JP2016217684A - Cooler, cooling device using the same and method for cooling heater element - Google Patents

Cooler, cooling device using the same and method for cooling heater element Download PDF

Info

Publication number
JP2016217684A
JP2016217684A JP2015106716A JP2015106716A JP2016217684A JP 2016217684 A JP2016217684 A JP 2016217684A JP 2015106716 A JP2015106716 A JP 2015106716A JP 2015106716 A JP2015106716 A JP 2015106716A JP 2016217684 A JP2016217684 A JP 2016217684A
Authority
JP
Japan
Prior art keywords
working fluid
porous body
heating element
cooler
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015106716A
Other languages
Japanese (ja)
Inventor
昌司 森
Shoji Mori
昌司 森
成 丸岡
Shigeru Maruoka
成 丸岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama National University NUC
Original Assignee
Yokohama National University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama National University NUC filed Critical Yokohama National University NUC
Priority to JP2015106716A priority Critical patent/JP2016217684A/en
Publication of JP2016217684A publication Critical patent/JP2016217684A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cooler having a simple structure and showing a superior and stable cooling effect.SOLUTION: This invention relates to a boiling system cooler for cooling heater element comprising a container storing operation fluid and a cooling member arranged in the container. The cooling member is arranged to contact with operation fluid and oppositely face against the heater element and including a porous body having operation fluid supplying part for supplying operation fluid to a contact part contacted with the heater element under a capillary phenomenon and a steam discharging pipe for discharging steam generated at the contact part out of the operation fluid.SELECTED DRAWING: Figure 6

Description

本発明は、冷却器及びそれを用いた冷却装置、並びに、発熱体の冷却方法に関し、より詳細には沸騰方式による冷却器及びそれを用いた冷却装置、並びに、発熱体の冷却方法に関するものである。   The present invention relates to a cooler, a cooling device using the same, and a cooling method for a heating element, and more particularly to a boiling-type cooler, a cooling device using the same, and a cooling method for a heating element. is there.

近年、図1に示すような軽水炉の圧力容器において、燃料棒が溶融事故を起こしても、原子炉圧力容器底部を外部から水で冷却してメルトスルーを生じさせない冷却機構が求められており、そのような冷却機構として、沸騰冷却方式によるものが知られている。   In recent years, in a pressure vessel of a light water reactor as shown in FIG. 1, there is a demand for a cooling mechanism that does not cause melt-through by cooling the bottom of the reactor pressure vessel with water from the outside even if a fuel rod causes a melting accident, As such a cooling mechanism, a boiling cooling system is known.

沸騰冷却方式には、プール沸騰方式と、強制流動沸騰方式がある。ここでは、プール沸騰方式による発熱体の一般的な冷却機構について説明する。図2は、従来のプール沸騰方式による冷却器を示している。冷却器は、容器と、容器内に収容された作動流体とを備え、容器は、冷却対象である発熱体との接触部を有する。発熱体において熱が発生し、接触部を通して作動流体に熱が伝わると、接触部の近傍に存在する作動流体が沸騰する。沸騰により蒸気が生じると気液の密度差により接触部に作動流体が供給される。こうして新たに供給された作動流体がさらに蒸発し、発熱体から熱を除去する。プール沸騰方式による冷却器は、強制流動沸騰方式のような液体を循環させるための外部動力源が不要であるため、コンパクト性および省エネルギー性に有利である。   The boiling cooling method includes a pool boiling method and a forced flow boiling method. Here, a general cooling mechanism of the heating element by the pool boiling method will be described. FIG. 2 shows a conventional pool boiling cooler. The cooler includes a container and a working fluid contained in the container, and the container has a contact portion with a heating element to be cooled. When heat is generated in the heating element and the heat is transmitted to the working fluid through the contact portion, the working fluid existing in the vicinity of the contact portion boils. When steam is generated by boiling, the working fluid is supplied to the contact portion due to the density difference between the gas and the liquid. In this way, the newly supplied working fluid is further evaporated, and heat is removed from the heating element. The pool boiling type cooler is advantageous in terms of compactness and energy saving because it does not require an external power source for circulating the liquid as in the forced flow boiling method.

特開2009−139005号公報JP 2009-139005 A

S. G. Kandlikar, M. Shoji, and V. K. Dhir, “Handbook of Phase Change: Boiling and Condensation,” Taylor & Francis, 1999S. G. Kandlikar, M. Shoji, and V. K. Dhir, “Handbook of Phase Change: Boiling and Condensation,” Taylor & Francis, 1999

しかしながら、接触部に大きな熱流束が加えられると、従来のプール沸騰方式による冷却器では問題がある。図3にその様子を示す。熱流束が大きくなるにつれて、作動流体の蒸発量が増加し、接触部が蒸気に覆われ始める。接触部が完全に蒸気に覆われて乾燥状態となり、接触部へ作動流体が供給されなくなると、冷却器の冷却能力は著しく低下する。この状態の熱流束を「限界熱流束」という。   However, when a large heat flux is applied to the contact portion, there is a problem in a conventional pool boiling type cooler. This is shown in FIG. As the heat flux increases, the amount of evaporation of the working fluid increases and the contact portion begins to be covered with steam. When the contact portion is completely covered with steam and becomes dry, and the working fluid is not supplied to the contact portion, the cooling capacity of the cooler is significantly reduced. The heat flux in this state is referred to as “limit heat flux”.

従来のプール沸騰方式による冷却器(非特許文献1参照)に対し、本発明者は、特開2009−139005号公報(特許文献1)において多孔質体を発熱体と冷却容器内の水との間に設けて、多孔質体の毛細管現象により水を発熱体へ供給しつつ、それにより発生した蒸気を容器内の水中へ排出する構造とすることで、簡易な構造で従来の限界熱流束を飛躍的に向上させている。しかしながら、冷却効果をさらに高めた冷却器は、未だ開発の余地がある。   In contrast to a conventional pool boiling type cooler (see Non-Patent Document 1), the present inventor disclosed in Japanese Patent Application Laid-Open No. 2009-139005 (Patent Document 1) that a porous body is made up of a heating element and water in a cooling container. By providing a structure in which water is supplied to the heating element by capillary action of the porous body and the generated steam is discharged into the water in the container, the conventional limit heat flux can be reduced with a simple structure. It has improved dramatically. However, a cooler that further enhances the cooling effect still has room for development.

本発明は、簡易な構造で且つ良好な冷却効果を安定して有する冷却器及びそれを用いた冷却装置、並びに、発熱体の冷却方法を提供することを課題とする。   An object of the present invention is to provide a cooler having a simple structure and stably having a good cooling effect, a cooling device using the cooler, and a heating element cooling method.

本発明者らは研究を重ねたところ、詳細は後述するが、毛細管現象により作動流体を発熱体との接触部に供給する作動流体供給部を備えた多孔質体を、発熱体に対向するように設け、さらに、接触部で発生した蒸気を、作動流体外へ排出する蒸気排出管を設けることで、冷却効果をさらに向上させた冷却器を提供することが可能となることを見出した。   As a result of repeated research, the present inventors have described the details later, but a porous body provided with a working fluid supply unit that supplies a working fluid to a contact portion with the heating element by capillary action is opposed to the heating element. It was also found that it is possible to provide a cooler with a further improved cooling effect by providing a steam discharge pipe for discharging the steam generated at the contact portion to the outside of the working fluid.

すなわち、本発明の一態様は、作動流体を収容する容器、及び、前記容器内に設けられた冷却部材を備えた、発熱体を冷却するための沸騰方式による冷却器であって、前記冷却部材は、前記作動流体と接するように且つ前記発熱体に対向するように設けられ、且つ、毛細管現象により前記作動流体を前記発熱体との接触部に供給する作動流体供給部を備えた多孔質体と、前記接触部で発生した蒸気を、前記作動流体外へ排出する蒸気排出管とを備える冷却器である。   That is, one aspect of the present invention is a boiling-type cooler for cooling a heating element, which includes a container that contains a working fluid, and a cooling member provided in the container, and the cooling member Is a porous body provided with a working fluid supply part which is provided so as to be in contact with the working fluid and opposed to the heating element, and which supplies the working fluid to a contact part with the heating element by capillary action And a steam discharge pipe for discharging the steam generated at the contact portion to the outside of the working fluid.

