with high accuracy and high accuracy. Conventionally, in order to accurately measure the surface temperature of an object, a thermocouple, a platinum resistance temperature detector, a thermistor, a radiation thermometer, etc. are generally used. Of these, thermocouples are used to measure temperature using the thermoelectric effect in contact with the surface of the object, but in order to determine the voltage generated by the temperature difference and the temperature Since an accurate temperature of the cold junction is required, there is a problem that there is a limit to increasing accuracy and accuracy. In addition, when there is a temperature difference between the object to be measured and the surroundings, the temperature of the object changes due to heat loss to the lead wire, fixing tape, etc., and it is difficult to accurately measure the surface temperature. there were.

また、白金測温抵抗体やサーミスタは、熱電対と同様に物体表面に接触させて温度計測を行うものであり、熱電対と比較して、精度も確度も共に高い。しかし、温度計測を行う際に物体表面に接触させることにより、物体から白金測温抵抗体やサーミスタに熱が移動して、物体の表面温度が変化するため、正確な温度計測が困難であるという問題があった。   The platinum resistance thermometer or thermistor measures the temperature by bringing it into contact with the surface of the object in the same way as a thermocouple, and has higher accuracy and accuracy than a thermocouple. However, it is difficult to accurately measure the temperature because the surface temperature of the object changes because the heat moves from the object to the platinum resistance thermometer or thermistor by contacting the object surface when measuring the temperature. There was a problem.

一方、放射温度計は、非接触で物体から放射されるエネルギーによって温度計測を行うものである。放射温度計は、物体の表面から放射されるエネルギーを正確に計測可能であるが、温度を決定するためには正確な放射率の情報が別途必要となる。しかし、その放射率は、物体の光物性のみならず表面状態にも依存するパラメータであり、正確に計測するのが非常に難しいため、物体の表面温度を高精度に決定することは困難であるという問題があった。   On the other hand, a radiation thermometer measures temperature by energy radiated from an object without contact. The radiation thermometer can accurately measure the energy radiated from the surface of the object, but accurate emissivity information is separately required to determine the temperature. However, the emissivity is a parameter that depends not only on the optical properties of the object but also on the surface state, and it is very difficult to measure accurately, so it is difficult to determine the surface temperature of the object with high accuracy. There was a problem.

そこで、これらの問題を解決し、サーミスタを用いて、高精度かつ高確度で温度計測を行う温度測定装置が開発されている。例えば、回路基板に実装された加熱検知用サーミスタの補正値を検査するために、その回路基板に実装された半導体素子の表面温度と外気温とをそれぞれ計測する高精度サーミスタを備えた検査装置が開発されている(例えば、特許文献1参照)。   Accordingly, a temperature measuring apparatus that solves these problems and performs temperature measurement with high accuracy and high accuracy using a thermistor has been developed. For example, in order to inspect the correction value of a heating detection thermistor mounted on a circuit board, an inspection apparatus equipped with a high-precision thermistor that respectively measures the surface temperature and the outside air temperature of a semiconductor element mounted on the circuit board. It has been developed (see, for example, Patent Document 1).

また、サーミスタの測定温度と、サーミスタを含むシステムの状態に対応するサーミスタの目標温度との温度差に応じてサーミスタを自己発熱させることにより、サーミスタの温度検出の遅れ時間を短縮する装置(例えば、特許文献2参照)や、複数のサーミスタにより体から逃げる熱流束を測定し、その熱流束がゼロになるよう、その熱流束に対して反対向きにヒータで加熱することにより、体温を正確に測定可能なセンサ(例えば、特許文献3または4参照)も開発されている。   Also, a device that shortens the thermistor temperature detection delay time by causing the thermistor to self-heat according to the temperature difference between the measured temperature of the thermistor and the target temperature of the thermistor corresponding to the state of the system including the thermistor (for example, Measure the heat flux escaping from the body with multiple thermistors), and measure the body temperature accurately by heating with a heater in the opposite direction to the heat flux so that the heat flux becomes zero Possible sensors (see, for example, Patent Document 3 or 4) have also been developed.

なお、生体組織などの熱伝導率を測定する方法として、被測定物に熱をパルス的に与え、加熱後の温度減衰から熱伝導率を算出する熱パルス減衰法を利用してモデル計算を行う方法が提案されている(例えば、非特許文献1参照)。   As a method for measuring the thermal conductivity of living tissue, etc., model calculation is performed using a heat pulse decay method in which heat is pulsed to the object to be measured and the thermal conductivity is calculated from the temperature decay after heating. A method has been proposed (see, for example, Non-Patent Document 1).

特開2009−216550号公報JP 2009-216550 A 特開2013−164289号公報JP 2013-164289 A 特表2012−523003号公報Special table 2012-523003 gazette 特開昭55−29794号公報JP-A-55-29794

Nachiket M Kharalkar, Linda J Hayes and Jonathan W Valvano, “Pulse-power integrated-decay technique for the measurement of thermal conductivity”, Meas, Sci. Technol., 2008, 19, 075104Nachiket M Kharalkar, Linda J Hayes and Jonathan W Valvano, “Pulse-power integrated-decay technique for the measurement of thermal conductivity”, Meas, Sci. Technol., 2008, 19, 075104

しかしながら、特許文献1に記載の検査装置では、被測定物にもサーミスタが必要であり、被測定物が限定されてしまうという課題があった。また、被測定物の表面からサーミスタに移動する熱を考慮していないため、測定される温度の精度や確度がまだ低いという課題もあった。特許文献2に記載の装置では、温度の測定時間は短縮されるが、被測定物の表面からサーミスタに移動する熱を考慮していないため、やはり測定される温度の精度や確度がまだ低いという課題があった。特許文献3および4に記載のセンサでは、複数のサーミスタ以外にもヒータが必要であり、構成がやや複雑になるという課題があった。   However, in the inspection apparatus described in Patent Document 1, a thermistor is also required for the object to be measured, and there is a problem that the object to be measured is limited. Moreover, since the heat transferred from the surface of the object to be measured to the thermistor is not taken into account, there is a problem that the accuracy and accuracy of the measured temperature are still low. In the apparatus described in Patent Document 2, although the temperature measurement time is shortened, since the heat transferred from the surface of the object to be measured to the thermistor is not taken into account, the accuracy and accuracy of the measured temperature are still low. There was a problem. In the sensors described in Patent Documents 3 and 4, there is a problem that a heater is necessary in addition to a plurality of thermistors, and the configuration becomes somewhat complicated.

