JP2016215123A - Electrolytic water generator - Google Patents

Electrolytic water generator Download PDF

Info

Publication number
JP2016215123A
JP2016215123A JP2015102852A JP2015102852A JP2016215123A JP 2016215123 A JP2016215123 A JP 2016215123A JP 2015102852 A JP2015102852 A JP 2015102852A JP 2015102852 A JP2015102852 A JP 2015102852A JP 2016215123 A JP2016215123 A JP 2016215123A
Authority
JP
Japan
Prior art keywords
electrolyzed water
gas
electrolysis
electrolytic
electrode pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015102852A
Other languages
Japanese (ja)
Inventor
理史 竹本
Michifumi Takemoto
理史 竹本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2015102852A priority Critical patent/JP2016215123A/en
Publication of JP2016215123A publication Critical patent/JP2016215123A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrolytic water generator capable of preventing abnormal heat generation in an electrode pair for electrolysis and having high safety.SOLUTION: An electrolytic water generator of the present invention comprises an electrode pair for electrolysis that generates electrolytic water containing hypochlorous acid from an electrolyte, an electrolyte supply part that supplies the electrolyte between the electrode pair, an electrolytic water passage through which electrolytic water generated by the electrode pair flows, and a sensor. The electrolytic water passage has a bent part where the electrolytic water passage is bent. The bent part is a part where the electrolytic water passage is bent so that a gas rises to the bent part by buoyancy and stays there. The sensor is provided to detect lowering of a gas-liquid interface caused by staying of the gas in the bent part.SELECTED DRAWING: Figure 1

Description

本発明は、電解水生成器に関する。   The present invention relates to an electrolyzed water generator.

次亜塩素酸類を含む電解水は除菌効果を有するため、感染症の予防、生鮮食品の鮮度維持、洗濯物やペット用品の除菌や消臭などの目的で利用されており、食品工場等の生産装置の洗浄、食品そのものへの洗浄に使用されている。そのため、それらの用途に用いられる電解水生成器は現時点では大規模な生産装置であるが、今後、一般家庭や飲食店、小規模清掃業者での除菌用途の拡大に向けて、電解水生成器の小型化、装置の安全対策が求められる。   Since electrolyzed water containing hypochlorous acid has a sterilizing effect, it is used for the purpose of preventing infectious diseases, maintaining the freshness of fresh food, sterilizing and deodorizing laundry and pet products, food factories, etc. It is used to clean production equipment and foods. Therefore, the electrolyzed water generator used for these applications is currently a large-scale production device, but in the future, electrolyzed water generation will be aimed at expanding the use of sterilization in general households, restaurants, and small-scale cleaners. Equipment size reduction and equipment safety measures are required.

電解時の異常検知する機能を有する強酸性水生成器が知られている(例えば、特許文献1参照)。
特許文献1の強酸性水生成器では、水と添加液とで構成された電解液を隔膜を有する電解槽に導入し、電解槽の電極に電解電圧を印加することにより、前記電解液を電気分解して強酸性水を生成する。また、この強酸性水生成器は、電解前の混合水の導電率を計測する電解前導電率計測手段と、電解後の生成水の導電率を計測する電解後導電率計測手段と、前記電解槽の電解電流値を計測する電流値計測手段と、前記電解前導電率計測手段で計測された電解前導電率、前記電解後導電率計測手段で計測された電解後導電率、及び前記電流値計測手段で計測された電解電流値に基づいて電解時の異常を検出する異常検出手段を備えた構成を有する。
A strongly acidic water generator having a function of detecting an abnormality during electrolysis is known (for example, see Patent Document 1).
In the strong acid water generator of Patent Document 1, an electrolytic solution composed of water and an additive solution is introduced into an electrolytic cell having a diaphragm, and an electrolytic voltage is applied to an electrode of the electrolytic cell, whereby the electrolytic solution is electrically discharged. Decomposes to produce strongly acidic water. The strongly acidic water generator includes a pre-electrolysis conductivity measuring means for measuring the conductivity of the mixed water before electrolysis, a post-electrolysis conductivity measuring means for measuring the conductivity of the generated water after electrolysis, and the electrolysis. Current value measuring means for measuring the electrolytic current value of the tank, the pre-electrolysis conductivity measured by the pre-electrolysis conductivity measurement means, the post-electrolysis conductivity measured by the post-electrolysis conductivity measurement means, and the current value It has the structure provided with the abnormality detection means which detects the abnormality at the time of electrolysis based on the electrolysis current value measured by the measurement means.

異常検出手段では、電解前導電率計測手段で計測された電解前導電率、電解後導電率計測手段で計測された電解後導電率、及び電流値計測手段で計測された電解電流値に基づいて電解時の異常を検出する。電解前導電率が決まると、電解電源の電圧は既知であるので、これらの関係から電解電流値が決まることになる。すなわち、電解が正常に行われたときの電解前導電率と電解電流値との関係を知ることができる。従って、電解前導電率に対して電解電流値が極端に大きい場合や極端に小さい場合には電解電源の異常と判断できる。
また、電解後導電率が電解電流値に対して極端に大きい場合や小さい場合も異常と判断できる。さらに、電解前導電率と電解電流値とから電解後導電率の予測が可能であるので、電解前導電率に対し、電解後導電率がこの予測値と極端に異なる場合には、異常と判断できる。
The anomaly detection means is based on the pre-electrolysis conductivity measured by the pre-electrolysis conductivity measurement means, the post-electrolysis conductivity measured by the post-electrolysis conductivity measurement means, and the electrolysis current value measured by the current value measurement means. Detects abnormalities during electrolysis. When the electroconductivity before electrolysis is determined, the voltage of the electrolysis power supply is known, and therefore the electrolysis current value is determined from these relationships. That is, it is possible to know the relationship between the conductivity before electrolysis and the electrolysis current value when electrolysis is normally performed. Therefore, when the electrolysis current value is extremely large or extremely small with respect to the conductivity before electrolysis, it can be determined that the electrolysis power supply is abnormal.
Moreover, it can also be judged as abnormal when the post-electrolysis conductivity is extremely large or small with respect to the electrolysis current value. Furthermore, since the post-electrolysis conductivity can be predicted from the pre-electrolysis conductivity and the electrolysis current value, if the post-electrolysis conductivity is extremely different from the predicted value relative to the pre-electrolysis conductivity, it is judged as abnormal. it can.

特開平7−195075号公報JP-A-7-195075

電解時の異常検知する機能を有する従来の強酸性水生成器では、電解液流路内に導電率計測機器を配置する必要があり、前記計測機器は電解液に対する耐薬品性が求められるだけでなく、電源や信号を流路外とやり取りするために、電解液の漏れ対策が必要になり、装置全体を小型化することが困難であり、またコストアップ要因になる。
また、従来の強酸性水生成器では水道水と食塩水などの添加液との混合水を電気分解することにより、殺菌効果の高い強酸性水を生成する強酸性水生成器の電解時異常検出装置に関することであり、強酸性水とは、pH2前後、酸化還元電位1100〜1400mV及び残留塩素濃度20〜50ppm程度のものを指す。この場合は電解液である食塩水の濃度は、飽和食塩濃度である36%程度のものが一般的であるが、例えば電解液の食塩水濃度が飽和食塩濃度よりも低い、例えば5%程度の電解液の場合は、電解前後の電解液の導電率変化が少なく、導電率変化では空焚き等の電解時の異常を判定できない。
本発明は、このような事情に鑑みてなされたものであり、電解用電極対の異常発熱を防止することができ、安全性の高い電解水生成器を提供する。
In a conventional strong acid water generator having a function of detecting abnormality during electrolysis, it is necessary to place a conductivity measuring device in the electrolyte flow path, and the measuring device is only required to have chemical resistance to the electrolyte. In order to exchange power and signals outside the flow path, it is necessary to take measures against leakage of the electrolyte, and it is difficult to reduce the size of the entire apparatus, which causes a cost increase.
In addition, conventional strong acid water generators detect abnormalities during electrolysis of strong acid water generators that produce highly acidic water with a high bactericidal effect by electrolyzing the mixed water of tap water and additive solution such as saline. It is related to the apparatus, and strongly acidic water refers to one having a pH of around 2, an oxidation-reduction potential of 1100 to 1400 mV, and a residual chlorine concentration of about 20 to 50 ppm. In this case, the concentration of the saline solution as the electrolytic solution is generally about 36% that is the saturated salt concentration. For example, the saline concentration of the electrolytic solution is lower than the saturated salt concentration, for example, about 5%. In the case of an electrolytic solution, there is little change in the conductivity of the electrolytic solution before and after electrolysis, and abnormality in electrolysis such as emptying cannot be determined by the change in conductivity.
This invention is made | formed in view of such a situation, can prevent the abnormal heat_generation | fever of the electrode pair for electrolysis, and provides an electrolyzed water generator with high safety | security.

