JP2016214232A - Microorganisms, method for producing lipid and wastewater treatment method - Google Patents

Microorganisms, method for producing lipid and wastewater treatment method Download PDF

Info

Publication number
JP2016214232A
JP2016214232A JP2016007620A JP2016007620A JP2016214232A JP 2016214232 A JP2016214232 A JP 2016214232A JP 2016007620 A JP2016007620 A JP 2016007620A JP 2016007620 A JP2016007620 A JP 2016007620A JP 2016214232 A JP2016214232 A JP 2016214232A
Authority
JP
Japan
Prior art keywords
nitratireductor
lower organic
acid
organic acid
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016007620A
Other languages
Japanese (ja)
Other versions
JP6685137B2 (en
Inventor
好子 岡村
Yoshiko Okamura
好子 岡村
豊 中島田
Yutaka Nakashimada
豊 中島田
秋 庸裕
Yasuhiro Aki
庸裕 秋
幸彦 松村
Yukihiko Matsumura
幸彦 松村
雅彦 大川内
Masahiko Okawachi
雅彦 大川内
松本 光史
Terubumi Matsumoto
光史 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Hiroshima University NUC
Original Assignee
Electric Power Development Co Ltd
Hiroshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd, Hiroshima University NUC filed Critical Electric Power Development Co Ltd
Publication of JP2016214232A publication Critical patent/JP2016214232A/en
Application granted granted Critical
Publication of JP6685137B2 publication Critical patent/JP6685137B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of efficiently producing a material that can consume lower organic acid to use it.SOLUTION: Nitratireductor microorganisms are used to produce lipid from lower organic acid. The microorganisms are, for example, Nitratireductor sp.OM-1 strain. The lower organic acid may be, for example, at least one of propionic acid and acetic acid.SELECTED DRAWING: Figure 1

Description

本明細書に開示された技術は、微生物を用いた脂質の生成方法に関する。   The technology disclosed in the present specification relates to a method for producing lipids using microorganisms.

有機性の産業排水は、微生物を含む活性汚泥により処理されているが、その際に発生する余剰汚泥は法律上施設内で処理しなければならないとされている。活性汚泥が嫌気発酵するとプロピオン酸等の有機酸が生成され、これにより他の菌が死滅する。このような有機酸を含有する汚泥は脱水焼却されなければならず、その処理には大きなコストがかかる。このため、焼却される汚泥の量の低減や、汚泥の再利用が望まれている。   Organic industrial wastewater is treated with activated sludge containing microorganisms, but surplus sludge generated at that time is legally required to be treated in the facility. When the activated sludge is anaerobically fermented, organic acids such as propionic acid are produced, and other bacteria are killed. Such sludge containing organic acids must be dewatered and incinerated, and the treatment is costly. For this reason, reduction of the amount of sludge to be incinerated and reuse of sludge are desired.

特許文献1には、プロピオン酸等を炭素源として利用できる微生物が開示されている。また、特許文献2には、プロピオン酸等の低級有機酸を炭素源として利用し、炭化水素を生産できる微生物が開示されている。   Patent Document 1 discloses a microorganism that can use propionic acid or the like as a carbon source. Patent Document 2 discloses a microorganism capable of producing hydrocarbons using a lower organic acid such as propionic acid as a carbon source.

特開2003−245066号公報JP 2003-245066 A 特開2003−229号公報JP 2003-229 A

汚泥に含まれる有機酸を分解することは望まれているが、有機酸を分解することで生成される物質が有用なものでなければ生成物を最終的に廃棄することになり、汚泥の低減を図ることができない。   Degradation of organic acids contained in sludge is desired, but if the substances produced by decomposing organic acids are not useful, the products will eventually be discarded, reducing sludge. I can't plan.

特許文献1に記載された微生物はグルコースからグルコン酸を生成する。しかしながら、プロピオン酸を炭素源とする場合に有用な物質を生成することは特許文献1に何ら開示されていない。   The microorganism described in Patent Document 1 generates gluconic acid from glucose. However, Patent Document 1 does not disclose any substance that is useful when propionic acid is used as a carbon source.

特許文献2に記載された微生物は炭化水素を生成できるが、微生物はその種類によって基質や適した成育条件が異なるため、燃料等に利用可能な物質を生産できる他の微生物の発見は未だに望まれている。特に、低級有機酸を基質として有用な物質をより高い効率で生成できる微生物の探索は引き続き活発に行われている。   Although the microorganisms described in Patent Document 2 can produce hydrocarbons, the microorganisms have different substrates and suitable growth conditions depending on the type, so that it is still desirable to discover other microorganisms that can produce substances that can be used as fuels. ing. In particular, the search for microorganisms capable of producing a useful substance with a lower organic acid as a substrate with higher efficiency has been continued.

上記課題に鑑み、本発明は、低級有機酸等の炭素源を消費して利用可能な物質を効率良く生成する方法を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a method for efficiently producing a usable substance by consuming a carbon source such as a lower organic acid.

本明細書には、低級有機酸から脂質を生成するNitratireductor属の微生物が開示されている。この微生物は例えばNitratireductor sp. OM-1株であってもよい。   This specification discloses microorganisms of the genus Nitratireductor that produce lipids from lower organic acids. This microorganism may be, for example, Nitratireductor sp. OM-1 strain.

また、本明細書に開示された方法は、低級有機酸資化性を有するNitratireductor属のNitratireductor sp. OM-1株を用いて低級有機酸から脂質を生産する方法である。   The method disclosed in the present specification is a method for producing lipid from a lower organic acid using Nitratireductor sp. OM-1 strain belonging to the genus Nitratireductor having lower organic acid assimilation property.

低級有機酸資化性を有するNitratireductor属の微生物(例えばNitratireductor sp. OM-1株)を用いた方法によれば、低級有機酸からバイオディーゼル等の脂質を効率良く生成させることが可能になる。   According to a method using a microorganism of the genus Nitratireductor having a lower organic acid assimilation property (for example, Nitratireductor sp. OM-1 strain), lipids such as biodiesel can be efficiently produced from the lower organic acid.

図1は、有機酸資化能を持つ細菌のスクリーニング手順を示すフローチャートである。FIG. 1 is a flowchart showing a screening procedure for bacteria having organic acid assimilation ability. 図2は、各株の細胞密度当たりの蛍光強度を測定した結果を示す図である。FIG. 2 is a diagram showing the results of measuring the fluorescence intensity per cell density of each strain. 図3Aは、GCにおいて、パルミチン酸、ステアリン酸及びスクアレンのピークが検出された時間を示す図である。FIG. 3A is a diagram showing the time at which peaks of palmitic acid, stearic acid, and squalene were detected in GC. 図3Bは、試料No.1の菌について、菌体に含まれる脂質のGCによる分析結果を示す図である。FIG. It is a figure which shows the analysis result by GC of the lipid contained in a microbial cell about 1 microbe. 図3Cは、試料No.2の菌について、菌体に含まれる脂質のGCによる分析結果を示す図である。FIG. It is a figure which shows the analysis result by GC of the lipid contained in a microbial cell about 2 microbes. 図3Dは、試料No.3の菌について、菌体に含まれる脂質のGCによる分析結果を示す図である。FIG. It is a figure which shows the analysis result by GC of the lipid contained in a microbial cell about 3 microbes. 図3Eは、試料No.4の菌について、菌体に含まれる脂質のGCによる分析結果を示す図である。FIG. It is a figure which shows the analysis result by GC of the lipid contained in a microbial cell about 4 microbes. 図3Fは、試料No.5の菌について、菌体に含まれる脂質のGCによる分析結果を示す図である。FIG. It is a figure which shows the analysis result by GC of the lipid contained in a microbial cell about 5 microbes. 図4は、炭素源を制限した培地から培地を変更して継代した場合と培地を変更せずに継代した場合における細菌の増殖曲線を示す図である。FIG. 4 is a diagram showing bacterial growth curves when the medium is changed from a medium with a limited carbon source and passaged without changing the medium. 図5は、培地中の窒素源濃度を変更した場合の乾燥菌体重量当たりの全脂質量(mg/g)の変化を示す図である。FIG. 5 is a graph showing changes in the total lipid amount (mg / g) per dry cell weight when the nitrogen source concentration in the medium is changed. 図6は、炭素源をグリセリンのみとした場合のNitratireductor sp. OM-1の増殖曲線を示す図である。FIG. 6 is a graph showing a growth curve of Nitratireductor sp. OM-1 when the carbon source is only glycerin.