本発明は、このような課題に着目してなされたもので、比較的簡単な構成で、様々な物体の表面温度をより高い精度および確度で測定することができる温度測定装置、熱伝導率測定装置および熱伝導率測定方法を提供することを目的とする。   The present invention has been made paying attention to such a problem, and a temperature measurement device and a thermal conductivity measurement capable of measuring the surface temperature of various objects with higher accuracy and accuracy with a relatively simple configuration. An object is to provide an apparatus and a method of measuring thermal conductivity.

上記目的を達成するために、本発明に係る温度測定装置は、温度に応じて所定の物理量が変化し、前記物理量の値に基づいて温度測定可能、かつ前記物理量を変化させることにより対応する温度で発熱可能に構成された2つの同じ発熱温度センサと、各発熱温度センサに接続された制御手段とを有し、一方の発熱温度センサは、被測定物の表面に接触させて温度を測定可能に設けられ、他方の発熱温度センサは、前記一方の発熱温度センサとの間で熱を交換可能に、前記一方の発熱温度センサに近接または接触して設けられ、前記制御手段は、前記一方の発熱温度センサで温度を測定するとき、前記一方の発熱温度センサの前記物理量と等しくなるよう、前記他方の発熱温度センサの前記物理量を制御可能に設けられていることを特徴とする。   In order to achieve the above object, the temperature measuring device according to the present invention changes a predetermined physical quantity according to the temperature, can measure the temperature based on the value of the physical quantity, and changes the physical quantity to respond to the temperature. Two heat generation temperature sensors configured to be capable of generating heat and control means connected to each heat generation temperature sensor, one of the heat generation temperature sensors can measure the temperature by contacting the surface of the object to be measured The other exothermic temperature sensor is provided close to or in contact with the one exothermic temperature sensor so that heat can be exchanged with the one exothermic temperature sensor, and the control means includes the one exothermic temperature sensor. When the temperature is measured by the exothermic temperature sensor, the physical quantity of the other exothermic temperature sensor is provided so as to be equal to the physical quantity of the one exothermic temperature sensor.

本発明に係る温度測定装置は、温度に応じて所定の物理量が変化する発熱温度センサを用いて、以下のようにして、様々な物体の表面温度を測定することができる。すなわち、まず、一方の発熱温度センサを、被測定物の表面に接触させる。このとき、一方の発熱温度センサとの間で熱を交換可能に、一方の発熱温度センサに近接または接触して設けられた他方の発熱温度センサの物理量を、一方の発熱温度センサの物理量と等しくなるよう、制御手段により制御して、他方の発熱温度センサを、一方の発熱温度センサの温度と等しい温度に発熱させる。これにより、被測定物の表面の温度と各発熱温度センサの温度とが等しくなるため、一方の発熱温度センサから他方の発熱温度センサに、また、被測定物の表面から一方の発熱温度センサに熱が移動するのを防ぐことができる。この状態で、一方の発熱温度センサにより温度を測定することにより、高精度かつ高確度で温度を測定することができる。   The temperature measuring device according to the present invention can measure the surface temperature of various objects using a heat generation temperature sensor whose predetermined physical quantity changes according to the temperature as follows. That is, first, one exothermic temperature sensor is brought into contact with the surface of the object to be measured. At this time, the physical quantity of the other heating temperature sensor provided close to or in contact with one heating temperature sensor is equal to the physical quantity of the one heating temperature sensor so that heat can be exchanged with one heating temperature sensor. The other exothermic temperature sensor is heated to a temperature equal to the temperature of one exothermic temperature sensor under the control of the control means. As a result, the temperature of the surface of the object to be measured is equal to the temperature of each heat generation temperature sensor, so that one heat generation temperature sensor changes to the other heat generation temperature sensor, and from the surface of the object to be measured changes to one heat generation temperature sensor. Heat can be prevented from moving. In this state, the temperature can be measured with high accuracy and high accuracy by measuring the temperature with one of the heat generation temperature sensors.

このように、本発明に係る温度測定装置は、温度測定用の一方の発熱温度センサ(温度測定センサ)に対する非定常の保護熱源として他方の発熱温度センサ(保護熱源センサ)を設けることにより、被測定物の表面から一方の発熱温度センサへ流入する熱を相殺し、被測定物の状態を変化させることなく温度を測定することができる。これにより、接触式手法にも関わらず、様々な物体の表面温度をより高い精度および確度で測定することができる。   As described above, the temperature measuring device according to the present invention is provided with the other exothermic temperature sensor (protective heat source sensor) as a non-stationary protective heat source for one exothermic temperature sensor (temperature measuring sensor) for temperature measurement. It is possible to cancel the heat flowing from the surface of the measurement object to one of the heat generation temperature sensors and measure the temperature without changing the state of the measurement object. Thereby, the surface temperature of various objects can be measured with higher accuracy and accuracy regardless of the contact method.

本発明に係る温度測定装置は、他方の発熱温度センサの物理量を変化させることにより、その物理量に対応する温度で他方の発熱温度センサが発熱することを利用して、高精度かつ高確度で温度測定を行うことができる。このため、別途にヒータなどを使用することなく、発熱温度センサが2つのみの比較的簡単な構成で、被測定物の表面からの熱の移動を考慮した温度測定を行うことができる。なお、他方の発熱温度センサは、2つ以上の発熱温度センサから成っていてもよい。   The temperature measuring device according to the present invention utilizes the fact that the other exothermic temperature sensor generates heat at a temperature corresponding to the physical quantity by changing the physical quantity of the other exothermic temperature sensor, thereby enabling the temperature measurement with high accuracy and high accuracy. Measurements can be made. For this reason, it is possible to perform temperature measurement in consideration of the movement of heat from the surface of the object to be measured with a relatively simple configuration having only two exothermic temperature sensors without using a separate heater or the like. The other exothermic temperature sensor may be composed of two or more exothermic temperature sensors.