本発明の一実施形態に係る冷却器では、前記蒸気排出管は、一端が前記発熱体に対向するように設けられ、且つ、他端が前記容器を貫通して容器外へ伸びるように設けられている。   In the cooler according to an embodiment of the present invention, the steam discharge pipe is provided so that one end faces the heating element and the other end extends through the container and extends outside the container. ing.

本発明の別の一実施形態に係る冷却器では、前記蒸気排出管がシリコンチューブで形成されている。   In the cooler according to another embodiment of the present invention, the steam discharge pipe is formed of a silicon tube.

本発明の更に別の一実施形態に係る冷却器では、前記多孔質体がメッシュ構造を有する多孔質層で形成されている。   In the cooler according to another embodiment of the present invention, the porous body is formed of a porous layer having a mesh structure.

本発明の更に別の一実施形態に係る冷却器では、前記多孔質体が金属で形成されている。   In the cooler according to another embodiment of the present invention, the porous body is made of metal.

本発明の更に別の一実施形態に係る冷却器では、前記多孔質体が多孔質ナノ粒子の集合体で形成されている。   In the cooler according to another embodiment of the present invention, the porous body is formed of an aggregate of porous nanoparticles.

本発明の更に別の一実施形態に係る冷却器では、前記多孔質体と、前記発熱体との接触部に隙間領域が形成されている。   In a cooler according to still another embodiment of the present invention, a gap region is formed at a contact portion between the porous body and the heating element.

本発明の別の一態様は、本発明の冷却器と、前記冷却器の容器に接続され、蒸発した作動流体を液化するコンデンサとを備えた冷却装置である。   Another aspect of the present invention is a cooling device including the cooler of the present invention and a condenser connected to a container of the cooler and configured to liquefy evaporated working fluid.

本発明の更に別の一態様は、作動流体を収容した容器の作動流体中に、発熱体を少なくとも部分的に浸漬して発熱体を冷却する沸騰方式による冷却方法において、前記発熱体の作動液体に浸漬された部分の表面に、前記作動流体と接するように且つ前記発熱体に対向するように設けられ、且つ、毛細管現象により前記作動流体を前記発熱体との接触部に供給する作動流体供給部を備えた多孔質体と、前記接触部で発生した蒸気を、前記作動流体外へ排出する蒸気排出管とを備える冷却部材を装着する発熱体の冷却方法である。   According to still another aspect of the present invention, there is provided a cooling method using a boiling method in which a heating element is cooled by at least partially immersing the heating element in a working fluid of a container containing the working fluid. A working fluid supply that is provided on the surface of the portion immersed in the substrate so as to be in contact with the working fluid and to face the heating element, and supplies the working fluid to a contact portion with the heating element by capillary action The heating element cooling method includes mounting a cooling member including a porous body having a portion and a steam discharge pipe for discharging the steam generated at the contact portion to the outside of the working fluid.

本発明によれば、多孔質体の作動流体供給部と接触部で蒸気が発生すると毛細管現象により強制的に液体が接触部に供給されるので、プール沸騰冷却方式とする場合には水等の作動流体を収容する容器(水槽)は、水の流路やポンプ等を設ける必要が無く、単なる水溜を用いることができ、簡易な構造とすることができ、設置コストやランニングコストが安価となる。また、蒸気排出管が、接触部で発生した蒸気を作動流体外へ直接排出するため、接触部において蒸気を迅速に排出することができ、これによって限界熱流束が向上する。
このように、本発明によれば、簡易な構造で且つ良好な冷却効果を安定して有する冷却器及びそれを用いた冷却装置、並びに、発熱体の冷却方法を提供することができる。
According to the present invention, when vapor is generated in the working fluid supply section and the contact section of the porous body, the liquid is forcibly supplied to the contact section by capillary action. The container (water tank) for storing the working fluid does not need to be provided with a water flow path or a pump, can use a simple water reservoir, can have a simple structure, and is low in installation cost and running cost. . Further, since the steam discharge pipe directly discharges the steam generated at the contact portion to the outside of the working fluid, the steam can be quickly discharged at the contact portion, thereby improving the critical heat flux.
As described above, according to the present invention, it is possible to provide a cooler having a simple structure and stably having a good cooling effect, a cooling device using the cooler, and a heating element cooling method.

軽水炉(その一例として沸騰水型原子炉)の圧力容器の模式図である。It is a schematic diagram of the pressure vessel of a light water reactor (an example is a boiling water reactor). 従来のプール沸騰方式による冷却器の模式図である。It is a schematic diagram of the cooler by the conventional pool boiling system. 従来のプール沸騰方式による冷却器の限界熱流束を説明するための図である。It is a figure for demonstrating the limit heat flux of the cooler by the conventional pool boiling system. 本発明の実施形態1に係るプール沸騰方式による冷却器の模式図である。It is a schematic diagram of the cooler by the pool boiling system which concerns on Embodiment 1 of this invention. 多数の矩形状の孔(開孔部)を有するメッシュ構造の多孔質層で構成された多孔質体の平面図である。It is a top view of the porous body comprised by the porous layer of the mesh structure which has many rectangular holes (opening part). 本発明の実施形態2に係るプール沸騰方式による冷却器の模式図である。It is a schematic diagram of the cooler by the pool boiling system which concerns on Embodiment 2 of this invention. 本発明の実施形態3に係るプール沸騰方式による冷却器の模式図である。It is a schematic diagram of the cooler by the pool boiling system which concerns on Embodiment 3 of this invention. 本発明の実施形態4に係る冷却装置である。It is a cooling device concerning Embodiment 4 of the present invention. 実施形態4に係る冷却装置の変形形態である。It is a modification of the cooling device concerning Embodiment 4. 実施例1で用いたプール沸騰実験の実験装置概略図である。1 is a schematic diagram of an experimental apparatus for pool boiling experiments used in Example 1. FIG. 実施例1で用いた毛管力抽出実験の実験装置概略図である。FIG. 2 is a schematic diagram of an experimental apparatus for capillary force extraction experiment used in Example 1; 実施例1で用いたハニカム多孔質体及びその幾何寸法を示した図である。1 is a diagram showing a honeycomb porous body used in Example 1 and its geometric dimensions. FIG. 実施例1で用いたハニカム多孔質体の有効細孔半径及び透過係数測定の測定装置概略図である。1 is a schematic diagram of a measuring device for measuring effective pore radius and permeability coefficient of a honeycomb porous body used in Example 1. FIG. ハニカム多孔質体装着時の伝熱面上の気液の流れを示した概略図である。It is the schematic which showed the flow of the gas-liquid on the heat-transfer surface at the time of honeycomb porous body mounting | wearing. 実施例1で得られた板厚δhとqCHFの関係を示した図である。FIG. 4 is a graph showing the relationship between the plate thickness δh obtained in Example 1 and qCHF. 実施例1で用いた蒸気排出流路内部に直接流入する液供給効果抽出実験の実験装置概略図である。It is an experimental apparatus schematic diagram of a liquid supply effect extraction experiment that flows directly into the vapor discharge flow path used in Example 1. 実施例2における多孔質体内部のドライアウトを検出するために用いた電気回路である。3 is an electric circuit used for detecting dryout inside a porous body in Example 2. FIG. 実施例2におけるバーンアウト前後での銅ブロック内に挿入した電極棒とプール液面の間の抵抗値RTS及び銅ブロック内の温度T1の経時変化を示すグラフである。It is a graph which shows the time-dependent change of resistance value RTS between the electrode rod inserted in the copper block before and after burnout in Example 2, and the pool liquid level, and temperature T1 in the copper block. (a)は実施例2における毛管限界モデルのqCHF試算結果を示すグラフである。(b)は実施例2における毛管限界モデルの多孔質体の外観写真とその矩形状の孔(開孔部)の構造(壁厚δs:0.46mm、板厚δh:1mm、セル幅dg)を示す図である。(A) is a graph which shows the qCHF trial calculation result of the capillary limit model in Example 2. FIG. (B) is a photograph of the appearance of the porous body of the capillary limit model in Example 2 and the structure of the rectangular hole (opening portion) (wall thickness δs: 0.46 mm, plate thickness δh: 1 mm, cell width dg). FIG.