(実施形態)
−有機酸資化能を持つ細菌のスクリーニング−
本願発明者らは、低級有機酸への耐性を有し、且つ低級有機酸を分解できる菌の探索を行った。本願明細書で「低級有機酸」とは、炭素数が6以下の有機酸を指すものとする。本願発明者らは、低級有機酸への耐性を持つ菌のうち、脂質を生成できる菌を探索した。なお、本明細書において脂質とは、特にことわらない限りアルコールと脂肪酸のエステル(単純脂質)だけでなく、リン脂質等の複合脂質や脂肪酸等の誘導脂質も含むものとする。
(Embodiment)
-Screening for bacteria with organic acid utilization ability-
The inventors of the present application searched for a bacterium having resistance to a lower organic acid and capable of degrading the lower organic acid. In the present specification, the “lower organic acid” refers to an organic acid having 6 or less carbon atoms. The inventors of the present application searched for bacteria capable of producing lipid among bacteria having resistance to lower organic acids. In this specification, unless otherwise specified, lipids include not only alcohol and fatty acid esters (simple lipids) but also complex lipids such as phospholipids and derived lipids such as fatty acids.

図1は、有機酸資化能を持つ細菌のスクリーニング手順を示すフローチャートである。   FIG. 1 is a flowchart showing a screening procedure for bacteria having organic acid assimilation ability.

広島県の大崎上島付近の海域において海水及び礫を試料として採取し、この試料に含まれる菌をプロピオン酸が添加されたATCC#1409培地を用いて集積培養した(ステップS1)。ここで、ATCC#1409培地は、30g/LのNaCl、1mL/LのSLA trace elements、1mL/LのVA vitamins、1.0g/LのKHPO、0.5g/LのMgCl・6HO、0.1g/LのCaCl・HO、1.0g/LのNHCl、3.0g/LのNaHCO、0.7g/LのNaSO、1.0g/Lの酢酸ナトリウム(酢酸として10mM相当の量)、0.5g/Lのアスコルビン酸ナトリウム、0.1g/LのYeast extract、0.156g/Lの硫酸ナトリウムを含み、そのpHは6.9〜7.0である。 Seawater and gravel were collected as samples in the sea area near Osaki Kamijima in Hiroshima Prefecture, and the bacteria contained in this sample were accumulated and cultured using ATCC # 1409 medium to which propionic acid was added (step S1). Here, the ATCC # 1409 medium is 30 g / L NaCl, 1 mL / L SLA trace elements, 1 mL / L VA vitamins, 1.0 g / L KH 2 PO 4 , 0.5 g / L MgCl 2. 6H 2 O, 0.1 g / L CaCl 2 · H 2 O, 1.0 g / L NH 4 Cl, 3.0 g / L NaHCO 3 , 0.7 g / L Na 2 SO 4 , 1.0 g / L sodium acetate (amount equivalent to 10 mM as acetic acid), 0.5 g / L sodium ascorbate, 0.1 g / L Yeast extract, 0.156 g / L sodium sulfate, pH 6.9 -7.0.

SLA trace elementsは、250mgのCoCl・6HO、10mgのNiCl・6HO、10mgのCuCl・2HO、70mgのMnCl・4HO、100mgのZnCl、500mgのHBO、30mgのNaMoO・2HO、10mgのNaSeO・5HO、1.8gのFeCl・4HOを1Lの蒸留水に溶解させることで作成された。 SLA trace elements are 250 mg CoCl 2 · 6H 2 O, 10 mg NiCl 2 · 6H 2 O, 10 mg CuCl 2 · 2H 2 O, 70 mg MnCl 2 · 4H 2 O, 100 mg ZnCl 2 , 500 mg H 3 It was prepared by dissolving BO 3 , 30 mg Na 2 MoO 4 .2H 2 O, 10 mg Na 2 SeO 3 .5H 2 O, 1.8 g FeCl 2 .4H 2 O in 1 L distilled water.

VA vitaminsは、100mgのビオチン、350mgのニコチンアミド、300mgのチアミン−HCL、200mgのパラアミノ安息香酸、100mgのピリドキシン−HCL、100mgのD−パントテン酸カルシウム、50mgのシアノコバラミン(B12)を蒸留水1Lに溶解させることで作成された。   VA vitamins are 100 mg biotin, 350 mg nicotinamide, 300 mg thiamine-HCL, 200 mg paraaminobenzoic acid, 100 mg pyridoxine-HCL, 100 mg calcium D-pantothenate, 50 mg cyanocobalamin (B12) in 1 L distilled water. Created by dissolving.

本ステップでは、上述のATCC#1409培地に濃度が10mMとなるようにプロピオン酸が添加された培地を用い、28℃、暗所、好気条件で168時間培養した。   In this step, the above-mentioned ATCC # 1409 medium was added with propionic acid so as to have a concentration of 10 mM and cultured at 28 ° C. in a dark place under aerobic conditions for 168 hours.

次に、それぞれ10mMの酢酸及びプロピオン酸を含有するATCC#1409培地の寒天培地(アガロース濃度1.5%)に先の培養で得られた菌液を塗布し、20℃〜26℃、暗所、好気条件で216時間培養を行った(ステップS2)。   Next, the bacterial solution obtained in the previous culture was applied to an agar medium (agarose concentration 1.5%) of ATCC # 1409 medium containing 10 mM acetic acid and propionic acid, respectively. The cells were cultured for 216 hours under aerobic conditions (step S2).

次いで、寒天培地に生じたコロニーを取り、それらの菌を96穴プレートに植菌し、10mMのプロピオン酸を含有するATCC#1409培地により培養した(ステップS3)。ATCC#1409培地の量はウェルごとに600μLとした。培養は25℃、250rpm、暗所、好気条件で行った。   Next, colonies generated on the agar medium were picked, the bacteria were inoculated into a 96-well plate, and cultured in ATCC # 1409 medium containing 10 mM propionic acid (step S3). The amount of ATCC # 1409 medium was 600 μL per well. Incubation was performed at 25 ° C., 250 rpm, in the dark, under aerobic conditions.

次に、プレートリーダー(Spectra MAX M5、Molecular Devices社製)を用いて各ウェルでの吸光度を測定した。ここでは、培養された菌液の一部を96穴プレートに移し、660nmでの吸光度を測定した。本ステップにおいて、吸光度が大きいことは、菌が増殖していることを意味する。   Next, the absorbance in each well was measured using a plate reader (Spectra MAX M5, manufactured by Molecular Devices). Here, a part of the cultured bacterial solution was transferred to a 96-well plate, and the absorbance at 660 nm was measured. In this step, a large absorbance means that the bacteria are growing.

次に、各培養液を遠心分離して集菌し、菌体をPhosphate Buffered Saline(PBS)で洗浄後、50μLのPBSと2μLのナイルレッド(和光純薬製、濃度1mg/mL)とを加えて菌体を染色した。試料を96穴プレートに移し、蛍光/発光マイクロプレートリーダー(Fluoroskan Ascent FL、Thermo社製)を用いて励起波長540nm、蛍光波長590nmの蛍光強度を測定した。各株の細胞密度当たりの蛍光強度を算出し、その値が比較的高かった株を、有機酸耐性菌の候補株として選択した(ステップS4)。   Next, each culture solution is centrifuged to collect the cells, and after washing the cells with Phosphate Buffered Saline (PBS), 50 μL of PBS and 2 μL of Nile Red (manufactured by Wako Pure Chemical Industries, Ltd., concentration 1 mg / mL) are added. The cells were stained. The sample was transferred to a 96-well plate, and the fluorescence intensity at an excitation wavelength of 540 nm and a fluorescence wavelength of 590 nm was measured using a fluorescence / luminescence microplate reader (Fluoroskan Ascent FL, manufactured by Thermo). The fluorescence intensity per cell density of each strain was calculated, and a strain having a relatively high value was selected as a candidate strain for organic acid resistant bacteria (step S4).