2つの発熱温度センサは、温度に応じて所定の物理量が変化し、その物理量の値に基づいて温度測定可能、かつその物理量を変化させることにより対応する温度で発熱可能に構成されたものであれば、いかなるものであってもよく、例えば、その物理量が電気抵抗であるサーミスタや白金測温抵抗体から成っている。   The two exothermic temperature sensors are configured so that a predetermined physical quantity changes according to temperature, temperature can be measured based on the value of the physical quantity, and heat can be generated at a corresponding temperature by changing the physical quantity. Any material may be used, for example, a thermistor whose physical quantity is electrical resistance or a platinum resistance thermometer.

本発明に係る熱伝導率測定装置は、本発明に係る温度測定装置を有し、前記制御手段は、前記一方の発熱温度センサを所定の温度で発熱させるよう、前記一方の発熱温度センサの前記物理量を制御可能に設けられていることを特徴とする。   The thermal conductivity measurement device according to the present invention includes the temperature measurement device according to the present invention, and the control unit is configured to cause the one exothermic temperature sensor to generate heat at a predetermined temperature. The physical quantity is provided so as to be controllable.

また、本発明に係る熱伝導率測定方法は、本発明に係る熱伝導率測定装置の前記一方の発熱温度センサを前記被測定物の表面に接触させ、前記制御手段により前記一方の発熱温度センサを前記所定の温度で発熱させた後、前記一方の発熱温度センサで前記被測定物の表面の温度変化を測定することを特徴とする。   In the thermal conductivity measuring method according to the present invention, the one exothermic temperature sensor of the thermal conductivity measuring device according to the present invention is brought into contact with the surface of the object to be measured, and the one exothermic temperature sensor is controlled by the control means. Is heated at the predetermined temperature, and then the temperature change of the surface of the object to be measured is measured by the one heating temperature sensor.

本発明に係る熱伝導率測定装置は、本発明に係る熱伝導率測定方法により、被測定物の熱伝導率を測定することができる。本発明に係る熱伝導率測定装置は、被測定物の加熱と温度測定とを1台で行うことができるため、被測定物を加熱したときの熱応答を容易に測定することができ、被測定物の熱物性を高精度かつ高確度で測定することができる。例えば、被測定物に熱をパルス的に与え、加熱後の温度減衰から熱伝導率を算出する熱パルス減衰法を、容易に実施することができる。この熱パルス減衰法を行う際には、従来はリード線等への熱損失を考慮して、サーミスタ等の熱源を被測定物に埋め込んでいたが、本発明に係る熱伝導率測定装置によれば、熱損失を考慮する必要も、熱源を埋め込む必要もなく、非侵襲で、高精度かつ高確度に熱伝導率を測定することができる。   The thermal conductivity measuring apparatus according to the present invention can measure the thermal conductivity of an object to be measured by the thermal conductivity measuring method according to the present invention. Since the thermal conductivity measuring apparatus according to the present invention can perform heating and temperature measurement of an object to be measured with one unit, the thermal response when the object to be measured is heated can be easily measured. The thermophysical properties of the measurement object can be measured with high accuracy and high accuracy. For example, it is possible to easily carry out a heat pulse attenuation method in which heat is applied in a pulsed manner to the object to be measured and the thermal conductivity is calculated from the temperature attenuation after heating. When performing this heat pulse attenuation method, conventionally, a heat source such as a thermistor is embedded in the object to be measured in consideration of heat loss to the lead wire, etc., but according to the thermal conductivity measuring device according to the present invention, For example, it is not necessary to consider heat loss or to embed a heat source, and the thermal conductivity can be measured with high accuracy and high accuracy without being invasive.

本発明によれば、比較的簡単な構成で、様々な物体の表面温度をより高い精度および確度で測定することができる温度測定装置、熱伝導率測定装置および熱伝導率測定方法を提供することができる。   According to the present invention, there are provided a temperature measuring device, a thermal conductivity measuring device, and a thermal conductivity measuring method capable of measuring the surface temperature of various objects with higher accuracy and accuracy with a relatively simple configuration. Can do.

本発明の実施の形態の温度測定装置を示す(a)使用状態を示す正面図、(b)先端部分の拡大正面図である。BRIEF DESCRIPTION OF THE DRAWINGS (a) The front view which shows the use condition which shows the temperature measuring apparatus of embodiment of this invention, (b) It is an enlarged front view of the front-end | tip part. 図1に示す温度測定装置の、保護熱源である他方の発熱温度センサを有効にしたとき、および無効にしたときの温度測定結果を示すグラフである。It is a graph which shows the temperature measurement result when the other exothermic temperature sensor which is a protection heat source of the temperature measuring apparatus shown in FIG. 1 is validated, and invalidated. 図1に示す温度測定装置の、温度測定時の、温度測定用サーミスタ(一方の発熱温度センサ)および保護熱源サーミスタ(他方の発熱温度センサ)の温度応答を示すグラフである。3 is a graph showing temperature responses of a temperature measurement thermistor (one exothermic temperature sensor) and a protective heat source thermistor (the other exothermic temperature sensor) during temperature measurement of the temperature measuring device shown in FIG. 1. 図1に示す温度測定装置で熱パルス減衰法により水の熱伝導率の測定を行ったときの、温度測定結果を示すグラフである。It is a graph which shows a temperature measurement result when the thermal conductivity of water is measured by the heat pulse decay method with the temperature measuring device shown in FIG. 図1に示す温度測定装置による悪性黒色腫の診断の検証に用いた、二次元軸対称数値計算モデルである。It is a two-dimensional axisymmetric numerical calculation model used for verification of the diagnosis of malignant melanoma by the temperature measuring device shown in FIG. 悪性黒色腫の各進行度に対応する、図5に示す二次元軸対称数値計算モデルの部分拡大図である。It is the elements on larger scale of the two-dimensional axisymmetric numerical calculation model shown in FIG. 5 corresponding to each progression degree of malignant melanoma. 図5および図6に示す二次元軸対称数値計算モデルに基づいたモデル計算により得られた、悪性黒色腫の体積と見かけの熱伝導率との関係を示すグラフである。It is a graph which shows the relationship between the volume of malignant melanoma and the apparent thermal conductivity obtained by the model calculation based on the two-dimensional axisymmetric numerical calculation model shown in FIG. 5 and FIG.

