JP2016215310A - Workpiece conveying hand comprising proximity sensor - Google Patents

Workpiece conveying hand comprising proximity sensor Download PDF

Info

Publication number
JP2016215310A
JP2016215310A JP2015102049A JP2015102049A JP2016215310A JP 2016215310 A JP2016215310 A JP 2016215310A JP 2015102049 A JP2015102049 A JP 2015102049A JP 2015102049 A JP2015102049 A JP 2015102049A JP 2016215310 A JP2016215310 A JP 2016215310A
Authority
JP
Japan
Prior art keywords
substrate
workpiece
hand
proximity sensor
distance information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015102049A
Other languages
Japanese (ja)
Other versions
JP6582542B2 (en
Inventor
誠一 勅使河原
Seiichi Teshigawara
誠一 勅使河原
和輝 飛田
Kazuteru Hida
和輝 飛田
圭 近藤
Kei Kondo
圭 近藤
佐藤 昇
Noboru Sato
昇 佐藤
悠介 今井
Yusuke Imai
悠介 今井
絢子 田淵
Ayako Tabuchi
絢子 田淵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2015102049A priority Critical patent/JP6582542B2/en
Publication of JP2016215310A publication Critical patent/JP2016215310A/en
Application granted granted Critical
Publication of JP6582542B2 publication Critical patent/JP6582542B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To solve the following problem: a cost increases when image processing is performed by using a camera and the like, though a workpiece and a hand of a robot and the like have to be positioned in the case where the workpiece conveyed on a conveyor is gripped with the hand.SOLUTION: A proximity sensor of the present invention is attached to a hand for pick-and-place, which is typified by a robot. The proximity sensor has the function of positioning the hand so that the hand can properly grip a workpiece, by acquiring a relative position and a relative distance of the workpiece conveyed on a conveyor with respect to the hand.SELECTED DRAWING: Figure 1

Description

本発明は、相対的に接近してくる被検知物を検知する近接覚センサに関する。   The present invention relates to a proximity sensor that detects an object to be detected relatively approaching.

現在、ロボット等に対して相対的に接近する物体(以下、本明細書では「被検知物」と記す)を検知し、被検知物との衝突を回避する技術が研究、開発されている。なお、本明細書において、「相対的に接近する」とは、ロボットが移動して被検知物に接近する、被検知物が移動してロボットに接近する、及びロボットと被検知物の両方が移動して結果的に両者が接近する、のいずれの場合も含む。
被検知物の検知は、ピジョンセンサによっても行われるが、ピジョンセンサの死角となるロボットの脚周りや腕周辺には近接覚センサを設けることが行われている。
ロボットに設けられる近接覚センサは、例えば、特許文献1、特許文献2に記載されている。特許文献1には、発光素子と受光素子とを入れ替えて使用することにより、回路網を簡易化する近接覚センサが記載されている。特許文献2には、ロボットの腕等にセンサ素子を含むノードペア同士を網目状に接続し、センサ素子が円柱等の側周面に沿って配列されることが記載されている。また、特許文献2には、比較例として、フォトリフレクタが設けられたシート状の基板でロボットの腕等を覆うことが記載されている。
Currently, a technique for detecting an object relatively close to a robot or the like (hereinafter referred to as “detected object” in the present specification) and avoiding a collision with the detected object has been researched and developed. In this specification, “relatively approaching” means that the robot moves and approaches the detected object, the detected object moves and approaches the robot, and both the robot and the detected object are It includes both cases of moving and eventually approaching.
Although detection of an object to be detected is also performed by a pigeon sensor, proximity sensors are provided around the leg of the robot and around the arm that are blind spots of the pigeon sensor.
The proximity sensor provided in the robot is described in, for example, Patent Document 1 and Patent Document 2. Patent Document 1 describes a proximity sensor that simplifies a circuit network by using a light emitting element and a light receiving element interchangeably. Patent Document 2 describes that node pairs including sensor elements are connected to a robot arm or the like in a mesh pattern, and the sensor elements are arranged along a side surface of a cylinder or the like. Patent Document 2 describes, as a comparative example, covering a robot arm or the like with a sheet-like substrate provided with a photo reflector.

特開2007−71564号公報JP 2007-71564 A 特許第5517039号Japanese Patent No. 5517039

しかしながら、特許文献1、特許文献2に記載の構成は、いずれも近接覚センサが取り付けられるロボット等の形状に合わせて複数のセンサ素子同士を接続し、接続されたセンサを一体的にロボット等に取付けている。このため、特許文献1、特許文献2に記載の近接覚センサは、被取付部材に合わせて仕様(センサ素子の数、配置及び範囲等)を変えることが必要な、所謂一品一様の構成となっていた。
被取付部材毎に仕様を変えることは、近接覚センサの開発コストの観点からは不利である。即ち、ロボットに取付けられる近接覚センサでは、脚や腕のサイズが異なるロボット毎にセンサ素子を搭載する基板を設計し直す必要が生じる。
However, the configurations described in Patent Document 1 and Patent Document 2 both connect a plurality of sensor elements according to the shape of a robot or the like to which a proximity sensor is attached, and integrally connect the connected sensors to a robot or the like. It is installed. For this reason, the proximity sensor described in Patent Literature 1 and Patent Literature 2 has a so-called single-product configuration that requires changing specifications (number of sensor elements, arrangement, range, etc.) according to the member to be attached. It was.
Changing the specifications for each mounted member is disadvantageous from the viewpoint of the development cost of the proximity sensor. That is, in the proximity sensor attached to the robot, it is necessary to redesign the substrate on which the sensor element is mounted for each robot having different leg and arm sizes.