以下、図面を参照して本発明の実施形態を詳細に説明する。
(実施形態1)
図4は、実施形態1に係るプール沸騰方式による冷却器を示している。冷却器は、作動流体を収容する容器、及び、容器内に設けられた冷却部材を備えた、発熱体を冷却するための沸騰方式による冷却器であって、冷却部材は、作動流体と接するように且つ発熱体に対向するように設けられ、且つ、毛細管現象により作動流体を発熱体との接触部に供給する作動流体供給部を備えた多孔質体と、接触部で発生した蒸気を、作動流体外へ排出する蒸気排出管とを備えている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(Embodiment 1)
FIG. 4 shows a cooler using a pool boiling method according to the first embodiment. The cooler is a boiling-type cooler for cooling a heating element, which includes a container for storing a working fluid and a cooling member provided in the container, and the cooling member is in contact with the working fluid. In addition, a porous body provided with a working fluid supply unit that is provided so as to face the heating element and supplies the working fluid to the contact part with the heating element by capillary action, and steam generated at the contact part are operated. And a steam discharge pipe for discharging out of the fluid.

多孔質体は、少なくとも作動流体供給部を有していれば特にその構造は限定されず、例えば、メッシュ構造を有する多孔質層で形成されていてもよい。具体例として、図5に、多数の矩形状の孔(開孔部)を有するメッシュ構造の多孔質層で構成された多孔質体の平面図を示す。多孔質体の孔の形状は、多角形状、円形状、楕円形状等、種々の形状とすることが可能である。   The structure of the porous body is not particularly limited as long as it has at least a working fluid supply section. For example, the porous body may be formed of a porous layer having a mesh structure. As a specific example, FIG. 5 shows a plan view of a porous body composed of a porous layer having a mesh structure having a large number of rectangular holes (opening portions). The shape of the pores of the porous body can be various shapes such as a polygonal shape, a circular shape, and an elliptical shape.

また、多孔質体はコーディライト等のセラミックスで形成してもよく、金属で形成されていてもよく、或いは、多孔質ナノ粒子の集合体で形成されていてもよい。特に、多孔質体が、金属或いは多孔質ナノ粒子の集合体で構成されていると、伝熱面の濡れ性が良好となり、より伝熱面への作動流体の供給性が良好となる。これにより、伝熱面の乾燥領域が生じ難くなり、限界熱流束が小さくなることを防ぐことができる。当該多孔質ナノ粒子の平均粒径は10〜50nmであるのが好ましい。また、当該多孔質ナノ粒子の材料としては、例えば金属、合金、酸化物、窒化物、炭化物、炭素等を用いることができる。多孔質体を多孔質ナノ粒子の集合体で形成する方法としては、例えば、ナノ粒子を拡散させた水溶液を、多孔質体を形成させたい位置である伝熱面上に所定の手段で設け、その状態を保ちながら伝熱面上で加熱により沸騰させる。このようにして多孔質ナノ粒子が沸騰する伝熱面上で析出して集合体を構成し、これが多孔質体となる。多孔質体がナノ粒子の集合体で構成されている場合、粒子間或いは粒子内の多数の細孔が、作動流体供給部を構成している。細孔の周囲の粒子部分が毛細管現象により接触部に作動流体を供給する作動流体供給部として機能する。   Further, the porous body may be formed of ceramics such as cordierite, may be formed of metal, or may be formed of an aggregate of porous nanoparticles. In particular, when the porous body is composed of an aggregate of metals or porous nanoparticles, the wettability of the heat transfer surface is improved, and the supply of the working fluid to the heat transfer surface is improved. Thereby, it becomes difficult to produce the dry area | region of a heat-transfer surface, and it can prevent that a limit heat flux becomes small. The average particle size of the porous nanoparticles is preferably 10 to 50 nm. Moreover, as a material of the said porous nanoparticle, a metal, an alloy, an oxide, nitride, a carbide | carbonized_material, carbon etc. can be used, for example. As a method of forming a porous body with an aggregate of porous nanoparticles, for example, an aqueous solution in which nanoparticles are diffused is provided by a predetermined means on a heat transfer surface where a porous body is to be formed, While maintaining this state, the heat transfer surface is boiled by heating. In this way, the porous nanoparticles precipitate on the boiling heat transfer surface to form an aggregate, which becomes the porous body. When the porous body is composed of an aggregate of nanoparticles, a large number of pores between or within the particles form a working fluid supply unit. The particle part around the pores functions as a working fluid supply part that supplies the working fluid to the contact part by capillary action.

蒸気排出管は、発熱体と多孔質体との接触部で発生した蒸気を、作動流体外へ排出する。蒸気排出管は、多孔質体が図5に示すような多数の矩形状の孔(開孔部)を有するメッシュ構造の多孔質層で構成されている場合は、当該多孔質体の開孔部に差し込まれるように設けることができる。また、多孔質体が多孔質ナノ粒子の集合体で形成されている場合は、蒸気排出管が多孔質体を貫通するように設けることができる。蒸気排出管は、発熱体と多孔質体との接触部で発生した蒸気を、より効率的に作動流体外へ排出するために、複数設けることが好ましい。蒸気排出管の構成材料は特に限定されないが、例えば、シリコンチューブで形成されていてもよい。   The steam discharge pipe discharges the steam generated at the contact portion between the heating element and the porous body to the outside of the working fluid. In the case where the vapor discharge pipe is formed of a porous layer having a mesh structure having a large number of rectangular holes (openings) as shown in FIG. It can be provided so as to be plugged in. Moreover, when the porous body is formed of an aggregate of porous nanoparticles, a vapor discharge pipe can be provided so as to penetrate the porous body. It is preferable to provide a plurality of steam discharge pipes in order to discharge the steam generated at the contact portion between the heating element and the porous body to the outside of the working fluid more efficiently. Although the constituent material of a vapor | steam exhaust pipe is not specifically limited, For example, you may be formed with the silicon tube.

作動流体は、たとえば水、低温流体、冷媒、有機溶媒等の表面張力を有する液体とすることができる。   The working fluid can be a liquid having a surface tension such as water, a low-temperature fluid, a refrigerant, an organic solvent, or the like.

作動流体供給部は、毛細管現象により発熱体との接触部に作動流体を供給する。蒸気排出管は、発熱体からの熱により発熱体と多孔質体との接触部で発生した蒸気を、作動流体外へ排出する。このように作動流体の供給と蒸気の排出を別個の経路を用いて行うことにより、図3を参照して説明したように、蒸気が接触部を覆ってしまい限界熱流束が制限されるという問題の発生を抑制することができる。また、多孔質体の作動流体供給部と接触部で蒸気が発生すると毛細管現象により強制的に液体が接触部に供給されるので、プール沸騰冷却方式とする場合には水等の作動流体を収容する容器(水槽)は、水の流路やポンプ等を設ける必要が無く、単なる水溜を用いることができ、簡易な構造とすることができ、設置コストやランニングコストが安価となる。また、蒸気排出管が、接触部で発生した蒸気を作動流体外へ直接排出するため、接触部において蒸気を迅速に排出することができ、これによって限界熱流束が向上する。   A working fluid supply part supplies a working fluid to a contact part with a heat generating body by a capillary phenomenon. The steam discharge pipe discharges the steam generated at the contact portion between the heating element and the porous body due to the heat from the heating element to the outside of the working fluid. As described above with reference to FIG. 3, the supply of the working fluid and the discharge of the steam are performed using separate paths in this manner, so that the steam covers the contact portion and the limit heat flux is limited. Can be suppressed. In addition, when vapor is generated at the working fluid supply part and the contact part of the porous body, liquid is forcibly supplied to the contact part by capillary action. Therefore, when using the pool boiling cooling method, the working fluid such as water is accommodated. The container (water tank) to be used does not need to be provided with a water flow path, a pump, or the like, can use a simple water reservoir, can have a simple structure, and has low installation costs and running costs. Further, since the steam discharge pipe directly discharges the steam generated at the contact portion to the outside of the working fluid, the steam can be quickly discharged at the contact portion, thereby improving the critical heat flux.