図2は、各株の細胞密度当たりの蛍光強度を測定した結果を示す図である。同図において、棒グラフのそれぞれが試料の測定結果を示している。この測定により、No.1〜5の計5株が有機酸耐性菌の候補株として選定された。   FIG. 2 is a diagram showing the results of measuring the fluorescence intensity per cell density of each strain. In the figure, each of the bar graphs shows the measurement result of the sample. By this measurement, No. A total of 5 strains of 1 to 5 were selected as candidate strains of organic acid resistant bacteria.

次に、先のステップで選択された菌に含まれる全脂質量の測定を行った(ステップS5)。この測定は、GC-17A、CBM-102(島津製作所製)を用いたガスクロマトグラフィー(GC)により行った。解析ソフトとしてGCSolutionバージョン2.4(島津製作所製)を用いた。カラムとしては内径0.25mm、長さ30m、膜厚0.1μmのDB-5HTキャピラリーGCカラム(Agilent Technologies社製)を用いた。分析条件は、カラムオーブンを100℃から380℃まで10℃/minで昇温させ、キャリアガスとしてNを用い、試料気化室を300℃とし、検出器を380℃とし、圧力を107kPaとし、全流量を16mL/minとし、カラム流量を1.19mL/minとし、スプリット比を1:10とした。 Next, the total lipid amount contained in the bacterium selected in the previous step was measured (step S5). This measurement was performed by gas chromatography (GC) using GC-17A and CBM-102 (manufactured by Shimadzu Corporation). GCSolution version 2.4 (manufactured by Shimadzu Corporation) was used as analysis software. As the column, a DB-5HT capillary GC column (Agilent Technologies) having an inner diameter of 0.25 mm, a length of 30 m, and a film thickness of 0.1 μm was used. The analysis conditions were that the column oven was heated from 100 ° C. to 380 ° C. at 10 ° C./min, N 2 was used as the carrier gas, the sample vaporization chamber was 300 ° C., the detector was 380 ° C., the pressure was 107 kPa, The total flow rate was 16 mL / min, the column flow rate was 1.19 mL / min, and the split ratio was 1:10.

本ステップでは、各試料を遠心分離して集菌した湿菌体を−80℃にて凍結保存した。次いで、フリーズドライヤーを用いて菌体を凍結乾燥させた。乾燥菌体にクロロホルム/メタノール混合液(体積比で2:1の混合物)を500μL加えて懸濁した。この操作を繰り返して2mLの細胞抽出液を得た。さらに抽出液にミリQ水を500μL加えて懸濁した後遠心分離し、クロロホルム層を試験管に移して乾固した。乾固後の抽出物に250μLのクロロホルムを加えてガラスバイアルに移し、窒素気流下にて乾固した。次に、乾固後の抽出物に25μLのクロロホルムを加えて抽出サンプルとした。この抽出サンプルを1μL用いてGC測定を行った。   In this step, wet cells collected by centrifugation of each sample were stored frozen at -80 ° C. Next, the cells were freeze-dried using a freeze dryer. To the dried cells, 500 μL of a chloroform / methanol mixture (2: 1 by volume) was added and suspended. This operation was repeated to obtain 2 mL of cell extract. Further, 500 μL of milli-Q water was added to the extract and suspended, followed by centrifugation. The chloroform layer was transferred to a test tube and dried. 250 μL of chloroform was added to the extract after drying, transferred to a glass vial, and dried under a nitrogen stream. Next, 25 μL of chloroform was added to the extract after drying to obtain an extraction sample. GC measurement was performed using 1 μL of this extracted sample.

また、ガスクロマトグラフィー質量分析計(GC/MS)により生成物の同定を行った。カラムとしては内径0.25mm、長さ30m、膜厚0.25μmのZB-1HT(Zebron製)を用い、GC/MSとしてはJMS-T100GCV"AccuTOF GCv 4G"(日本電子製)を用いた。分析条件は、カラムオーブンを100℃から380℃まで10℃/minで昇温させ、キャリアガスとしてHeを用い、試料気化室を300℃とし、検出器を270℃とし、注入量を1.0μLとし、カラム流量を1.2mL/minとし、スプリット比を1:10とした。   Moreover, the product was identified by the gas chromatography mass spectrometer (GC / MS). ZB-1HT (Zebron) having an inner diameter of 0.25 mm, a length of 30 m and a film thickness of 0.25 μm was used as the column, and JMS-T100GCV “AccuTOF GCv 4G” (manufactured by JEOL) was used as the GC / MS. Analysis conditions were as follows: the column oven was heated from 100 ° C. to 380 ° C. at 10 ° C./min, He was used as the carrier gas, the sample vaporization chamber was 300 ° C., the detector was 270 ° C., and the injection volume was 1.0 μL. The column flow rate was 1.2 mL / min, and the split ratio was 1:10.

図3Aは、GCにおいて、パルミチン酸、ステアリン酸及びスクアレンのピークが検出された時間を示す図であり、図3B〜図3Fは、試料No.1〜5の5つについて、菌体に含まれる脂質のGCによる分析結果を示す図である。表1に、この分析結果をまとめて示す。   3A is a diagram showing the time at which peaks of palmitic acid, stearic acid, and squalene were detected in GC, and FIGS. It is a figure which shows the analysis result by GC of the lipid contained in a microbial cell about five of 1-5. Table 1 summarizes the results of this analysis.

図3B〜図3F及び表1に示す結果から、乾燥菌体あたりの脂質の収量は、5株のうち試料No.1、4、5の3株が多いことが分かった。また、各菌により、パルミチン酸、ステアリン酸等の脂質や、スクアレン等の炭化水素が生成されていることが確認できた。なお、表1に示す「全脂質」には、便宜的にスクアレン等の炭化水素も含まれている。   From the results shown in FIG. 3B to FIG. 3F and Table 1, the yield of lipid per dry cell was sample No. It was found that there were many strains of 1, 4 and 5. Further, it was confirmed that lipids such as palmitic acid and stearic acid and hydrocarbons such as squalene were produced by each bacterium. The “total lipid” shown in Table 1 includes hydrocarbons such as squalene for convenience.

次に、炭素源としてNaHCOのみを含む培地を用いた培養により、低級有機酸資化性を有する菌の分離を行った(ステップS6)。具体的には、選択された各菌を炭素源としてNaHCOのみを含む培地に移して室温で7日間培養した。低級有機酸を利用できる菌が低級有機酸を消費することで、低級有機酸を利用できない菌の生存が可能になっていたと考えられるところ、菌を飢餓状態に置くことにより、菌の分離が可能になると予想された。なお、本ステップで使用された「炭素源としてNaHCOのみを含む培地」は、上述のATCC#1409培地からNaHCO以外の炭素源を除いたものであり、Yeast extractを含む。 Next, bacteria having lower organic acid assimilation properties were separated by culturing using a medium containing only NaHCO 3 as a carbon source (step S6). Specifically, each selected bacterium was transferred to a medium containing only NaHCO 3 as a carbon source and cultured at room temperature for 7 days. It is considered that bacteria that can use lower organic acids consumed the lower organic acids, so that it was possible for bacteria that cannot use lower organic acids to survive. It was expected to be. The “medium containing only NaHCO 3 as a carbon source” used in this step is obtained by removing a carbon source other than NaHCO 3 from the above-described ATCC # 1409 medium, and includes a yeast extract.