また、光センサは稼働中はLEDを常時点灯させるのが一般的でな使用方法であり、光センサの出力信号を利用しない時間帯では無駄な電力を消費していた。また、光センサは被検知物が遠いときは反射光強度が低くなりセンサの感度が低下する、すなわち検出精度が低下するという問題があった。また、光センサの出力電圧と被検知物との距離が非線形な関係にあるため、電圧から距離への変換が煩雑になるという問題があった。また、光センサは使用目的によって必要となる数が異なるが、光センサの制御部分まで使用目的に合わせて交換するとコストアップ要因になる。また、コンベア上を搬送されるワークをロボット等のハンドで把持する場合、ワークとハンドを位置決めする必要があるが、カメラ等を用いて画像処理を行うとコストが上がる。   Moreover, it is a general usage method that the LED is always lit during operation, and wasteful power is consumed in a time zone when the output signal of the optical sensor is not used. Further, the optical sensor has a problem that when the object to be detected is far away, the reflected light intensity becomes low and the sensitivity of the sensor decreases, that is, the detection accuracy decreases. In addition, since the distance between the output voltage of the optical sensor and the object to be detected is in a non-linear relationship, there is a problem that conversion from voltage to distance becomes complicated. Further, although the number of optical sensors required varies depending on the purpose of use, if the control part of the optical sensor is replaced in accordance with the purpose of use, the cost increases. In addition, when the work conveyed on the conveyor is gripped by a hand such as a robot, it is necessary to position the work and the hand. However, if image processing is performed using a camera or the like, the cost increases.

本発明は、このような点に鑑みてなされたものであり、開発に係るコストを抑え、サイズや形状の異なる様々な被取付部に対応できる近接覚センサを提供することを目的とする。また、本発明は無駄な電力消費を抑えた近接覚センサを提供することを目的とする。また、本発明は被検知物が遠い場合でも精度良く検出することを目的とする。また、本発明は光センサの出力電圧を距離に変換する簡便な方法を提供する。また、光センサの数を自動的に認識する方法を提供する。また、コンベア上を搬送されるワークに対してハンドを位置決めするための安価なセンサを提供する。   This invention is made | formed in view of such a point, and it aims at providing the proximity sensor which can respond | correspond to the various to-be-attached parts from which the cost concerning development is suppressed and size and shape differ. Another object of the present invention is to provide a proximity sensor that suppresses wasteful power consumption. It is another object of the present invention to accurately detect an object to be detected even when it is far away. The present invention also provides a simple method for converting the output voltage of the optical sensor into a distance. Also provided is a method for automatically recognizing the number of optical sensors. In addition, an inexpensive sensor for positioning the hand with respect to the workpiece conveyed on the conveyor is provided.

上記課題を解決するため、本発明の一態様の近接覚センサは、
光強度を検出する複数の光センサを備える第1基板と、
第1基板の複数の光センサが出力した信号に基づいて複数の光センサと被検知物との距離情報を取得する距離情報取得部を備える第2基板と、
第1基板から第2基板へ信号生成部によって生成された信号を送信する信号送信部と、を含む。
In order to solve the above problem, a proximity sensor according to one embodiment of the present invention is provided.
A first substrate comprising a plurality of optical sensors for detecting light intensity;
A second substrate including a distance information acquisition unit that acquires distance information between the plurality of optical sensors and the detected object based on signals output from the plurality of optical sensors on the first substrate;
And a signal transmission unit that transmits a signal generated by the signal generation unit from the first substrate to the second substrate.

また、本発明の一態様の近接覚センサは、上記態様において、第1基板が、光センサが一方向に配列された光センサ列を1列以上備えることが望ましい。
また、本発明の一態様の近接覚センサは、上記態様において、第2基板の距離情報取得部が取得した距離情報に基づいて、複数の光センサが配置された第1基板上の領域における被検知物の位置を取得する位置情報取得部を備えることが望ましい。
In the proximity sensor according to one aspect of the present invention, it is preferable that the first substrate includes one or more optical sensor arrays in which the optical sensors are arranged in one direction.
In addition, in the above aspect, the proximity sensor according to one aspect of the present invention is based on the distance information acquired by the distance information acquisition unit of the second substrate, and the coverage sensor in the region on the first substrate where the plurality of optical sensors are arranged. It is desirable to provide a position information acquisition unit that acquires the position of the detected object.