多孔質体は、作動流体供給部において、液体の蒸発が起これば毛細管現象により接触部に作動流体を供給するが、毛管力による液体供給の限界メカニズムを考慮すれば、毛細管の長さ(すなわち、多孔質体の厚さ)は薄いほうがよりその限界、すなわち「限界熱流束」を高くすることができる。一方、図3において、高熱流束条件下の接触部上で蒸気塊が形成される様子を示したが、その蒸気塊の体積は時間と共に増大し、やがて接触部から切断離脱する。この蒸気塊と接触部近傍をより詳細に説明すれば、蒸気塊と接触部の間(すなわち蒸気塊の底部)には、有限厚さの液膜(一般に、マクロ液膜と呼ばれる)が存在する。このような高熱流束条件下においては、蒸気塊がマクロ液膜上に滞留している間に蒸気塊底部のマクロ液膜が蒸発消耗し尽くすときにバーンアウトが発生する。このときの熱流束が「限界熱流束」と呼ばれる。多孔質体の厚さは、上述の通り毛管力による液体供給の限界メカニズム(毛管限界メカニズム)から薄いほうがよいが、薄過ぎてマクロ液膜の厚さと同程度であると、多孔質体の接触部近傍で液枯れが生じやすく、限界熱流束が小さくなる。このため、多孔質体の厚みは、200〜300μmとするのが好ましい。ここで、本発明の実施形態1のように、作動流体の供給と蒸気の排出を別個の経路とすることで、図3において、作動流体供給部上方での蒸気塊の滞留が生じなくなる。これにより、作動流体供給部と作動流体とが常に接触した状態を担保でき、多孔質体がマクロ液膜と同程度の厚さの場合でも、多孔質体の接触部近傍における液枯れを防ぐことが可能となる。   When the liquid evaporates in the working fluid supply section, the porous body supplies the working fluid to the contact section by capillary action, but considering the limit mechanism of liquid supply by capillary force, the length of the capillary (ie As the thickness of the porous body is smaller, the limit, that is, the “limit heat flux” can be increased. On the other hand, FIG. 3 shows a state in which the vapor mass is formed on the contact portion under the high heat flux condition, but the volume of the vapor mass increases with time and eventually cuts off from the contact portion. If the vapor mass and the vicinity of the contact portion are described in more detail, a liquid film having a finite thickness (generally called a macro liquid film) exists between the vapor mass and the contact portion (that is, the bottom of the vapor mass). . Under such a high heat flux condition, burnout occurs when the macro liquid film at the bottom of the vapor mass is exhausted and exhausted while the vapor mass remains on the macro liquid film. The heat flux at this time is called “limit heat flux”. As described above, the thickness of the porous body should be thinner than the limit mechanism (capillary limit mechanism) of the liquid supply by capillary force, but if it is too thin and the same as the thickness of the macro liquid film, the contact of the porous body Liquid drainage tends to occur in the vicinity of the part, and the critical heat flux becomes small. For this reason, it is preferable that the thickness of a porous body shall be 200-300 micrometers. Here, as in the first embodiment of the present invention, the supply of the working fluid and the discharge of the steam are made separate paths, so that the stay of the steam mass above the working fluid supply unit does not occur in FIG. As a result, it is possible to ensure that the working fluid supply unit and the working fluid are always in contact with each other, and even when the porous body has the same thickness as the macro liquid film, liquid drainage in the vicinity of the contact portion of the porous body is prevented. Is possible.

冷却部材の多孔質体と、発熱体との接触部に隙間領域が形成されているのが好ましい。多孔質体の作動流体供給部の底面で生じた蒸気は、作動流体供給部の底面に沿って進むことで蒸気排出管へ向かい、蒸気排出管を通って排出される。ここで、冷却部材の多孔質体と、発熱体との接触部に隙間領域が形成されていると、当該隙間領域が多孔質体の底面で生じた蒸気の通路となり、蒸気の排出が促進され、限界熱流束が向上する。当該隙間領域は、接触部表面をあえて粗面に加工してもよいが、蒸気の排出に必要な隙間領域はごく僅かであるため、単に多孔質体を接触部に接触させるだけで、はじめから有する接触部の表面の粗さで十分な隙間領域が形成される。なお、隙間領域が無くなるため蒸気の排出性は下がるが、多孔質体は接着剤で接触部に固定してあってもよい。   It is preferable that a gap region is formed at a contact portion between the porous body of the cooling member and the heating element. Vapor generated at the bottom surface of the working fluid supply unit of the porous body travels along the bottom surface of the working fluid supply unit, travels to the steam discharge pipe, and is discharged through the steam discharge pipe. Here, when a gap region is formed at the contact portion between the porous body of the cooling member and the heating element, the gap region becomes a passage for the vapor generated at the bottom surface of the porous body, and the discharge of the vapor is promoted. The critical heat flux is improved. The gap area may be processed to be rough on the surface of the contact part, but since the gap area necessary for the discharge of the vapor is very small, simply contacting the porous body with the contact part from the beginning. A sufficient gap region is formed by the roughness of the surface of the contact portion. In addition, since the gap | emission area | region disappears, the vapor | steam discharge | emission property falls, but the porous body may be fixed to the contact part with the adhesive agent.

また、本発明の別の態様としては、発熱体全体を作動流体中に浸漬する、または発熱体の一部を作動流体の液面から一部浸漬して冷却を行うこともできる。この場合には、発熱体は浮遊した状態、容器底面に載置された状態など場合により種々の形態をとるが、要は作動流体に浸漬されている部分に冷却部材を取り付けることにより、前記例と同様にして冷却を行うことができる。   Further, as another aspect of the present invention, cooling can be performed by immersing the entire heating element in the working fluid, or by partially immersing a part of the heating element from the liquid level of the working fluid. In this case, the heating element takes various forms depending on cases such as a floating state, a state where it is placed on the bottom surface of the container, etc. In short, by attaching a cooling member to a portion immersed in the working fluid, Cooling can be performed in the same manner as described above.

(実施形態2)
図6は、本発明の実施形態2に係るプール沸騰方式による冷却器を示している。実施形態2に係る冷却器は、蒸気排出器に関して、一端が発熱体に対向するように設けられ、且つ、他端が容器を貫通して容器外へ伸びるように設けられている点が実施形態1に係る冷却器と異なっている。
(Embodiment 2)
FIG. 6 shows a cooler using a pool boiling system according to Embodiment 2 of the present invention. Embodiment 2 is that the cooler according to Embodiment 2 is provided such that one end of the steam discharger faces the heating element and the other end extends through the container and extends outside the container. 1 is different from the cooler according to 1.

(実施形態3)
図7は、本発明の実施形態3に係るプール沸騰方式による冷却器を示している。実施形態3に係る冷却器は、実施形態2に係る冷却器において、冷却部材と容器とを発熱体の下方に設けた点が異なっている。すなわち、実施形態3に係る冷却器は、発熱体の下方に、作動流体を備える容器が設置され、且つ、当該容器内であって、発熱体に対向するように多孔質体が設けられている。また、蒸気排出管は、その一端が発熱体に対向するように設けられ、且つ、他端が容器を貫通して容器外へ伸びるように設けられている。
(Embodiment 3)
FIG. 7 shows a cooler using a pool boiling system according to Embodiment 3 of the present invention. The cooler according to the third embodiment is different from the cooler according to the second embodiment in that the cooling member and the container are provided below the heating element. That is, in the cooler according to the third embodiment, a container including a working fluid is installed below the heating element, and a porous body is provided in the container so as to face the heating element. . The steam discharge pipe is provided so that one end thereof faces the heating element and the other end extends through the container and extends out of the container.