本発明は、電解液から次亜塩素酸類を含む電解水を生成する電解用電極対と、前記電極対間に電解液を供給する電解液供給部と、前記電極対により生成された電解水が流れる電解水流路と、センサーとを備え、前記電解水流路は、前記電解水流路が曲がった曲部を有し、前記曲部は、気体が浮力により前記曲部に浮上し溜まるように前記電解水流路が曲がった部分であり、前記センサーは、気体が前記曲部に溜まることにより生じる気液界面の低下を検出するように設けられたことを特徴とする電解水生成器を提供する。   The present invention includes an electrode pair for electrolysis that generates electrolyzed water containing hypochlorous acid from an electrolyte solution, an electrolyte solution supply unit that supplies an electrolyte solution between the electrode pairs, and an electrolyzed water generated by the electrode pair. An electrolyzed water flow path and a sensor, wherein the electrolyzed water flow path has a bent portion where the electrolyzed water flow path is bent, and the bent portion is configured to allow the gas to float and accumulate in the bent portion by buoyancy. The water flow path is a bent portion, and the sensor provides an electrolyzed water generator characterized in that it is provided so as to detect a decrease in a gas-liquid interface caused by gas accumulated in the bent portion.

本発明の電解水生成器は電解液から次亜塩素酸類を含む電解水を生成する電解用電極対と、前記電極対間に電解液を供給する電解液供給部とを備えるため、電解用電極対により連続的に電解水を生成することができる。また、電極対による電解処理により、水素ガス又は塩素ガスが発生するため、電解用電極対により生成された電解水には、水素ガス又は塩素ガスの気泡が含まれる。なお、電解水に含まれる塩素ガスは、電解部内及び電解水流路などを流れる過程で、水と反応し次亜塩素酸類に変換される。
本発明の電解水生成器は電解用電極対により生成された電解水が流れる電解水流路を備え、前記電解水流路は前記電解水流路が曲がった曲部を有し、前記曲部は、気体が浮力により前記曲部に浮上し溜まるように前記電解水流路が曲がった部分であるため、電解水流路を流れる電解水の流量が少ない場合、電解水に含まれる気泡が浮力により電解水流路の曲部に溜まり、溜まった気体と電解水との間に気液界面が形成される。また、電解液又は電解水の漏洩や電解液タンクが空になり空気が電解水流路に混入した場合、混入した空気は曲部に溜まり、溜まった気体と電解水との間に気液界面が形成される。
Since the electrolyzed water generator of the present invention includes an electrode pair for electrolysis that generates electrolyzed water containing hypochlorous acid from the electrolyte solution, and an electrolyte solution supply unit that supplies the electrolyte solution between the electrode pairs, the electrode for electrolysis Electrolyzed water can be generated continuously by the pair. Further, since hydrogen gas or chlorine gas is generated by the electrolytic treatment using the electrode pair, the electrolyzed water generated by the electrode pair for electrolysis includes bubbles of hydrogen gas or chlorine gas. In addition, the chlorine gas contained in electrolyzed water reacts with water and is converted into hypochlorous acid in the process of flowing in the electrolysis section and the electrolyzed water flow path.
The electrolyzed water generator of the present invention includes an electrolyzed water flow path through which electrolyzed water generated by the electrode pair for electrolysis flows, the electrolyzed water flow path has a curved portion where the electrolyzed water flow path is bent, and the curved portion is a gas Therefore, when the flow rate of the electrolyzed water flowing through the electrolyzed water channel is small, bubbles contained in the electrolyzed water may be generated in the electrolyzed water channel due to the buoyant force. A gas-liquid interface is formed between the accumulated gas and the electrolyzed water. Also, when the electrolyte or electrolyte water leaks or the electrolyte tank is emptied and air enters the electrolytic water flow path, the mixed air accumulates in the curved portion, and there is a gas-liquid interface between the accumulated gas and the electrolytic water. It is formed.

本発明の電解水生成器はセンサーを備え、このセンサーは、電解用電極対による電解により生成した気体又は電解水流路に混入した空気が曲部に溜まることにより生じる気液界面の低下を検出するように設けられる。
電解水流路への電解水の供給が停止した場合や電解水の供給量が少なくなった場合、曲部の上流部又は下流部の気泡や電解用電極対で生成された気泡が浮力により曲部に集まるため、気液界面は低下する。また、混入した空気が曲部に集まり、気液界面が低下する場合もある。電解水の供給停止又は空気の混入は、例えば、電解水生成器が電解液供給部に含まれる電解液タンクが貯留する電解液がなくなった状態、電解液供給部に含まれるポンプが故障した状態、電解液又は電解水の漏洩が生じた状態などになったときに生じる。これらの状態が続くと、気液界面は徐々に低下していき、電解用電極対間の電解液もなくなっていく。電解用電極対間に電解液がない状態において電解用電極対に電圧を印加し続けると、異常発熱が生じ、電解水生成器が故障したり暴走したりする。
The electrolyzed water generator of the present invention includes a sensor, and this sensor detects a decrease in a gas-liquid interface caused by accumulation of gas generated by electrolysis by an electrode pair for electrolysis or air mixed in an electrolyzed water flow path in a curved portion. It is provided as follows.
When the supply of electrolyzed water to the electrolyzed water flow path is stopped or when the supply amount of electrolyzed water decreases, bubbles in the upstream part or downstream part of the bent part or bubbles generated in the electrode pair for electrolysis are bent due to buoyancy. As a result, the gas-liquid interface is lowered. Moreover, the mixed air gathers in the curved part, and the gas-liquid interface may be lowered. The supply of electrolytic water is stopped or air is mixed. For example, the electrolytic water generator is in a state where there is no electrolyte stored in the electrolytic solution tank included in the electrolytic solution supply unit, or the pump included in the electrolytic solution supply unit is broken. Occurs when the electrolyte or water leaks. If these states continue, the gas-liquid interface gradually decreases and the electrolyte solution between the electrode pairs for electrolysis disappears. If voltage is continuously applied to the electrode pair for electrolysis in a state where there is no electrolytic solution between the electrode pair for electrolysis, abnormal heat generation occurs, and the electrolyzed water generator fails or runs away.

従って、センサーにより気液界面の低下を検出すると、電解用電極対間の電解液がなくなる前に電解用電極対への電圧の印加をやめることができ、異常発熱が生じることを抑制することができる。このため、異常発熱による装置の故障や暴走を防ぐことができ、民生用品としては必要不可欠な機器の安全性が確保できる。また、電解用電極対の異常発熱を抑制できるので、製品寿命に大きく寄与する電解用電極対の寿命が長くすることができる。
また、電解用電極対間に供給する電解液の種類や濃度に関わらず、異常発熱が生じることを抑制することができる。
従来の強酸性水生成器では電解液タンクの空検知機構を電解槽の上流側に配置する必要があったが、本発明の電解水生成器では、センサーによる気液界面の低下を検出することにより、電解液タンクが空になったことを検出することができ、電解槽の上流側に電解液タンクの空検知機構を設けることを省略することができる。
Therefore, when a decrease in the gas-liquid interface is detected by the sensor, voltage application to the electrode pair for electrolysis can be stopped before the electrolyte solution between the electrode pairs for electrolysis runs out, and abnormal heat generation can be suppressed. it can. For this reason, it is possible to prevent a malfunction or runaway of the apparatus due to abnormal heat generation, and it is possible to ensure the safety of equipment that is indispensable as a consumer product. Moreover, since the abnormal heat generation of the electrode pair for electrolysis can be suppressed, the life of the electrode pair for electrolysis that greatly contributes to the product life can be extended.
In addition, it is possible to suppress the occurrence of abnormal heat generation regardless of the type and concentration of the electrolytic solution supplied between the electrode pairs for electrolysis.
In the conventional strong acid water generator, it was necessary to arrange the empty detection mechanism of the electrolyte tank upstream of the electrolytic tank, but in the electrolyzed water generator of the present invention, it is possible to detect a decrease in the gas-liquid interface by the sensor. Thus, it is possible to detect that the electrolyte tank has become empty, and it is possible to omit providing an empty detection mechanism for the electrolyte tank upstream of the electrolytic cell.

本発明の一実施形態の電解水生成器の概略断面図である。It is a schematic sectional drawing of the electrolyzed water generator of one Embodiment of this invention. 本発明の一実施形態の電解水生成器の概略構成図である。It is a schematic block diagram of the electrolyzed water generator of one Embodiment of this invention. 本発明の一実施形態の電解水生成器の一部の概略断面図である。It is a schematic sectional drawing of a part of electrolyzed water generator of one Embodiment of this invention. 本発明の一実施形態の電解水生成器の一部の概略断面図である。It is a schematic sectional drawing of a part of electrolyzed water generator of one Embodiment of this invention.