また、本発明の一態様の近接覚センサは、距離情報取得部が光センサの出力を取り込むタイミングで発光させ、取り込んだ後に消灯させることが望ましい。
また、本発明の一態様の近接覚センサは、光センサの出力信号を距離情報に変換する変換テーブルを距離情報取得部が備えることが望ましい。
また、本発明の一態様の近接覚センサは、搭載する光センサの数や種類が異なる様々な第1基板に対して、第2基板に搭載されたマイクロプロセッサがそれらの種類を自動的に認識し、上述の位置情報取得部に送信する信号を制御し、また最適な変換テーブルを選択する機能を持つことが望ましい。
また、本発明の一態様の近接覚センサは、光センサに供給する電圧を変化させる機能を有し、被検知物と第1基板との距離が離れている場合は高い電圧を供給し、被検知物との距離が近くなると低い電圧を供給することが望ましい。
In the proximity sensor of one embodiment of the present invention, it is preferable that the distance information acquisition unit emits light at the timing when the output of the optical sensor is captured, and is extinguished after the capture.
In the proximity sensor of one embodiment of the present invention, it is preferable that the distance information acquisition unit includes a conversion table for converting the output signal of the optical sensor into distance information.
In the proximity sensor according to one embodiment of the present invention, the microprocessor mounted on the second substrate automatically recognizes the types of various first substrates having different numbers and types of optical sensors. It is desirable to have a function of controlling a signal to be transmitted to the above-described position information acquisition unit and selecting an optimum conversion table.
In addition, the proximity sensor according to one embodiment of the present invention has a function of changing a voltage supplied to the optical sensor, and supplies a high voltage when the distance between the detected object and the first substrate is long. It is desirable to supply a low voltage when the distance to the detection object is short.

本発明は、開発に係るコストを抑え、サイズや形状の異なる様々な被取付部に対応できる近接覚センサを提供することができる   The present invention can provide a proximity sensor that can suppress development costs and can cope with various attached parts having different sizes and shapes.

本発明に係る近接覚センサの構成を示した図である。It is the figure which showed the structure of the proximity sensor which concerns on this invention. 第1基板の斜視図である。It is a perspective view of the 1st substrate. 第1基板と第2基板及び第3基板を接続した状態を示した図である。It is the figure which showed the state which connected the 1st board | substrate, the 2nd board | substrate, and the 3rd board | substrate. LEDの発光パターンと受光素子が検出する反射光強度の関係を示す図である。It is a figure which shows the relationship between the light emission pattern of LED, and the reflected light intensity which a light receiving element detects. 本発明の変形例を示す回路図である。It is a circuit diagram which shows the modification of this invention. (a)は低い供給電圧におけるセンサ出力と検出距離の関係を示す模式図であり、(b)は高い供給電圧におけるセンサ出力と検出距離の関係を示す模式図である。(A) is a schematic diagram which shows the relationship between the sensor output and detection distance in a low supply voltage, (b) is a schematic diagram which shows the relationship between the sensor output and detection distance in a high supply voltage. 異なる種類の第1基板を接続した状態を示す模式図である。It is a schematic diagram which shows the state which connected the 1st board | substrate of a different kind. 本発明の第5実施形態の一例を示す図である。It is a figure which shows an example of 5th Embodiment of this invention.

以下、本発明の各実施形態について説明する。
[第1実施形態]
図1は、本発明に係る近接覚センサの全体構成を示した図である。図2は第1基板11の斜視図である。第1基板11は、被検知物によって反射した光の光強度を検出する複数個の光センサ23を有している。また、第1基板11は、光センサ23を実装する基板21を有している。基板21には、光センサ23が生成した出力信号を外部に出力するためのコネクタ27が設けられている。
Hereinafter, each embodiment of the present invention will be described.
[First Embodiment]
FIG. 1 is a diagram showing an overall configuration of a proximity sensor according to the present invention. FIG. 2 is a perspective view of the first substrate 11. The first substrate 11 has a plurality of optical sensors 23 that detect the light intensity of the light reflected by the object to be detected. The first substrate 11 has a substrate 21 on which the optical sensor 23 is mounted. The board 21 is provided with a connector 27 for outputting an output signal generated by the optical sensor 23 to the outside.

第2基板12は、第1基板11に備えられている複数の光センサからの出力信号を取得するマイクロプロセッサ31を備えている。マイクロプロセッサ31は、基板35上に実装されており、第1基板11に備えられている複数の光センサ23からの出力信号に基づいて、当該光センサ23と被検知物との距離に変換する。第1基板11のコネクタ27と第2基板12のコネクタ37とは、可撓性を有する配線ケーブル13によって接続されている。   The second substrate 12 includes a microprocessor 31 that acquires output signals from a plurality of optical sensors provided on the first substrate 11. The microprocessor 31 is mounted on the substrate 35 and converts the distance between the optical sensor 23 and the object to be detected based on output signals from the plurality of optical sensors 23 provided on the first substrate 11. . The connector 27 of the first substrate 11 and the connector 37 of the second substrate 12 are connected by a flexible wiring cable 13.