炭素源としてNaHCOのみを含む培地では、菌数は2日間程度で飽和状態に達し、10mMのプロピオン酸が添加された通常のATCC#1409培地を用いた培養に比べて菌数は少なかった。この培養の結果、図3Dに示す試料No.3から低級有機酸資化性を有する単菌化された菌株(後述するNitratireductor sp. OM-1株)を得ることに成功した。次いで、炭素源としてNaHCOのみを含む培地からATCC#1409培地へと単菌化された細菌を植え継いで28℃で7日間培養を続けた。次いで、上述の方法で菌体を処理してGC分析により脂質及び炭化水素の生成量を測定した。一方で、炭素源としてNaHCOのみを含む培地での培養(すなわち、炭酸固定条件での培養)を7日間継続した。 In a medium containing only NaHCO 3 as a carbon source, the number of bacteria reached a saturation state in about 2 days, and the number of bacteria was smaller than that in a culture using a normal ATCC # 1409 medium supplemented with 10 mM propionic acid. As a result of this culture, the sample No. shown in FIG. 3 successfully obtained a microbial strain (Nitratireductor sp. OM-1 strain described later) having lower organic acid assimilation ability. Next, the bacterium monocultured from a medium containing only NaHCO 3 as a carbon source to ATCC # 1409 medium was inoculated and cultured at 28 ° C. for 7 days. Subsequently, the bacterial cells were treated by the above-described method, and the production amounts of lipids and hydrocarbons were measured by GC analysis. On the other hand, culture in a medium containing only NaHCO 3 as a carbon source (that is, culture under carbonic acid fixation conditions) was continued for 7 days.

表2は、炭酸固定条件と、炭酸固定条件からプロピオン酸が添加された通常のATCC#1409培地へと培地を変更した場合とでそれぞれ得られた菌の乾燥菌体当たりの全脂質量、パルミチン酸、ステアリン酸及びスクアレンの収量を測定した結果を示す図である。また、表3は、炭酸固定条件と、炭酸固定条件からプロピオン酸が添加された通常のATCC#1409培地へと培地を変更した場合とでそれぞれ得られた培地の体積当たりの全脂質、パルミチン酸、ステアリン酸及びスクアレンの収量を測定した結果を示す図である。図4は、炭素源を制限した培地から培地を変更して継代した場合と培地を変更せずに継代した場合における細菌の増殖曲線を示す図である。同図に示す吸光度の増加は菌体密度の増加を表す。なお、表2及び表3に示す「全脂質」には、スクアレン等の炭化水素も便宜的に含まれている。   Table 2 shows the total lipid amount per dry cell and palmiticin obtained when the medium was changed to the normal ATCC # 1409 medium supplemented with propionic acid from the carbonic acid fixation condition and the carbonic acid fixation condition. It is a figure which shows the result of having measured the yield of an acid, a stearic acid, and squalene. Table 3 shows the total lipid and palmitic acid per volume of the medium obtained under the conditions of carbonic acid fixation and when the medium was changed from the carbonic acid fixation condition to a normal ATCC # 1409 medium supplemented with propionic acid. It is a figure which shows the result of having measured the yield of stearic acid and squalene. FIG. 4 is a diagram showing bacterial growth curves when the medium is changed from a medium with a limited carbon source and passaged without changing the medium. The increase in absorbance shown in the figure represents an increase in cell density. The “total lipid” shown in Tables 2 and 3 also includes hydrocarbons such as squalene for convenience.

図4に示す結果から、炭素源を制限したATCC#1409培地に植え継いだ場合には菌体濃度が2日程度で飽和するのに対して、プロピオン酸を含むATCC#1409培地に植え継いだ場合には菌体濃度が飽和するまで5〜7日要し、菌の大幅な増殖が認められた。また、表2、3に示すように、プロピオン酸を含むATCC#1409培地に植え継いだ場合の方が、炭素源を制限したATCC#1409培地に植え継いだ場合に比べて菌体重量当たりの全脂質量、培地体積当たりの全脂質量共に大幅に増加していた。   From the results shown in FIG. 4, when planted in an ATCC # 1409 medium with a limited carbon source, the bacterial cell concentration was saturated in about 2 days, whereas it was planted in an ATCC # 1409 medium containing propionic acid. In some cases, it took 5-7 days for the bacterial cell concentration to saturate, and significant bacterial growth was observed. In addition, as shown in Tables 2 and 3, the cells per plant weight in the ATCC # 1409 medium containing propionic acid was larger than those in the ATCC # 1409 medium with a limited carbon source. Both the total lipid amount and the total lipid amount per medium volume were significantly increased.

表2、3に示すように、パルミチン酸、ステアリン酸等の脂質や、スクアレン等の炭化水素が菌体内で生成されていた。また、表2と表1との比較から分かるように、炭酸固定条件からプロピオン酸を含むATCC#1409培地へと植え継ぐことで、乾燥菌体重量当たりの全脂質及び各脂質の収量が大幅に増加することが確認できた。これは、菌を貧栄養条件に置くことで、菌体内で脂質を貯蔵する代謝が優先されるように切り替わったためではないかと推定される。   As shown in Tables 2 and 3, lipids such as palmitic acid and stearic acid and hydrocarbons such as squalene were produced in the cells. In addition, as can be seen from the comparison between Table 2 and Table 1, the yield of total lipid and each lipid per dry cell weight is greatly increased by planting from the carbonic acid fixation condition to ATCC # 1409 medium containing propionic acid. It was confirmed that it increased. It is presumed that this was because the bacteria were switched to give priority to the metabolism for storing lipids in the cells by placing them in oligotrophic conditions.

なお、プロピオン酸を含むATCC#1409培地から同じ培地へと継代を重ねると菌体重量当たりの全脂質量は177.964mg/gから徐々に減少してからほぼ一定となり、培地の体積当たりの収量も同様の傾向となった。しかしながら、表1に示す単菌化前と比べると乾燥菌体重量当たりの全脂質は増加していた。   If the ATCC # 1409 medium containing propionic acid was subcultured to the same medium, the total lipid amount per cell weight gradually decreased from 177.964 mg / g and became almost constant, The yield was similar. However, the total lipid per dry cell weight was increased compared to that before singularization shown in Table 1.

ここで、ATCC#1409培地では炭素源が制限されていること、及び単独の菌株として分離する前の菌を培養した際に培地中のプロピオン酸濃度の減少が見られたことから、これらの脂質はプロピオン酸が転換されたものであると考えられた。   Here, since the carbon source is limited in the ATCC # 1409 medium, and when the bacterium before isolation as a single strain was cultured, the concentration of propionic acid in the medium was reduced, these lipids were observed. Was considered to have been converted from propionic acid.

一方、図4、表2、3に示す結果から、この菌は、NaHCOのみを含む培地でもある程度増殖が可能であり、培養後の菌体内にはスクアレン等の炭化水素や脂質が蓄えられることが分かった。NaHCOが水に溶けるとNaイオンとHCOイオンとに分かれるが、COが水に溶けてもHCOイオンが同様に生じることから、この菌には液中に溶けたCOを固定化する能力があると考えられる。従って、この菌を用いれば、有機酸を含む炭素源が含まれていない液中であってもCOから脂質や炭化水素を生産することが可能であると考えられる。 On the other hand, from the results shown in FIG. 4 and Tables 2 and 3, this bacterium can grow to some extent even in a medium containing only NaHCO 3 , and hydrocarbons and lipids such as squalene are stored in the microbial cells after culturing. I understood. NaHCO 3 although divided into a Na ion and HCO 3 ions when dissolved in water, because the CO 2 is produced in the same manner is HCO 3 ions be soluble in water, immobilized the CO 2 dissolved in the liquid in the fungus It is thought that there is an ability to do. Therefore, if this bacterium is used, it is considered that lipids and hydrocarbons can be produced from CO 2 even in a liquid not containing a carbon source containing an organic acid.

