JP2016217688A - Underground heat exchanger - Google Patents

Underground heat exchanger Download PDF

Info

Publication number
JP2016217688A
JP2016217688A JP2015117846A JP2015117846A JP2016217688A JP 2016217688 A JP2016217688 A JP 2016217688A JP 2015117846 A JP2015117846 A JP 2015117846A JP 2015117846 A JP2015117846 A JP 2015117846A JP 2016217688 A JP2016217688 A JP 2016217688A
Authority
JP
Japan
Prior art keywords
lining material
heat exchanger
hole
underground heat
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015117846A
Other languages
Japanese (ja)
Inventor
悟司 安本
Satoshi Yasumoto
悟司 安本
輝幸 福原
Teruyuki Fukuhara
輝幸 福原
寛章 寺▲崎▼
Hiroaki Terasaki
寛章 寺▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ECO PLANNER KK
Original Assignee
ECO PLANNER KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ECO PLANNER KK filed Critical ECO PLANNER KK
Priority to JP2015117846A priority Critical patent/JP2016217688A/en
Publication of JP2016217688A publication Critical patent/JP2016217688A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/30Geothermal collectors using underground reservoirs for accumulating working fluids or intermediate fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • F28F21/062Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material the heat-exchange apparatus employing tubular conduits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve heat collection efficiency of a circulation type underground heat utilization facility, reduce installation cost and maintenance and to enable this invention to be adapted for a high-capacity heat exchanging operation.SOLUTION: A tubular lining member with its extremity end being closed is inserted into a hole drilled in the ground, hardened under a state in which it is closely contacted with concave or convex peripheral surface of an excavation hole to make the excavation hole into a heat exchanger.SELECTED DRAWING: Figure 1

Description

本発明は、地中熱利用のため地中掘削した孔に水や熱交換媒体を循環させ、地中熱を有効に利用する地中熱交換器の構造に関するものである。  The present invention relates to a structure of a geothermal heat exchanger in which water and a heat exchange medium are circulated through a hole excavated underground for the use of geothermal heat and the geothermal heat is effectively utilized.

地中熱は天然資源を直接利用するものであるから環境にやさしく経済的であるという利点がある一方、必要な熱量を得るためには、深さ数十mから百mにも達する孔を地中に掘削し、多数の地中熱交換装置を埋設しなければならず、設置コストが極めて高い。この問題を解決するためには、熱交換装置自体のコストを削減するとともに地中熱交換装置の採熱効率を高めることが必要である。  While geothermal heat uses natural resources directly, it has the advantage of being environmentally friendly and economical. On the other hand, in order to obtain the required heat, a hole with a depth of several tens to hundreds of meters can be formed in the ground. It has to be excavated and a large number of underground heat exchange devices must be buried, and the installation cost is extremely high. In order to solve this problem, it is necessary to reduce the cost of the heat exchange device itself and increase the heat collection efficiency of the underground heat exchange device.

従来における循環型地中熱利用設備として、例えば垂直式の地中熱交換装置は、地中に縦孔を掘削し、この縦孔内に管材を挿入し、縦孔とこの管材との間隙に埋戻し材を充填した構造とするものがある。
挿入された管材は、掘削孔の最深部でU字型に曲げられ地上に戻る。管材を通る熱交換液は、その間の地熱を採取し地上に運ばれる。このU字菅を複数本埋設する方法もある。
As a conventional circulating type geothermal heat utilization equipment, for example, a vertical type underground heat exchange device excavates a vertical hole in the ground, inserts a pipe material into the vertical hole, and inserts into the gap between the vertical hole and the pipe material. Some have a structure filled with backfill material.
The inserted pipe is bent into a U shape at the deepest part of the excavation hole and returned to the ground. The heat exchange liquid that passes through the pipe material collects the geothermal heat and transports it to the ground. There is also a method of embedding a plurality of U-shaped ridges.

この方法では、地下でU字型に曲げられた往復菅は、地中で互いに近接しているため、地下で採熱して上昇する熱交換液の熱量の一部が、地上で放熱して地下へ下降する低温の戻り菅の液体へと移動してしまい非効率である。地上の温度が高い場合には、地下で放熱して上昇する熱交換液が、地上で加熱されて地下へ下降する高温の戻り菅の熱の一部を吸収してしまう。  In this method, the reciprocating rods bent into a U-shape underground are close to each other in the ground, and therefore, a part of the heat quantity of the heat exchange liquid that rises by collecting heat in the underground is dissipated on the ground. It is inefficient because it moves to the low-temperature return soot that descends. When the temperature on the ground is high, the heat exchange liquid that radiates and rises underground absorbs part of the heat of the high-temperature return rod that is heated on the ground and descends underground.