第1実施形態の光センサ23は、反射型のフォトインタラプタであり、発光ダイオード(Light Emitting Diode、以下、「LED」と記す)23aとフォトトランジスタ23bとが一対となった構成を有している。第1実施形態のLED23aは、赤外線を発する発光素子であり、フォトトランジスタ23bは赤外線を受光する受光素子である。   The optical sensor 23 of the first embodiment is a reflective photointerrupter, and has a configuration in which a light emitting diode (Light Emitting Diode, hereinafter referred to as “LED”) 23a and a phototransistor 23b are paired. . The LED 23a of the first embodiment is a light emitting element that emits infrared rays, and the phototransistor 23b is a light receiving element that receives infrared rays.

上記光センサ23は、LED23aが赤外線を発していて、LED23aが発する赤外線は、被検知物が存在しない場合にはフォトトランジスタ23bに受光されないように設定されている。被検知物とロボットアームとが相対的に近づいたとき、LEDが発した赤外線は、被検知物で反射される。反射された赤外線は、フォトトランジスタ23bによって受光される。フォトトランジスタ23bが受光する赤外線の強度は、フォトトランジスタ23bと被検知物との距離に応じて変化する。   The optical sensor 23 is set so that the LED 23a emits infrared light, and the infrared light emitted by the LED 23a is not received by the phototransistor 23b when there is no object to be detected. When the detected object and the robot arm are relatively close to each other, the infrared rays emitted from the LED are reflected by the detected object. The reflected infrared light is received by the phototransistor 23b. The intensity of the infrared light received by the phototransistor 23b varies depending on the distance between the phototransistor 23b and the object to be detected.

図2に示しように、基板21上には、配線が設けられている。複数の光センサ23及びコネクタ27は、配線によって電気的に接続されている。複数のフォトトランジスタ23bは、赤外線を受光することによって受光された赤外線の強度に応じた信号を各々生成し、コネクタ27を通して第2基板に送信する。このため、第1実施形態は、第1基板に対して被検知物が相対的に近づいたことを検知することができる。   As shown in FIG. 2, wiring is provided on the substrate 21. The plurality of optical sensors 23 and the connector 27 are electrically connected by wiring. The plurality of phototransistors 23b each generate a signal corresponding to the intensity of the received infrared light by receiving the infrared light, and transmit the signal to the second substrate through the connector 27. For this reason, 1st Embodiment can detect that the to-be-detected object approached relatively with respect to the 1st board | substrate.

また、第1実施形態は、上述の構成に限定されるものではない。例えば、第1実施形態は、フォトトランジスタ23bと個別に接続されたAD変換器を基板21上に設け、フォトトランジスタ23bらの出力を第1基板上にてデジタル信号に変換し、そのままコネクタ27から配線ケーブル13を介して第2基板12のコネクタ37、マイクロプロセッサ31に送信するようにしてもよい。このような構成とすることで、フォトトランジスタ23bの出力信号の劣化を抑制しつつマイクロプロセッサ31に伝達することができる。第1基板11等と第2基板12との間の通信は、複数の配線ケーブル43のうちの1本の配線が1つの光センサ23の出力信号を送信するパラレル通信によって行われる。   Moreover, 1st Embodiment is not limited to the above-mentioned structure. For example, in the first embodiment, an AD converter individually connected to the phototransistor 23b is provided on the substrate 21, the output of the phototransistor 23b and the like is converted into a digital signal on the first substrate, and the connector 27 is used as it is. You may make it transmit to the connector 37 and the microprocessor 31 of the 2nd board | substrate 12 via the wiring cable 13. FIG. With such a configuration, it is possible to transmit the signal to the microprocessor 31 while suppressing deterioration of the output signal of the phototransistor 23b. Communication between the first substrate 11 and the like and the second substrate 12 is performed by parallel communication in which one of the plurality of wiring cables 43 transmits an output signal of one photosensor 23.

さらに、第1実施形態は、第1基板からの出力信号を配線ケーブル13によって第2基板12に送信するものに限定されるものではない。第1実施形態は、フォトトランジスタ23bの出力信号を無線によって第2基板に送信することもできる。このような場合、第1基板及び第2基板には無線信号を送受信するための通信部を備える構成が用いられる。   Further, the first embodiment is not limited to the one that transmits the output signal from the first board to the second board 12 by the wiring cable 13. In the first embodiment, the output signal of the phototransistor 23b can also be transmitted to the second substrate wirelessly. In such a case, a configuration including a communication unit for transmitting and receiving a radio signal is used for the first substrate and the second substrate.

また、第1実施形態の第1基板は、図1及び図2に示したように、光センサ23を一列に配置する構成に限定されるものではない。図3は、光センサ23を2列備える第1基板611を示した図である。   Moreover, the 1st board | substrate of 1st Embodiment is not limited to the structure which arrange | positions the optical sensor 23 in a line as shown in FIG.1 and FIG.2. FIG. 3 is a view showing a first substrate 611 provided with two rows of optical sensors 23.