−菌種の同定−
次に、得られた菌株の種を同定するために公知のPCR法により16SrDNAの部分配列(約0.5kbp)を解析した。この結果、Nitratireductor aquimarinus strain CL-SC21の16S rDNAと99%の相同性を示し、Nitratireductor属の菌であることが明らかになった。この細菌は好気性の短桿菌であってヘテロ栄養性を有し、プロピオン酸資化性も有する。この細菌はまた、炭酸固定能を有しており、低級有機酸からトリアシルグリセロールを生産する。これに対し、Nitratireductor属の既知の細菌が低級有機酸からトリアシルグリセロールを生産することは報告されていない。また、この細菌は低級有機酸だけでなく糖類やアルコール等、既知の細菌に比べて多様な物質から脂質及び炭化水素を合成することができる。
-Identification of bacterial species-
Next, in order to identify the species of the obtained strain, the partial sequence (about 0.5 kbp) of 16S rDNA was analyzed by a known PCR method. As a result, it showed 99% homology with 16S rDNA of Nitratireductor aquimarinus strain CL-SC21, and was clarified to be a bacterium belonging to the genus Nitratireductor. This bacterium is an aerobic short gonococcus having heterotrophic properties and also having propionic acid utilization. This bacterium also has a carbonic acid fixing ability and produces triacylglycerol from a lower organic acid. On the other hand, it has not been reported that known bacteria of the genus Nitratireductor produce triacylglycerol from lower organic acids. In addition, this bacterium can synthesize lipids and hydrocarbons from various substances compared to known bacteria such as sugars and alcohols as well as lower organic acids.

次に、本願発明者らは、得られた菌株について、プロピオン酸以外の低級有機酸の資化性についても調べた。具体的には、ATCC#1409培地に炭素源として炭素数が5以下の種々の低級有機酸を添加して28℃で7日間、暗所、好気条件下で培養した。培地中の各低級有機酸の濃度は10mMとした。酢酸資化性については、酢酸ナトリウムを抜いたATCC#1409培地に10mMの濃度で酢酸を添加した培地を用いて調べた。   Next, the present inventors also examined the assimilation properties of lower organic acids other than propionic acid for the obtained strain. Specifically, various lower organic acids having 5 or less carbon atoms as a carbon source were added to ATCC # 1409 medium and cultured at 28 ° C. for 7 days under dark and aerobic conditions. The concentration of each lower organic acid in the medium was 10 mM. The acetic acid assimilation property was examined using a medium in which acetic acid was added at a concentration of 10 mM to ATCC # 1409 medium from which sodium acetate was removed.

この試験結果を表4に示す。表4では、10mMのプロピオン酸を添加したATCC#1409培地を用いて7日間培養した場合の生育状態を基準として、当該基準を超える生育状態であれば判定Aとし、当該基準と同等程度の生育状態であれば判定Bとし、生育可能であるが当該基準以下である場合を判定Cとした。   The test results are shown in Table 4. In Table 4, on the basis of the growth state when cultured for 7 days using an ATCC # 1409 medium supplemented with 10 mM propionic acid, the growth state exceeding the standard is judged as A, and growth comparable to the standard If it was in the state, it was determined as determination B, and the case where it was able to grow but was below the standard was determined as determination C.

表4に示すように、単離された細菌は少なくとも炭素数が5以下の低級有機酸を資化できることが確認できた。この細菌は、低級有機酸のうち、酢酸、クエン酸、酪酸及び吉草酸を含む培地では、プロピオン酸を含む培地以上に増殖できることも確認できた。なお、近縁種と考えられるNitratireductor aquimarinus strain CL-SC21株ではリンゴ酸資化性がほぼ有していないのに対し、本願発明者らが単離した細菌は、リンゴ酸資化性を有している点でNitratireductor aquimarinus strain CL-SC21株と大きく異なっていた(International Journal of Systematic and Evolutionary Microbiology (2011), 61, 2676-2681を参照)。   As shown in Table 4, it was confirmed that the isolated bacterium can assimilate a lower organic acid having at least 5 carbon atoms. It was also confirmed that the bacteria can grow more than the medium containing propionic acid in the medium containing acetic acid, citric acid, butyric acid and valeric acid among the lower organic acids. The Nitratireductor aquimarinus strain CL-SC21 strain, which is considered to be a related species, has almost no malic acid assimilation, whereas the bacterium isolated by the present inventors has malic acid assimilation. However, the strain was significantly different from the Nitratireductor aquimarinus strain CL-SC21 strain (see International Journal of Systematic and Evolutionary Microbiology (2011), 61, 2676-2681).

なお、Nitratireductor属の代表種であるNitratireductor aquibiodomus NL21(International Journal of Systematic and Evolutionary Microbiology (2004), 54, 269-273参照)と今回単離された細菌とは16SrDNAの相同性が97%であるとともに、低級有機酸の資化性が異なっていた。   Nitratireductor aquibiodomus NL21 (see International Journal of Systematic and Evolutionary Microbiology (2004), 54, 269-273), which is a representative species of the genus Nitratireductor, has 97% homology of 16S rDNA with the isolated bacterium. The utilization of lower organic acids was different.

また、ここで単離された細菌は、硝酸塩だけでなくアンモニウム塩及びグルタミン酸を窒素源として用いることができることも確認できた。   It was also confirmed that the bacteria isolated here can use not only nitrates but also ammonium salts and glutamic acids as nitrogen sources.

以上の性質から、ここで得られた細菌はNitratireductor属の新種であることが分かり、上述のようにNitratireductor sp. OM-1と命名された。   From the above properties, the bacteria obtained here were found to be a new species of the genus Nitratireductor, and were named Nitratireductor sp. OM-1 as described above.

なお、Nitratireductor sp. OM-1株は、受託番号NITE P−02043として千葉県木更津市かずさ鎌足2-5-8 122号室所在の独立行政法人製品評価技術基盤機構 特許微生物寄託センターに寄託されている。   Nitratireductor sp. OM-1 strain has been deposited with the Patent Microbiology Depositary Center of the National Institute of Technology and Evaluation, 2-5-8 Kazusa-Kamashita, Kisarazu City, Chiba Prefecture, under the accession number NITE P-02043. Yes.

−Nitratireductor sp. OM-1による生成物の分析−
10mMのプロピオン酸を含む上述のATCC#1409培地を用いて28℃で7日間Nitratireductor sp. OM-1の培養を行った。次いで、脂肪酸だけでなく、ジアシルグリセロール、トリアシルグリセロールを含む全ての脂質をメチルエステル化した後、GC分析及びGC/MS分析を行って、乾燥菌体あたりの全脂肪酸量と各脂肪酸の量とを測定した。また、窒素源の存在が脂質の生産量に与える影響を調べるため、0mMから20mMの間で窒素源の濃度を変えて培養を行った。窒素源の一例としてNHClを用いた。
-Analysis of products by Nitratireductor sp. OM-1-
Nitratireductor sp. OM-1 was cultured for 7 days at 28 ° C. using the above ATCC # 1409 medium containing 10 mM propionic acid. Next, after methyl esterifying not only fatty acids but also all lipids including diacylglycerol and triacylglycerol, GC analysis and GC / MS analysis are performed to determine the total amount of fatty acids per dry cell and the amount of each fatty acid. Was measured. Further, in order to examine the influence of the presence of the nitrogen source on the amount of lipid production, the culture was performed while changing the concentration of the nitrogen source between 0 mM and 20 mM. NH 4 Cl was used as an example of the nitrogen source.

ここでは、炭素源を制限した上述のATCC#1409培地から10mMの酢酸ナトリウム及び10mMのプロピオン酸を含むATCC#1409培地に植え継ぎ、プロピオン酸を含むATCC#1409培地を用いて数回継代培養した後、GC分析等を行った。この分析結果を表5に示す。また、GC分析によって得られた乾燥菌体重量当たりの全脂質量を図5に示す。なお、表5に示す「全脂肪酸量」には、スクアレン等の炭化水素の収量は含まれていない。これらの炭化水素の収量は、図5に示す乾燥菌体重量当たりの全脂質量には含まれている。   Here, the ATCC # 1409 medium containing 10 mM sodium acetate and 10 mM propionic acid is transferred from the above-mentioned ATCC # 1409 medium limited in carbon source, and subcultured several times using the ATCC # 1409 medium containing propionic acid. After that, GC analysis and the like were performed. The analysis results are shown in Table 5. FIG. 5 shows the total lipid amount per dry cell weight obtained by GC analysis. The “total fatty acid amount” shown in Table 5 does not include the yield of hydrocarbons such as squalene. The yield of these hydrocarbons is included in the total lipid amount per dry cell weight shown in FIG.