本発明の電解水生成器は、電解液から次亜塩素酸類を含む電解水を生成する電解用電極対と、前記電極対間に電解液を供給する電解液供給部と、前記電極対により生成された電解水が流れる電解水流路と、センサーとを備え、前記電解水流路は、前記電解水流路が曲がった曲部を有し、前記曲部は、気体が浮力により前記曲部に浮上し溜まるように前記電解水流路が曲がった部分であり、前記センサーは、前記電極対による電解により生成した気体が前記曲部に溜まることにより生じる気液界面の低下を検出するように設けられたことを特徴とする。   The electrolyzed water generator of the present invention is generated by an electrode pair for electrolysis that generates electrolyzed water containing hypochlorous acid from an electrolyte solution, an electrolyte solution supply unit that supplies an electrolyte solution between the electrode pairs, and the electrode pair The electrolyzed water flow path through which the electrolyzed water flows and a sensor, the electrolyzed water flow path has a bent portion where the electrolyzed water flow path is bent, and the bent portion floats on the bent portion by gas buoyancy. The electrolyzed water flow path is bent so as to collect, and the sensor is provided so as to detect a gas-liquid interface drop caused by accumulation of gas generated by electrolysis by the electrode pair in the bent portion. It is characterized by.

本発明の電解水生成器に含まれるセンサーは、前記電解水流路の外側に配置された静電容量式レベルセンサーであることが好ましい。
このように静電容量式レベルセンサーを設けると、電解液に含まれる電解質の種類や電解液の電解質濃度に関わらず、電解異常の検知が可能になる。
本発明の電解水生成器に含まれるセンサーは、気体が溜まる部分の上側から気液界面の低下を検出するように設けられたことが好ましい。
このように静電容量式レベルセンサーを設けると、気相(気体)が曲部を通過する際に発生する気液界面の波うちに起因するノイズ成分の影響を少なくすることができ、気相割合を正確に検出することができる。
The sensor included in the electrolyzed water generator of the present invention is preferably a capacitance type level sensor disposed outside the electrolyzed water flow path.
By providing the capacitance type level sensor in this manner, it is possible to detect an electrolytic abnormality regardless of the type of electrolyte contained in the electrolytic solution and the electrolyte concentration of the electrolytic solution.
The sensor included in the electrolyzed water generator of the present invention is preferably provided so as to detect a decrease in the gas-liquid interface from the upper side of the portion where the gas accumulates.
Providing a capacitance type level sensor in this way can reduce the influence of noise components caused by waves at the gas-liquid interface generated when the gas phase (gas) passes through the curved portion. The ratio can be detected accurately.

本発明の電解水生成器に含まれるセンサーは、気体が溜まる部分の側部から気液界面の低下を検出するように設けられたことが好ましい。
このように静電容量式レベルセンサーを設けると、気液界面の変化を性能よく検知することができる。
本発明の電解水生成器に含まれる電解液供給部は、電解液を貯留する電解液タンクと、前記電解液タンク内の電解液を前記電極対間に供給するポンプとを備えることが好ましい。
このような電解液供給部を備えると、電解液タンクに貯留した電解液から電解水を生成することができる。また、高濃度の電解液を電解部に供給することができ、高効率で電解処理することができる。
The sensor included in the electrolyzed water generator of the present invention is preferably provided so as to detect a decrease in the gas-liquid interface from the side of the portion where the gas accumulates.
When the capacitance type level sensor is provided in this way, it is possible to detect a change in the gas-liquid interface with good performance.
The electrolytic solution supply unit included in the electrolytic water generator of the present invention preferably includes an electrolytic solution tank that stores the electrolytic solution, and a pump that supplies the electrolytic solution in the electrolytic solution tank between the pair of electrodes.
When such an electrolytic solution supply unit is provided, electrolytic water can be generated from the electrolytic solution stored in the electrolytic solution tank. Further, a high concentration electrolytic solution can be supplied to the electrolysis unit, and the electrolytic treatment can be performed with high efficiency.

本発明の電解水生成器は、前記電極対により生成された電解水を希釈する希釈部をさらに備えることが好ましく、前記曲部は、前記電極対と前記希釈部との間の前記電解水流路に設けられたことが好ましい。
本発明の電解水生成器が希釈部を備えることにより、多量の電解水を生成することが可能になる。また、このように曲部を設けると、電解液タンクが空になったことや電解水生成器に異常が生じたことを早期に検出することができ、電解用電極対が異常発熱することを抑制できる。
本発明の電解水生成器が電解水の乱流が生じる水槽を有する攪拌部をさらに備えることが好ましい。
本発明の電解水生成器がこのような攪拌部を備えると、電解部による電解処理により生じた塩素ガスを効率よく次亜塩素酸類に変換することができ、安定した濃度の電解水を生成することができる。
本発明の電解水生成器において、前記電極対は、無隔膜電解用電極対であることが好ましい。
このような構成によれば、電極間距離を短くすることができ、電解効率を高くすることができる。また、電解部の構造が簡単になり、電解水生成器の製造コストを低減することができる。
The electrolyzed water generator of the present invention preferably further includes a diluting part for diluting the electrolyzed water produced by the electrode pair, and the curved part is the electrolyzed water flow path between the electrode pair and the diluting part. It is preferable to be provided.
When the electrolyzed water generator of the present invention includes the dilution section, a large amount of electrolyzed water can be generated. In addition, when the curved portion is provided in this way, it is possible to detect at an early stage that the electrolyte tank has become empty or an abnormality has occurred in the electrolyzed water generator, and that the electrode pair for electrolysis generates abnormal heat. Can be suppressed.
It is preferable that the electrolyzed water generator of the present invention further includes a stirring unit having a water tank in which turbulent flow of electrolyzed water occurs.
When the electrolyzed water generator of the present invention includes such a stirring unit, chlorine gas generated by electrolysis by the electrolyzing unit can be efficiently converted into hypochlorous acid, and electrolyzed water having a stable concentration is generated. be able to.
In the electrolyzed water generator of the present invention, the electrode pair is preferably a diaphragm electrolysis electrode pair.
According to such a configuration, the distance between the electrodes can be shortened, and the electrolytic efficiency can be increased. Moreover, the structure of the electrolysis part becomes simple, and the manufacturing cost of the electrolyzed water generator can be reduced.

以下、図面を用いて本発明の実施形態を説明する。図面や以下の記述中で示す構成は、例示であって、本発明の範囲は、図面や以下の記述中で示すものに限定されない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The configurations shown in the drawings and the following description are merely examples, and the scope of the present invention is not limited to those shown in the drawings and the following description.

第1実施形態
図1は、第1実施形態の電解水生成器の概略断面図であり、図2は、第1実施形態の電解水生成器の概略構成図である。図3は、第1実施形態の電解水生成器の一部の概略断面図である。
第1実施形態の電解水生成器30は、電解液8から次亜塩素酸類を含む電解水11を生成する電解用電極対1と、電極対1間に電解液8を供給する電解液供給部7と、電極対1により生成された電解水11が流れる電解水流路9と、センサー22とを備え、電解水流路9は、電解水流路9が曲がった曲部21を有し、曲部21は、気体が浮力により前記曲部に浮上し溜まるように前記電解水流路が曲がった部分であり、センサー22は、気体が曲部21に溜まることにより生じる気液界面26の低下を検出するように設けられたことを特徴とする。
First Embodiment FIG. 1 is a schematic cross-sectional view of an electrolyzed water generator of the first embodiment, and FIG. 2 is a schematic configuration diagram of the electrolyzed water generator of the first embodiment. FIG. 3 is a schematic sectional view of a part of the electrolyzed water generator of the first embodiment.
The electrolyzed water generator 30 of the first embodiment includes an electrode pair 1 for electrolysis that generates electrolyzed water 11 containing hypochlorous acid from the electrolyte solution 8, and an electrolyte solution supply unit that supplies the electrolyte solution 8 between the electrode pair 1. 7, an electrolyzed water channel 9 through which the electrolyzed water 11 generated by the electrode pair 1 flows, and a sensor 22, and the electrolyzed water channel 9 has a curved portion 21 in which the electrolyzed water channel 9 is bent. Is a portion where the electrolyzed water flow path is bent so that gas floats and accumulates on the curved portion due to buoyancy, and the sensor 22 detects a decrease in the gas-liquid interface 26 caused by the accumulation of gas in the curved portion 21. It is characterized by being provided in.