第2基板12に搭載されているマイクロプロセッサ31はコネクタ37を経由して第1基板上の複数の光センサ23の出力信号を取り込む。マイクロプロセッサ31は個々の光センサ23の出力信号である電圧を、光センサ23と被検知物との距離に変換する。変換は何らかの計算式を用いて行うこともできるが、光センサ23に用いられるフォトトランジスタ23bが受光する反射光の強度と、フォトトランジスタ23bと被検知物との距離の関係は非線形である場合が多く、計算式が複雑になる虞がある。
そのため、マイクロプロセッサ31にフォトトランジスタ23bが受光する反射光の強度と、フォトトランジスタ23bと被検知物との距離との関係を表す変換テーブルを記憶させる。
The microprocessor 31 mounted on the second substrate 12 takes in the output signals of the plurality of optical sensors 23 on the first substrate via the connector 37. The microprocessor 31 converts the voltage that is the output signal of each photosensor 23 into the distance between the photosensor 23 and the object to be detected. Although the conversion can be performed using any calculation formula, the relationship between the intensity of reflected light received by the phototransistor 23b used in the optical sensor 23 and the distance between the phototransistor 23b and the object to be detected may be nonlinear. Many calculations may be complicated.
For this reason, the microprocessor 31 stores a conversion table representing the relationship between the intensity of the reflected light received by the phototransistor 23b and the distance between the phototransistor 23b and the object to be detected.

マイクロプロセッサ31はAD変換器と、演算部と、を含んでいる。マイクロプロセッサ31は複数の光センサ23の出力信号を受信すると、AD変換器によってアナログ値である電圧をデジタル値に変換した後、上述の変換テーブルを参照して個々の出力信号を電圧から距離に変換する。変換テーブルは光センサ23の種類に応じて設定される。1つのマイクロプロセッサ31に1つまたはそれ以上の変換テーブルを記憶させても良い。マイクロプロセッサ31は個々の光センサ23の出力を距離情報に変換し、上位の制御装置14に送信する。   The microprocessor 31 includes an AD converter and a calculation unit. When the microprocessor 31 receives the output signals of the plurality of optical sensors 23, the AD converter converts the voltage, which is an analog value, into a digital value, and then refers to the conversion table described above to convert each output signal from the voltage to the distance. Convert. The conversion table is set according to the type of the optical sensor 23. One microprocessor 31 may store one or more conversion tables. The microprocessor 31 converts the output of each optical sensor 23 into distance information and transmits it to the host control device 14.

上位の制御装置14には1つ、または複数個の第2基板が接続される。制御装置14はマイクロプロセッサ31が算出した個々の光センサ23と被検知物との距離情報を解釈し、複数の光センサ23が配置された第1基板11上の領域における被検知物の位置を取得する。すなわち、特定の第2基板12から送信された複数個の距離情報を比較し、その第2基板12に接続されている特定の第1基板11上に配置されている光センサ23の中で最も被検知物と近い距離にある光センサ23を抽出することで、特定の第1基板11上における被検知物の位置情報を求める。制御装置14は求めた位置情報をさらに上位の制御装置、例えばロボットのコントローラ等に送信する。   One or a plurality of second substrates are connected to the upper control device 14. The control device 14 interprets distance information between the individual optical sensors 23 calculated by the microprocessor 31 and the detected object, and determines the position of the detected object in the region on the first substrate 11 where the plurality of optical sensors 23 are arranged. get. That is, a plurality of distance information transmitted from a specific second substrate 12 is compared, and the most among the optical sensors 23 arranged on the specific first substrate 11 connected to the second substrate 12. By extracting the optical sensor 23 at a distance close to the detected object, position information of the detected object on the specific first substrate 11 is obtained. The control device 14 transmits the obtained position information to a higher-level control device such as a robot controller.

[第2実施形態]
本発明の第2実施形態について説明する。第2実施形態では光センサ23に用いられているLED23aを必要な時のみ発光させる。マイクロプロセッサ31が光センサ23の出力を読み込むタイミングに合わせてLED23aを発光させ、それ以外のタイミングでは消光させる。発光させるタイミングはLED23aの光強度が安定する時間を勘案して決定する。
[Second Embodiment]
A second embodiment of the present invention will be described. In the second embodiment, the LED 23a used in the optical sensor 23 is caused to emit light only when necessary. The LED 31a is caused to emit light at the timing when the microprocessor 31 reads the output of the optical sensor 23, and is extinguished at other timings. The light emission timing is determined in consideration of the time during which the light intensity of the LED 23a is stabilized.