(実施形態4)
図8は、本発明の実施形態4に係る冷却装置を示している。冷却装置は、実施形態1に係る冷却器と、容器に接続されたコンデンサとを備える。コンデンサにおいて、蒸発した作動流体が液化されて、容器に戻る。冷却装置は、ポンプなどの外部動力源を必要とせず、装置全体としてのコンパクト性および省エネルギー性が優れている。図9は、実施形態4に係る冷却装置の変形形態を示している。なお、図8および9の構成を実施形態2又は3の冷却器とともに用いることもできる。
(Embodiment 4)
FIG. 8 shows a cooling device according to Embodiment 4 of the present invention. The cooling device includes the cooler according to the first embodiment and a capacitor connected to the container. In the condenser, the evaporated working fluid is liquefied and returned to the container. The cooling device does not require an external power source such as a pump, and is excellent in compactness and energy saving as the entire device. FIG. 9 shows a modification of the cooling device according to the fourth embodiment. 8 and 9 can be used together with the cooler of the second or third embodiment.

本発明は、原子炉圧力容器の冷却の他、種々の電子機器、その他の高発熱密度を有する熱機器全般に適用可能である。たとえば、核融合炉のダイバータ冷却、キャピラリーポンプループの高性能化、半導体レーザ、データセンターのサーバの冷却、フロン冷却式チョッパ制御装置、パワー電子機器等が考えられる。または、ガラスやアルミの溶融炉の側部や底部から周囲環境へ放散する熱を節減して、高温作業環境を改善する水冷ジャケットに適用可能である。さらに、大型ごみ焼却炉等の耐火壁を外部から冷却して損傷を軽減するための、耐火壁側部や耐火壁底部に設置する水冷ジャケットに適用可能である。   The present invention can be applied to various electronic equipment and other thermal equipment having a high heat generation density in addition to cooling of the reactor pressure vessel. For example, divertor cooling in fusion reactors, high performance of capillary pump loops, semiconductor lasers, data center server cooling, CFC-cooled chopper control devices, power electronics, and the like are conceivable. Alternatively, it can be applied to a water-cooled jacket that improves the high-temperature work environment by reducing the heat dissipated from the side or bottom of a glass or aluminum melting furnace to the surrounding environment. Furthermore, the present invention can be applied to a water-cooled jacket installed on the side of the fire wall or the bottom of the fire wall to reduce damage by cooling the fire wall such as a large garbage incinerator from the outside.

以下に本発明を実施例でさらに詳細に説明するが、本発明はこれらに限定されるものではない。   The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to these examples.

(実施例1)
図10に、実施例1で用いたプール沸騰実験の実験装置概略を示す。伝熱面はプール底面と同じ高さで、液体と接する伝熱面直径は30mmである。加熱は銅ブロック底部に埋め込んだカートリッジヒータにより行った。ハニカム多孔質体は伝熱面上にステンレス線で固定した。銅ブロック中心軸上に伝熱面から下方へ10mm(TC1)、15mm(TC2)、20mm(TC3)、25mm(TC4)の位置にφ1mmのK型シース熱電対を設置し、4点の温度指示値から外挿して伝熱面温度を、指示温度差、設置距離及び銅の熱伝導率からフーリエの式より伝熱面熱流束を算出した。プールは、内径87mmのパイレックス(登録商標)ガラス製であり、内部沸騰様相が観察できる。試験液体は蒸留水、水深は60mm、システム圧は0.1MPaで、予備ヒータで伝熱面周囲の液体を加熱して飽和温度を維持した。発生した蒸気は冷却器で凝縮させて容器内に戻した。実験は、カートリッジヒータに所定の電圧を印加して加熱を行い、TC1〜TC4までのそれぞれの温度変化が、10分間で0.25K以下となった場合に定常状態に達したとみなし、測定を行った。以上の操作を、定常状態が維持できなくなり、壁温が急上昇を開始して、バーンアウトが発生するまで繰り返した。また、バーンアウトが発生した場合には、直ちに加熱を中止し、その直前の熱流束をqCHFとした。
Example 1
FIG. 10 shows an outline of an experimental apparatus for the pool boiling experiment used in Example 1. The heat transfer surface is the same height as the pool bottom, and the diameter of the heat transfer surface in contact with the liquid is 30 mm. Heating was performed with a cartridge heater embedded in the bottom of the copper block. The honeycomb porous body was fixed on the heat transfer surface with a stainless steel wire. A φ1mm K-type sheathed thermocouple is installed on the copper block center axis at positions of 10mm (TC1), 15mm (TC2), 20mm (TC3), and 25mm (TC4) downward from the heat transfer surface. The heat transfer surface temperature was extrapolated from the value, and the heat transfer surface heat flux was calculated from the indicated temperature difference, the installation distance, and the thermal conductivity of copper from the Fourier equation. The pool is made of Pyrex (registered trademark) glass having an inner diameter of 87 mm, and an internal boiling mode can be observed. The test liquid was distilled water, the water depth was 60 mm, the system pressure was 0.1 MPa, and the liquid around the heat transfer surface was heated with a preliminary heater to maintain the saturation temperature. The generated steam was condensed in a cooler and returned to the container. In the experiment, heating was performed by applying a predetermined voltage to the cartridge heater, and when each temperature change from TC1 to TC4 became 0.25K or less in 10 minutes, it was considered that the steady state was reached and measurement was performed. It was. The above operation was repeated until the steady state could not be maintained, the wall temperature started to rise rapidly, and burnout occurred. When burnout occurred, heating was stopped immediately and the heat flux immediately before that was defined as q CHF .

図11に、実施例1で用いた毛管力抽出実験の装置概略を示す。毛管力による液供給効果を抽出するためには、重力により蒸気排出流路内部へ直接流入する液供給を排除する必要がある。その目的で、図11の伝熱面詳細図のように、伝熱面を下向きにし、試験液体をポンプにより循環させ、プール液面がハニカム多孔質体の端面と常に一致するようにした。伝熱面上で発生した蒸気はプール容器底部を貫通させたシリコンチューブ(蒸気排出管)を通過させることで外部へ放出させた。ここで、シリコンチューブ(蒸気排出管)の一端は、ハニカム多孔質体の孔に差し込むように設けられている。このようにして、伝熱面への液体供給を毛管力のみで行うことができるようにした。伝熱面は直径10mmの銅円柱の端面であり、銅ブロック内に挿入したカートリッジヒータにより加熱を行った。ハニカム多孔質体はワイヤーにより伝熱面上に固定した。伝熱面から上端へ10mm(TC1)、15mm(TC2)、20mm(TC3)、25mm(TC4)の位置にφ1mmのK型シース熱電対を設置し、指示温度からフーリエの式を用いて、伝熱面表面温度及び熱流束を算出した。試験液体は蒸留水で、予備ヒータにより加熱を行い、プール液面近傍の水温を測定し、常に飽和状態であることを確認した。システム圧は0.1MPaである。実験は、所定の加熱量を与えた後TC1〜TC4の温度変化が、10分間あたり0.25K以下となったときに定常状態とみなし、測定を行った。以上の操作を、定常状態が維持できなくなり、伝熱面温度が急上昇を開始して、バーンアウトが発生するまで繰り返した。qCHFの値はバーンアウトする直前の定常状態で測定したものとしている。 FIG. 11 shows an apparatus outline of the capillary force extraction experiment used in Example 1. In order to extract the liquid supply effect due to the capillary force, it is necessary to exclude the liquid supply directly flowing into the vapor discharge flow path due to gravity. For this purpose, as shown in the detailed view of the heat transfer surface in FIG. 11, the heat transfer surface is turned downward, and the test liquid is circulated by a pump so that the pool liquid surface always coincides with the end face of the honeycomb porous body. The steam generated on the heat transfer surface was discharged to the outside by passing through a silicon tube (steam discharge pipe) penetrating the bottom of the pool container. Here, one end of the silicon tube (steam discharge pipe) is provided so as to be inserted into the hole of the honeycomb porous body. In this way, liquid supply to the heat transfer surface can be performed only by capillary force. The heat transfer surface was an end surface of a copper cylinder having a diameter of 10 mm, and was heated by a cartridge heater inserted in the copper block. The honeycomb porous body was fixed on the heat transfer surface with a wire. A φ1mm K-type sheath thermocouple is installed at the position of 10mm (TC1), 15mm (TC2), 20mm (TC3), 25mm (TC4) from the heat transfer surface to the upper end. The hot surface temperature and heat flux were calculated. The test liquid was distilled water, heated by a preliminary heater, and the water temperature in the vicinity of the pool liquid surface was measured to confirm that it was always saturated. The system pressure is 0.1 MPa. In the experiment, after a predetermined heating amount was applied, the temperature change of TC1 to TC4 was regarded as a steady state when the temperature change was 0.25 K or less per 10 minutes, and the measurement was performed. The above operation was repeated until the steady state could not be maintained, the heat transfer surface temperature started to rise rapidly, and burnout occurred. q The CHF value is measured in the steady state just before burnout.