表5に示す結果では、Nitratireductor sp. OM-1の培養では、培地中のNHCl濃度が低くなるにつれて乾燥菌体重量当たりの脂肪酸の生産量、特にトリアシルグリセロールが増えていた。培養後の菌体をナイルレッドを用いて染色すると、菌体内の油滴(オイルドロップ)が大きくなっていることが確認された。これは、窒素源を欠乏させることによって、菌体内で脂質を貯蔵するように代謝が切り替わったためと考えられた。また、図5に示すように、乾燥菌体重量当たりの全脂質量もNHCl濃度が低くなるにつれて増加ししていた。 According to the results shown in Table 5, in the culture of Nitratireductor sp. OM-1, the amount of fatty acid produced per dry cell weight, particularly triacylglycerol, increased as the NH 4 Cl concentration in the medium decreased. When the cultured cells were stained with Nile Red, it was confirmed that the oil droplets (oil drop) in the cells were large. This was thought to be because metabolism was switched to store lipids in the cells by depleting the nitrogen source. Further, as shown in FIG. 5, the total lipid amount per dry cell weight also increased as the NH 4 Cl concentration decreased.

ただし、Nitratireductor sp. OM-1は、培地中のNHCl濃度が少なくとも20mM以下の範囲では低級有機酸から脂質を合成することができることも確認できた。ここでは、培地中の資化可能な炭素源を低級有機酸に絞っているため、脂質は低級有機酸から合成されたものであると考えられる。 However, it was also confirmed that Nitratireductor sp. OM-1 can synthesize lipids from lower organic acids when the NH 4 Cl concentration in the medium is at least 20 mM or less. Here, since the assimitable carbon source in the culture medium is focused on the lower organic acid, the lipid is considered to be synthesized from the lower organic acid.

また、GC分析の結果から、培地中の窒素源(NHCl)の濃度が低くなるにつれて2-ブテン酸1-メチルエチルエステル(2-Butenoic acid 1-metylethyl ester)が多量に生産されることも分かった。2-ブテン酸1-メチルエチルエステルの乾燥菌体重量当たりの生産量は、窒素源の濃度が0mMの場合、全脂質量の約50%に上っていた。2-ブテン酸1-メチルエチルエステルは可燃性であり、そのままでも燃料として利用可能である。さらに、2-ブテン酸1-メチルエチルエステルのエステル結合を切断することにより、派生体である2-ブテン酸を得ることができる。この2-ブテン酸を軽油として利用すれば、エタノールよりも高い燃焼エネルギーを得ることができる。 In addition, as a result of GC analysis, as the concentration of nitrogen source (NH 4 Cl) in the medium decreases, 2-butenoic acid 1-metylethyl ester is produced in large quantities. I understand. The production amount of 2-butenoic acid 1-methylethyl ester per dry cell weight was about 50% of the total lipid amount when the concentration of the nitrogen source was 0 mM. 2-Butenoic acid 1-methylethyl ester is flammable and can be used as a fuel as it is. Furthermore, 2-butenoic acid as a derivative can be obtained by cleaving the ester bond of 2-butenoic acid 1-methylethyl ester. If this 2-butenoic acid is used as light oil, higher combustion energy than ethanol can be obtained.

なお、代謝の切り替わりの傾向は窒素源の種類によって変わらないと考えられる。このため、NHCl以外のアンモニウム塩や硝酸塩、グルタミン酸が窒素源になる場合であっても窒素源としての濃度が少なくとも20mM以下の範囲ではNitratireductor sp. OM-1は、低級有機酸から脂質を合成することができると考えられる。 In addition, it is thought that the tendency of the change of metabolism does not change with the kind of nitrogen source. For this reason, Nitratireductor sp. OM-1 removes lipids from lower organic acids when the concentration as a nitrogen source is at least 20 mM or less even when ammonium salt, nitrate, or glutamic acid other than NH 4 Cl is used as the nitrogen source. It is thought that it can be synthesized.

また、表5に示す結果から、Nitratireductor sp. OM-1によって生成されるトリアシルグリセロールは、リノール酸を主成分とし、ペンタデセン酸、パルミトレイン酸等を分子中に含むことが分かった。   From the results shown in Table 5, it was found that triacylglycerol produced by Nitratireductor sp. OM-1 contains linoleic acid as a main component and contains pentadecenoic acid, palmitoleic acid and the like in the molecule.

以上の結果から、Nitratireductor sp. OM-1の培養は、NHCl等の窒素源の濃度が低い環境で行われることが好ましく、少なくとも20mM以下で行われることで、菌体重量当たりの全脂質量を増やすとともに、燃料としてより有用な2-ブテン酸1-メチルエチルエステルの生産量を増やすこともできるので、好ましいと言える。 From the above results, the culture of Nitratireductor sp. OM-1 is preferably performed in an environment where the concentration of a nitrogen source such as NH 4 Cl is low, and at least 20 mM or less, the total lipid per cell weight It can be said that the amount of 2-butenoic acid 1-methylethyl ester, which is more useful as a fuel, can be increased while increasing the amount, which is preferable.

Nitratireductor sp. OM-1は、酢酸やプロピオン酸等の低級有機酸から脂質を生成することができるので、例えば活性汚泥中の低級有機酸を除去できるだけでなく、生成した脂質をバイオディーゼルとして利用することが可能となる。また、活性汚泥の代わりにNitratireductor sp. OM-1の菌液を用いれば、低級有機酸を含む対象物の処理を行った後、集菌及び乾燥により得られたペレットをそのまま燃料として利用することもできる。   Nitratireductor sp. OM-1 can generate lipids from lower organic acids such as acetic acid and propionic acid. For example, Nitratireductor sp. OM-1 not only removes lower organic acids from activated sludge, but also uses the generated lipids as biodiesel. It becomes possible. In addition, if Nitratireductor sp. OM-1 bacterial solution is used instead of activated sludge, after processing the object containing the lower organic acid, the pellets obtained by collection and drying should be used as fuel. You can also.

また、対象物の処理の際にはあらかじめ炭素源をNaHCOのみに制限した貧栄養培地で培養された菌液を処理に用いることで、脂質の収量を大幅に向上させることができる。 Further, during the processing of the object by using a bacterial solution cultured in nutrient-poor medium restrict advance carbon source only NaHCO 3 to the process, it is possible to greatly improve the yield of lipids.

このように、Nitratireductor sp. OM-1を用いれば、廃棄される汚泥の量を効果的に減らすことができるとともに、燃料を得ることができる。   Thus, when Nitratireductor sp. OM-1 is used, the amount of sludge to be discarded can be effectively reduced and fuel can be obtained.

Nitratireductor sp. OM-1により産生された脂質の多くは菌体内に油滴として蓄えられ、培地中にはあまり放出されない。このため、上述のように低級有機酸を含む液体中で脂質を生成させた後、遠心分離等の公知の方法によって菌体を回収することで、生成された脂質を容易に効率良く得ることができる。   Most of the lipids produced by Nitratireductor sp. OM-1 are stored as oil droplets in the cells and are not released very much into the medium. For this reason, after producing lipids in a liquid containing a lower organic acid as described above, the produced lipids can be easily and efficiently obtained by recovering the cells by a known method such as centrifugation. it can.

Nitratireductor sp. OM-1を用いる方法によれば、化学的な方法でプロピオン酸等の除去を図る場合に比べて有毒な薬剤を用いたり高温にしたりする必要がないので、低コストで安全に活性汚泥等の処理を行うことができる。また、低級有機酸を含む処理対象物は活性汚泥に限られない。   According to the method using Nitratireductor sp. OM-1, there is no need to use toxic chemicals or increase the temperature compared to the case of removing propionic acid etc. by chemical methods. Treatment of sludge etc. can be performed. Moreover, the treatment target containing a lower organic acid is not limited to activated sludge.