LED23aが発光した後、フォトトランジスタ23bの出力信号が安定するのをマイクロプロセッサ31が確認した後、個々の光センサ23の出力を決定する。または、予めLED23aの光強度が安定する時間を求めておき、光強度が安定する時間を勘案して決定したクロック信号を第2基板から第1基板に送信し、LED23aの周期的な発光を制御しても良い。   After the LED 23a emits light, the microprocessor 31 confirms that the output signal of the phototransistor 23b is stabilized, and then the output of each photosensor 23 is determined. Alternatively, the time during which the light intensity of the LED 23a is stabilized is obtained in advance, and a clock signal determined in consideration of the time during which the light intensity is stabilized is transmitted from the second substrate to the first substrate, thereby controlling the periodic light emission of the LED 23a. You may do it.

[第3実施形態]
本発明の第3実施形態では、被検知物の距離に応じてLED23aに供給する電圧を変更する。光センサ23は被検知物が遠いと反射光が弱くなってセンサ感度が低下し、検知能力が低下する問題があった。そこで、図6(b)に示すように被検知物が光センサ23から遠い位置にある場合、LED23aに供給する電圧を上げ、図6(a)に示すように被検知物が光センサ23から近い位置にある場合、LED23aに供給する電圧を下げる。電圧を上げることでLED23aの発する光強度が増大し、被検知物が遠くても強い反射光が得られるので、遠い物体を正確に検知することができる。
[Third Embodiment]
In 3rd Embodiment of this invention, the voltage supplied to LED23a is changed according to the distance of a to-be-detected object. The optical sensor 23 has a problem that if the object to be detected is far, the reflected light becomes weak, the sensor sensitivity is lowered, and the detection capability is lowered. Therefore, when the detected object is located far from the optical sensor 23 as shown in FIG. 6B, the voltage supplied to the LED 23a is increased, and the detected object is removed from the optical sensor 23 as shown in FIG. If it is close, the voltage supplied to the LED 23a is lowered. Increasing the voltage increases the light intensity emitted by the LED 23a, and strong reflected light can be obtained even when the object to be detected is far away, so that a far object can be accurately detected.

この場合、上述の変換テーブルも供給電圧に応じて最適なものを選択し、使用する。LED23aへの供給電圧を可変とすることで、遠くにある被検知物を正確に検知することができ、かつ被検知物が近くにある場合は消費電力を低減することができる。   In this case, the optimum conversion table is also selected and used according to the supply voltage. By making the supply voltage to the LED 23a variable, it is possible to accurately detect an object to be detected in the distance, and to reduce power consumption when the object to be detected is nearby.

[第4実施形態]
図7は本発明の第4実施形態を表す模式図であり、搭載する光センサ23の数が異なる複数種類の第1基板の中から、第2基板に接続されている第1基板の種類を自動的に認識する機能を第2基板に設ける。
第1基板11のコネクタ27と第2基板12のコネクタ37には、第1基板の種類を特定するためのピンが設けられている。図 は例として4種類の第1基板が存在する場合の認識方法を示している。コネクタ27には第1基板の種類を識別するためのピンが2本あり、それぞれのピンには第1基板の種類に応じて0Vまたは3.3V〜5Vの電圧が掛けられている。
ピンに電圧を掛ける場合を1、電圧を掛けない場合を0と表すと(0,0)、(0,1)、(1,0)、(1,1)の4種類の状態が存在するので、これらを第1基板の種類に対応付けることで、第1基板の種類を自動で認識することができる。上述の変換テーブルも認識した第1基板に適したものを自動で選択する。
[Fourth Embodiment]
FIG. 7 is a schematic diagram showing the fourth embodiment of the present invention. The types of first substrates connected to the second substrate are selected from a plurality of types of first substrates having different numbers of optical sensors 23 to be mounted. A function for automatically recognizing is provided on the second substrate.
The connector 27 of the first substrate 11 and the connector 37 of the second substrate 12 are provided with pins for specifying the type of the first substrate. The figure shows the recognition method when four types of first substrates exist as an example. The connector 27 has two pins for identifying the type of the first board, and a voltage of 0 V or 3.3 V to 5 V is applied to each pin according to the type of the first board.
There are four states: (0, 0), (0, 1), (1, 0), and (1, 1), where 1 is the voltage applied to the pin and 0 is the voltage not applied. Therefore, the type of the first substrate can be automatically recognized by associating these with the type of the first substrate. A device suitable for the first substrate that also recognizes the above-described conversion table is automatically selected.

[第5実施形態]
本発明の第5実施形態は、ワーク搬送用ハンド100やロボットハンド101に第1基板11を取り付け、ワークWを適切に把持するためのハンドの位置決めを行う。図8はコンベア110上を流れるワークWを、コンベア110を止めずに把持するシステムの模式図である。第1基板11が取り付けられたハンド100を、コンベア110によって搬送されているワークWに接近させる。
[Fifth Embodiment]
In the fifth embodiment of the present invention, the first substrate 11 is attached to the workpiece transfer hand 100 or the robot hand 101, and the hand is positioned to appropriately hold the workpiece W. FIG. 8 is a schematic diagram of a system for gripping the workpiece W flowing on the conveyor 110 without stopping the conveyor 110. The hand 100 to which the first substrate 11 is attached is brought close to the workpiece W being conveyed by the conveyor 110.