また、熱交換液が地中熱を採取、或いは地中へ放熱するための面積は、熱交換液を運ぶ菅の外径に限定されてしまう。  In addition, the area for the heat exchange liquid to collect ground heat or to dissipate heat to the ground is limited to the outer diameter of the cage that carries the heat exchange liquid.

そこで、採熱効果を高めるため、地中面との接触を大きくし、さらに地中の熱交換液の容量を大きくする方法が考案されている。
たとえば、地中に埋設した基礎杭の中空部に不凍液等の熱交換液を入れ、前記中空部には取水管と注入管を配管し、前記取水管には送り管を、前記注入管には戻し管をそれぞれ接続し、所定の場所に配管・設置した熱交換部へ上記熱交換液を送り、一循させて基礎杭に戻す熱交換システムがある。
Therefore, in order to enhance the heat collection effect, a method has been devised in which the contact with the underground surface is increased and the capacity of the underground heat exchange liquid is increased.
For example, heat exchange liquid such as antifreeze liquid is put into the hollow part of the foundation pile buried in the ground, a water intake pipe and an injection pipe are connected to the hollow part, a feed pipe is connected to the intake pipe, and a feed pipe is connected to the injection pipe. There is a heat exchange system in which return pipes are connected to each other, the heat exchange liquid is sent to a heat exchange section that is piped and installed at a predetermined place, and returned to the foundation pile by circulation.

文献1Reference 1

実開平05−017429Japanese Utility Model 05-05429

又、同軸式と呼ばれるものが考案されている。これは、地中と埋め戻し材を介して接している外管と、その外管内に配設された内管の同軸2重管により構成される。
地上から循環回収された熱交換液は、内管内を通って地下深くまで下降する。そして、最下部で反転し、外管と内管との隙間を通って、地中との間で熱交換を行いながら地上に戻る。あるいは、その逆の経路をとる場合もある。地上では、地中熱交換器から排出された熱交換液が、地上の熱交換部に接続される。ここで熱交換を終えて排出された熱交換液は、再び地中熱交換器へと戻される。
A so-called coaxial type has been devised. This is composed of an outer tube that is in contact with the ground via a backfill material, and a coaxial double tube that is an inner tube disposed in the outer tube.
The heat exchange liquid circulated and recovered from the ground descends deeply underground through the inner pipe. And it inverts in the lowest part, returns to the ground, exchanging heat with the underground through the gap between the outer tube and the inner tube. Alternatively, the reverse path may be taken. On the ground, the heat exchange liquid discharged from the underground heat exchanger is connected to the ground heat exchange section. Here, the heat exchange liquid discharged after finishing the heat exchange is returned to the underground heat exchanger again.

そして、外管と内管との隙間を流れる熱交換液が外管から効率的に採熱できるようにするためには、熱交換液の流れを乱流にさせることが必要である。このために、外管の内径に対する内管の外径の比を0.70以上0.95以下にし、さらに外管の内周面及び又は内管の外周面に突起物を設けて表面を粗くしたものがある。  Then, in order to allow the heat exchange liquid flowing through the gap between the outer pipe and the inner pipe to efficiently collect heat from the outer pipe, it is necessary to make the flow of the heat exchange liquid turbulent. For this purpose, the ratio of the outer diameter of the inner tube to the inner diameter of the outer tube is set to 0.70 or more and 0.95 or less, and projections are provided on the inner peripheral surface of the outer tube and / or the outer peripheral surface of the inner tube to roughen the surface. There is what I did.

文献2Reference 2

特開2004−309124JP 2004-309124 A

しかしながら、前記文献1乃至文献2に示された地中熱交換装置では、金属構造の場合、熱伝導効果は高いが、高コストである。また外内管の外径を大きくした場合、コストや採熱効果を考慮すると外管は継合わせ塗装構造となり、そのメンテナンスを行うことが必要で、装置の一部が破損した場合、大きな効率低下を招くか、埋設した管を抜き取るなど大掛かりな補修が必要であった。
鉄鋼構造の場合必ず腐食が発生し、寿命も短い。
However, in the underground heat exchange apparatus shown in the above-mentioned documents 1 and 2, in the case of a metal structure, the heat conduction effect is high, but the cost is high. In addition, when the outer diameter of the outer tube is increased, the outer tube has a joint coating structure in consideration of cost and heat collection effect, and it is necessary to perform maintenance on it. Large-scale repairs such as removing the buried pipes were necessary.
In the case of steel structures, corrosion always occurs and the service life is short.