図12に実施例1で使用したハニカム多孔質体及びそのセル間の壁厚δs,セル幅dg,板厚δhをそれぞれ示す。このハニカム多孔質体は円柱状ハニカム多孔質体(以下、NAハニカム多孔質体と略す)で、株式会社長峰製作所製のものである。その成分は、カルシウムアルミネート(CaO・Al2O3):30〜50wt%、溶融シリカ(Fused SiO2):40〜60wt%、及び二酸化チタン(TiO2):5〜20wt%で、有効細孔半径:1.8μm、空隙率:24.8%、透過係数:2.4×10-14[m2]である。有効細孔半径reff及び透過係数Kの測定方法については後述する。また、NAハニカム多孔質体は製作の際の個体差を最小限にすることを目的に同じロットで製作されたものを用いた。 FIG. 12 shows the honeycomb porous body used in Example 1, the wall thickness δs between the cells, the cell width dg, and the plate thickness δh. This honeycomb porous body is a cylindrical honeycomb porous body (hereinafter abbreviated as NA honeycomb porous body), which is manufactured by Nagamine Manufacturing Co., Ltd. Its components are calcium aluminate (CaO · Al 2 O 3 ): 30-50 wt%, fused silica (Fused SiO 2 ): 40-60 wt%, and titanium dioxide (TiO 2 ): 5-20 wt%. Pore radius: 1.8 μm, porosity: 24.8%, permeability coefficient: 2.4 × 10 −14 [m 2 ]. A method for measuring the effective pore radius reff and the permeability coefficient K will be described later. The NA honeycomb porous body was manufactured in the same lot for the purpose of minimizing individual differences in manufacturing.

後述する毛管限界モデルを用いて、qCHFの予測値を算出する際に、多孔質体の有効細孔半径reff、透過係数Kが必要になる。そこで、図13に示す測定装置を用いてそれぞれ測定を行った。有効細孔半径は、図13(a)のように、毛管吸い上げ高さhを測定することによって、式(1)及び式(2)から算出した。また、透過係数Kは図13(b)のように、ダルシーの法則から式(1)及び(3)より算出した。
When calculating the predicted value of q CHF using a capillary limit model described later, the effective pore radius reff and permeability coefficient K of the porous body are required. Therefore, each measurement was performed using the measurement apparatus shown in FIG. The effective pore radius was calculated from the equations (1) and (2) by measuring the capillary suction height h as shown in FIG. Further, the transmission coefficient K was calculated from the equations (1) and (3) from Darcy's law as shown in FIG.

有効細孔半径reffの測定では、試験部をゆっくりと持ち上げて行き、ある高さで液柱の重量と多孔質体の毛管力がつりあい、やがて多孔質体と液柱間に気泡が発生し分離する。その高さを毛管吸い上げ高さとした。また、透過係数Kの測定では、毛管吸い上げ高さを超える高さの液柱を用意し、その高さを測り、単位時間当たりの流量を測定した。   In measuring the effective pore radius reff, the test part is slowly lifted up, and the weight of the liquid column and the capillary force of the porous body are balanced at a certain height. Eventually, bubbles are generated and separated between the porous body and the liquid column. To do. The height was taken as the capillary suction height. In measuring the permeability coefficient K, a liquid column having a height exceeding the capillary suction height was prepared, the height was measured, and the flow rate per unit time was measured.

図14は、ハニカム多孔質体の一部の断面拡大図である。ハニカム多孔質体装着時に、毛管力により伝熱面へ液体が供給され、発生した蒸気が蒸気排出流路から排出される場合の気液の流れを矢印で示している。qCHFに達するときの力学的なつりあいは、式(4)に示すように、液流が多孔質体内を通過する際の圧力損失Δpl、及び、蒸気流が排出流路内を通過する際の圧力損失Δpgの和が最大毛管圧力Δpc,maxに等しくなる場合と考えられる。
FIG. 14 is an enlarged sectional view of a part of the honeycomb porous body. When the honeycomb porous body is mounted, the flow of gas-liquid when the liquid is supplied to the heat transfer surface by capillary force and the generated vapor is discharged from the vapor discharge flow path is indicated by arrows. q The mechanical balance when CHF is reached, as shown in equation (4), is the pressure loss Δp l when the liquid flow passes through the porous body and the flow of the vapor flow through the discharge channel pressure loss Delta] p g of the sum is the maximum capillary pressure Delta] PC, is considered a case where equal to max.

また、式(4)において、左辺はラプラスの式、右辺第一項はダルシーの式、右辺第二項はハーゲン・ポアズイユ則により求められ、以下の式(5)より、qCHFが算定できる。
Also, in equation (4), the left side is determined by Laplace's equation, the right side first term is determined by Darcy's equation, and the right side second term is determined by Hagen-Poiseuille rule, and q CHF can be calculated from the following equation (5).

ここで、qCHF:限界熱流束、A:伝熱面面積、K:透過係数、ρ:密度、hfg:蒸発潜熱、Aw:多孔質体と伝熱面の接触面積、reff:有効細孔半径、μ:粘性係数、δh:多孔質体の板厚であり、下付き文字のlとgはそれぞれ液体、気体を示す。式(5)より、ハニカム多孔質体の板厚δhを変化させた際の実測値とモデルでの計算値を比較することでモデルの妥当性について検討することができる。   Where qCHF: critical heat flux, A: heat transfer surface area, K: permeability coefficient, ρ: density, hfg: latent heat of vaporization, Aw: contact area between porous material and heat transfer surface, reff: effective pore radius, μ: viscosity coefficient, δh: plate thickness of the porous body, and subscripts l and g indicate liquid and gas, respectively. From Equation (5), the validity of the model can be examined by comparing the measured value when the plate thickness δh of the honeycomb porous body is changed with the calculated value of the model.