ハンド100はコンベア110の搬送速度に追従するよう図8の右方向に移動しつつワークWに接近する。ワークWが第1基板11の光センサ23の検出範囲にはいったら、光センサ23の出力信号を基に求めた位置情報を参照してハンド100をワークWの真上に位置させる。   The hand 100 approaches the workpiece W while moving rightward in FIG. 8 so as to follow the conveying speed of the conveyor 110. When the workpiece W enters the detection range of the optical sensor 23 on the first substrate 11, the hand 100 is positioned immediately above the workpiece W with reference to the positional information obtained based on the output signal of the optical sensor 23.

[変形例]
第1基板11に複数の光センサ23を搭載する場合、動作電力の供給は単純に配線を分岐させても良いが、分岐数が増えると電圧が低下する虞がある。そのため、図5に示すようにトランジスタTを用いて共通の電源線から取り込んだ電源を、発光タイミング信号を用いてLED23aをON/OFFさせても良い。電源電圧が安定するので、反射光の光強度にばらつきが少なくなり、検出精度が向上する。
[Modification]
When a plurality of optical sensors 23 are mounted on the first substrate 11, the operation power may be supplied by simply branching the wiring, but the voltage may decrease as the number of branches increases. Therefore, as shown in FIG. 5, the LED 23 a may be turned ON / OFF using a light emission timing signal from a power supply taken from a common power supply line using the transistor T. Since the power supply voltage is stabilized, variations in the light intensity of the reflected light are reduced, and detection accuracy is improved.

1 近接覚センサ
11 第1基板
12 第2基板、
13 配線ケーブル
14 制御装置
23 光センサ
23a 発光ダイオード、23b フォトトランジスタ
31 マイクロプロセッサ
1 proximity sensor 11 first substrate 12 second substrate,
13 Wiring Cable 14 Control Device 23 Optical Sensor 23a Light-Emitting Diode, 23b Phototransistor 31 Microprocessor

Claims (2)

光強度を検出する複数の光センサを備える第1基板と、
第1基板の複数の前記光センサが出力した信号に基づいて複数の前期光センサと被検知物との距離情報を取得する距離情報取得部を備える第2基板と、
前記第1基板から前記第2基板へ信号生成部によって生成された信号を送信する信号送信部と、前記距離情報取得部が取得した距離情報に基づいて被検知物の位置情報を取得する位置情報取得部と、を含む近接覚センサが、ワーク把持腕の内側に設置されたワーク搬送用ハンド。
A first substrate comprising a plurality of optical sensors for detecting light intensity;
A second substrate including a distance information acquisition unit that acquires distance information between a plurality of previous photosensors and an object to be detected based on signals output from the plurality of optical sensors on the first substrate;
Position information for acquiring the position information of the detected object based on the distance information acquired by the signal transmission unit for transmitting the signal generated by the signal generation unit from the first substrate to the second substrate and the distance information acquiring unit. A workpiece conveyance hand in which a proximity sensor including an acquisition unit is installed inside the workpiece gripping arm.
コンベア上を搬送されるワークに対して請求項1に記載したワーク搬送用ハンドを、前記コンベアの速度に追従させつつ前記ワークの上方から接近させ、前記ワークが前記第1基板の前記光センサの検出範囲に入ったら、前記光センサの出力信号を基に求めた前記距離情報と前記位置情報を参照して前記ハンドを前記ワークの真上に位置させることを特徴とするワークの搬送方法。

The workpiece transfer hand according to claim 1 is made to approach from above the workpiece while following the speed of the conveyor with respect to the workpiece transferred on the conveyor, and the workpiece is moved from the optical sensor of the first substrate. A workpiece transporting method, wherein, when entering a detection range, the hand is positioned immediately above the workpiece with reference to the distance information and the position information obtained based on an output signal of the optical sensor.

JP2015102049A 2015-05-19 2015-05-19 Work transfer hand with proximity sensor Active JP6582542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015102049A JP6582542B2 (en) 2015-05-19 2015-05-19 Work transfer hand with proximity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015102049A JP6582542B2 (en) 2015-05-19 2015-05-19 Work transfer hand with proximity sensor

Publications (2)

Publication Number Publication Date
JP2016215310A true JP2016215310A (en) 2016-12-22
JP6582542B2 JP6582542B2 (en) 2019-10-02

Family

ID=57579925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015102049A Active JP6582542B2 (en) 2015-05-19 2015-05-19 Work transfer hand with proximity sensor

Country Status (1)

Country Link
JP (1) JP6582542B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113910275A (en) * 2021-10-28 2022-01-11 宁夏共享机床辅机有限公司 Two-shaft transfer device with clamping jaws