また、第1実施形態の電解水生成器30は、電解水生成ライン35と水道水供給ライン36が希釈部13で合流し、電解水生成ライン35から供給される電気分解反応の反応生成物を含む電解水11の濃度を希釈させ、所望の電解水濃度になるように調整した電解水11を吐出口10から吐出する構成になっている。また、電解水生成器30は、この電解水11を製造する装置である。   Further, in the electrolyzed water generator 30 of the first embodiment, the electrolyzed water generation line 35 and the tap water supply line 36 merge at the diluting unit 13 and the reaction product of the electrolysis reaction supplied from the electrolyzed water generation line 35 is obtained. The electrolyzed water 11 adjusted to have a desired electrolyzed water concentration by diluting the concentration of the electrolyzed water 11 is discharged from the discharge port 10. The electrolyzed water generator 30 is an apparatus for producing the electrolyzed water 11.

電解水生成ライン35は、電解液8を貯留する電解液タンク5、電解液8を電解部4に送液するためのポンプ6を備えた電解液供給部7と、陽極2と陰極3とを有する無隔膜電解用電極対1から構成されている電解部4、電解部4の電解水流出部23と希釈部13とを接続する電解水流路9とから構成される。電解水流路9には、電解水流路9が曲がった曲部21が設けられている。
また、曲部21は、気体が浮力により前記曲部に浮上し溜まるように前記電解水流路が曲がった部分である。曲部21がこのような構成を有することにより、曲部21に気体が溜まり易くなる。また、曲部21は、少なくとも一部がその上流部およびその下流部よりも高い位置に配置されるように設けられてもよい。つまり、曲部21はピークを有するように設けることができる。
曲部21の上部には、静電容量式レベルセンサー22が設けられている。なお、レベルセンサー22は、電解水流路9を構成する配管の外部に設置することができる。
The electrolytic water generation line 35 includes an electrolytic solution tank 5 that stores the electrolytic solution 8, an electrolytic solution supply unit 7 that includes a pump 6 for sending the electrolytic solution 8 to the electrolytic unit 4, an anode 2, and a cathode 3. The electrolysis part 4 is composed of an electrode pair 1 for electrolysis with a diaphragm, and the electrolyzed water flow path 9 that connects the electrolyzed water outflow part 23 of the electrolysis part 4 and the diluting part 13. The electrolyzed water channel 9 is provided with a curved portion 21 where the electrolyzed water channel 9 is bent.
The bent portion 21 is a portion where the electrolyzed water flow path is bent so that gas floats and accumulates on the bent portion by buoyancy. Since the curved portion 21 has such a configuration, gas easily accumulates in the curved portion 21. Moreover, the curved part 21 may be provided so that at least one part may be arrange | positioned in the position higher than the upstream part and the downstream part. That is, the curved portion 21 can be provided to have a peak.
An electrostatic capacity type level sensor 22 is provided on the upper portion of the curved portion 21. The level sensor 22 can be installed outside the piping that constitutes the electrolyzed water flow path 9.

電解用電極対1には電解用の電源部20より電力が供給されるが、供給方式は定電圧駆動方式でも定電流駆動方式でも共に使用可能であるが、電解用電極対1の抵抗値の個体差を考慮すれば、定電流駆動方式を用いた方が電解液8の濃度管理は容易である。
ポンプ6はチューブポンプを用いるが一般的であり、ポンプ寿命を長くするために、間欠駆動を行うことが望ましい。
Electric power is supplied to the electrode pair 1 for electrolysis from the power supply unit 20 for electrolysis, and both the constant voltage driving method and the constant current driving method can be used, but the resistance value of the electrode pair 1 for electrolysis is not limited. If individual differences are taken into account, it is easier to manage the concentration of the electrolytic solution 8 using the constant current driving method.
As the pump 6, a tube pump is generally used, and it is desirable to perform intermittent driving in order to extend the pump life.

本実施形態では、電解水生成器30は、次亜塩素酸(HClO)、次亜塩素酸塩(NaClO、KClOなど)及びアルカリ金属塩化物を含む電解水11を生成する構成を有する。電解水生成器30は独立した装置であってもよく、他の装置に組み込まれた電解水11を生成する部分であってもよい。   In the present embodiment, the electrolyzed water generator 30 is configured to generate electrolyzed water 11 containing hypochlorous acid (HClO), hypochlorite (NaClO, KClO, etc.) and alkali metal chloride. The electrolyzed water generator 30 may be an independent device, or may be a portion that generates the electrolyzed water 11 incorporated in another device.

電解液8は、アルカリ金属塩化物と、水溶液が酸性となる物質とを含む水溶液である。アルカリ金属塩化物は、塩化ナトリウム又は塩化カリウムであることが好ましい。なお、電解液供給部7は、電解水生成用電解質から電解液8を調製して、調製した電解液8を電解部1に供給してもよい。例えば、クエン酸と塩化ナトリウム又は塩化カリウムとからなる電解水生成用電解質を水に溶解させ電解液8を調製し、この調製した電解液8を電解部1に供給することができる。
電解液8は、塩化ナトリウムと塩化カリウムの両方を含んでもよい。電解液8がアルカリ金属塩化物を含むことにより、電解水生成器30により生成される電解水11が次亜塩素酸及び次亜塩素酸塩(次亜塩素酸類)を含むことができ、電解水11が殺菌効果を有することができる。また、アルカリ金属塩化物が電解されることにより生成されるアルカリ性物質により、電解水生成器30により生成される電解水11のpHを6.5よりも大きくすることができる。また、電解液8がアルカリ金属塩化物を含むことにより、電解水11がアルカリ金属塩化物を含むことができる。
The electrolytic solution 8 is an aqueous solution containing an alkali metal chloride and a substance that makes the aqueous solution acidic. The alkali metal chloride is preferably sodium chloride or potassium chloride. The electrolytic solution supply unit 7 may prepare the electrolytic solution 8 from the electrolytic water generation electrolyte and supply the prepared electrolytic solution 8 to the electrolytic unit 1. For example, an electrolyte for generating electrolyzed water composed of citric acid and sodium chloride or potassium chloride can be dissolved in water to prepare an electrolyte solution 8, and the prepared electrolyte solution 8 can be supplied to the electrolysis unit 1.
The electrolytic solution 8 may contain both sodium chloride and potassium chloride. When the electrolytic solution 8 contains an alkali metal chloride, the electrolytic water 11 produced by the electrolyzed water generator 30 can contain hypochlorous acid and hypochlorite (hypochlorous acid). 11 can have a bactericidal effect. Moreover, the pH of the electrolyzed water 11 produced | generated by the electrolyzed water generator 30 can be made larger than 6.5 with the alkaline substance produced | generated by electrolyzing an alkali metal chloride. Moreover, when the electrolyte solution 8 contains an alkali metal chloride, the electrolyzed water 11 can contain an alkali metal chloride.

電解液8が塩化ナトリウムを含む場合、塩化ナトリウムは安価であるため、電解水11の製造コストを低減することができる。
電解液8が塩化カリウムを含む場合、製造する電解水11がカリウムイオンを含むことができる。このことにより、病害予防などの目的で電解水11を農作物に散布することが可能になる。この場合、カリウムイオンを肥料として利用することが可能になる。
When the electrolytic solution 8 contains sodium chloride, the sodium chloride is inexpensive, so the manufacturing cost of the electrolytic water 11 can be reduced.
When the electrolytic solution 8 contains potassium chloride, the electrolytic water 11 to be produced can contain potassium ions. This makes it possible to spray the electrolyzed water 11 on the agricultural crops for the purpose of disease prevention or the like. In this case, potassium ions can be used as fertilizer.

電解液8が酸性となる物質を含むことにより、電解水生成器30により生成される電解水11のpHを8.0よりも小さくすることができる。電解液8又は電解水生成用電解質に含まれる「水溶液が酸性となる物質」は、例えば、塩化水素(塩酸)、硫酸、硝酸、酢酸、クエン酸、フッ化水素(フッ化水素酸)などである。水溶液が酸性となる物質は、塩化水素とすることが好ましい。このことにより、塩化水素に含まれる塩素イオンから次亜塩素酸を生成することができ、生成する電解水11の有効塩素濃度を高くすることができる。また、水溶液が酸性となる物質をクエン酸とすることができる。   When the electrolytic solution 8 contains an acidic substance, the pH of the electrolytic water 11 generated by the electrolytic water generator 30 can be made lower than 8.0. Examples of the “substance in which the aqueous solution is acidic” contained in the electrolyte 8 or the electrolyte for generating electrolyzed water include hydrogen chloride (hydrochloric acid), sulfuric acid, nitric acid, acetic acid, citric acid, hydrogen fluoride (hydrofluoric acid), and the like. is there. The substance that makes the aqueous solution acidic is preferably hydrogen chloride. Thereby, hypochlorous acid can be generated from chlorine ions contained in hydrogen chloride, and the effective chlorine concentration of the generated electrolyzed water 11 can be increased. In addition, a substance that makes the aqueous solution acidic can be citric acid.