以下、図面に基づいて、本発明の実施の形態について説明する。
図1乃至図7は、本発明の実施の形態の温度測定装置を示している。
図1に示すように、温度測定装置10は、温度測定用センサ11aと保護熱源センサ11bとチューブ12と制御手段13とを有している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 to 7 show a temperature measuring apparatus according to an embodiment of the present invention.
As shown in FIG. 1, the temperature measurement device 10 includes a temperature measurement sensor 11 a, a protective heat source sensor 11 b, a tube 12, and a control means 13.

温度測定用センサ11aおよび保護熱源センサ11bは、同じ大きさおよび規格のサーミスタから成っている。温度測定用センサ11aおよび保護熱源センサ11bは、温度に応じて電気抵抗が変化し、その電気抵抗値に基づいて温度測定可能、かつ電気抵抗を変化させることにより対応する温度で発熱可能に構成されている。温度測定用センサ11aおよび保護熱源センサ11bは、チューブ12の長さ方向に沿って並べた状態で、チューブ12の内部に挿入されている。温度測定用センサ11aおよび保護熱源センサ11bは、熱を交換可能に互いに近接するよう配置されており、チューブ12の後端側の開口からそれぞれのリード線14が取り出されている。チューブ12の先端側に配置された温度測定用センサ11aは、チューブ12の先端側の開口から一部(前半分)が突出しており、その突出部分を被測定物1の表面に接触させて温度を測定可能に設けられている。チューブ12の後端側に配置された保護熱源センサ11bは、温度測定用センサ11aの突出部分とは反対側に近接している。なお、保護熱源センサ11bは、温度測定用センサ11aに接触していてもよい。   The temperature measuring sensor 11a and the protective heat source sensor 11b are thermistors having the same size and standard. The temperature measurement sensor 11a and the protection heat source sensor 11b are configured such that the electric resistance changes according to the temperature, the temperature can be measured based on the electric resistance value, and the heat can be generated at the corresponding temperature by changing the electric resistance. ing. The temperature measuring sensor 11 a and the protective heat source sensor 11 b are inserted into the tube 12 in a state of being arranged along the length direction of the tube 12. The temperature measurement sensor 11a and the protection heat source sensor 11b are arranged so as to be close to each other so that heat can be exchanged, and the lead wires 14 are taken out from the opening on the rear end side of the tube 12, respectively. The temperature measuring sensor 11a disposed on the distal end side of the tube 12 has a part (front half) protruding from the opening on the distal end side of the tube 12, and the protruding portion is brought into contact with the surface of the object 1 to be measured. Is provided so that it can be measured. The protective heat source sensor 11b disposed on the rear end side of the tube 12 is close to the side opposite to the protruding portion of the temperature measuring sensor 11a. The protective heat source sensor 11b may be in contact with the temperature measuring sensor 11a.

図1に示す具体的な一例では、温度測定用センサ11aおよび保護熱源センサ11bは、ガラス封入型のNTCサーミスタから成っており、外径が0.43mmである。また、チューブ12は、FEP製である。なお、温度測定用センサ11aおよび保護熱源センサ11bは、サーミスタに限らず、例えば白金測温抵抗体から成っていてもよい。また、温度測定用センサ11aが一方の発熱温度センサを成し、保護熱源センサ11bが他方の発熱温度センサを成している。   In a specific example shown in FIG. 1, the temperature measuring sensor 11a and the protective heat source sensor 11b are made of glass-enclosed NTC thermistors and have an outer diameter of 0.43 mm. The tube 12 is made of FEP. The temperature measuring sensor 11a and the protective heat source sensor 11b are not limited to the thermistor, and may be made of, for example, a platinum resistance thermometer. Further, the temperature measuring sensor 11a constitutes one exothermic temperature sensor, and the protective heat source sensor 11b constitutes the other exothermic temperature sensor.

制御手段13は、温度測定用センサ11aおよび保護熱源センサ11bのリード線14に接続されている。制御手段13は、温度測定用センサ11aおよび保護熱源センサ11bの電気抵抗値を測定して温度を測定可能、かつ温度測定用センサ11aおよび保護熱源センサ11bの電気抵抗を制御して、温度測定用センサ11aおよび保護熱源センサ11bを発熱可能に構成されている。これにより、制御手段13は、温度測定用センサ11aで温度を測定するとき、温度測定用センサ11aの電気抵抗と等しくなるよう、保護熱源センサ11bの電気抵抗を制御可能になっている。また、制御手段13は、温度測定用センサ11aを所定の温度で発熱させるよう、温度測定用センサ11aの電気抵抗を制御可能になっている。   The control means 13 is connected to the lead wires 14 of the temperature measuring sensor 11a and the protective heat source sensor 11b. The control means 13 can measure the temperature by measuring the electrical resistance values of the temperature measurement sensor 11a and the protection heat source sensor 11b, and controls the electrical resistance of the temperature measurement sensor 11a and the protection heat source sensor 11b to measure the temperature. The sensor 11a and the protection heat source sensor 11b are configured to generate heat. Thereby, when the temperature is measured by the temperature measurement sensor 11a, the control means 13 can control the electrical resistance of the protective heat source sensor 11b so as to be equal to the electrical resistance of the temperature measurement sensor 11a. The control means 13 can control the electrical resistance of the temperature measuring sensor 11a so that the temperature measuring sensor 11a generates heat at a predetermined temperature.