また、前記文献1乃至文献2に示された地中熱交換装置で、コンクリート構造の場合、コンクリート基礎杭の中空部に不凍液等の熱交換液が循環しているため、コンクリートに含まれるカルシウム分が液と反応して、炭酸カルシウムの結晶を析出する。この結晶が配管内に付着するため、頻繁に除去しなければならない。そのためのメンテナンスコストが高く、またしばしば管内が詰まって故障が発生する。  Further, in the underground heat exchange device shown in the above-mentioned literatures 1 and 2, in the case of a concrete structure, since the heat exchange liquid such as antifreeze liquid circulates in the hollow portion of the concrete foundation pile, the calcium content contained in the concrete is Reacts with the liquid to precipitate calcium carbonate crystals. Since this crystal adheres to the inside of the pipe, it must be frequently removed. Therefore, the maintenance cost is high, and the inside of the pipe is often clogged, resulting in a failure.

金属の破損による漏れや炭酸カルシウムの結晶析出を防ぐため、杭の中空部に塗装を施すこともあるが、コストが増大するだけでなく、剥離やひび割れが発生するなど信頼性も低い。  In order to prevent leakage due to metal breakage and precipitation of calcium carbonate crystals, the hollow portion of the pile may be coated, but not only the cost increases, but also the reliability is low, such as peeling and cracking.

前記課題を解決するため、本発明は以下の如き手段を採用する。
即ち本発明に係る地中熱交換器は、地中に掘削した孔の中に、先端を閉じた管状のライニング材が挿入されており、前記ライニング材は掘削孔の周面の凹凸形状に密着した状態で硬化していることを特徴とするものである。
In order to solve the above problems, the present invention employs the following means.
That is, in the underground heat exchanger according to the present invention, a tubular lining material having a closed tip is inserted into a hole excavated in the ground, and the lining material is in close contact with the uneven shape of the peripheral surface of the excavation hole. It is characterized by being cured in the state.

前記地中熱交換器の一形態として、掘削した孔の中に挿入されている管状のライニング材には熱硬化性樹脂が含浸されていることを特徴とするものである。  As one form of the underground heat exchanger, the tubular lining material inserted into the excavated hole is impregnated with a thermosetting resin.

別な形態での地中熱交換器として、掘削した孔の中に挿入されている管状のライニング材には紫外線硬化性樹脂が含浸されていることを特徴とするものである。  As an underground heat exchanger in another form, the tubular lining material inserted into the excavated hole is impregnated with an ultraviolet curable resin.

さらに、別な形態での地中熱交換器として、掘削した孔の中に挿入されている管状のライニング材には継時性硬化物質が含浸されていることを特徴とするものである。  Furthermore, as an underground heat exchanger in another form, a tubular lining material inserted into the excavated hole is impregnated with a time-hardening material.

前記いずれかに記載の地中熱交換器の活用形態は、中空部には水や不凍液等の熱交換液が保たれ、また前記中空部には取水管と注入管が設置され、前記取水菅及び前記注入菅は、所定の場所に配管・設置した熱交換部と接続されていることを特徴とするものである。  The utilization form of the underground heat exchanger according to any one of the above is such that a heat exchange liquid such as water or antifreeze is maintained in the hollow part, and a water intake pipe and an injection pipe are installed in the hollow part. And the said pouring bowl is connected with the heat exchange part installed and installed in the predetermined place, It is characterized by the above-mentioned.

本発明に係る地中熱交換器の施工方法は、地中に掘削した孔の中に、先端を閉じた管状のライニング材を掘削孔に挿入し、圧力を加えた液体を注入してライニング材を膨張させ、掘削孔の凹凸形状の周面に密着した状態に保ったまま、ライニング材を硬化させ、掘削孔をライニングすることで熱交換器にすることを特徴とするものである。  In the construction method of the underground heat exchanger according to the present invention, a tubular lining material having a closed end is inserted into a hole excavated in the ground, and a liquid under pressure is injected into the lining material. Is expanded, and the lining material is cured while being kept in close contact with the uneven surface of the excavation hole, and the excavation hole is lined to form a heat exchanger.