電解部4で高濃度の次亜塩素酸類を含む電解水11を生成し希釈する方式においては、電解部4で生成する電解水11の次亜塩素酸類の濃度が高いほど好ましい。このことにより、希釈部13における希釈倍率を高めることができ、多量の電解水11を生成することができる。また、少ない電解液8から多量の電解水11を生成することが可能になり、電解液タンク5に貯留する電解液8の消費を抑制することができる。   In the method of generating and diluting electrolyzed water 11 containing hypochlorous acid at a high concentration in the electrolysis unit 4, the concentration of hypochlorous acid in the electrolyzed water 11 generated in the electrolysis unit 4 is preferably as high as possible. Thereby, the dilution rate in the dilution part 13 can be raised, and a lot of electrolyzed water 11 can be produced | generated. In addition, a large amount of electrolytic water 11 can be generated from a small amount of electrolytic solution 8, and consumption of the electrolytic solution 8 stored in the electrolytic solution tank 5 can be suppressed.

電解部4内の次亜塩素酸類の濃度が高いほど電解液8の濃度を高くしなければ生成効率が低下する。しかし電解液8の濃度が高すぎると、塩が析出や塩酸成分の揮発が発生により濃度変化を生じやすくなり、電解液8の管理の手間や、機器の故障を招く恐れが生じる。
したがって、実使用上好ましくは、アルカリ金属塩化物の濃度を約5%以上約15%以下とし、塩化水素の濃度を約0.25%以上5%以下とすることが好ましい。
ただし更に電解水11の生成頻度が低く長期間電解液8の補充や交換がない事が想定される場合には、全体的に濃度を下げておくことは好ましく、アルカリ金属塩化物の濃度を約0.5%以上10%以下とし、塩化水素の濃度を約0.25%以上1.0%以下、とすることも可能である。具体的な濃度の決定は場合によるが、例えば必要な電解水11の濃度が低ければ比較的電解液8も低い濃度でよく電解液濃度も長期間安定するので好ましく、必要な濃度が高ければ電解効率と電解液消費率の兼ね合いにより比較的高い濃度の方が好ましい。
As the concentration of hypochlorous acid in the electrolysis unit 4 increases, the generation efficiency decreases unless the concentration of the electrolytic solution 8 is increased. However, if the concentration of the electrolytic solution 8 is too high, the concentration is likely to change due to the precipitation of salt and the volatilization of the hydrochloric acid component, which may lead to troublesome management of the electrolytic solution 8 and equipment failure.
Therefore, in practical use, the alkali metal chloride concentration is preferably about 5% or more and about 15% or less, and the hydrogen chloride concentration is preferably about 0.25% or more and 5% or less.
However, when it is assumed that the generation frequency of the electrolyzed water 11 is low and the electrolyte solution 8 is not replenished or exchanged for a long period of time, it is preferable to reduce the concentration as a whole. It is also possible to set the concentration of hydrogen chloride to about 0.5% to 10% and the hydrogen chloride concentration to about 0.25% to 1.0%. Although the specific concentration is determined depending on the case, for example, if the required concentration of the electrolyzed water 11 is low, the electrolyte solution 8 may be a relatively low concentration, and the electrolyte solution concentration is stable for a long period of time. A relatively high concentration is preferred due to the balance between efficiency and electrolyte consumption rate.

電解部4は、陽極2及び陰極3を備える電解用電極対1を有する。また、電解用電極対1は、電解液供給部7から供給された電解液8が陽極2と陰極3との間を流れるように設けることができ、また、陽極2と陰極3との間に電圧を印加できるように設けられる。このことにより、電解液8を電解処理することができ、次亜塩素酸、次亜塩素酸塩及びアルカリ金属塩化物を含む電解水11を生成することができる。なお、電解用電極対1は、無隔膜電解ができるように設けることができる。   The electrolysis unit 4 includes an electrode pair 1 for electrolysis including an anode 2 and a cathode 3. Further, the electrode pair 1 for electrolysis can be provided so that the electrolyte solution 8 supplied from the electrolyte solution supply unit 7 flows between the anode 2 and the cathode 3, and between the anode 2 and the cathode 3. It is provided so that a voltage can be applied. Thus, the electrolytic solution 8 can be subjected to electrolytic treatment, and electrolyzed water 11 containing hypochlorous acid, hypochlorite, and alkali metal chloride can be generated. In addition, the electrode pair 1 for electrolysis can be provided so that non-diaphragm electrolysis can be performed.

例えば、電解部4における電解処理では、化学反応式(1)、(3)のような陽極反応が進行し、化学反応式(4)のような陰極反応が進行すると考えられる。また、電解液中又は電解水中において化学式(2)のような反応が進行すると考えられる。従って、電解処理により生成された電解水11は、塩素ガスの気泡又は水素ガスの気泡を含むことができる。なお、電解水11に含まれる塩素ガスは、電解水11が電解部4及び電解水流路9を流れる間に進行する化学反応式(2)により次亜塩素酸類に変換される。
2Cl-→Cl2+2e-・・・(1)
Cl2+H2O→HCl+HClO・・・(2)
2O→1/2O2+2H++2e-・・・(3)
2H2O+2e-→H2+2OH-・・・(4)
For example, in the electrolytic treatment in the electrolysis unit 4, it is considered that an anodic reaction such as chemical reaction formulas (1) and (3) proceeds and a cathodic reaction such as chemical reaction formula (4) proceeds. Moreover, it is thought that reaction like Chemical formula (2) advances in electrolyte solution or electrolyte water. Therefore, the electrolyzed water 11 generated by the electrolytic treatment can contain chlorine gas bubbles or hydrogen gas bubbles. The chlorine gas contained in the electrolyzed water 11 is converted into hypochlorous acid by the chemical reaction equation (2) that proceeds while the electrolyzed water 11 flows through the electrolyzing unit 4 and the electrolyzed water flow path 9.
2Cl → Cl 2 + 2e (1)
Cl 2 + H 2 O → HCl + HClO (2)
H 2 O → 1 / 2O 2 + 2H + + 2e (3)
2H 2 O + 2e → H 2 + 2OH (4)

陽極2及び陰極3は、それぞれ板状とすることができ、陽極2と陰極3とが無隔膜で対向するように設けることができる。このことにより、電極間距離を短くすることができ、電解効率を向上させることができる。また、陽極2及び陰極3は、略平行で電極間距離が1mm〜5mmの範囲内となるように配置することができる。
電解用電極対1は、一枚の陽極2と一枚の陰極3とが対向するように設けられてもよく、陽極2と陰極3とが交互に間隔をおいて積層されるように設けられてもよく、複数の電極が積層され中間の電極の一方の面が陽極2となり他方の面が陰極3となるように設けられてもよい。
The anode 2 and the cathode 3 can each be plate-shaped, and can be provided so that the anode 2 and the cathode 3 face each other with a non-transparent film. As a result, the distance between the electrodes can be shortened, and the electrolytic efficiency can be improved. Moreover, the anode 2 and the cathode 3 can be arrange | positioned so that it may become substantially parallel and the distance between electrodes may exist in the range of 1 mm-5 mm.
The electrode pair 1 for electrolysis may be provided so that one anode 2 and one cathode 3 face each other, and the anode 2 and the cathode 3 are provided so as to be alternately stacked. Alternatively, a plurality of electrodes may be stacked and provided so that one surface of the intermediate electrode becomes the anode 2 and the other surface becomes the cathode 3.

希釈部13は、電解部4により生成した電解水11を水で希釈して吐出口10に供給するように設けられる。また、希釈部13において電解部4により生成した電解水11を水道水で希釈することにより、製造する電解水11の量を多くすることができる。また、希釈部13における希釈する水の量を変えることにより、電解水11の有効塩素濃度を容易に変えることができる。   The dilution unit 13 is provided so that the electrolyzed water 11 generated by the electrolysis unit 4 is diluted with water and supplied to the discharge port 10. Moreover, the quantity of the electrolyzed water 11 manufactured can be increased by diluting the electrolyzed water 11 produced | generated by the electrolysis part 4 in the dilution part 13 with a tap water. Moreover, the effective chlorine concentration of the electrolyzed water 11 can be easily changed by changing the amount of water to be diluted in the dilution section 13.