次に、作用について説明する。
温度測定装置10は、温度測定用センサ11aおよび保護熱源センサ11bを用いて、以下のようにして、様々な物体の表面温度を測定することができる。すなわち、まず、温度測定用センサ11aを、被測定物1の表面に接触させる。このとき、保護熱源センサ11bの電気抵抗を、温度測定用センサ11aの電気抵抗と等しくなるよう、制御手段13により制御して、保護熱源センサ11bを、温度測定用センサ11aの温度と等しい温度に発熱させる。これにより、被測定物1の表面の温度と温度測定用センサ11aおよび保護熱源センサ11bの温度とが等しくなるため、温度測定用センサ11aから保護熱源センサ11bに、また、被測定物1の表面から温度測定用センサ11aに熱が移動するのを防ぐことができる。この状態で、温度測定用センサ11aにより温度を測定することにより、高精度かつ高確度で温度を測定することができる。
Next, the operation will be described.
The temperature measuring apparatus 10 can measure the surface temperatures of various objects as follows using the temperature measuring sensor 11a and the protective heat source sensor 11b. That is, first, the temperature measuring sensor 11 a is brought into contact with the surface of the DUT 1. At this time, the control means 13 controls the electric resistance of the protective heat source sensor 11b to be equal to the electric resistance of the temperature measuring sensor 11a, so that the protective heat source sensor 11b is equal to the temperature of the temperature measuring sensor 11a. Causes fever. As a result, the temperature of the surface of the object to be measured 1 becomes equal to the temperatures of the temperature measuring sensor 11a and the protection heat source sensor 11b. From the heat to the temperature measuring sensor 11a. In this state, the temperature can be measured with high accuracy and high accuracy by measuring the temperature with the temperature measuring sensor 11a.

このように、温度測定装置10は、温度測定用センサ11aに対する非定常の保護熱源として保護熱源センサ11bを設けることにより、被測定物1の表面から温度測定用センサ11aへ流入する熱を相殺し、損失する熱量を限りなくゼロに近づけることにより、被測定物1の状態を変化させることなく温度を測定することができる。これにより、接触式手法にも関わらず、様々な物体の表面温度をより高い精度および確度で測定することができる。   In this way, the temperature measuring device 10 cancels out the heat flowing from the surface of the DUT 1 to the temperature measurement sensor 11a by providing the protection heat source sensor 11b as a non-stationary protection heat source for the temperature measurement sensor 11a. The temperature can be measured without changing the state of the DUT 1 by making the loss of heat as close to zero as possible. Thereby, the surface temperature of various objects can be measured with higher accuracy and accuracy regardless of the contact method.

温度測定装置10は、保護熱源センサ11bの電気抵抗を変化させることにより、その電気抵抗に対応する温度で保護熱源センサ11bが発熱することを利用して、高精度かつ高確度で温度測定を行うことができる。このため、別途にヒータなどを使用することなく、2つのサーミスタのみの比較的簡単な構成で、被測定物1の表面からの熱の移動を考慮した温度測定を行うことができる。   The temperature measuring device 10 measures the temperature with high accuracy and high accuracy by changing the electric resistance of the protective heat source sensor 11b and using the fact that the protective heat source sensor 11b generates heat at a temperature corresponding to the electric resistance. be able to. For this reason, it is possible to perform temperature measurement in consideration of heat transfer from the surface of the DUT 1 with a relatively simple configuration using only two thermistors without using a separate heater or the like.

温度測定装置10は、表面温度の測定のみならず、高精度かつ高確度な熱物性や流速の測定、非侵襲医療診断への応用が可能である。例えば、流れる流体中に温度測定装置10を設置することにより、その流速を測定可能である。このとき、従来はリード線14等への熱損失の影響があるため、厳密に正確な値を測定することが困難であったが、温度測定装置10を用いることにより、熱損失の影響をなくした場合の正確な温度変化を測定することが可能となり、高精度かつ高確度で流速を測定することができる。また、温度測定装置10を別途にもう1つ用いることにより、さらに高精度かつ高確度な流体温度の測定が可能となり、さらに高精度かつ高確度で流速を測定することができる。このように、温度測定装置10は、高精度かつ高確度な流速計として使用することもできる。   The temperature measuring device 10 can be applied not only to the measurement of the surface temperature, but also to the measurement of thermophysical properties and flow velocity with high accuracy and high accuracy, and non-invasive medical diagnosis. For example, the flow velocity can be measured by installing the temperature measuring device 10 in the flowing fluid. At this time, it has been difficult to accurately measure an accurate value in the past because of the influence of heat loss on the lead wire 14 and the like, but by using the temperature measuring device 10, the influence of heat loss is eliminated. In this case, it is possible to measure an accurate temperature change, and the flow velocity can be measured with high accuracy and high accuracy. Further, by using another temperature measuring device 10 separately, it becomes possible to measure the fluid temperature with higher accuracy and accuracy, and to measure the flow velocity with higher accuracy and accuracy. Thus, the temperature measuring device 10 can also be used as a highly accurate and highly accurate current meter.

[温度測定実験]
図1に示す温度測定装置10を使用して、実際に温度測定を行った。被測定物1として、35℃に一定に保たれたアルミニウムを用い、室温が26℃に保たれた実験室において測定を行った。保護熱源である保護熱源センサ11bのサーミスタを有効にしたとき、および無効にしたときについて温度測定を行った。その結果を、図2に示す。図2に示すように、保護熱源センサ11bが無効の場合、リード線14およびチューブ12等への熱損失の影響により、30秒経過後であっても、0.3℃程度低い温度を示すことが確認された。これに対し、保護熱源センサ11bが有効の場合、約20秒経過後に、正確に35℃を示しており、熱損失の影響をなくすことができることが確認された。
[Temperature measurement experiment]
Using the temperature measuring device 10 shown in FIG. 1, the temperature was actually measured. The measurement object 1 was made of aluminum kept constant at 35 ° C., and measurement was performed in a laboratory where the room temperature was kept at 26 ° C. Temperature measurement was performed when the thermistor of the protection heat source sensor 11b as the protection heat source was enabled and disabled. The result is shown in FIG. As shown in FIG. 2, when the protective heat source sensor 11b is invalid, it is confirmed that the temperature is lowered by about 0.3 ° C. even after 30 seconds due to the influence of heat loss to the lead wire 14 and the tube 12 and the like. It was done. On the other hand, when the protective heat source sensor 11b is effective, after about 20 seconds have passed, the temperature accurately indicates 35 ° C., and it has been confirmed that the influence of heat loss can be eliminated.