前記地中熱交換器の施工法の一形態として、前記ライニング材には熱硬化性樹脂が含浸されており、前記ライニング材に挿入されたパイプとともに掘削孔に挿入し、パイプを通して圧力を加えた液体を注入しライニング材を膨張させ、掘削孔の凹凸形状の周面に密着した状態に保ったまま、前記パイプを通して温水を注入してライニング材に接触させ、前記ライニング材に含浸された熱硬化性樹脂を硬化させ、掘削孔をライニングすることで熱交換器とすることを特徴とするものである。  As one form of the construction method of the underground heat exchanger, the lining material is impregnated with a thermosetting resin, inserted into the excavation hole together with the pipe inserted into the lining material, and pressure is applied through the pipe. While inflating the lining material by injecting liquid and keeping in close contact with the concave and convex peripheral surface of the excavation hole, hot water is injected through the pipe to contact the lining material, and the thermosetting impregnated in the lining material The heat-resistant resin is cured and the excavation hole is lined to form a heat exchanger.

異なる形態での前記地中熱交換器の施工法の一形態として、前記ライニング材には熱硬化性樹脂が含浸されており、また、前記ライニング材は挿入される前に裏返しされており、掘削孔の入口部孔周面に裏返されたライニング材の口を表に返して密着させ、圧力を加えた液体を注入しライニング材を膨張させ、掘削孔の凹凸形状の周面に密着させながら、表に返しながら掘削孔上部から順次挿入し、前記ライニング材の閉じられた先端部を掘削孔の最深部まで到達させ、中に挿入したパイプを通して温水を注入してライニング材に接触させ、前記ライニング材に含浸された熱硬化性樹脂を硬化させ、掘削孔をライニングすることで掘削孔を熱交換器にすることを特徴とするものである。  As one form of construction method of the underground heat exchanger in different forms, the lining material is impregnated with thermosetting resin, and the lining material is turned over before being inserted, and excavation The mouth of the lining material turned upside down on the peripheral surface of the hole at the entrance of the hole is brought into close contact with the surface, injected with liquid under pressure to expand the lining material, and in close contact with the uneven surface of the drilling hole, Inserting from the top of the drilling hole sequentially while returning to the table, let the closed tip of the lining material reach the deepest part of the drilling hole, inject hot water through the pipe inserted into it, contact the lining material, the lining The thermosetting resin impregnated in the material is cured, and the excavation hole is lined to make the excavation hole a heat exchanger.

さらに異なる形態での地中熱交換器として、地中に挿入された中空杭の中空部に、先端を閉じた管状のライニング材が挿入されており、前記ライニング材は前記中空杭の内周面に密着した状態で硬化していることを特徴とするものである。  Furthermore, as an underground heat exchanger in a different form, a tubular lining material having a closed tip is inserted into a hollow portion of a hollow pile inserted into the ground, and the lining material is an inner peripheral surface of the hollow pile. It hardens | cures in the state closely_contact | adhered to.

本発明によるときは、熱交換液を蓄える中空部の形成は、従来の鋼管あるいはコンクリート製の杭を地中に埋め込む代わりに、地中に掘削した孔の中に、熱や紫外線又は継時硬化性樹脂を含浸させた管状のライニング材を挿入し、これを膨張させて掘削孔の凹凸形状の周面に密着した状態で、ライニング材に含浸された硬化性樹脂を硬化させ、掘削孔をライニングする。  According to the present invention, the formation of the hollow portion for storing the heat exchange liquid can be achieved by using heat, ultraviolet rays, or time hardening in a hole excavated in the ground, instead of embedding a conventional steel pipe or concrete pile in the ground. Insert a tubular lining material impregnated with a porous resin, expand it, and in close contact with the peripheral surface of the concave and convex shape of the drilling hole, cure the curable resin impregnated in the lining material and line the drilling hole To do.

あるいは、熱交換液を蓄える中空部の形成は、コンクリート製又は金属製の中空杭を地中に挿入し、前記中空杭に先端を閉じた管状のライニング材を挿入し、前記ライニング材を前記中空杭の内周面に密着した状態で硬化させ、中空杭の中空部をライニングする。  Alternatively, the hollow part for storing the heat exchange liquid is formed by inserting a hollow pile made of concrete or metal into the ground, inserting a tubular lining material with a closed end into the hollow pile, and inserting the lining material into the hollow It hardens | cures in the state closely_contact | adhered to the internal peripheral surface of a pile, and linings the hollow part of a hollow pile.