電解部4における電解処理において、陽極2では前記化学反応式(1)〜(3)に記載の通り、塩素気体や酸素気体が発生する。また、陰極3では、前記化学反応式(4)に記載の通り、水素気体が発生する。これらの気体種は、電解部4と電解部4よりも下流側で、電解水11に溶け込みながら排出されるが、特に電解部4の電解水流出部23や、電解水流出部23の下流側の電解水流路9に配置された曲部21では全ての気体種が電解水中に溶け込まず、気相(気体)が存在する。また、電解水流出部23の下流側に配置された曲部21は、電解水流路9を湾曲して形成しており、意図的に気相(気体)が溜まりやすい構造になっている。電解処理時には、一定量の気相(気体)が発生し、曲部21に気相が溜まる一方、同時に電解液供給部7より、電解液8を一定量電解部4に供給する制御を行うため、曲部21にも一定量の液相(電解水)が供給され続ける一方、前記液相内部に含まれる細かな泡状になった気相(気体、気泡27)が電解水11と共に排出されるため、通常の電解処理時の曲部21の気相と液相の比率は一定になり、気液界面26はあるレベルで安定する。   In the electrolytic treatment in the electrolysis unit 4, chlorine gas and oxygen gas are generated at the anode 2 as described in the chemical reaction formulas (1) to (3). Further, hydrogen gas is generated at the cathode 3 as described in the chemical reaction formula (4). These gaseous species are discharged downstream of the electrolysis unit 4 and the electrolysis unit 4 while being dissolved in the electrolyzed water 11, and in particular, the electrolyzed water outflow portion 23 of the electrolysis unit 4 and the downstream side of the electrolyzed water outflow portion 23. In the curved portion 21 arranged in the electrolyzed water flow path 9, not all gas species are dissolved in the electrolyzed water, and a gas phase (gas) exists. Moreover, the curved part 21 arrange | positioned in the downstream of the electrolyzed water outflow part 23 has formed the curved electrolyzed water flow path 9, and has a structure where a gaseous phase (gas) tends to accumulate intentionally. During the electrolytic treatment, a certain amount of gas phase (gas) is generated and the gas phase is accumulated in the curved portion 21, while at the same time, the electrolyte solution 8 is supplied from the electrolyte solution supply unit 7 to the electrolysis unit 4. While a certain amount of liquid phase (electrolyzed water) continues to be supplied to the curved portion 21, the fine gas phase (gas, bubbles 27) contained in the liquid phase is discharged together with the electrolyzed water 11. Therefore, the ratio between the gas phase and the liquid phase of the curved portion 21 during normal electrolytic treatment is constant, and the gas-liquid interface 26 is stabilized at a certain level.

例えば、電解液タンク5の電解液8が電解処理で消費され、電解液タンク5内の電解液8が空になった場合は、電解部4には新たな電解液8が供給されなくなり、同時に曲部21にも電解水11が供給されなくなるが、電解部4からの気相(気体)が継続発生することで、同時に曲部21の気相割合が増加し、気液界面26が低下する。この気液界面26の変化を曲部21の垂直上方に静電容量式レベルセンサー22を配置し、曲部21の気液界面26を垂直方向に検知し、異常検知を行う構成である。また、静電容量式レベルセンサー22は、気体が溜まる部分の上側から気液界面26の低下を検出するように設けられている。   For example, when the electrolytic solution 8 in the electrolytic solution tank 5 is consumed in the electrolytic treatment and the electrolytic solution 8 in the electrolytic solution tank 5 is emptied, the new electrolytic solution 8 is not supplied to the electrolytic unit 4 and at the same time Although the electrolyzed water 11 is no longer supplied to the curved portion 21, the gas phase ratio of the curved portion 21 increases at the same time due to the continuous generation of the gas phase (gas) from the electrolysis unit 4, and the gas-liquid interface 26 decreases. . The change in the gas-liquid interface 26 is configured such that an electrostatic capacitance type level sensor 22 is arranged vertically above the curved portion 21 to detect the abnormality by detecting the gas-liquid interface 26 of the curved portion 21 in the vertical direction. Further, the capacitance type level sensor 22 is provided so as to detect a decrease in the gas-liquid interface 26 from above the portion where the gas accumulates.

静電容量式レベルセンサー22は、例えば非金属製のパイプやチューブ内の液体レベルが検出可能な竹中電子工業製の静電容量式液体検知用レベルセンサ(SDYシリーズ)等を用いることが可能である。前記静電容量式液体検知用レベルセンサーは感度ボリューム調整機能がついているため、電解液8の通常電解処理時の曲部21の気液界面26位置に静電容量式レベルセンサー22の閾値を設定することが可能になるため、電解液8に含まれる電解質の種類や電解液8の電解質濃度に関わらず、静電容量式レベルセンサー22で電解異常の検知が可能になる。   The capacitance type level sensor 22 may be, for example, a capacitance type liquid detection level sensor (SDY series) manufactured by Takenaka Electronics Co., Ltd. that can detect the liquid level in a non-metallic pipe or tube. is there. Since the capacitive liquid detection level sensor has a sensitivity volume adjustment function, the threshold of the capacitive level sensor 22 is set at the position of the gas-liquid interface 26 of the curved portion 21 during the normal electrolytic treatment of the electrolytic solution 8. Therefore, regardless of the type of electrolyte contained in the electrolyte solution 8 and the electrolyte concentration of the electrolyte solution 8, it is possible to detect an electrolytic abnormality with the capacitance type level sensor 22.

異常時の例として、前記では電解液タンク5内の電解液8が空になった場合を記載したが、例えば、電解部4や電解液供給部7での電解液漏れにより、曲部21の気相割合の増加により、異常検知することも可能である。また、電源部20や電源回路/制御回路19の異常により、電解部4への電力供給が設定電力以上になった場合も、曲部21の気相割合の増加を静電容量式レベルセンサー22で検知可能である。
静電容量式レベルセンサー22は、曲部21の気液界面26を外部から非接触で測定、検知しているため、静電容量式レベルセンサー22には電解液8や電解水11に対する耐薬品性を付加する必要がなく、また従来技術の様に、電源や信号を流路の内外でやり取りする必要がないために、電解液や電解水の漏れ対策が不要になり、装置全体を小型化、低価格化することが可能である。
As an example of an abnormality, the case where the electrolytic solution 8 in the electrolytic solution tank 5 is emptied is described above. However, for example, due to leakage of electrolytic solution in the electrolytic unit 4 or the electrolytic solution supply unit 7, Abnormality detection is also possible by increasing the gas phase ratio. Further, even when the power supply to the electrolysis unit 4 exceeds the set power due to an abnormality in the power supply unit 20 or the power supply circuit / control circuit 19, the increase in the gas phase ratio of the curved portion 21 is caused by the capacitance level sensor 22. Can be detected.
Since the capacitance level sensor 22 measures and detects the gas-liquid interface 26 of the curved portion 21 from the outside without contact, the capacitance level sensor 22 has chemical resistance against the electrolytic solution 8 and the electrolytic water 11. Because there is no need to add power and there is no need to exchange power and signals between the inside and outside of the flow path as in the prior art, there is no need for countermeasures against leakage of electrolyte or electrolytic water, and the entire device is downsized. It is possible to reduce the price.

静電容量式レベルセンサー22による曲部21の気相割合の検知により、電解液タンク5の空検知が可能になるため、電解液タンク5の空検知装置を新たに配置する必要がなくなり、電解水生成器30の小型化、低価格化に寄与することができる。
静電容量式レベルセンサー22により曲部21の気相割合を測定することで異常検知する本方式では、電解液8に含まれる電解質の種類や電解液8の電解質濃度に関わらず、電解時に気体発生が生じるすべての電解処理に適応可能である。
Since the empty level of the electrolyte tank 5 can be detected by detecting the gas phase ratio of the curved portion 21 by the capacitance type level sensor 22, it is not necessary to newly install an empty detector of the electrolyte tank 5. It can contribute to size reduction and price reduction of the water generator 30.
In this method of detecting an abnormality by measuring the gas phase ratio of the curved portion 21 by the capacitance type level sensor 22, a gas is generated during electrolysis regardless of the type of electrolyte contained in the electrolyte 8 and the electrolyte concentration of the electrolyte 8. It can be applied to all electrolysis processes that occur.