また、図2に示すように、保護熱源センサ11bが有効のとき、温度測定装置10によれば、10秒程度でほぼ正確な温度を測定可能であり、また、十分な時間(20〜30秒以上)経過後には、0.01℃以下の誤差で正確な温度が測定できることが確認された。   As shown in FIG. 2, when the protective heat source sensor 11b is valid, the temperature measuring device 10 can measure the temperature almost accurately in about 10 seconds, and can be used for a sufficient time (20 to 30 seconds). After the above), it has been confirmed that an accurate temperature can be measured with an error of 0.01 ° C. or less.

保護熱源センサ11bが有効の場合の、温度測定用センサ11aおよび保護熱源センサ11bの温度応答を、図3に示す。図3に示すように、保護熱源センサ11bのサーミスタが、温度測定用センサ11aのサーミスタの応答に追従する挙動を示すことが確認された。このことから、保護熱源センサ11bを使用することにより、室温よりも高い温度を有する被測定物1の場合に生じる熱損失を最小にすることができ、正確な表面温度測定が可能となることがわかる。   FIG. 3 shows temperature responses of the temperature measurement sensor 11a and the protection heat source sensor 11b when the protection heat source sensor 11b is valid. As shown in FIG. 3, it was confirmed that the thermistor of the protection heat source sensor 11b shows a behavior that follows the response of the thermistor of the temperature measurement sensor 11a. Thus, by using the protective heat source sensor 11b, heat loss that occurs in the case of the DUT 1 having a temperature higher than room temperature can be minimized, and accurate surface temperature measurement can be performed. Recognize.

[熱伝導率の測定]
図1に示す温度測定装置10を、熱伝導率測定装置として使用し、熱伝導率の測定を行った。被測定物1として、寒天で固めた35℃の水(1wt%)を用い、熱パルス減衰法により熱伝導率の測定を行った。測定では、まず、温度測定用センサ11aを被測定物1の表面に接触させ、温度測定用センサ11aに、一定電力をパルス的に5秒間与えて所定の温度で発熱させた。このとき、保護熱源センサ11bも、温度測定用センサ11aと同様に発熱させる。その後、温度測定用センサ11aで被測定物1の表面の温度変化を測定し、その加熱後の温度減衰から熱伝導率を算出した。測定は、繰り返し10回行った。
[Measurement of thermal conductivity]
The temperature measuring device 10 shown in FIG. 1 was used as a thermal conductivity measuring device, and the thermal conductivity was measured. As the object 1 to be measured, water at 35 ° C. (1 wt%) hardened with agar was used, and the thermal conductivity was measured by the thermal pulse decay method. In the measurement, first, the temperature measurement sensor 11a was brought into contact with the surface of the object 1 to be measured, and the temperature measurement sensor 11a was given a constant power for 5 seconds to generate heat at a predetermined temperature. At this time, the protection heat source sensor 11b also generates heat in the same manner as the temperature measurement sensor 11a. Thereafter, the temperature change of the surface of the DUT 1 was measured by the temperature measurement sensor 11a, and the thermal conductivity was calculated from the temperature decay after the heating. The measurement was repeated 10 times.

温度測定の結果を、図4に示す。図4に示すように、10回の測定値がほとんど重なっており、再現性が高く、非常に高い精度で温度測定ができていることが確認された。また、図4から算出される熱伝導率は、0.596±0.0056 W/(m・K)であり、既知の水の熱伝導率の約0.60 W/(m・K)と非常に良く一致していることが確認された。   The results of temperature measurement are shown in FIG. As shown in FIG. 4, it was confirmed that the measurement values of 10 times almost overlapped, the reproducibility was high, and the temperature could be measured with very high accuracy. The thermal conductivity calculated from Fig. 4 is 0.596 ± 0.0056 W / (m · K), which is in good agreement with the known thermal conductivity of about 0.60 W / (m · K). It was confirmed that

このように、温度測定装置10(熱伝導率測定装置)によれば、被測定物1の加熱と温度測定とを1台で行うことができるため、被測定物1を加熱したときの熱応答を容易に測定することができ、被測定物1の熱物性を高精度かつ高確度で測定することができるといえる。今回使用した熱パルス減衰法を行う際には、従来はリード線14等への熱損失を考慮して、サーミスタ等の熱源を被測定物1に埋め込んでいたが、温度測定装置(熱伝導率測定装置)10によれば、熱損失を考慮する必要も、熱源を埋め込む必要もなく、非侵襲で、高精度かつ高確度に熱伝導率を測定することができる。   Thus, according to the temperature measuring device 10 (thermal conductivity measuring device), the heating of the DUT 1 and the temperature measurement can be performed by one unit, and therefore the thermal response when the DUT 1 is heated. It can be said that the thermophysical properties of the DUT 1 can be measured with high accuracy and high accuracy. When performing the heat pulse attenuation method used this time, conventionally, a heat source such as a thermistor was embedded in the DUT 1 in consideration of heat loss to the lead wire 14 or the like, but a temperature measuring device (thermal conductivity) According to the measuring device 10, it is not necessary to consider heat loss or to embed a heat source, and it is possible to measure the thermal conductivity with high accuracy and high accuracy in a non-invasive manner.

[悪性黒色腫の早期発見への応用]
悪性黒色腫は、皮膚疾患の中で最も死亡率が高いことが知られている。しかし、手術によって腫瘍を適切に取り除くことができれば、五年後の生存率は100%に近くなるため、早期発見・早期治療が非常に重要である。従来、黒子との識別は、一般的にデルマスコピーと呼ばれる拡大鏡を使用して、腫瘍の色や形状に基づいて行っていたが、皮膚科医の勘や経験によって診断率が大きく異なるため、定量的な診断手法が求められている。
[Application to early detection of malignant melanoma]
Malignant melanoma is known to have the highest mortality among skin diseases. However, if the tumor can be removed properly by surgery, the survival rate after five years will be close to 100%, so early detection and treatment are very important. Conventionally, the identification from Kuroko was performed based on the color and shape of the tumor using a magnifying glass commonly called Delmascopy, but the diagnosis rate varies greatly depending on the intuition and experience of the dermatologist. There is a need for quantitative diagnostic techniques.