なお、本実施形態では20℃〜26℃程度でNitratireductor sp. OM-1を培養する例を説明したが、この範囲外であっても生育可能な温度であれば培養により低級有機酸から脂質を合成させることは可能である。振盪培養の際の回転速度は特に限定されず、処理対象物の容積によって攪拌方法や攪拌条件を適宜変更してもよい。培地のpHは特に限定されないが、例えば4以上8以下であってもよい。   In the present embodiment, Nitratireductor sp. OM-1 is cultured at about 20 ° C. to 26 ° C., but lipids can be grown from lower organic acids by culturing at temperatures that allow growth outside this range. It is possible to synthesize. The rotation speed at the time of shaking culture is not particularly limited, and the stirring method and stirring conditions may be appropriately changed depending on the volume of the object to be treated. Although the pH of a culture medium is not specifically limited, For example, 4 or more and 8 or less may be sufficient.

以上の例では低級有機酸として酢酸及びプロピオン酸が基質として培地に含まれている例を示したが、酢酸及びプロピオン酸のいずれか一方のみが培地に含まれていてもよいし、酢酸及びプロピオン酸以外の低級有機酸が培地に含まれていても脂質を合成させることができる。   In the above example, an example in which acetic acid and propionic acid are contained in the medium as substrates as the lower organic acid is shown. However, only one of acetic acid and propionic acid may be contained in the medium, or acetic acid and propion may be contained in the medium. Lipids can be synthesized even if lower organic acids other than acids are contained in the medium.

図6は、炭素源をグリセリンのみとした場合のNitratireductor sp. OM-1の増殖曲線を示す図である。また、表6には、炭素源をグリセリンのみとした場合の乾燥菌体当たり又は培養液の体積当たりの全脂質量及び各種脂肪酸の量を示す。図6は、上記の培地を用いて28℃、暗所、好気条件下でNitratireductor sp. OM-1を7日間培養した結果を示す。また、全脂質量及び各種脂肪酸の量の測定は、GC及びGC/MSにより行った。   FIG. 6 is a graph showing a growth curve of Nitratireductor sp. OM-1 when the carbon source is only glycerin. Table 6 shows the total lipid amount and the amount of various fatty acids per dry cell or volume of the culture solution when the carbon source is glycerol only. FIG. 6 shows the results of culturing Nitratireductor sp. OM-1 for 7 days under the above medium at 28 ° C. in the dark and under aerobic conditions. Moreover, the measurement of the amount of total lipid and the amount of various fatty acids was performed by GC and GC / MS.

図6及び表6に示すように、Nitratireductor sp. OM-1はグリセリンを炭素源として生育可能であり、グリセリンから脂質を生産できることが分かる。   As shown in FIG. 6 and Table 6, it can be seen that Nitratireductor sp. OM-1 can grow using glycerol as a carbon source and can produce lipids from glycerol.

Nitratireductor sp. OM-1により生成されたトリアシルグリセロールはメチルエステル化されることによりバイオディーゼルに変換されるが、この過程でグリセリンが生成する。上述のように、Nitratireductor sp. OM-1はグリセリンを基質として利用することもできるので、バイオディーゼルの生産過程で排出されるグリセリンも処理することが可能である。   Triacylglycerol produced by Nitratireductor sp. OM-1 is converted to biodiesel by methyl esterification, and glycerin is produced in this process. As described above, since Nitratireductor sp. OM-1 can also use glycerin as a substrate, it is also possible to treat glycerin discharged in the production process of biodiesel.

このように、Nitratireductor sp. OM-1は低級有機酸だけでなく糖類やアルコール類等、広範囲の物質を資化できるので、複数種の炭素源を含む複合廃水を単独で処理することができる。このため、複数種の微生物を用いて廃水処理を行う場合に比べて条件等の管理が容易になる。本実施形態の微生物が生育可能な廃水であれば処理される廃水の種類は特に限定されない。処理される廃水は、例えば廃糖蜜を含む廃水等、食品系廃水であってもよい。   Thus, Nitratireductor sp. OM-1 can assimilate not only lower organic acids but also a wide range of substances such as sugars and alcohols, so that composite wastewater containing multiple types of carbon sources can be treated alone. For this reason, management of conditions etc. becomes easy compared with the case where waste water treatment is performed using a plurality of kinds of microorganisms. The type of wastewater to be treated is not particularly limited as long as it is a wastewater capable of growing microorganisms of the present embodiment. The wastewater to be treated may be food wastewater such as wastewater containing waste molasses.

また、Nitratireductor sp. OM-1は廃水処理に利用できるだけでなく、液中の炭素源を制限することによって上述のように、大気中に含まれるCOを固定し、燃料等として有用な脂質や炭化水素を生産することができる。 Further, Nitratireductor sp. OM-1 is not only available for wastewater treatment, as described above by limiting the carbon source in the liquid, the CO 2 contained in the air is fixed, Ya lipids useful as a fuel or the like Hydrocarbons can be produced.

また、酢酸及びプロピオン酸等の低級有機酸の濃度が10mM以外の濃度であっても酢酸及びプロピオン酸から脂質を合成することができる。例えば低級有機酸の濃度は0mMより大きく50mM程度以下であってもよい。今回得られた菌株の低級有機酸に対する耐性は高いので、培地中の低級有機酸の濃度をかなり高くしても生育が可能であると考えられる。一方、低級有機酸の濃度が低くても炭素源があれば菌の生育は可能である。   Furthermore, lipids can be synthesized from acetic acid and propionic acid even when the concentration of lower organic acids such as acetic acid and propionic acid is other than 10 mM. For example, the concentration of the lower organic acid may be greater than 0 mM and about 50 mM or less. Since the strain obtained this time is highly resistant to lower organic acids, it is considered that growth is possible even if the concentration of the lower organic acid in the medium is considerably high. On the other hand, even if the concentration of the lower organic acid is low, the growth of the bacteria is possible if there is a carbon source.

Nitratireductor sp. OM-1が生産できる炭化水素としてスクアレンを挙げたが、Nitratireductor sp. OM-1は、スクアレン以外の炭化水素も生産可能である。   Nitratireductor sp. OM-1 has been cited as a hydrocarbon that can be produced by Nitratireductor sp. OM-1, but Nitratireductor sp. OM-1 can also produce hydrocarbons other than squalene.

また、図1に示すステップS1〜S6を含む方法を用いれば、Nitratireductor sp. OM-1と同様に低級有機酸から脂質を生成できるNitratireductor属又は他属の新たな菌株を単離することは可能である。このようなNitratireductor属や他属の菌株もNitratireductor sp. OM-1と同様に低級有機酸を含む物質の処理、あるいは低級有機酸と、低級有機酸以外の炭素源とを含む複合廃水の処理等に用いることができる。また、Nitratireductor sp. OM-1株又はこれと同等の微生物学的性質を有する菌株を適宜公知の遺伝子工学の手法等によって改変することで得られた微生物を、低級有機酸が含まれた物質の処理に用いてもよい。   Further, if a method including steps S1 to S6 shown in FIG. 1 is used, it is possible to isolate a new strain of the genus Nitratireductor or another genus capable of producing lipids from lower organic acids in the same manner as Nitratireductor sp. OM-1. It is. As in Nitratireductor sp. OM-1, such strains of the genus Nitratireductor and other genera are treated with substances containing lower organic acids, or complex wastewater containing lower organic acids and carbon sources other than lower organic acids, etc. Can be used. In addition, microorganisms obtained by appropriately modifying Nitratireductor sp. OM-1 strain or strains having the same microbiological properties by known genetic engineering techniques, etc., can be used for substances containing lower organic acids. It may be used for processing.

以上説明したように、本開示の一例に係る微生物及びこれを用いた脂質の生産方法は、活性汚泥や廃液等の処理に適用される。   As described above, the microorganism according to an example of the present disclosure and the lipid production method using the microorganism are applied to treatment of activated sludge, waste liquid, and the like.