前記いずれかの中空部に、地上の熱交換部と接続する注入管と取水菅を設置する。
地上の融雪パイプなどの熱交換部から循環された熱交換液は、前記注入管を通って地中熱交換孔の最下部に達し、前記地中熱交換器の中空部に注入される。注入された熱交換液は、地上で熱交換されているため地中より低温である。低温の前記熱交換液は、前記地中熱交換孔の最下部から地中の温度を吸収しながら上部の前記取水菅口に達する。
In any one of the hollow portions, an injection pipe and a water intake are connected to the ground heat exchange unit.
The heat exchange liquid circulated from the heat exchange part such as the snowmelt pipe on the ground reaches the lowest part of the underground heat exchange hole through the injection pipe and is injected into the hollow part of the underground heat exchanger. The injected heat exchange liquid has a lower temperature than the ground because heat is exchanged on the ground. The low-temperature heat exchange liquid reaches the upper intake port while absorbing the underground temperature from the lowermost part of the underground heat exchange hole.

中空部の内面は、硬化したライニング材が、掘削孔の凹凸形状に形成されているため、上昇する熱交換液の流れは乱流になり、地中熱を効率的に採取する。  Since the hardened lining material is formed in the concave / convex shape of the excavation hole on the inner surface of the hollow portion, the flow of the rising heat exchange liquid becomes a turbulent flow, and the underground heat is efficiently collected.

この方法によれば、熱交換液を保持する中空部は、硬化性の樹脂で構成され、鋼管やコンクリート杭を埋設するより低コストで施工でき、溶接や塗装等のメンテナンスを行うこともなくなる。  According to this method, the hollow portion holding the heat exchange liquid is made of a curable resin, and can be constructed at a lower cost than embedding a steel pipe or a concrete pile, and maintenance such as welding and painting is not performed.

またコンクリートに接することがないため、炭酸カルシウムの結晶を析出することがなく、管内が詰まるなどのトラブルが解消され、メンテナンスコストの削減がはかれる。  Further, since it does not come into contact with concrete, calcium carbonate crystals are not precipitated, and troubles such as clogging in the pipe are eliminated, and maintenance costs can be reduced.

さらに、地中熱交換器を施工するときには掘削孔には地下水が充満しているが、ライニング材をライニング材に挿入されたパイプとともに掘削孔に挿入し、パイプを通して圧力を加えた液体を注入することで、前記掘削孔内の地下水圧に打ち勝って、容易にライニング材を膨張させ孔周面に密着させることができる。  In addition, when the underground heat exchanger is installed, the excavation hole is filled with groundwater, but the lining material is inserted into the excavation hole together with the pipe inserted into the lining material, and a pressurized liquid is injected through the pipe. Thus, the groundwater pressure in the excavation hole can be overcome and the lining material can be easily expanded and brought into close contact with the peripheral surface of the hole.

以下、本発明の実施の形態を図面に基づいて説明する。
図1において本発明に係る地中熱交換器(g)は、地中への掘削孔(h)の中に熱硬化性樹脂を含浸させた管状のライニング材(a)を挿入膨張させて掘削孔の周面に凹凸状に押圧した状態で、注入管(d)を通し温水を注入し、ライニング材(a)に接触させて硬化させ、凹凸のあるライニング面(i)を形成したものである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In FIG. 1, the underground heat exchanger (g) according to the present invention is excavated by inserting and expanding a tubular lining material (a) impregnated with a thermosetting resin into an underground excavation hole (h). In a state where the peripheral surface of the hole is pressed in a concavo-convex shape, hot water is injected through the injection tube (d), and the lining material (a) is contacted and cured to form an uneven lining surface (i). is there.

図2において、前記地中熱交換器(g)に、地上の熱交換部(e)と接続する注入管(d)と取水菅(c)を設置し、熱交換液(b)を充填する。前記取水菅(c)は、ポンプ(f)を通して、前記熱交換部(e)に接続されている。  In FIG. 2, the underground heat exchanger (g) is provided with an injection pipe (d) and a water intake trough (c) connected to the ground heat exchanger (e), and filled with a heat exchange liquid (b). . The intake trough (c) is connected to the heat exchange part (e) through a pump (f).