図15は、板厚δhとqCHFの関係を示す。ハニカム多孔質体はセル幅dg=1.33mm、壁厚δs=0.46mm、板厚δhを2、5、10mmに変化させてそれぞれ実験を行った。図中の「〇」はプール沸騰の実験結果、「△」は毛管力の液供給効果抽出の実験結果、実線は毛管限界モデルの計算結果である。図15より、毛管力による液供給抽出の実験は、毛管限界モデルによく一致していることがわかる。プール沸騰のqCHFは、毛管力による液供給のみによる実験値や毛管限界モデルによる予測値と同様、δhが小さくなるほど大きくなる傾向を示している。δh =10mmでは、2つの実験結果の差が他の場合と比して大きいことがわかる。これは、蒸気排出流路内部に直接流入する液供給効果が毛管力による液供給効果に対して無視できないことに起因していることが考えられる。そこで、図16に示す実験装置を用いて、蒸気排出流路内部に直接流入する液供給効果の抽出を行った。蒸気排出流路内部を通過する蒸気はハニカム多孔質体下方より窒素ガスを流入させることで模擬し、蒸気排出流路内部に液体がちょうど流入しなくなる伝熱面からの蒸気発生流量を推定した。実験は非加熱系で行った。dg=1.33mm、δs=0.46mm、δh=5mmのハニカム多孔質体を設置し、蒸気排出流路内部に液体がちょうど流入しなくなる際の窒素ガス流量を測定したところ、伝熱面熱流束に換算して1.5MW/m2程度のガス流量であることがわかった。ここで、図15より、毛管力による液供給効果抽出の実験において、δh=10mmの場合、qCHFは約0.75MW/m2であるが、この加熱条件下では、プール沸騰実験において、蒸気排出流路内部へ直接流入する液供給が存在すると考えられる。以上のことから、δh=10mmの場合、プール沸騰実験では、毛管力による液供給効果と蒸気排出流路内へ直接流入する液供給効果の2つが組み合わさることで、毛管力による液供給効果抽出の実験よりもqCHFが向上したと考えられる。また、δh=5mmの場合のプール沸騰実験のqCHFが1.5MW/m2程度であることから、セル内への直接流入する液供給効果はほぼないと考えられる。そのため、δh=5mmの場合には、毛管力による液供給効果抽出の実験とプール沸騰実験のqCHFが同程度になったと考えられる。
以上の結果から、意外にも一次元の毛管限界モデルにより、蒸気排出流路内部に直接流入する液供給がないような高熱流束条件下では、プール沸騰におけるqCHFをよく説明できることがわかった。
FIG. 15 shows the relationship between the plate thickness δh and qCHF. The honeycomb porous body was tested by changing the cell width dg = 1.33 mm, the wall thickness Δs = 0.46 mm, and the plate thickness Δh to 2, 5, and 10 mm. In the figure, “◯” indicates the result of pool boiling experiment, “Δ” indicates the result of extraction of the liquid supply effect of capillary force, and the solid line indicates the calculation result of the capillary limit model. From FIG. 15, it can be seen that the liquid supply extraction experiment by capillary force is in good agreement with the capillary limit model. The pool boiling qCHF shows a tendency to increase as δh decreases, similar to the experimental value based only on liquid supply by capillary force and the predicted value based on the capillary limit model. It can be seen that at δh = 10 mm, the difference between the two experimental results is larger than the other cases. This can be attributed to the fact that the liquid supply effect directly flowing into the vapor discharge flow channel cannot be ignored with respect to the liquid supply effect due to the capillary force. Therefore, using the experimental apparatus shown in FIG. 16, extraction of the effect of supplying the liquid directly flowing into the vapor discharge flow path was performed. The steam passing through the inside of the steam discharge channel was simulated by flowing nitrogen gas from below the honeycomb porous body, and the steam generation flow rate from the heat transfer surface where the liquid just did not flow into the steam discharge channel was estimated. The experiment was conducted in an unheated system. A honeycomb porous body with dg = 1.33mm, δs = 0.46mm, δh = 5mm was installed, and when the nitrogen gas flow rate was measured when the liquid just did not flow into the vapor discharge flow path, the heat transfer surface heat flux was It was found that the gas flow rate was about 1.5 MW / m 2 in terms of conversion. Here, from FIG. 15, in the experiment of extracting the liquid supply effect by the capillary force, when δh = 10 mm, qCHF is about 0.75 MW / m 2 , but under this heating condition, It is considered that there is a liquid supply that flows directly into the channel. From the above, in the case of δh = 10mm, in the pool boiling experiment, the liquid supply effect extraction due to the capillary force is combined with the liquid supply effect due to the capillary force and the liquid supply effect that flows directly into the vapor discharge channel. It is thought that qCHF improved compared to the previous experiment. In addition, since the qCHF in the pool boiling experiment in the case of Δh = 5 mm is about 1.5 MW / m 2, it is considered that there is almost no effect of supplying liquid directly flowing into the cell. Therefore, in the case of Δh = 5 mm, it is considered that the qCHF of the liquid supply effect extraction experiment by the capillary force and the pool boiling experiment are approximately the same.
From the above results, it was found that qCHF in pool boiling can be well explained by a one-dimensional capillary limit model under high heat flux conditions where there is no liquid supply directly flowing into the steam discharge channel.

(実施例2)
前述の毛管限界モデルでは、qCHF到達前は多孔質体内部が完全に液体で満たされており、qCHF到達時に乾燥領域が広がり、バーンアウトを生じる。このqCHF発生モデルと実現象について比較検討した結果を以下に述べる。
(Example 2)
In the capillary limit model described above, the porous body is completely filled with liquid before reaching qCHF, and when qCHF is reached, the dry region expands and burnout occurs. The results of a comparison between the qCHF generation model and actual phenomena are described below.

実施例1で用いた毛管力の液供給効果抽出の実験装置と同様の実験装置を用いた。図17は、多孔質体内部のドライアウトを検出するために用いた電気回路を示す。伝熱面の加熱と同時に回路に定電流(I=0.5mA)を流すことで、銅ブロック内に挿入した電極棒とプール液面の間の抵抗値を測定し、その抵抗値の変化から多孔質体内部のドライアウトを検出した。   An experimental apparatus similar to the experimental apparatus for extracting the liquid supply effect of the capillary force used in Example 1 was used. FIG. 17 shows an electric circuit used to detect dryout inside the porous body. By applying a constant current (I = 0.5mA) to the circuit simultaneously with heating the heat transfer surface, the resistance value between the electrode rod inserted in the copper block and the pool liquid surface is measured. Dry-out inside the body was detected.

図18は、バーンアウト前後での銅ブロック内に挿入した電極棒とプール液面の間の抵抗値RTS及び銅ブロック内の温度T1の経時変化を示す。図中のT1の急変領域はバーンアウトが生じたことを表す。また、その直前にRTSが急上昇していることがわかる。さらに、バーンアウト前のRTSは、非加熱時、すなわち、多孔質体内部が完全に含水された状態での抵抗値と同程度(70kΩ)である。以上の結果から、毛管限界モデルと同様に、バーンアウト前には多孔質体内部に乾燥領域は形成されておらず、qCHF到達時に乾燥領域が広がり、バーンアウトを生じると考えられる。
ここまでの結果から、毛管限界モデルにより、qCHF発生メカニズムをよく説明できる。そこで、ハニカム多孔質体の最適幾何形状について検討した。図19は、壁厚δsを0.46mm、板厚δhを1mmとし、セル幅dgを変化させた際のモデルによる試算結果を示す。図19より、dg=0.2mmの時に、qCHFは最大で11MW/m2まで向上できることが示唆された。
FIG. 18 shows changes over time in the resistance value RTS between the electrode rod inserted in the copper block and the pool liquid level before and after the burnout and the temperature T1 in the copper block. The sudden change region of T1 in the figure indicates that burnout has occurred. It can also be seen that the RTS has risen sharply just before that. Further, the RTS before burnout is approximately the same as the resistance value (70 kΩ) when not heated, that is, when the porous body is completely hydrated. From the above results, as in the capillary limit model, it is considered that a dry region is not formed inside the porous body before burnout, and the dry region is widened when qCHF is reached and burnout occurs.
From the results up to this point, the qCHF generation mechanism can be well explained by the capillary limit model. Therefore, the optimum geometric shape of the honeycomb porous body was examined. FIG. 19 shows a trial calculation result by a model when the wall thickness δs is 0.46 mm, the plate thickness δh is 1 mm, and the cell width dg is changed. FIG. 19 suggests that when dg = 0.2 mm, qCHF can be improved up to 11 MW / m 2 at the maximum.