温度測定装置10は、非侵襲的かつ正確に物体の温度および熱物性を計測することができるため、健常な皮膚の熱物性と悪性黒色腫の熱物性との差異を温度測定装置10で測定することにより、悪性黒色腫の早期診断を行うことができると考えられる。そこで、温度測定装置10により悪性黒色腫の早期診断が可能か否かを、二次元軸対称熱伝導解析を用いて検証した。   Since the temperature measuring device 10 can measure the temperature and thermophysical property of an object noninvasively and accurately, the temperature measuring device 10 measures the difference between the thermophysical property of healthy skin and the thermophysical property of malignant melanoma. Therefore, it is considered that early diagnosis of malignant melanoma can be performed. Therefore, whether or not early diagnosis of malignant melanoma is possible with the temperature measuring device 10 was verified using a two-dimensional axisymmetric heat conduction analysis.

図5に、検証に用いた二次元軸対称数値計算モデルを示す。このモデルの左上の皮膚表面に、温度測定装置10の温度測定用センサ11aのサーミスタが接触している。図5に示すモデルは、表皮、真皮乳頭層、真皮網状層、脂肪層、筋肉層の5層構造とし、真皮乳頭層に悪性黒色腫2が存在しているものと仮定している。また、悪性黒色腫2の進行の影響を考慮するために、図6に示すように、進行度(Early stage, Clark level 2, Clark level 3, Clark level 4)毎に腫瘍の寸法を変えて、それぞれの場合についてモデル計算を行った。   FIG. 5 shows a two-dimensional axisymmetric numerical calculation model used for verification. The thermistor of the temperature measuring sensor 11a of the temperature measuring device 10 is in contact with the upper left skin surface of this model. The model shown in FIG. 5 has a five-layer structure of epidermis, dermal papilla layer, dermal reticulate layer, fat layer, and muscle layer, and it is assumed that malignant melanoma 2 exists in the dermal papilla layer. In addition, in order to consider the effect of progression of malignant melanoma 2, as shown in FIG. 6, the size of the tumor is changed for each degree of progression (Early stage, Clark level 2, Clark level 3, Clark level 4), Model calculations were performed for each case.

モデル計算は、非特許文献1に記載の方法により行った。すなわち、計算では、まず皮膚表面に第3種境界条件を与えた際の定常計算を行い、生体内初期温度分布を決定した。その後、温度測定装置10の温度測定用センサ11aに一様な発熱量をパルス的に5秒間与えた時の温度上昇および加熱後5秒間の温度減衰を計算し、それらの情報から見かけの熱伝導率を決定した。   The model calculation was performed by the method described in Non-Patent Document 1. That is, in the calculation, first, steady calculation was performed when the third kind boundary condition was given to the skin surface, and the in vivo initial temperature distribution was determined. Thereafter, the temperature rise when the uniform heat generation amount is given to the temperature measurement sensor 11a of the temperature measurement device 10 in a pulsed manner for 5 seconds and the temperature decay for 5 seconds after the heating are calculated, and the apparent heat conduction is calculated from the information. The rate was determined.

モデル計算の結果を、図7に示す。図7には、悪性黒色腫2がない健常な皮膚の場合(悪性黒色腫の体積がゼロのとき)の計算結果も示している。図7に示すように、悪性黒色腫2の体積が大きくなるほど、見かけの熱伝導率が大きくなっており、見かけの熱伝導率と腫瘍体積との間に正の相関があることが確認された。悪性黒色腫2の体積が大きくなるほど、腫瘍の進行が進み、危険度が増すことが知られていることから、温度測定装置10を用いて悪性黒色腫2の熱伝導率を測定することにより、悪性黒色腫2の診断が可能になるものと考えられる。   The result of the model calculation is shown in FIG. FIG. 7 also shows the calculation results for healthy skin without malignant melanoma 2 (when the volume of malignant melanoma is zero). As shown in FIG. 7, the larger the volume of malignant melanoma 2, the larger the apparent thermal conductivity, and it was confirmed that there is a positive correlation between the apparent thermal conductivity and the tumor volume. . It is known that as the volume of malignant melanoma 2 increases, the progression of the tumor advances and the risk increases, so by measuring the thermal conductivity of malignant melanoma 2 using the temperature measuring device 10, It is considered that malignant melanoma 2 can be diagnosed.

本発明に係る温度測定装置は、体温や物質の表面温度などの測定以外にも、熱伝導率測定装置として利用可能である。また、流速計、風速計、半導体の検査装置、食品の品質管理装置、悪性黒色腫などの疾患の診断装置などとしても利用することもできる。   The temperature measuring device according to the present invention can be used as a thermal conductivity measuring device in addition to measuring body temperature, surface temperature of a substance, and the like. It can also be used as an anemometer, anemometer, semiconductor inspection device, food quality control device, diagnosis device for diseases such as malignant melanoma, and the like.

1 被測定物
2 悪性黒色腫
10 温度測定装置
11a 温度測定用センサ
11b 保護熱源センサ
12 チューブ
13 制御手段
14 リード線
DESCRIPTION OF SYMBOLS 1 Measured object 2 Malignant melanoma 10 Temperature measuring device 11a Sensor for temperature measurement 11b Protection heat source sensor 12 Tube 13 Control means 14 Lead wire

Claims (4)