Claims (13)

Nitratireductor属の微生物であって、
低級有機酸から脂質を生成する微生物。
A microorganism belonging to the genus Nitratireductor,
A microorganism that produces lipids from lower organic acids.
請求項1に記載の微生物において、
Nitratireductor sp. OM-1株(受託番号NITE P−02043)であることを特徴とする微生物。
In the microorganism according to claim 1,
A microorganism characterized by being Nitratireductor sp. OM-1 strain (Accession No. NITE P-02043).
低級有機酸資化性を有するNitratireductor属の微生物を用いて低級有機酸から脂質を生産する方法。   A method for producing lipids from a lower organic acid using a microorganism belonging to the genus Nitratireductor having lower organic acid assimilation properties. 請求項3に記載の方法において、
前記微生物としてNitratireductor sp. OM-1株(受託番号NITE P−02043)を用いて低級有機酸から脂質を生産する方法。
The method of claim 3, wherein
A method for producing lipids from lower organic acids using Nitratireductor sp. OM-1 strain (Accession Number NITE P-02043) as the microorganism.
請求項4に記載の方法において、
前記低級有機酸がプロピオン酸及び酢酸の少なくとも一方であることを特徴とする方法。
The method of claim 4, wherein
The method wherein the lower organic acid is at least one of propionic acid and acetic acid.
請求項4又は5に記載の方法において、
Nitratireductor sp. OM-1株は、前記低級有機酸を含み、且つ窒素源の濃度が20mM未満の液中で培養されることを特徴とする方法。
The method according to claim 4 or 5, wherein
Nitratireductor sp. OM-1 strain is cultured in a liquid containing the lower organic acid and having a nitrogen source concentration of less than 20 mM.
請求項6に記載の方法において、
Nitratireductor sp. OM-1株は、前記低級有機酸から2-ブテン酸1-メチルエチルエステルをさらに生産することを特徴とする方法。
The method of claim 6, wherein
Nitratireductor sp. OM-1 strain further produces 2-butenoic acid 1-methylethyl ester from the lower organic acid.
請求項4〜7のうちいずれか1つに記載の方法において、
Nitratireductor sp. OM-1株を炭素源としてNaHCOのみを含む液中で培養した後、前記低級有機酸を含む液中で継代培養して脂質を生成させることを特徴とする方法。
The method according to any one of claims 4-7,
A method comprising culturing Nitratireductor sp. OM-1 strain in a liquid containing only NaHCO 3 as a carbon source and then subculturing in a liquid containing the lower organic acid to produce lipid.
請求項4〜8のうちいずれか1つに記載の方法において、
Nitratireductor sp. OM-1株によって炭化水素がさらに生成されることを特徴とする方法。
The method according to any one of claims 4 to 8, wherein
Nitratireductor sp. OM-1 strain further produces hydrocarbons.
請求項4〜9のうちいずれか1つに記載の方法において、
Nitratireductor sp. OM-1株を少なくとも低級有機酸と、低級有機酸以外の炭素源とを含む廃水中で培養する工程を備えていることを特徴とする方法。
10. The method according to any one of claims 4-9,
A method comprising culturing Nitratireductor sp. OM-1 strain in waste water containing at least a lower organic acid and a carbon source other than the lower organic acid.
請求項4〜10のうちいずれか1つに記載の方法において、
Nitratireductor sp. OM-1株により生成される前記脂質は、リノール酸、パルミチン酸及びステアリン酸のうち少なくとも1種を含むことを特徴とする方法。
The method according to any one of claims 4 to 10, wherein
The lipid produced by Nitratireductor sp. OM-1 strain contains at least one of linoleic acid, palmitic acid and stearic acid.
低級有機酸資化性を有するNitratireductor属の微生物を、炭素源が制限され、且つCOを含む液中で培養することにより、COを固定しながら脂質を生産する方法。 The Nitratireductor microorganisms of the genus have a lower organic acid assimilation, it is limited carbon source, and by culturing in a liquid medium containing CO 2, the method of producing lipid while fixing the CO 2. 低級有機酸資化性を有するNitratireductor属の微生物を用いて、低級有機酸と、低級有機酸以外の炭素源とを含む廃水の処理を行う方法。   A method of treating wastewater containing a lower organic acid and a carbon source other than the lower organic acid, using a microorganism belonging to the genus Nitratireductor having lower organic acid utilization.
JP2016007620A 2015-05-22 2016-01-19 Microorganism, lipid production method and wastewater treatment method Active JP6685137B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015104887 2015-05-22
JP2015104887 2015-05-22

Publications (2)

Publication Number Publication Date
JP2016214232A true JP2016214232A (en) 2016-12-22
JP6685137B2 JP6685137B2 (en) 2020-04-22

Family

ID=57578771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016007620A Active JP6685137B2 (en) 2015-05-22 2016-01-19 Microorganism, lipid production method and wastewater treatment method

Country Status (1)

Country Link
JP (1) JP6685137B2 (en)

Also Published As

Publication number Publication date
JP6685137B2 (en) 2020-04-22

Similar Documents

Publication Publication Date Title
Xie et al. Biodiesel production with the simultaneous removal of nitrogen, phosphorus and COD in microalgal-bacterial communities for the treatment of anaerobic digestion effluent in photobioreactors
Pei et al. Flocculation performance and mechanism of fungal pellets on harvesting of microalgal biomass
Kitcha et al. Screening of oleaginous yeasts and optimization for lipid production using crude glycerol as a carbon source
Ramanna et al. The optimization of biomass and lipid yields of Chlorella sorokiniana when using wastewater supplemented with different nitrogen sources
Sestric et al. Growth and neutral lipid synthesis by Yarrowia lipolytica on various carbon substrates under nutrient-sufficient and nutrient-limited conditions
Přibyl et al. Production of lipids in 10 strains of Chlorella and Parachlorella, and enhanced lipid productivity in Chlorella vulgaris
Koreivienė et al. Testing of Chlorella/Scenedesmus microalgae consortia for remediation of wastewater, CO2 mitigation and algae biomass feasibility for lipid production
Singh et al. Characterization of endolithic cyanobacterial strain, Leptolyngbya sp. ISTCY101, for prospective recycling of CO2 and biodiesel production
CN106434470B (en) A kind of polycyclic aromatic hydrocarbon-degrading bacteria and its application
Choong et al. The potential of using microalgae for simultaneous oil removal in wastewater and lipid production
Kumsiri et al. Enhanced production of microalgal biomass and lipid as an environmentally friendly biodiesel feedstock through actinomycete co-culture in biogas digestate effluent
Karim et al. Microbial lipid accumulation through bioremediation of palm oil mill effluent using a yeast-bacteria co-culture
Mondal et al. Biochemical responses to bicarbonate supplementation on biomass and lipid productivity of Chlorella sp. BTA9031 isolated from coalmine area
Xu et al. Improved algal oil production from Botryococcus braunii by feeding nitrate and phosphate in an airlift bioreactor
Yun et al. Isolation of novel microalgae from acid mine drainage and its potential application for biodiesel production
Ermis et al. Microalgae growth and diversity in anaerobic digestate compared to synthetic media
Fatajeva et al. The use of Acinetobacter sp. for oil hydrocarbon degradation in saline waters
Marjakangas et al. Lipid production by eukaryotic microorganisms isolated from palm oil mill effluent
KR102020144B1 (en) Auxenochlorella protothecoides MM0011 and use thereof
Yun et al. Contaminated bacterial effects and qPCR application to monitor a specific bacterium in Chlorella sp. KR-1 culture
Wang et al. Insights into differences between spore-assisted and pellet-assisted microalgae harvesting using a highly efficient fungus: Efficiency, high-value substances, and mechanisms
US20130252304A1 (en) NOVEL STRAIN CLASSIFIED UNDER Botryococcus braunii
CN102864086B (en) Strain capable of degrading polycyclic aromatic hydrocarbons (PAHs) and application thereof in soil remediation
Bui-Xuan et al. Green biorefinery: Microalgae-bacteria microbiome on tolerance investigations in plants
JP2013116067A (en) Fat and oil decomposing yeast and treatment method using the same

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20160210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200331

R150 Certificate of patent or registration of utility model

Ref document number: 6685137

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250