Claims (9)

作動流体を収容する容器、及び、前記容器内に設けられた冷却部材を備えた、発熱体を冷却するための沸騰方式による冷却器であって、
前記冷却部材は、
前記作動流体と接するように且つ前記発熱体に対向するように設けられ、且つ、毛細管現象により前記作動流体を前記発熱体との接触部に供給する作動流体供給部を備えた多孔質体と、
前記接触部で発生した蒸気を、前記作動流体外へ排出する蒸気排出管と、
を備える冷却器。
A boiling-type cooler for cooling a heating element, comprising a container for containing a working fluid, and a cooling member provided in the container;
The cooling member is
A porous body provided with a working fluid supply section provided in contact with the working fluid and facing the heating element, and supplying the working fluid to a contact portion with the heating element by capillary action;
A steam discharge pipe for discharging the steam generated at the contact portion out of the working fluid;
With cooler.
前記蒸気排出管は、一端が前記発熱体に対向するように設けられ、且つ、他端が前記容器を貫通して容器外へ伸びるように設けられている請求項1に記載の冷却器。   The cooler according to claim 1, wherein the vapor discharge pipe is provided so that one end faces the heating element and the other end extends through the container and extends outside the container. 前記蒸気排出管がシリコンチューブで形成された請求項1又は2に記載の冷却器。   The cooler according to claim 1 or 2, wherein the steam discharge pipe is formed of a silicon tube. 前記多孔質体がメッシュ構造を有する多孔質層で形成された請求項1〜3のいずれか一項に記載の冷却器。   The cooler according to any one of claims 1 to 3, wherein the porous body is formed of a porous layer having a mesh structure. 前記多孔質体が金属で形成された請求項1〜4のいずれか一項に記載の冷却器。   The cooler according to any one of claims 1 to 4, wherein the porous body is made of metal. 前記多孔質体が多孔質ナノ粒子の集合体で形成された請求項1〜3のいずれか一項に記載の冷却器。   The cooler according to any one of claims 1 to 3, wherein the porous body is formed of an aggregate of porous nanoparticles. 前記多孔質体と、前記発熱体との接触部に隙間領域が形成されている請求項1〜6のいずれか一項に記載の冷却器。   The cooler as described in any one of Claims 1-6 in which the clearance gap area is formed in the contact part of the said porous body and the said heat generating body. 請求項1〜7のいずれか一項に記載の冷却器と、
前記冷却器の容器に接続され、蒸発した作動流体を液化するコンデンサと
を備えた冷却装置。
The cooler according to any one of claims 1 to 7,
A cooling device comprising a condenser connected to the container of the cooler and liquefying the evaporated working fluid.
作動流体を収容した容器の作動流体中に、発熱体を少なくとも部分的に浸漬して発熱体を冷却する沸騰方式による冷却方法において、
前記発熱体の作動液体に浸漬された部分の表面に、
前記作動流体と接するように且つ前記発熱体に対向するように設けられ、且つ、毛細管現象により前記作動流体を前記発熱体との接触部に供給する作動流体供給部を備えた多孔質体と、前記接触部で発生した蒸気を、前記作動流体外へ排出する蒸気排出管とを備える冷却部材を装着する発熱体の冷却方法。
In the cooling method by the boiling method in which the heating element is cooled at least partially by immersing the heating element in the working fluid of the container containing the working fluid,
On the surface of the part immersed in the working liquid of the heating element,
A porous body provided with a working fluid supply section provided in contact with the working fluid and facing the heating element, and supplying the working fluid to a contact portion with the heating element by capillary action; A method for cooling a heating element, comprising a cooling member provided with a steam discharge pipe for discharging the steam generated at the contact portion to the outside of the working fluid.
JP2015106716A 2015-05-26 2015-05-26 Cooler, cooling device using the same and method for cooling heater element Pending JP2016217684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015106716A JP2016217684A (en) 2015-05-26 2015-05-26 Cooler, cooling device using the same and method for cooling heater element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015106716A JP2016217684A (en) 2015-05-26 2015-05-26 Cooler, cooling device using the same and method for cooling heater element

Publications (1)

Publication Number Publication Date
JP2016217684A true JP2016217684A (en) 2016-12-22

Family

ID=57578386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015106716A Pending JP2016217684A (en) 2015-05-26 2015-05-26 Cooler, cooling device using the same and method for cooling heater element

Country Status (1)

Country Link
JP (1) JP2016217684A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020067269A (en) * 2018-10-19 2020-04-30 国立大学法人電気通信大学 Heat pipe and method for manufacturing heat pipe
JP7461777B2 (en) 2020-03-31 2024-04-04 宇部マテリアルズ株式会社 Boiling cooling working fluid, boiling cooling device using same, and boiling cooling method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011196659A (en) * 2010-03-23 2011-10-06 Tokyo Univ Of Science Porous body, boil cooling device, boil cooling system, power generation system, and boil cooling method
JP2013004562A (en) * 2011-06-13 2013-01-07 Hitachi Ltd Ebullient cooling system
JP2014206365A (en) * 2013-03-18 2014-10-30 国立大学法人横浜国立大学 Cooler, cooling device using the same, and cooling method of heating element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011196659A (en) * 2010-03-23 2011-10-06 Tokyo Univ Of Science Porous body, boil cooling device, boil cooling system, power generation system, and boil cooling method
JP2013004562A (en) * 2011-06-13 2013-01-07 Hitachi Ltd Ebullient cooling system
JP2014206365A (en) * 2013-03-18 2014-10-30 国立大学法人横浜国立大学 Cooler, cooling device using the same, and cooling method of heating element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020067269A (en) * 2018-10-19 2020-04-30 国立大学法人電気通信大学 Heat pipe and method for manufacturing heat pipe
JP7284988B2 (en) 2018-10-19 2023-06-01 国立大学法人電気通信大学 Heat pipe manufacturing method
JP7461777B2 (en) 2020-03-31 2024-04-04 宇部マテリアルズ株式会社 Boiling cooling working fluid, boiling cooling device using same, and boiling cooling method

Similar Documents

Publication Publication Date Title
Li et al. Flow boiling of HFE-7100 in silicon microchannels integrated with multiple micro-nozzles and reentry micro-cavities
Mori et al. Enhancement of the critical heat flux in saturated pool boiling of water by nanoparticle-coating and a honeycomb porous plate
Sarwar et al. Subcooled flow boiling CHF enhancement with porous surface coatings
Khan et al. Design, fabrication and nucleate pool-boiling heat transfer performance of hybrid micro-nano scale 2-D modulated porous surfaces
Aznam et al. Effects of heater orientation on critical heat flux for nanoparticle-deposited surface with honeycomb porous plate attachment in saturated pool boiling of water
Lee et al. The effect of pressure on the critical heat flux in water-based nanofluids containing Al2O3 and Fe3O4 nanoparticles
Tran et al. Effects of surface inclination and type of surface roughness on the nucleate boiling heat transfer performance of HFE-7200 dielectric fluid
Lee et al. Enhanced boiling heat transfer on nanowire-forested surfaces under subcooling conditions
Mori et al. Critical heat flux enhancement by a two-layer structured honeycomb porous plate in a saturated pool boiling of water
Tharayil et al. Effect of nanoparticle coating on the performance of a miniature loop heat pipe for electronics cooling applications
Aznam et al. CHF enhancement of a large heated surface by a honeycomb porous plate and a gridded metal structure in a saturated pool boiling of nanofluid
Sun et al. Hierarchically 3D-textured copper surfaces with enhanced wicking properties for high-power cooling
Jiang et al. Saturated pool boiling heat transfer of HFE-7100 on sintered copper powder and wire mesh microporous surfaces: A comparison study
Cao et al. Pool boiling of NOVEC-649 on microparticle-coated and nanoparticle-coated surfaces
Nazari et al. Critical heat flux enhancement of pool boiling using a porous nanostructured coating
JP5882292B2 (en) COOLER, COOLING DEVICE USING SAME, AND METHOD OF COOLING HEAT GENERATOR
JP2009139005A (en) Cooler and cooling apparatus including the cooler
JP2016217684A (en) Cooler, cooling device using the same and method for cooling heater element
Franco et al. Heat transfer enhancement in pool boiling of a refrigerant fluid with wire nets structures
JP2011196659A (en) Porous body, boil cooling device, boil cooling system, power generation system, and boil cooling method
JP2016040505A (en) Cooler, cooling device using the same, and cooling method of heating element
JP4281619B2 (en) Steam engine
Mori et al. Effect of cell size of a honeycomb porous plate attached to a heated surface on CHF in saturated pool boiling
Vasil’ev et al. Vapor agglomerates and dry spots as precursors of the subcooled liquid boiling crisis in a channel
Yuki et al. Immersion cooling of electronics utilizing lotus-type porous copper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190319