温度に応じて所定の物理量が変化し、前記物理量の値に基づいて温度測定可能、かつ前記物理量を変化させることにより対応する温度で発熱可能に構成された2つの同じ発熱温度センサと、
各発熱温度センサに接続された制御手段とを有し、
一方の発熱温度センサは、被測定物の表面に接触させて温度を測定可能に設けられ、
他方の発熱温度センサは、前記一方の発熱温度センサとの間で熱を交換可能に、前記一方の発熱温度センサに近接または接触して設けられ、
前記制御手段は、前記一方の発熱温度センサで温度を測定するとき、前記一方の発熱温度センサの前記物理量と等しくなるよう、前記他方の発熱温度センサの前記物理量を制御可能に設けられていることを
特徴とする温度測定装置。
Two identical heat generation temperature sensors configured to change a predetermined physical quantity according to temperature, measure temperature based on the value of the physical quantity, and generate heat at a corresponding temperature by changing the physical quantity;
Control means connected to each exothermic temperature sensor,
One exothermic temperature sensor is provided so that the temperature can be measured by contacting the surface of the object to be measured.
The other exothermic temperature sensor is provided close to or in contact with the one exothermic temperature sensor so that heat can be exchanged with the one exothermic temperature sensor,
The control means is provided so as to be able to control the physical quantity of the other exothermic temperature sensor so as to be equal to the physical quantity of the one exothermic temperature sensor when the temperature is measured by the one exothermic temperature sensor. A temperature measuring device characterized by
前記2つの発熱温度センサは、サーミスタまたは白金測温抵抗体から成り、
前記物理量は電気抵抗から成ることを
特徴とする請求項1記載の温度測定装置。
The two exothermic temperature sensors are composed of a thermistor or a platinum resistance temperature detector,
The temperature measuring device according to claim 1, wherein the physical quantity includes an electrical resistance.
請求項1または2記載の温度測定装置を有し、
前記制御手段は、前記一方の発熱温度センサを所定の温度で発熱させるよう、前記一方の発熱温度センサの前記物理量を制御可能に設けられていることを
特徴とする熱伝導率測定装置。
A temperature measuring device according to claim 1 or 2,
The thermal conductivity measuring device, wherein the control means is provided so as to be able to control the physical quantity of the one exothermic temperature sensor so as to cause the one exothermic temperature sensor to generate heat at a predetermined temperature.
請求項3記載の熱伝導率測定装置の前記一方の発熱温度センサを前記被測定物の表面に接触させ、前記制御手段により前記一方の発熱温度センサを前記所定の温度で発熱させた後、前記一方の発熱温度センサで前記被測定物の表面の温度変化を測定することを特徴とする熱伝導率測定方法。


The one exothermic temperature sensor of the thermal conductivity measuring device according to claim 3 is brought into contact with the surface of the object to be measured, and after the one exothermic temperature sensor is caused to generate heat at the predetermined temperature by the control means, A method of measuring thermal conductivity, wherein the temperature change of the surface of the object to be measured is measured with one exothermic temperature sensor.


JP2015103156A 2015-05-20 2015-05-20 Temperature measuring device, thermal conductivity measuring device and thermal conductivity measuring method Pending JP2016217885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015103156A JP2016217885A (en) 2015-05-20 2015-05-20 Temperature measuring device, thermal conductivity measuring device and thermal conductivity measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015103156A JP2016217885A (en) 2015-05-20 2015-05-20 Temperature measuring device, thermal conductivity measuring device and thermal conductivity measuring method

Publications (1)

Publication Number Publication Date
JP2016217885A true JP2016217885A (en) 2016-12-22

Family

ID=57578525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015103156A Pending JP2016217885A (en) 2015-05-20 2015-05-20 Temperature measuring device, thermal conductivity measuring device and thermal conductivity measuring method

Country Status (1)

Country Link
JP (1) JP2016217885A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022126749A (en) * 2020-06-23 2022-08-30 Semitec株式会社 Device and method for measuring thermal conductivity
DE112022000702T5 (en) 2021-01-19 2023-11-09 Hirosaki University TEMPERATURE MEASURING DEVICE, THERMOMETER, TEMPERATURE MEASURING METHOD AND TEMPERATURE DAMPING MEASUREMENT METHOD

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022126749A (en) * 2020-06-23 2022-08-30 Semitec株式会社 Device and method for measuring thermal conductivity
JP7282238B2 (en) 2020-06-23 2023-05-26 Semitec株式会社 Thermal conductivity measuring device and thermal conductivity measuring method
DE112022000702T5 (en) 2021-01-19 2023-11-09 Hirosaki University TEMPERATURE MEASURING DEVICE, THERMOMETER, TEMPERATURE MEASURING METHOD AND TEMPERATURE DAMPING MEASUREMENT METHOD

Similar Documents

Publication Publication Date Title
JP4751386B2 (en) Temperature measuring device
KR102630649B1 (en) Apparatus, systems and methods for non-invasive thermal irradiation
JP3935915B2 (en) Method of operating high-speed precision temperature measuring device and human body temperature measuring system
CN108431566A (en) The method for predicting the equilibrium temperature of heat flow transducer
US20180008149A1 (en) Systems and Methods of Body Temperature Measurement
JP6487932B2 (en) Heat sink parameter determination device
SE532142C2 (en) Device for determining a thermal property of a tissue
JP2022507934A (en) Core body temperature sensor system based on flux measurement
KR101988097B1 (en) Thin Film Type Array For Temperature Measurement
CN112739279A (en) Thermal resistance type heater
Jalali et al. Simultaneous estimation of controllable parameters in a living tissue during thermal therapy
Okabe et al. Development of a guard-heated thermistor probe for the accurate measurement of surface temperature
JP2016217885A (en) Temperature measuring device, thermal conductivity measuring device and thermal conductivity measuring method
SE532140C2 (en) Device for positioning implantable leads
JP7282238B2 (en) Thermal conductivity measuring device and thermal conductivity measuring method
JP2022188820A (en) Method for measuring depth temperature and depth thermometer
JP7157103B2 (en) Temperature measuring device, temperature measuring method and temperature decay measuring method
Nagata et al. Heat transfer analysis for peripheral blood flow measurement system
Hjertaker et al. A thermometry system for quality assurance and documentation of whole body hyperthermia procedures
Matsunaga et al. In-vivo Experiment Using a Miniaturized Probe of a Core Body Thermometer for Convection Changes
Tangwongsan et al. In vitro calibration of a system for measurement of in vivo convective heat transfer coefficient in animals
Husain et al. Development of Test Rig System for Calibration of Temperature Sensing Fabric
dos Santos et al. An instrument to measure the heat convection coefficient on the endocardial surface
Ersen Temperature elevations due to NIR exposure in the brain tissue
Mikheev A device for metrological support of medical techniques for diagnostic contact thermography