運転時の動作説明(図2)
(1)ポンプ(f)が起動し、取水菅(c)から汲み上げられた熱交換液(b)が、熱交換部(e)に送り込まれる。
(2)熱交換部(e)では、地中熱により暖められた熱交換液(b)の熱が放出される。
(3)熱交換部(e)ではたとえば、建物の冷暖房や道路の融雪、凍結防止、ロードクーリングなどを行う。
(4)熱交換部(e)で熱を放出し、冷却した熱交換液(b)は、注入管(d)を通って、地中熱交換器(g)の下部へ到達する。
(5)地中熱交換器(g)の下部に到達した熱交換液(b)は、地中熱によって暖められるとともに上昇し、地中熱交換器(g)の上部に設置してある取水菅(c)の取水口に達する。
(6)熱交換液(b)が地中熱交換器(g)の内部を上昇するときには、凹凸のライニング面(i)などで攪拌されるため、地中熱を効果的に採取することができる。
(7)したがって、取水菅(c)からは、地中で暖められた熱交換液(b)が取水される。
Explanation of operation during operation (Fig. 2)
(1) The pump (f) is activated, and the heat exchange liquid (b) pumped up from the intake tank (c) is sent to the heat exchange section (e).
(2) In the heat exchange part (e), the heat of the heat exchange liquid (b) warmed by the underground heat is released.
(3) In the heat exchanging section (e), for example, cooling / heating of buildings, snow melting on roads, freezing prevention, road cooling, and the like are performed.
(4) The heat exchange liquid (b) that releases heat and is cooled in the heat exchange section (e) passes through the injection pipe (d) and reaches the lower part of the underground heat exchanger (g).
(5) The heat exchange liquid (b) that has reached the lower part of the underground heat exchanger (g) is warmed by the underground heat, rises, and is taken up at the upper part of the underground heat exchanger (g). Reach the water intake of 菅 (c).
(6) When the heat exchange liquid (b) rises in the underground heat exchanger (g), it is stirred by the uneven lining surface (i) and the like, so that the underground heat can be collected effectively. it can.
(7) Therefore, the heat exchange liquid (b) warmed in the ground is taken from the water intake trough (c).

その他の実施例Other examples

本発明は、前記実施の形態で示したものに限定されるものでは決してなく、「特許請求の範囲」の記載内で種々の設計変更が可能であることはいうまでもない。例を挙げれば次のようである。
(1)本発明に係る地中熱交換器は、地表面にほぼ垂直に掘削されているが、所定の深さ垂直掘削した後、地表面に水平方向に掘削する場合もある。
The present invention is by no means limited to that shown in the above-described embodiment, and various design changes can be made within the scope of the claims. An example is as follows.
(1) Although the underground heat exchanger according to the present invention is excavated substantially perpendicularly to the ground surface, it may be excavated in the horizontal direction on the ground surface after excavating perpendicularly to a predetermined depth.

(2)本発明に係る地中熱交換孔は、空調、融雪、ヒートアイランド対策、のみならずあらゆる用途に利用できる。(2) The underground heat exchange hole according to the present invention can be used not only for air conditioning, snow melting, and heat island countermeasures but also for all uses.

本発明の地中熱交換器に係る形態を示す。  The form which concerns on the underground heat exchanger of this invention is shown. 本発明の地中熱交換器に係る最良の実施形態を示す。  The best embodiment concerning the underground heat exchanger of the present invention is shown.

a.ライニング材
b.熱交換液
c.取水菅
d.注入管
e.熱交換部
f.ポンプ
g.地中熱交換器
h.掘削孔
i.ライニング面
a. Lining material b. Heat exchange liquid c. Intake water d. Injection tube e. Heat exchanger f. Pump g. Underground heat exchanger h. Drilling hole i. Lining surface

Claims (9)