<第2実施形態>
図4は、第2実施形態の電解水生成器の一部の概略断面図である。
第2実施形態では、曲部21の側部に静電容量式レベルセンサー22を配置することで、曲部21の気液界面26の変化を側部から検知する構成である。また、静電容量式レベルセンサー22は、気体が溜まる部分の側部から気液界面の低下を検出するように設けられる。
第2実施形態の電解水生成器30に含まれる静電容量式レベルセンサー22は、曲部21の垂直上方にレベルセンサー22を配置した第1実施形態と比較して、気液界面26の変化を検知する性能は高い。しかし、気液界面26を気相(気体)が通過する際の気液界面26の波うちが発生するため、ノイズ成分が多くなるといった傾向がある。気液界面26に対する静電容量式レベルセンサー22の設置位置が第2実施形態では垂直方向、第1実施形態では平行方向であるが、設置角度は電解液8に含まれる電解質の種類や電解液8の電解質濃度によって最適値があるため、その最適値に応じて自由に設定可能である。
なお、第1実施形態の電解水生成器30についての記載は、矛盾がない限り、第2実施形態の電解水生成器30にも当てはまる。
Second Embodiment
FIG. 4 is a schematic sectional view of a part of the electrolyzed water generator of the second embodiment.
In 2nd Embodiment, it is the structure which detects the change of the gas-liquid interface 26 of the curved part 21 from a side part by arrange | positioning the electrostatic capacitance type level sensor 22 to the side part of the curved part 21. FIG. In addition, the capacitance type level sensor 22 is provided so as to detect a decrease in the gas-liquid interface from the side of the portion where the gas accumulates.
The capacitance type level sensor 22 included in the electrolyzed water generator 30 of the second embodiment has a change in the gas-liquid interface 26 as compared with the first embodiment in which the level sensor 22 is arranged vertically above the curved portion 21. The performance of detecting is high. However, since a wave of the gas-liquid interface 26 occurs when the gas phase (gas) passes through the gas-liquid interface 26, the noise component tends to increase. The installation position of the capacitive level sensor 22 with respect to the gas-liquid interface 26 is the vertical direction in the second embodiment and the parallel direction in the first embodiment, but the installation angle is the type of electrolyte contained in the electrolyte solution 8 and the electrolyte solution. Since there is an optimum value depending on the electrolyte concentration of 8, it can be set freely according to the optimum value.
In addition, the description about the electrolyzed water generator 30 of 1st Embodiment is applicable also to the electrolyzed water generator 30 of 2nd Embodiment, as long as there is no contradiction.

<第3実施形態>
第3実施形態での電解水生成器30の概略断面図は、第1実施形態の電解水生成器30と同じである。
第3実施形態では、電解開始前にポンプ6を強制的に駆動し、曲部21に電解水11又は電解液8を送液する。そして、曲部21の上方に設置した静電容量式レベルセンサー22で曲部21の気相割合を測定する。
電解液タンク5内に電解液8が残っている場合、ポンプ6による送液により曲部21に溜まった気相は流され、気液界面26は上昇する又は曲部21に気液界面26がなくなる。このため、レベルセンサー22により測定される気相割合は低下する。従って、レベルセンサー22により、電解液タンク5内に電解液が残っていることを確認できる。
電解液タンク5が空状態の場合、ポンプ6を駆動しても曲部21に電解水11又は電解液8は供給されないため、曲部21の気液界面26は変化しない又は気液界面26は低下する。このため、レベルセンサー22により測定される気相割合は変化しない又は上昇する。従って、ポンプ6を強制的に駆動したときのレベルセンサー22の測定値の変化から電解液タンク5が空になったことを検出することが可能になる。
<Third Embodiment>
The schematic cross-sectional view of the electrolyzed water generator 30 in the third embodiment is the same as the electrolyzed water generator 30 in the first embodiment.
In the third embodiment, the pump 6 is forcibly driven before the start of electrolysis, and the electrolytic water 11 or the electrolytic solution 8 is fed to the curved portion 21. And the vapor-phase ratio of the curved part 21 is measured with the electrostatic capacitance type level sensor 22 installed above the curved part 21.
When the electrolytic solution 8 remains in the electrolytic solution tank 5, the gas phase accumulated in the curved portion 21 due to liquid feeding by the pump 6 is caused to flow and the gas-liquid interface 26 rises or the curved portion 21 has the gas-liquid interface 26. Disappear. For this reason, the gas phase ratio measured by the level sensor 22 decreases. Therefore, it can be confirmed by the level sensor 22 that the electrolytic solution remains in the electrolytic solution tank 5.
When the electrolytic solution tank 5 is empty, the electrolyzed water 11 or the electrolytic solution 8 is not supplied to the curved portion 21 even when the pump 6 is driven, so the gas-liquid interface 26 of the curved portion 21 does not change or the gas-liquid interface 26 is descend. For this reason, the gas phase ratio measured by the level sensor 22 does not change or rises. Therefore, it is possible to detect that the electrolyte tank 5 is empty from the change in the measured value of the level sensor 22 when the pump 6 is forcibly driven.

また、電解液タンク5内の電解液8がなくなった場合は、新たに電解液8が満たされた電解液タンク5を設置し交換するが、交換時にはポンプ6から電解部4までが電解液8又は電解水11で満たされている保証がない。電解部4に電解液8又は電解水11が満たされずに電解用電極対1に電力を供給すると、電解時の空炊きと同現象である電解用電極対1の異常発熱が生じる恐れがある。静電容量式レベルセンサー22により曲部21の気液界面26が無くなること又は気液界面26が上昇することを検出し、電解液8又は電解水11が電解部4を満たしていることを検出することで、前記の異常発熱を事前に防止する事が可能になる。
なお、第1実施形態の電解水生成器30についての記載は、矛盾がない限り、第3実施形態の電解水生成器30にも当てはまる。
Further, when the electrolyte solution 8 in the electrolyte solution tank 5 runs out, the electrolyte solution tank 5 newly filled with the electrolyte solution 8 is installed and replaced. At the time of replacement, the solution from the pump 6 to the electrolytic unit 4 is the electrolyte solution 8. Or there is no guarantee that it is filled with the electrolyzed water 11. If electric power is supplied to the electrolysis electrode pair 1 without the electrolytic solution 4 or the electrolyzed water 11 being filled in the electrolysis unit 4, there is a possibility that abnormal heat generation of the electrolysis electrode pair 1 may occur, which is the same phenomenon as empty cooking during electrolysis. The capacitance level sensor 22 detects that the gas-liquid interface 26 of the curved portion 21 disappears or the gas-liquid interface 26 rises, and detects that the electrolytic solution 8 or the electrolytic water 11 fills the electrolytic unit 4. By doing so, it becomes possible to prevent the abnormal heat generation in advance.
In addition, the description about the electrolyzed water generator 30 of 1st Embodiment is applicable also to the electrolyzed water generator 30 of 3rd Embodiment, as long as there is no contradiction.

<第4実施形態>
第4実施形態の電解水生成器30の概略断面図は、第1実施形態の電解水生成器30と同じである。
第4実施形態では、出荷後の初めて使用する前にポンプ6を強制的に駆動し、曲部21に電解液8を送液する。そして、曲部21の上方に設置した静電容量式レベルセンサー22で曲部21の気相割合を測定する。
電解水生成器30が電解水11を生成できる状態となっている場合、ポンプ6による送液により曲部21に溜まった気相は流され、気液界面26は上昇する又は曲部21に気液界面26がなくなる。このため、レベルセンサー22により測定される気相割合は低下する。従って、レベルセンサー22により、電解水生成器30が電解水を生成できる状態となっていることを確認できる。
<Fourth embodiment>
The schematic cross-sectional view of the electrolyzed water generator 30 of the fourth embodiment is the same as the electrolyzed water generator 30 of the first embodiment.
In the fourth embodiment, the pump 6 is forcibly driven before the first use after shipment, and the electrolytic solution 8 is fed to the curved portion 21. And the vapor-phase ratio of the curved part 21 is measured with the electrostatic capacitance type level sensor 22 installed above the curved part 21.
When the electrolyzed water generator 30 is in a state capable of generating the electrolyzed water 11, the gas phase accumulated in the curved portion 21 due to the liquid feeding by the pump 6 is caused to flow, and the gas-liquid interface 26 rises or the curved portion 21 is vaporized. The liquid interface 26 disappears. For this reason, the gas phase ratio measured by the level sensor 22 decreases. Therefore, the level sensor 22 can confirm that the electrolyzed water generator 30 is in a state where electrolyzed water can be generated.

製品流通(輸送)時の振動等による破損での液漏れの危険性があるため、電解部4には電解液が満たさない状態で製品は出荷されるため、出荷後の初めて使用する場合は空焚き状態が発生する。出荷後初めて使用する場合の空焚き状態でも、第3実施形態の電解液タンク5内の電解液8がなくなった場合と同様に、電解部4に電解液8又は電解水11が完全に満たされずに電解用電極対1に電力を供給すると、電解時の空炊きと同現象である電解用電極対1の異常発熱が生じる恐れがある。静電容量式レベルセンサー22で曲部21の気液界面26が無くなること又は気液界面26が上昇することを検出し、電解液8又は電解水11が電解部4を満たしていることを検出することで、電解用電極対1の異常発熱を事前に防止する事が可能になる。
なお、第1実施形態の電解水生成器30についての記載は、矛盾がない限り、第4実施形態の電解水生成器30にも当てはまる。
Since there is a risk of liquid leakage due to damage caused by vibration during product distribution (transportation), the product is shipped in a state where the electrolytic part 4 is not filled with electrolyte, so it is empty when used for the first time after shipment. A whisper occurs. Even in an empty state when used for the first time after shipment, the electrolytic solution 4 or the electrolytic water 11 is not completely filled in the electrolysis unit 4 as in the case where the electrolytic solution 8 in the electrolytic solution tank 5 of the third embodiment is exhausted. If electric power is supplied to the electrode pair 1 for electrolysis, abnormal heat generation of the electrode pair 1 for electrolysis, which is the same phenomenon as that when cooking empty, may occur. The capacitance level sensor 22 detects that the gas-liquid interface 26 of the curved portion 21 disappears or the gas-liquid interface 26 rises, and detects that the electrolytic solution 8 or the electrolytic water 11 fills the electrolytic unit 4. By doing so, it is possible to prevent abnormal heat generation of the electrode pair 1 for electrolysis in advance.
In addition, the description about the electrolyzed water generator 30 of 1st Embodiment is applicable also to the electrolyzed water generator 30 of 4th Embodiment, as long as there is no contradiction.