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0259282A (en) * 1988-08-22 1990-02-28 Toshiba Corp Correcting device for position of robot
JPH0261591U (en) * 1988-10-27 1990-05-08
JPH04242517A (en) * 1990-12-19 1992-08-31 Mitsubishi Heavy Ind Ltd Product catching device and its controller
JPH05318363A (en) * 1992-05-21 1993-12-03 Sanyo Electric Co Ltd Method for controlling robot
JPH06210580A (en) * 1993-01-13 1994-08-02 Nissan Motor Co Ltd Workpiece gripping compensating device
JPH07159519A (en) * 1993-12-08 1995-06-23 Kansei Corp Optical range finding apparatus
JPH09127406A (en) * 1995-10-31 1997-05-16 Olympus Optical Co Ltd Range finder
JPH1062161A (en) * 1996-08-20 1998-03-06 Omron Corp Distance-measuring sensor, distance-measuring unit, paper-sheets conveyance device, automatic inspection device and printing apparatus
JPH11166825A (en) * 1997-12-04 1999-06-22 Olympus Optical Co Ltd Distance measuring device
JP2000171246A (en) * 1998-09-28 2000-06-23 Asahi Optical Co Ltd Range finder
JP2004362339A (en) * 2003-06-05 2004-12-24 Fuji Electric Device Technology Co Ltd Image detection apparatus
JP2008041022A (en) * 2006-08-10 2008-02-21 Yaskawa Electric Corp I/o device, communication device, servomotor control device, control system and robot system
JP2014144495A (en) * 2013-01-28 2014-08-14 Yaskawa Electric Corp Robot system

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0259282A (en) * 1988-08-22 1990-02-28 Toshiba Corp Correcting device for position of robot
JPH0261591U (en) * 1988-10-27 1990-05-08
JPH04242517A (en) * 1990-12-19 1992-08-31 Mitsubishi Heavy Ind Ltd Product catching device and its controller
JPH05318363A (en) * 1992-05-21 1993-12-03 Sanyo Electric Co Ltd Method for controlling robot
JPH06210580A (en) * 1993-01-13 1994-08-02 Nissan Motor Co Ltd Workpiece gripping compensating device
JPH07159519A (en) * 1993-12-08 1995-06-23 Kansei Corp Optical range finding apparatus
JPH09127406A (en) * 1995-10-31 1997-05-16 Olympus Optical Co Ltd Range finder
JPH1062161A (en) * 1996-08-20 1998-03-06 Omron Corp Distance-measuring sensor, distance-measuring unit, paper-sheets conveyance device, automatic inspection device and printing apparatus
JPH11166825A (en) * 1997-12-04 1999-06-22 Olympus Optical Co Ltd Distance measuring device
JP2000171246A (en) * 1998-09-28 2000-06-23 Asahi Optical Co Ltd Range finder
JP2004362339A (en) * 2003-06-05 2004-12-24 Fuji Electric Device Technology Co Ltd Image detection apparatus
JP2008041022A (en) * 2006-08-10 2008-02-21 Yaskawa Electric Corp I/o device, communication device, servomotor control device, control system and robot system
JP2014144495A (en) * 2013-01-28 2014-08-14 Yaskawa Electric Corp Robot system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113910275A (en) * 2021-10-28 2022-01-11 宁夏共享机床辅机有限公司 Two-shaft transfer device with clamping jaws

Also Published As

Publication number Publication date
JP6582542B2 (en) 2019-10-02

Similar Documents

Publication Publication Date Title
US9618650B2 (en) Multiple optical axis photoelectric sensor for muting processing
JP2016218063A (en) Proximity sensor
JPH11353986A (en) Controller for plural area sensors
US8378288B2 (en) Optical position detecting device, robot hand, and robot arm
JP6358227B2 (en) Proximity sensor
JP6582542B2 (en) Work transfer hand with proximity sensor
JP2005141542A5 (en)
JP6488880B2 (en) Proximity sensor
JP4781423B2 (en) Optical signal transmission apparatus and method
CN107782354B (en) Motion sensor detection system and method
JP2016218064A (en) Proximity sensor
JP2011209077A (en) Object detection device
JP2013167559A (en) Illumination device with localization mechanism, and localization system
JP2012252793A (en) Human sensor device, human sensor system and lighting control system
EP2786641B1 (en) Master illuminating device, illuminating device and illumination control system
US9322521B2 (en) Lighting device
JP6313902B2 (en) Wireless power supply system capable of data communication, data communication method, and sensor module
JP6492732B2 (en) Lighting fixture and lighting system
US10999902B2 (en) System for efficient communication and control for connected modules in lighting fixtures
CN108922865A (en) A kind of chip fixing means and system
JP2009009490A (en) Proximity sensor and proximity sensor system
KR101353532B1 (en) Modular robot, system for combination of modular robot each other and method for combination thereof
KR101336984B1 (en) A proximity-sensor
KR102256942B1 (en) Angle sensing type command input apparatus, lighting system and its control method
KR20190001856A (en) Motion detection system using camera of mobile device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180329

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190312

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190819

R150 Certificate of patent or registration of utility model

Ref document number: 6582542

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150