地中に掘削した孔の中に、先端を閉じた管状のライニング材が挿入されており、前記ライニング材は掘削孔の凹凸形状の周面に密着した状態で硬化していることを特徴とする地中熱交換器  A tubular lining material with a closed tip is inserted into a hole excavated in the ground, and the lining material is hardened in close contact with the uneven surface of the excavated hole. Underground heat exchanger 請求項1記載の地中熱交換器において、掘削した孔の中に挿入されている管状のライニング材には熱硬化性樹脂が含浸されていることを特徴とする地中熱交換器  The underground heat exchanger according to claim 1, wherein the tubular lining material inserted into the excavated hole is impregnated with a thermosetting resin. 請求項1記載の地中熱交換器において、掘削した孔の中に挿入されている管状のライニング材には紫外線硬化性樹脂が含浸されていることを特徴とする地中熱交換器  2. The underground heat exchanger according to claim 1, wherein the tubular lining material inserted into the excavated hole is impregnated with an ultraviolet curable resin. 請求項1記載の地中熱交換器において、掘削した孔の中に挿入されている管状のライニング材には継時性硬化物質が含浸されていることを特徴とする地中熱交換器  2. The underground heat exchanger according to claim 1, wherein the tubular lining material inserted into the excavated hole is impregnated with a time-hardening substance. 請求項1、2、3、4いずれかに記載の地中熱交換器において、中空部には水や不凍液等の熱交換液が保たれ、また前記中空部には取水管と注入管が設置され、前記取水菅及び前記注入菅は、所定の場所に配管・設置した熱交換部と接続されていることを特徴とする地中熱交換器  5. The underground heat exchanger according to claim 1, wherein a heat exchange liquid such as water or an antifreeze is maintained in the hollow portion, and a water intake pipe and an injection pipe are installed in the hollow portion. The underground heat exchanger is characterized in that the intake trough and the infusion trough are connected to a heat exchanging section that is piped and installed in a predetermined place. 地中に掘削した孔の中に、先端を閉じた管状のライニング材を掘削孔に挿入し、圧力を加えた液体を注入してライニング材を膨張させ、掘削孔の凹凸形状の周面に密着した状態に保ったまま、ライニング材を硬化させ、掘削孔をライニングすることで掘削孔を熱交換器にすることを特徴とする地中熱交換器の施工法  Insert a tubular lining material with a closed tip into the hole drilled into the ground, inject liquid under pressure to expand the lining material, and adhere to the uneven surface of the drill hole The construction method of the underground heat exchanger is characterized by curing the lining material and lining the excavation hole to make the excavation hole into a heat exchanger while keeping it in a maintained state. 請求項6記載の地中熱交換器の施工法において、前記ライニング材には熱硬化性樹脂が含浸されており、前記ライニング材に挿入されたパイプとともに掘削孔に挿入し、パイプを通して圧力を加えた液体を注入しライニング材を膨張させ、掘削孔の凹凸形状の周面に密着した状態に保ったまま、前記パイプを通して温水を注入してライニング材に接触させ、前記ライニング材に含浸された熱硬化性樹脂を硬化させ、掘削孔をライニングすることで掘削孔を熱交換器にすることを特徴とする地中熱交換器の施工法  The construction method of the underground heat exchanger according to claim 6, wherein the lining material is impregnated with a thermosetting resin, inserted into the excavation hole together with the pipe inserted into the lining material, and pressure is applied through the pipe. The lining material is expanded by injecting the liquid, and hot water is injected through the pipe and brought into contact with the lining material while being kept in close contact with the uneven surface of the excavation hole, and the heat impregnated in the lining material Construction method of underground heat exchanger characterized by curing curable resin and lining the excavation hole to make the excavation hole a heat exchanger 請求項6記載の地中熱交換器の施工法において、前記ライニング材には熱硬化性樹脂が含浸されており、また、前記ライニング材は挿入される前に裏返しされており、掘削孔の入口部孔周面に裏返されたライニング材の口を表に返して密着させ、圧力を加えた液体を注入しライニング材を膨張させ、掘削孔の凹凸形状の周面に密着させながら、表に返しながら掘削孔上部から順次挿入し、前記ライニング材の閉じられた先端部を掘削孔の最深部まで到達させ、中に挿入したパイプを通して温水を注入してライニング材に接触させ、前記ライニング材に含浸された熱硬化性樹脂を硬化させ、掘削孔をライニングすることで掘削孔を熱交換器にすることを特徴とする地中熱交換器の施工法  7. The construction method of the underground heat exchanger according to claim 6, wherein the lining material is impregnated with a thermosetting resin, and the lining material is turned over before being inserted, Return the lining material's mouth that is turned over to the perimeter of the perforated hole to the front and close it, inject liquid under pressure to expand the lining material, and bring it back to the front while closely contacting the uneven surface of the drilling hole While inserting from the upper part of the drilling hole in order, the closed tip of the lining material reaches the deepest part of the drilling hole, hot water is injected through the pipe inserted into the lining material, and the lining material is impregnated. Of underground heat exchanger characterized in that the excavated hole is turned into a heat exchanger by curing the cured thermosetting resin and lining the excavated hole 地中に挿入された中空杭の中空部に、先端を閉じた管状のライニング材が挿入されており、前記ライニング材は前記中空杭の内周面に密着した状態で硬化していることを特徴とする地中熱交換器  A tubular lining material having a closed tip is inserted into a hollow portion of a hollow pile inserted into the ground, and the lining material is cured in a state of being in close contact with an inner peripheral surface of the hollow pile. Underground heat exchanger
JP2015117846A 2015-05-25 2015-05-25 Underground heat exchanger Pending JP2016217688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015117846A JP2016217688A (en) 2015-05-25 2015-05-25 Underground heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015117846A JP2016217688A (en) 2015-05-25 2015-05-25 Underground heat exchanger