1:電解用電極対 2:陽極 3:陰極 4:電解部 5:電解液タンク 6:ポンプ 7:電解液供給部 8:電解液 9:電解水流路 10:吐出口 11:電解水 12:攪拌部 13:希釈部 14:電磁弁 15:給水口 16:流量センサー 17:水位センサー 18:逆止弁 19:電源回路/制御回路 20:電源部 21:曲部 22:静電容量式レベルセンサー 23:電解水流出部 24:水道水 25:気相 26:気液界面 27:気泡 28:筐体 30:電解水生成器 31:電解液流路 32:水道水流路 33:操作・表示部 35:電解水生成ライン 36:水道水供給ライン   1: Electrode pair 2: Electrode 3: Cathode 4: Electrolysis unit 5: Electrolyte tank 6: Pump 7: Electrolyte supply unit 8: Electrolyte 9: Electrolyzed water flow path 10: Discharge port 11: Electrolyzed water 12: Stirring Part 13: Dilution part 14: Solenoid valve 15: Water supply port 16: Flow rate sensor 17: Water level sensor 18: Check valve 19: Power supply circuit / control circuit 20: Power supply part 21: Bending part 22: Capacitance type level sensor 23 : Electrolyzed water outflow part 24: Tap water 25: Gas phase 26: Gas-liquid interface 27: Bubble 28: Housing 30: Electrolyzed water generator 31: Electrolyte water flow path 32: Tap water flow path 33: Operation / display part 35: Electrolyzed water generation line 36: Tap water supply line

Claims (8)

電解液から次亜塩素酸類を含む電解水を生成する電解用電極対と、前記電極対間に電解液を供給する電解液供給部と、前記電極対により生成された電解水が流れる電解水流路と、センサーとを備え、
前記電解水流路は、前記電解水流路が曲がった曲部を有し、
前記曲部は、気体が浮力により前記曲部に浮上し溜まるように前記電解水流路が曲がった部分であり、
前記センサーは、気体が前記曲部に溜まることにより生じる気液界面の低下を検出するように設けられたことを特徴とする電解水生成器。
Electrolytic electrode pair for generating electrolytic water containing hypochlorous acid from electrolytic solution, electrolytic solution supply unit for supplying electrolytic solution between the electrode pair, and electrolytic water flow path through which electrolytic water generated by the electrode pair flows And a sensor,
The electrolyzed water channel has a curved portion where the electrolyzed water channel is bent,
The bent portion is a portion where the electrolyzed water flow path is bent so that gas floats and accumulates in the bent portion due to buoyancy,
The electrolyzed water generator, wherein the sensor is provided so as to detect a decrease in a gas-liquid interface caused by accumulation of gas in the curved portion.
前記センサーは、前記電解水流路の外側に配置された静電容量式レベルセンサーである請求項1に記載の電解水生成器。   The electrolyzed water generator according to claim 1, wherein the sensor is a capacitance type level sensor disposed outside the electrolyzed water flow path. 前記センサーは、気体が溜まる部分の上側から気液界面の低下を検出するように設けられた請求項2に記載の電解水生成器。   The electrolyzed water generator according to claim 2, wherein the sensor is provided so as to detect a decrease in a gas-liquid interface from an upper side of a portion where gas accumulates. 前記センサーは、気体が溜まる部分の側部から気液界面の低下を検出するように設けられた請求項2又は3に記載の電解水生成器。   The electrolyzed water generator according to claim 2 or 3, wherein the sensor is provided so as to detect a decrease in a gas-liquid interface from a side portion of a portion where gas accumulates. 前記電解液供給部は、電解液を貯留する電解液タンクと、前記電解液タンク内の電解液を前記電極対間に供給するポンプとを備える請求項1〜4のいずれか1つに記載の電解水生成器。   The said electrolyte solution supply part is provided with the electrolyte solution tank which stores electrolyte solution, and the pump which supplies the electrolyte solution in the said electrolyte solution tank between the said electrode pairs. Electrolyzed water generator. 前記電極対により生成された電解水を希釈する希釈部をさらに備え、
前記曲部は、前記電極対と前記希釈部との間の前記電解水流路に設けられた請求項1〜5のいずれか1つに記載の電解水生成器。
A further dilution part for diluting the electrolyzed water produced by the electrode pair;
The electrolyzed water generator according to any one of claims 1 to 5, wherein the curved portion is provided in the electrolyzed water flow path between the electrode pair and the diluting portion.
電解水の乱流が生じる水槽を有する攪拌部をさらに備える請求項1〜6のいずれか1つに記載の電解水生成器。   The electrolyzed water generator according to any one of claims 1 to 6, further comprising a stirring unit having a water tank in which turbulent flow of electrolyzed water occurs. 前記電極対は、無隔膜電解用電極対である請求項1〜7のいずれか1つに記載の電解水生成器。   The electrolyzed water generator according to any one of claims 1 to 7, wherein the electrode pair is an electrode pair for diaphragmless electrolysis.
JP2015102852A 2015-05-20 2015-05-20 Electrolytic water generator Pending JP2016215123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015102852A JP2016215123A (en) 2015-05-20 2015-05-20 Electrolytic water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015102852A JP2016215123A (en) 2015-05-20 2015-05-20 Electrolytic water generator

Publications (1)

Publication Number Publication Date
JP2016215123A true JP2016215123A (en) 2016-12-22

Family

ID=57579942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015102852A Pending JP2016215123A (en) 2015-05-20 2015-05-20 Electrolytic water generator

Country Status (1)

Country Link
JP (1) JP2016215123A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI655956B (en) * 2017-07-06 2019-04-11 林信湧 Gas generator
US11214875B2 (en) 2017-07-06 2022-01-04 Hsin-Yung Lin Gas generator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI655956B (en) * 2017-07-06 2019-04-11 林信湧 Gas generator
US11214875B2 (en) 2017-07-06 2022-01-04 Hsin-Yung Lin Gas generator

Similar Documents

Publication Publication Date Title
AU2017225104B2 (en) Device for manufacturing sodium hypochlorite or hypochlorous acid and water treatment system in general
US20170298552A1 (en) Electrolyzed water generating device, electrolyte for generating electrolyzed water, and electrolyzed water for disinfection
CN205133741U (en) Gaseous manufacturing installation of electrolytic chlorine dioxide
JP5887385B2 (en) Electrolyzer
KR100802361B1 (en) Electrolysis sterilization disinfecting possibility supply apparatus
US20110189302A1 (en) Electrochemical device
KR101361651B1 (en) A device using electrolyzer with a bipolar membrane and the method of producing hypochlorite solution and hydrogen gas thereby
JP2011522123A (en) Electrolytic cell cleaning method including electrode and electrolytic product generator
KR100883894B1 (en) Apparatus for manufacturing of weak-acidic hypochlorous acid water and manufacturing method of weak-acidic hypochlorous acid water
JP5980373B1 (en) Electrolyzer
JP6620321B2 (en) Electrolyzed water generator
WO2017056907A1 (en) Electrolyzed hypochlorite water-generating apparatus
JP2016215123A (en) Electrolytic water generator
WO2016174783A1 (en) Electrolyzed water generator
JP6891894B2 (en) Chlorine dioxide generator and chlorine dioxide generation method
JP6521385B6 (en) Electrolyzed water generator
JP2002069683A (en) Apparatus for manufacturing hypochlorite
KR20230146959A (en) A system for producing hypochlorous acid water
WO2014168024A1 (en) Electrolytic vessel for use in production of aqueous hypochlorous acid
JP2018083132A (en) Manufacturing method and manufacturing apparatus of disinfected water
JP2018153793A (en) Method for producing strong alkaline electrolyzed water and product water
IES20080637A2 (en) Electrochemical device
IES85650Y1 (en) Electrochemical device
JP2007061766A (en) Electrolytic water generating apparatus
IE20080638U1 (en) Electrochemical device