Publications (1)

Publication Number Publication Date
JP2016217688A true JP2016217688A (en) 2016-12-22

Family

ID=57581986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015117846A Pending JP2016217688A (en) 2015-05-25 2015-05-25 Underground heat exchanger

Country Status (1)

Country Link
JP (1) JP2016217688A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6260977B1 (en) * 2016-10-26 2018-01-17 株式会社エコ・プランナー Ground heat exchange device and method for constructing liquid storage tank for ground heat exchange device
WO2019151289A1 (en) 2017-06-07 2019-08-08 株式会社エコ・プランナー Method for controlling heat exchange device, heat exchange device, water-cooled heat pump heating and cooling device, and water-cooled heat pump device
CN111271122A (en) * 2020-03-25 2020-06-12 上海同岩土木工程科技股份有限公司 Method for monitoring external water pressure of lining

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6260977B1 (en) * 2016-10-26 2018-01-17 株式会社エコ・プランナー Ground heat exchange device and method for constructing liquid storage tank for ground heat exchange device
WO2018079463A1 (en) * 2016-10-26 2018-05-03 株式会社エコ・プランナー Underground heat exchanger
US10871310B2 (en) 2016-10-26 2020-12-22 Eco-Planner Co., Ltd. Underground heat exchanger
WO2019151289A1 (en) 2017-06-07 2019-08-08 株式会社エコ・プランナー Method for controlling heat exchange device, heat exchange device, water-cooled heat pump heating and cooling device, and water-cooled heat pump device
US11493241B2 (en) 2017-06-07 2022-11-08 Eco-Planner Co., Ltd. Method of controlling heat exchange device, heat exchange device, and water-cooled type heat pump device
CN111271122A (en) * 2020-03-25 2020-06-12 上海同岩土木工程科技股份有限公司 Method for monitoring external water pressure of lining

Similar Documents

Publication Publication Date Title
US20090320475A1 (en) System and method of capturing geothermal heat from within a drilled well to generate electricity
US12025350B2 (en) Geothermal system comprising multitube vertically-sealed underground heat-exchanger and method for installing same
CN102808405B (en) PCC (Large Diameter Pipe Pile by using Cast-in-place Concrete) energy pile and manufacturing method thereof
US12000626B2 (en) Geothermal development system and the construction method thereof
JP2016217688A (en) Underground heat exchanger
CN102995627A (en) Geothermal energy collecting pile foundation and construction method thereof
CN100425770C (en) Installation of cooling and melting ice and snow for road surface and bridge road by using underground natural energy resource
KR101299826B1 (en) Depth geothermal system unit
KR20200001038A (en) Semi open type geothemal system
CN105927271A (en) Grouting backfilling system and grouting backfilling method for vertical shafts in vertical heat exchangers
KR101370440B1 (en) Coil type underground heat exchanger construction structure, construction equipment and construction method
KR102000481B1 (en) Greenhouse cooling and heating system
KR101048398B1 (en) Tube type underground heat exchanger
CN201066219Y (en) Down-hole heat exchanger heat pump system
JP5584839B1 (en) Hybrid spiral pile with integrated underground heat collection function
KR101303575B1 (en) Combined type geothermal system and construction method using large aperture punchung
CN107965945B (en) A kind of earth source heat pump
CN204059461U (en) Surface water water source heat pump central air-conditioning system diafiltration water fetching device
JP4859871B2 (en) Buried pipe for heat exchange
CN111237849B (en) Indirect heating device for abandoned mine and method for heating by adopting indirect heating device
KR101696822B1 (en) Binary rankine cycle system
CN208536446U (en) A kind of rock heat exchangers
JP4511624B1 (en) Underground heat storage device construction method, underground heat storage device and underground heat storage method
CN101126562A (en) Ground source heat pump air-conditioning system underground heat-exchanger device
KR20140004459U (en) That the effective depth of groundwater-exchange method using a geothermal system